
The University of New Hampshire
InterOperability Laboratory

(UNH-IOL)

www.iol.unh.edu

DPDK Lab Summary Jan 2020
Jeremy Plsek

http://iol.unh.edu/

Systems

Hardware from vendors:
• Broadcom

o brcm_57414 25000 Mbps
• Intel (public, 11/2018)

o XL710-QDA2 40 Gbps
o 82599ES 10 Gbps

• Mellanox (public, 11/2018)
o ConnectX-4 Lx 40 Gbps
o ConnectX-4 Lx 25 Gbps
o ConnectX-5 100 Gbps

• NXP (public, 12/2019)
o LS2088A 10000 Mbps

Dates represent when the systems started reporting to patchworks (i.e. public)

Virtual Machines:
• Arch Linux (1/2020)
• CentOS 8 (10/2019)
• Fedora 31 (12/2019)
• FreeBSD 11.2 (8/2019)
• openSuse Leap 15.1 (1/2020)
• Ubuntu 18.04 x2 (7/2019)
• Windows Server 2019

Testing Overview

System Performance
Testing (dts)

DPDK+OVS
Performance

Testing
(ovs_perf)

Compile
Testing
(make)

Compile
Testing
(meson)

Unit
Testing

DPDK+OVS
Compile
Testing

DPDK+SPDK
Compile
Testing

Broadcom bm
Intel bm bm bm

Mellanox bm bm bm
NXP (arm) bm
Arch Linux c c c
CentOS 8 c c c c
Fedora 31 c c c c

FreeBSD 11.2 vm vm vm
openSuse Leap 15.1 c c c

Ubuntu 18.04 c c vm c c
Windows Server 2019 vm

Hardware systems are meant for running performance testing, while the virtual machines are meant to run
non-hardware nic dependent testing.
bm: bare metal; c: container; vm: virtual machine

• OVS (dpdk-latest branch)
• SPDK (v20.01x branch)

Test downstream projects when DPDK patches are
submitted and DPDK subtrees are updated.

Involved Downstream Projects

Runs with Jenkins.

Polls DPDK Patchwork REST API
→ Add patch series to our DB

→ Apply patch series to dpdk master (or subtree)
→ If build fails: Send email to patchwork mailing list and record to our DB
→ If build succeeds: Create and upload a tarball to the DB

→ Run through all testing
Polls DPDK Git repository (including all subtrees)

→ Create and upload a tarball to the DB
→ Run through all testing

How Testing is Started

For each applicable environment:
→ Get tarball from DB

→ Run DTS nic_single_core_perf

How Testing is Performed (Performance)

+------------+---------+-------------------------------------+
| frame_size | txd/rxd | throughput difference from expected |
+============+=========+=====================================+
| 64 | 256 | -0.048 |
+------------+---------+-------------------------------------+
| 128 | 256 | -0.196 |
+------------+---------+-------------------------------------+
| 256 | 256 | 0.069 |
+------------+---------+-------------------------------------+
| 512 | 256 | -0.201 |
+------------+---------+-------------------------------------+
| 1024 | 256 | -0.020 |
+------------+---------+-------------------------------------+
| 1518 | 256 | -0.024 |
+------------+---------+-------------------------------------+

For each applicable environment:
→ Get tarball from DB

→ Run applicable tests
→ Compile testing (make)
→ Compile testing (meson)
→ Unit testing
→ DPDK+OVS compile testing
→ DPDK+SPDK compile testing

Testing runs mostly in containers where the container OS is the same as the VM OS so the same kernel is used.
Unit testing cannot reliably be ran in a container, so it is on a separate snapshotted VM.
These tests exist in the dpdklab-ci repository (IOL). An older patch to include it in the dpdk-ci repository was
submitted to the ci mailing list.

How Testing is Performed (Smoke)

+------------------+-------------------+------------------+----------------+--------------------+--------------+
| Environment | dpdk_compile_spdk | dpdk_compile_ovs | dpdk_unit_test | dpdk_meson_compile | dpdk_compile |
+==================+===================+==================+================+====================+==============+
| FreeBSD 11.2 | PASS | SKIPPED | SKIPPED | PASS | PASS |
+------------------+-------------------+------------------+----------------+--------------------+--------------+
| Ubuntu 18.04 | PASS | PASS | PASS | PASS | PASS |
+------------------+-------------------+------------------+----------------+--------------------+--------------+
| openSUSE Leap 15 | SKIPPED | PASS | SKIPPED | PASS | PASS |
+------------------+-------------------+------------------+----------------+--------------------+--------------+
| Arch Linux | SKIPPED | PASS | SKIPPED | PASS | PASS |
+------------------+-------------------+------------------+----------------+--------------------+--------------+
| Fedora 31 | SKIPPED | PASS | SKIPPED | PASS | PASS |
+------------------+-------------------+------------------+----------------+--------------------+--------------+
| CentOS 8 | SKIPPED | PASS | SKIPPED | PASS | PASS |
+------------------+-------------------+------------------+----------------+--------------------+--------------+

Test finished
→ Add results to DB (can be viewed on the Dashboard)

All related tests for a tarball are finished
→ Grab results from DB and send report

Related tests are grouped such that when they are done, a report is sent out to the patchwork test
report mailing list. Reports are sent as one group per vendor (iol-$vendor-Performance) and a
single group for smoke testing (iol-testing).
By default, if tests fail, results are also sent to the environment maintainers.
Subtree testing is also sent to the same mailing list and environment maintainers.

Where Results are Sent and Stored

https://lab.dpdk.org

https://lab.dpdk.org/results/dashboard/

Since this is a public CI which also stores sensitive results, extra precautions have been lead by
the UNH-IOL and put into place.

• CI nodes are only accessible from within the private network. A VPN is required to access
the network.

• Bare metal machines use OverlayFS for their root file system. This allows rebooting the
machines to remove any persistence created by CI users. These systems are rebooted once
a week.

• Smoke testing runs on unprivileged containers when applicable. If the test cannot run on a
container, a snapshotted VM is used instead.

• Test scripts are shared via a read-only NFS share.
• The REST API is behind the private network to avoid possible outside enumeration. Vendors

can utilize the API by connecting through the VPN.

Security

State of the CI and results get sent to the DB. This all goes through the REST API for validation.
Participants cannot view other vendors results.

• Patchset: Patch series meta information.
• Tarballs: Tarball meta information. Contains both patch series and subtree tarballs.
• Branches: Subtree information.
• Environments: Vendor and VM system information.
• Testruns: Test runs. Contains test results, which test case, and which tarball.
• Group and Users: Vendor and user meta information.
• Subscriptions: How emails are sent (includes mailing lists).
• CI-*: Proxy API to Jenkins to show the CI status from within the dashboard.

DB and REST API

• Participants can manage their subscriptions, environments, API keys
• View Jenkins CI Status
• View stats with Grafana

Dashboard

• Uses REST API to populate results
• Uses Patchwork REST API to populate patch information (cached)
• View overall results outside of Patchwork or emails

Dashboard

Process Overview

• Broadcom ovs_perf once dts performance testing is online
o Waiting on Broadcom to finalize hardware turning

• DPDK+SPDK unit testing
o SPDK team is updating their unit testing, once complete, these tests will be added

• Arm compile testing and additional performance testing
o Waiting on hardware from ARM

• Crypto and VirtIO testing
o Will use new hardware from Intel
o Working with dev team to update tests to run on other hardware / architectures

Roadmap / Work Queue

