[dpdk-dev] [PATCH v2 05/19] e1000: move e1000 pmd to drivers/net directory

Bruce Richardson bruce.richardson at intel.com
Fri May 15 17:56:49 CEST 2015


Move e1000 pmd to drivers/net directory
As part of move, rename "e1000" subdirectory, which contains the code
from the "base driver", to "base".

Signed-off-by: Bruce Richardson <bruce.richardson at intel.com>
---
 drivers/net/Makefile                           |    2 +-
 drivers/net/e1000/Makefile                     |   99 +
 drivers/net/e1000/base/README                  |   39 +
 drivers/net/e1000/base/e1000_80003es2lan.c     | 1514 +++++++
 drivers/net/e1000/base/e1000_80003es2lan.h     |  100 +
 drivers/net/e1000/base/e1000_82540.c           |  717 ++++
 drivers/net/e1000/base/e1000_82541.c           | 1268 ++++++
 drivers/net/e1000/base/e1000_82541.h           |   91 +
 drivers/net/e1000/base/e1000_82542.c           |  588 +++
 drivers/net/e1000/base/e1000_82543.c           | 1553 +++++++
 drivers/net/e1000/base/e1000_82543.h           |   56 +
 drivers/net/e1000/base/e1000_82571.c           | 2026 +++++++++
 drivers/net/e1000/base/e1000_82571.h           |   65 +
 drivers/net/e1000/base/e1000_82575.c           | 3639 ++++++++++++++++
 drivers/net/e1000/base/e1000_82575.h           |  520 +++
 drivers/net/e1000/base/e1000_api.c             | 1357 ++++++
 drivers/net/e1000/base/e1000_api.h             |  167 +
 drivers/net/e1000/base/e1000_defines.h         | 1498 +++++++
 drivers/net/e1000/base/e1000_hw.h              | 1026 +++++
 drivers/net/e1000/base/e1000_i210.c            | 1000 +++++
 drivers/net/e1000/base/e1000_i210.h            |  110 +
 drivers/net/e1000/base/e1000_ich8lan.c         | 5260 ++++++++++++++++++++++++
 drivers/net/e1000/base/e1000_ich8lan.h         |  313 ++
 drivers/net/e1000/base/e1000_mac.c             | 2247 ++++++++++
 drivers/net/e1000/base/e1000_mac.h             |   95 +
 drivers/net/e1000/base/e1000_manage.c          |  573 +++
 drivers/net/e1000/base/e1000_manage.h          |   95 +
 drivers/net/e1000/base/e1000_mbx.c             |  777 ++++
 drivers/net/e1000/base/e1000_mbx.h             |  105 +
 drivers/net/e1000/base/e1000_nvm.c             | 1377 +++++++
 drivers/net/e1000/base/e1000_nvm.h             |   98 +
 drivers/net/e1000/base/e1000_osdep.c           |   83 +
 drivers/net/e1000/base/e1000_osdep.h           |  183 +
 drivers/net/e1000/base/e1000_phy.c             | 4273 +++++++++++++++++++
 drivers/net/e1000/base/e1000_phy.h             |  327 ++
 drivers/net/e1000/base/e1000_regs.h            |  685 +++
 drivers/net/e1000/base/e1000_vf.c              |  586 +++
 drivers/net/e1000/base/e1000_vf.h              |  295 ++
 drivers/net/e1000/e1000_ethdev.h               |  340 ++
 drivers/net/e1000/e1000_logs.h                 |   78 +
 drivers/net/e1000/em_ethdev.c                  | 1530 +++++++
 drivers/net/e1000/em_rxtx.c                    | 1865 +++++++++
 drivers/net/e1000/igb_ethdev.c                 | 3656 ++++++++++++++++
 drivers/net/e1000/igb_pf.c                     |  511 +++
 drivers/net/e1000/igb_rxtx.c                   | 2397 +++++++++++
 drivers/net/e1000/rte_pmd_e1000_version.map    |    4 +
 lib/Makefile                                   |    1 -
 lib/librte_pmd_e1000/Makefile                  |   99 -
 lib/librte_pmd_e1000/e1000/README              |   39 -
 lib/librte_pmd_e1000/e1000/e1000_80003es2lan.c | 1514 -------
 lib/librte_pmd_e1000/e1000/e1000_80003es2lan.h |  100 -
 lib/librte_pmd_e1000/e1000/e1000_82540.c       |  717 ----
 lib/librte_pmd_e1000/e1000/e1000_82541.c       | 1268 ------
 lib/librte_pmd_e1000/e1000/e1000_82541.h       |   91 -
 lib/librte_pmd_e1000/e1000/e1000_82542.c       |  588 ---
 lib/librte_pmd_e1000/e1000/e1000_82543.c       | 1553 -------
 lib/librte_pmd_e1000/e1000/e1000_82543.h       |   56 -
 lib/librte_pmd_e1000/e1000/e1000_82571.c       | 2026 ---------
 lib/librte_pmd_e1000/e1000/e1000_82571.h       |   65 -
 lib/librte_pmd_e1000/e1000/e1000_82575.c       | 3639 ----------------
 lib/librte_pmd_e1000/e1000/e1000_82575.h       |  520 ---
 lib/librte_pmd_e1000/e1000/e1000_api.c         | 1357 ------
 lib/librte_pmd_e1000/e1000/e1000_api.h         |  167 -
 lib/librte_pmd_e1000/e1000/e1000_defines.h     | 1498 -------
 lib/librte_pmd_e1000/e1000/e1000_hw.h          | 1026 -----
 lib/librte_pmd_e1000/e1000/e1000_i210.c        | 1000 -----
 lib/librte_pmd_e1000/e1000/e1000_i210.h        |  110 -
 lib/librte_pmd_e1000/e1000/e1000_ich8lan.c     | 5260 ------------------------
 lib/librte_pmd_e1000/e1000/e1000_ich8lan.h     |  313 --
 lib/librte_pmd_e1000/e1000/e1000_mac.c         | 2247 ----------
 lib/librte_pmd_e1000/e1000/e1000_mac.h         |   95 -
 lib/librte_pmd_e1000/e1000/e1000_manage.c      |  573 ---
 lib/librte_pmd_e1000/e1000/e1000_manage.h      |   95 -
 lib/librte_pmd_e1000/e1000/e1000_mbx.c         |  777 ----
 lib/librte_pmd_e1000/e1000/e1000_mbx.h         |  105 -
 lib/librte_pmd_e1000/e1000/e1000_nvm.c         | 1377 -------
 lib/librte_pmd_e1000/e1000/e1000_nvm.h         |   98 -
 lib/librte_pmd_e1000/e1000/e1000_osdep.c       |   83 -
 lib/librte_pmd_e1000/e1000/e1000_osdep.h       |  183 -
 lib/librte_pmd_e1000/e1000/e1000_phy.c         | 4273 -------------------
 lib/librte_pmd_e1000/e1000/e1000_phy.h         |  327 --
 lib/librte_pmd_e1000/e1000/e1000_regs.h        |  685 ---
 lib/librte_pmd_e1000/e1000/e1000_vf.c          |  586 ---
 lib/librte_pmd_e1000/e1000/e1000_vf.h          |  295 --
 lib/librte_pmd_e1000/e1000_ethdev.h            |  340 --
 lib/librte_pmd_e1000/e1000_logs.h              |   78 -
 lib/librte_pmd_e1000/em_ethdev.c               | 1530 -------
 lib/librte_pmd_e1000/em_rxtx.c                 | 1865 ---------
 lib/librte_pmd_e1000/igb_ethdev.c              | 3656 ----------------
 lib/librte_pmd_e1000/igb_pf.c                  |  511 ---
 lib/librte_pmd_e1000/igb_rxtx.c                | 2397 -----------
 lib/librte_pmd_e1000/rte_pmd_e1000_version.map |    4 -
 92 files changed, 45187 insertions(+), 45188 deletions(-)
 create mode 100644 drivers/net/e1000/Makefile
 create mode 100644 drivers/net/e1000/base/README
 create mode 100644 drivers/net/e1000/base/e1000_80003es2lan.c
 create mode 100644 drivers/net/e1000/base/e1000_80003es2lan.h
 create mode 100644 drivers/net/e1000/base/e1000_82540.c
 create mode 100644 drivers/net/e1000/base/e1000_82541.c
 create mode 100644 drivers/net/e1000/base/e1000_82541.h
 create mode 100644 drivers/net/e1000/base/e1000_82542.c
 create mode 100644 drivers/net/e1000/base/e1000_82543.c
 create mode 100644 drivers/net/e1000/base/e1000_82543.h
 create mode 100644 drivers/net/e1000/base/e1000_82571.c
 create mode 100644 drivers/net/e1000/base/e1000_82571.h
 create mode 100644 drivers/net/e1000/base/e1000_82575.c
 create mode 100644 drivers/net/e1000/base/e1000_82575.h
 create mode 100644 drivers/net/e1000/base/e1000_api.c
 create mode 100644 drivers/net/e1000/base/e1000_api.h
 create mode 100644 drivers/net/e1000/base/e1000_defines.h
 create mode 100644 drivers/net/e1000/base/e1000_hw.h
 create mode 100644 drivers/net/e1000/base/e1000_i210.c
 create mode 100644 drivers/net/e1000/base/e1000_i210.h
 create mode 100644 drivers/net/e1000/base/e1000_ich8lan.c
 create mode 100644 drivers/net/e1000/base/e1000_ich8lan.h
 create mode 100644 drivers/net/e1000/base/e1000_mac.c
 create mode 100644 drivers/net/e1000/base/e1000_mac.h
 create mode 100644 drivers/net/e1000/base/e1000_manage.c
 create mode 100644 drivers/net/e1000/base/e1000_manage.h
 create mode 100644 drivers/net/e1000/base/e1000_mbx.c
 create mode 100644 drivers/net/e1000/base/e1000_mbx.h
 create mode 100644 drivers/net/e1000/base/e1000_nvm.c
 create mode 100644 drivers/net/e1000/base/e1000_nvm.h
 create mode 100644 drivers/net/e1000/base/e1000_osdep.c
 create mode 100644 drivers/net/e1000/base/e1000_osdep.h
 create mode 100644 drivers/net/e1000/base/e1000_phy.c
 create mode 100644 drivers/net/e1000/base/e1000_phy.h
 create mode 100644 drivers/net/e1000/base/e1000_regs.h
 create mode 100644 drivers/net/e1000/base/e1000_vf.c
 create mode 100644 drivers/net/e1000/base/e1000_vf.h
 create mode 100644 drivers/net/e1000/e1000_ethdev.h
 create mode 100644 drivers/net/e1000/e1000_logs.h
 create mode 100644 drivers/net/e1000/em_ethdev.c
 create mode 100644 drivers/net/e1000/em_rxtx.c
 create mode 100644 drivers/net/e1000/igb_ethdev.c
 create mode 100644 drivers/net/e1000/igb_pf.c
 create mode 100644 drivers/net/e1000/igb_rxtx.c
 create mode 100644 drivers/net/e1000/rte_pmd_e1000_version.map
 delete mode 100644 lib/librte_pmd_e1000/Makefile
 delete mode 100644 lib/librte_pmd_e1000/e1000/README
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_80003es2lan.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_80003es2lan.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82540.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82541.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82541.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82542.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82543.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82543.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82571.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82571.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82575.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_82575.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_api.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_api.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_defines.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_hw.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_i210.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_i210.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_ich8lan.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_ich8lan.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_mac.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_mac.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_manage.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_manage.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_mbx.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_mbx.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_nvm.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_nvm.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_osdep.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_osdep.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_phy.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_phy.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_regs.h
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_vf.c
 delete mode 100644 lib/librte_pmd_e1000/e1000/e1000_vf.h
 delete mode 100644 lib/librte_pmd_e1000/e1000_ethdev.h
 delete mode 100644 lib/librte_pmd_e1000/e1000_logs.h
 delete mode 100644 lib/librte_pmd_e1000/em_ethdev.c
 delete mode 100644 lib/librte_pmd_e1000/em_rxtx.c
 delete mode 100644 lib/librte_pmd_e1000/igb_ethdev.c
 delete mode 100644 lib/librte_pmd_e1000/igb_pf.c
 delete mode 100644 lib/librte_pmd_e1000/igb_rxtx.c
 delete mode 100644 lib/librte_pmd_e1000/rte_pmd_e1000_version.map

diff --git a/drivers/net/Makefile b/drivers/net/Makefile
index 91fa0fb..6ae6c42 100644
--- a/drivers/net/Makefile
+++ b/drivers/net/Makefile
@@ -33,7 +33,7 @@ include $(RTE_SDK)/mk/rte.vars.mk
 
 DIRS-$(CONFIG_RTE_LIBRTE_PMD_AF_PACKET) += af_packet
 DIRS-$(CONFIG_RTE_LIBRTE_PMD_BOND) += bonding
-#DIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += librte_pmd_e1000
+DIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000
 #DIRS-$(CONFIG_RTE_LIBRTE_IXGBE_PMD) += librte_pmd_ixgbe
 #DIRS-$(CONFIG_RTE_LIBRTE_I40E_PMD) += librte_pmd_i40e
 #DIRS-$(CONFIG_RTE_LIBRTE_FM10K_PMD) += librte_pmd_fm10k
diff --git a/drivers/net/e1000/Makefile b/drivers/net/e1000/Makefile
new file mode 100644
index 0000000..3d525fa
--- /dev/null
+++ b/drivers/net/e1000/Makefile
@@ -0,0 +1,99 @@
+#   BSD LICENSE
+#
+#   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+#   All rights reserved.
+#
+#   Redistribution and use in source and binary forms, with or without
+#   modification, are permitted provided that the following conditions
+#   are met:
+#
+#     * Redistributions of source code must retain the above copyright
+#       notice, this list of conditions and the following disclaimer.
+#     * Redistributions in binary form must reproduce the above copyright
+#       notice, this list of conditions and the following disclaimer in
+#       the documentation and/or other materials provided with the
+#       distribution.
+#     * Neither the name of Intel Corporation nor the names of its
+#       contributors may be used to endorse or promote products derived
+#       from this software without specific prior written permission.
+#
+#   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+#   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+#   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+#   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+#   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+#   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+#   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+#   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+#   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+#   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+#   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+#
+# library name
+#
+LIB = librte_pmd_e1000.a
+
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+
+EXPORT_MAP := rte_pmd_e1000_version.map
+
+LIBABIVER := 1
+
+ifeq ($(CC), icc)
+#
+# CFLAGS for icc
+#
+CFLAGS_BASE_DRIVER = -wd177 -wd181 -wd188 -wd869 -wd2259
+else
+#
+# CFLAGS for gcc
+#
+CFLAGS_BASE_DRIVER = -Wno-uninitialized -Wno-unused-parameter
+CFLAGS_BASE_DRIVER += -Wno-unused-variable
+endif
+
+#
+# Add extra flags for base driver files (also known as shared code)
+# to disable warnings in them
+#
+BASE_DRIVER_OBJS=$(patsubst %.c,%.o,$(notdir $(wildcard $(SRCDIR)/base/*.c)))
+$(foreach obj, $(BASE_DRIVER_OBJS), $(eval CFLAGS_$(obj)+=$(CFLAGS_BASE_DRIVER)))
+
+VPATH += $(SRCDIR)/base
+
+#
+# all source are stored in SRCS-y
+#
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_80003es2lan.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82540.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82541.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82542.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82543.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82571.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82575.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_i210.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_api.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_ich8lan.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mac.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_manage.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mbx.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_nvm.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_osdep.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_phy.c
+SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_vf.c
+SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_ethdev.c
+SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_rxtx.c
+SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_pf.c
+SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_ethdev.c
+SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_rxtx.c
+
+# this lib depends upon:
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_eal lib/librte_ether
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_mempool lib/librte_mbuf
+DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_net lib/librte_malloc
+
+include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/drivers/net/e1000/base/README b/drivers/net/e1000/base/README
new file mode 100644
index 0000000..851e54e
--- /dev/null
+++ b/drivers/net/e1000/base/README
@@ -0,0 +1,39 @@
+..
+     BSD LICENSE
+   
+     Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+     All rights reserved.
+   
+     Redistribution and use in source and binary forms, with or without
+     modification, are permitted provided that the following conditions
+     are met:
+   
+       * Redistributions of source code must retain the above copyright
+         notice, this list of conditions and the following disclaimer.
+       * Redistributions in binary form must reproduce the above copyright
+         notice, this list of conditions and the following disclaimer in
+         the documentation and/or other materials provided with the
+         distribution.
+       * Neither the name of Intel Corporation nor the names of its
+         contributors may be used to endorse or promote products derived
+         from this software without specific prior written permission.
+   
+     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+     "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+     LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+     A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+     OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+     OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+This directory contains source code of FreeBSD em & igb drivers of version
+cid-shared-code.2014.04.21 released by LAD. The sub-directory of lad/
+contains the original source package.
+Few changes to the original FreeBSD sources were made to:
+- Adopt it for PMD usage mode:
+	e1000_osdep.c
+	e1000_osdep.h
diff --git a/drivers/net/e1000/base/e1000_80003es2lan.c b/drivers/net/e1000/base/e1000_80003es2lan.c
new file mode 100644
index 0000000..72692d9
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_80003es2lan.c
@@ -0,0 +1,1514 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
+ * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
+ */
+
+#include "e1000_api.h"
+
+STATIC s32  e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+						   u32 offset,
+						   u16 *data);
+STATIC s32  e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+						    u32 offset,
+						    u16 data);
+STATIC s32  e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data);
+STATIC s32  e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+					       u16 *duplex);
+STATIC s32  e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+STATIC s32  e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
+STATIC s32  e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
+STATIC s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+					    u16 *data);
+STATIC s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+					     u16 data);
+STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
+STATIC s32  e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
+
+/* A table for the GG82563 cable length where the range is defined
+ * with a lower bound at "index" and the upper bound at
+ * "index + 5".
+ */
+STATIC const u16 e1000_gg82563_cable_length_table[] = {
+	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
+#define GG82563_CABLE_LENGTH_TABLE_SIZE \
+		(sizeof(e1000_gg82563_cable_length_table) / \
+		 sizeof(e1000_gg82563_cable_length_table[0]))
+
+/**
+ *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_phy_params_80003es2lan");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		return E1000_SUCCESS;
+	} else {
+		phy->ops.power_up = e1000_power_up_phy_copper;
+		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
+	}
+
+	phy->addr		= 1;
+	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us	= 100;
+	phy->type		= e1000_phy_gg82563;
+
+	phy->ops.acquire	= e1000_acquire_phy_80003es2lan;
+	phy->ops.check_polarity	= e1000_check_polarity_m88;
+	phy->ops.check_reset_block = e1000_check_reset_block_generic;
+	phy->ops.commit		= e1000_phy_sw_reset_generic;
+	phy->ops.get_cfg_done	= e1000_get_cfg_done_80003es2lan;
+	phy->ops.get_info	= e1000_get_phy_info_m88;
+	phy->ops.release	= e1000_release_phy_80003es2lan;
+	phy->ops.reset		= e1000_phy_hw_reset_generic;
+	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+
+	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
+	phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
+	phy->ops.read_reg	= e1000_read_phy_reg_gg82563_80003es2lan;
+	phy->ops.write_reg	= e1000_write_phy_reg_gg82563_80003es2lan;
+
+	phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000_get_phy_id(hw);
+
+	/* Verify phy id */
+	if (phy->id != GG82563_E_PHY_ID)
+		return -E1000_ERR_PHY;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
+
+	nvm->opcode_bits = 8;
+	nvm->delay_usec = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	nvm->type = e1000_nvm_eeprom_spi;
+
+	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+		     E1000_EECD_SIZE_EX_SHIFT);
+
+	/* Added to a constant, "size" becomes the left-shift value
+	 * for setting word_size.
+	 */
+	size += NVM_WORD_SIZE_BASE_SHIFT;
+
+	/* EEPROM access above 16k is unsupported */
+	if (size > 14)
+		size = 14;
+	nvm->word_size = 1 << size;
+
+	/* Function Pointers */
+	nvm->ops.acquire	= e1000_acquire_nvm_80003es2lan;
+	nvm->ops.read		= e1000_read_nvm_eerd;
+	nvm->ops.release	= e1000_release_nvm_80003es2lan;
+	nvm->ops.update		= e1000_update_nvm_checksum_generic;
+	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
+	nvm->ops.write		= e1000_write_nvm_80003es2lan;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_init_mac_params_80003es2lan");
+
+	/* Set media type and media-dependent function pointers */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
+		mac->ops.setup_physical_interface =
+					e1000_setup_fiber_serdes_link_generic;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+		mac->ops.setup_physical_interface =
+					e1000_setup_copper_link_80003es2lan;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = true;
+	/* FWSM register */
+	mac->has_fwsm = true;
+	/* ARC supported; valid only if manageability features are enabled. */
+	mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
+				      E1000_FWSM_MODE_MASK);
+	/* Adaptive IFS not supported */
+	mac->adaptive_ifs = false;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+	/* reset */
+	mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
+	/* hw initialization */
+	mac->ops.init_hw = e1000_init_hw_80003es2lan;
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_generic;
+	/* check management mode */
+	mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	mac->ops.write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	mac->ops.clear_vfta = e1000_clear_vfta_generic;
+	/* read mac address */
+	mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
+	/* ID LED init */
+	mac->ops.id_led_init = e1000_id_led_init_generic;
+	/* blink LED */
+	mac->ops.blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	mac->ops.setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	mac->ops.cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	mac->ops.led_on = e1000_led_on_generic;
+	mac->ops.led_off = e1000_led_off_generic;
+	/* clear hardware counters */
+	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
+	/* link info */
+	mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
+
+	/* set lan id for port to determine which phy lock to use */
+	hw->mac.ops.set_lan_id(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
+	hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
+}
+
+/**
+ *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to acquire access rights to the correct PHY.
+ **/
+STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_acquire_phy_80003es2lan");
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_release_phy_80003es2lan - Release rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to release access rights to the correct PHY.
+ **/
+STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_release_phy_80003es2lan");
+
+	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+	e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the semaphore to access the Kumeran interface.
+ *
+ **/
+STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
+
+	mask = E1000_SWFW_CSR_SM;
+
+	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
+ *  @hw: pointer to the HW structure
+ *
+ *  Release the semaphore used to access the Kumeran interface
+ **/
+STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
+{
+	u16 mask;
+
+	DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
+
+	mask = E1000_SWFW_CSR_SM;
+
+	e1000_release_swfw_sync_80003es2lan(hw, mask);
+}
+
+/**
+ *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the semaphore to access the EEPROM.
+ **/
+STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
+
+	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_acquire_nvm_generic(hw);
+
+	if (ret_val)
+		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  Release the semaphore used to access the EEPROM.
+ **/
+STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_80003es2lan");
+
+	e1000_release_nvm_generic(hw);
+	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ *  will also specify which port we're acquiring the lock for.
+ **/
+STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+	u32 swmask = mask;
+	u32 fwmask = mask << 16;
+	s32 i = 0;
+	s32 timeout = 50;
+
+	DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
+
+	while (i < timeout) {
+		if (e1000_get_hw_semaphore_generic(hw))
+			return -E1000_ERR_SWFW_SYNC;
+
+		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/* Firmware currently using resource (fwmask)
+		 * or other software thread using resource (swmask)
+		 */
+		e1000_put_hw_semaphore_generic(hw);
+		msec_delay_irq(5);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+		return -E1000_ERR_SWFW_SYNC;
+	}
+
+	swfw_sync |= swmask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ *  will also specify which port we're releasing the lock for.
+ **/
+STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+
+	DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
+
+	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
+		; /* Empty */
+
+	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+	swfw_sync &= ~mask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @data: pointer to the data returned from the operation
+ *
+ *  Read the GG82563 PHY register.
+ **/
+STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+						  u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/* Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
+	if (ret_val) {
+		e1000_release_phy_80003es2lan(hw);
+		return ret_val;
+	}
+
+	if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
+		/* The "ready" bit in the MDIC register may be incorrectly set
+		 * before the device has completed the "Page Select" MDI
+		 * transaction.  So we wait 200us after each MDI command...
+		 */
+		usec_delay(200);
+
+		/* ...and verify the command was successful. */
+		ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
+
+		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+			e1000_release_phy_80003es2lan(hw);
+			return -E1000_ERR_PHY;
+		}
+
+		usec_delay(200);
+
+		ret_val = e1000_read_phy_reg_mdic(hw,
+						  MAX_PHY_REG_ADDRESS & offset,
+						  data);
+
+		usec_delay(200);
+	} else {
+		ret_val = e1000_read_phy_reg_mdic(hw,
+						  MAX_PHY_REG_ADDRESS & offset,
+						  data);
+	}
+
+	e1000_release_phy_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @data: value to write to the register
+ *
+ *  Write to the GG82563 PHY register.
+ **/
+STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
+						   u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page_select;
+	u16 temp;
+
+	DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Select Configuration Page */
+	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
+		page_select = GG82563_PHY_PAGE_SELECT;
+	} else {
+		/* Use Alternative Page Select register to access
+		 * registers 30 and 31
+		 */
+		page_select = GG82563_PHY_PAGE_SELECT_ALT;
+	}
+
+	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
+	ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
+	if (ret_val) {
+		e1000_release_phy_80003es2lan(hw);
+		return ret_val;
+	}
+
+	if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
+		/* The "ready" bit in the MDIC register may be incorrectly set
+		 * before the device has completed the "Page Select" MDI
+		 * transaction.  So we wait 200us after each MDI command...
+		 */
+		usec_delay(200);
+
+		/* ...and verify the command was successful. */
+		ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
+
+		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
+			e1000_release_phy_80003es2lan(hw);
+			return -E1000_ERR_PHY;
+		}
+
+		usec_delay(200);
+
+		ret_val = e1000_write_phy_reg_mdic(hw,
+						  MAX_PHY_REG_ADDRESS & offset,
+						  data);
+
+		usec_delay(200);
+	} else {
+		ret_val = e1000_write_phy_reg_mdic(hw,
+						  MAX_PHY_REG_ADDRESS & offset,
+						  data);
+	}
+
+	e1000_release_phy_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of the register to read
+ *  @words: number of words to write
+ *  @data: buffer of data to write to the NVM
+ *
+ *  Write "words" of data to the ESB2 NVM.
+ **/
+STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
+				       u16 words, u16 *data)
+{
+	DEBUGFUNC("e1000_write_nvm_80003es2lan");
+
+	return e1000_write_nvm_spi(hw, offset, words, data);
+}
+
+/**
+ *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
+ *  @hw: pointer to the HW structure
+ *
+ *  Wait a specific amount of time for manageability processes to complete.
+ *  This is a function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+	DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
+
+	if (hw->bus.func == 1)
+		mask = E1000_NVM_CFG_DONE_PORT_1;
+
+	while (timeout) {
+		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+			break;
+		msec_delay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		DEBUGOUT("MNG configuration cycle has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the speed and duplex settings onto the PHY.  This is a
+ *  function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
+
+	if (!(hw->phy.ops.read_reg))
+		return E1000_SUCCESS;
+
+	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
+	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
+
+	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	/* Reset the phy to commit changes. */
+	phy_data |= MII_CR_RESET;
+
+	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	usec_delay(1);
+
+	if (hw->phy.autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link) {
+			/* We didn't get link.
+			 * Reset the DSP and cross our fingers.
+			 */
+			ret_val = e1000_phy_reset_dsp_generic(hw);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+				       &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Resetting the phy means we need to verify the TX_CLK corresponds
+	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
+	 */
+	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
+	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
+		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
+	else
+		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
+
+	/* In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
+					phy_data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_80003es2lan - Set approximate cable length
+ *  @hw: pointer to the HW structure
+ *
+ *  Find the approximate cable length as measured by the GG82563 PHY.
+ *  This is a function pointer entry point called by the phy module.
+ **/
+STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, index;
+
+	DEBUGFUNC("e1000_get_cable_length_80003es2lan");
+
+	if (!(hw->phy.ops.read_reg))
+		return E1000_SUCCESS;
+
+	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
+
+	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
+		return -E1000_ERR_PHY;
+
+	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
+	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to speed buffer
+ *  @duplex: pointer to duplex buffer
+ *
+ *  Retrieve the current speed and duplex configuration.
+ **/
+STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
+					      u16 *duplex)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+								    duplex);
+		hw->phy.ops.cfg_on_link_up(hw);
+	} else {
+		ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
+								  speed,
+								  duplex);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
+ *  @hw: pointer to the HW structure
+ *
+ *  Perform a global reset to the ESB2 controller.
+ **/
+STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 kum_reg_data;
+
+	DEBUGFUNC("e1000_reset_hw_80003es2lan");
+
+	/* Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val)
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	ret_val = e1000_acquire_phy_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	DEBUGOUT("Issuing a global reset to MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+	e1000_release_phy_80003es2lan(hw);
+
+	/* Disable IBIST slave mode (far-end loopback) */
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
+				E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data);
+	if (ret_val)
+		return ret_val;
+	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
+	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+					kum_reg_data);
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		return ret_val;
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_READ_REG(hw, E1000_ICR);
+
+	return e1000_check_alt_mac_addr_generic(hw);
+}
+
+/**
+ *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
+ **/
+STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 kum_reg_data;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_80003es2lan");
+
+	e1000_initialize_hw_bits_80003es2lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	/* An error is not fatal and we should not stop init due to this */
+	if (ret_val)
+		DEBUGOUT("Error initializing identification LED\n");
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = mac->ops.setup_link(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Disable IBIST slave mode (far-end loopback) */
+	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+					&kum_reg_data);
+	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
+	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
+					 kum_reg_data);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+	/* ...for both queues. */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+
+	/* Enable retransmit on late collisions */
+	reg_data = E1000_READ_REG(hw, E1000_TCTL);
+	reg_data |= E1000_TCTL_RTLC;
+	E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
+
+	/* Configure Gigabit Carry Extend Padding */
+	reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
+	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
+	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
+
+	/* Configure Transmit Inter-Packet Gap */
+	reg_data = E1000_READ_REG(hw, E1000_TIPG);
+	reg_data &= ~E1000_TIPG_IPGT_MASK;
+	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
+
+	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
+	reg_data &= ~0x00100000;
+	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
+
+	/* default to true to enable the MDIC W/A */
+	hw->dev_spec._80003es2lan.mdic_wa_enable = true;
+
+	ret_val =
+	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
+					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
+	if (!ret_val) {
+		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
+		     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
+			hw->dev_spec._80003es2lan.mdic_wa_enable = false;
+	}
+
+	/* Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes required hardware-dependent bits needed for normal operation.
+ **/
+STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC(0));
+	reg &= ~(0xF << 27); /* 30:27 */
+	if (hw->phy.media_type != e1000_media_type_copper)
+		reg &= ~(1 << 20);
+	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC(1));
+	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+	/* Disable IPv6 extension header parsing because some malformed
+	 * IPv6 headers can hang the Rx.
+	 */
+	reg = E1000_READ_REG(hw, E1000_RFCTL);
+	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
+	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+
+	return;
+}
+
+/**
+ *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
+ *  @hw: pointer to the HW structure
+ *
+ *  Setup some GG82563 PHY registers for obtaining link
+ **/
+STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u32 reg;
+	u16 data;
+
+	DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
+
+	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
+	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
+	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
+
+	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
+
+	switch (phy->mdix) {
+	case 1:
+		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
+		break;
+	case 2:
+		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
+		break;
+	case 0:
+	default:
+		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
+		break;
+	}
+
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+	if (phy->disable_polarity_correction)
+		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
+
+	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = hw->phy.ops.commit(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Resetting the PHY\n");
+		return ret_val;
+	}
+
+	/* Bypass Rx and Tx FIFO's */
+	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
+	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
+		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
+	if (ret_val)
+		return ret_val;
+
+	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
+	if (ret_val)
+		return ret_val;
+	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
+	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
+	if (ret_val)
+		return ret_val;
+
+	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	/* Do not init these registers when the HW is in IAMT mode, since the
+	 * firmware will have already initialized them.  We only initialize
+	 * them if the HW is not in IAMT mode.
+	 */
+	if (!hw->mac.ops.check_mng_mode(hw)) {
+		/* Enable Electrical Idle on the PHY */
+		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
+		ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
+						data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+					       &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+		ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+						data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Workaround: Disable padding in Kumeran interface in the MAC
+	 * and in the PHY to avoid CRC errors.
+	 */
+	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= GG82563_ICR_DIS_PADDING;
+	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
+ *  @hw: pointer to the HW structure
+ *
+ *  Essentially a wrapper for setting up all things "copper" related.
+ *  This is a function pointer entry point called by the mac module.
+ **/
+STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	/* Set the mac to wait the maximum time between each
+	 * iteration and increase the max iterations when
+	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
+						   0xFFFF);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+						  &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= 0x3F;
+	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
+						   reg_data);
+	if (ret_val)
+		return ret_val;
+	ret_val =
+	    e1000_read_kmrn_reg_80003es2lan(hw,
+					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+					    &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
+	ret_val =
+	    e1000_write_kmrn_reg_80003es2lan(hw,
+					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
+					     reg_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
+ *  @hw: pointer to the HW structure
+ *  @duplex: current duplex setting
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  10/100 operation.
+ **/
+STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 speed;
+	u16 duplex;
+
+	DEBUGFUNC("e1000_configure_on_link_up");
+
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
+								    &duplex);
+		if (ret_val)
+			return ret_val;
+
+		if (speed == SPEED_1000)
+			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
+		else
+			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
+ *  @hw: pointer to the HW structure
+ *  @duplex: current duplex setting
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  10/100 operation.
+ **/
+STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
+{
+	s32 ret_val;
+	u32 tipg;
+	u32 i = 0;
+	u16 reg_data, reg_data2;
+
+	DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
+	ret_val =
+	    e1000_write_kmrn_reg_80003es2lan(hw,
+					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+					     reg_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = E1000_READ_REG(hw, E1000_TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+	do {
+		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+					       &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+					       &reg_data2);
+		if (ret_val)
+			return ret_val;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	if (duplex == HALF_DUPLEX)
+		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
+	else
+		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+	return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+}
+
+/**
+ *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Configure the KMRN interface by applying last minute quirks for
+ *  gigabit operation.
+ **/
+STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 reg_data, reg_data2;
+	u32 tipg;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_configure_kmrn_for_1000");
+
+	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
+	ret_val =
+	    e1000_write_kmrn_reg_80003es2lan(hw,
+					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
+					     reg_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure Transmit Inter-Packet Gap */
+	tipg = E1000_READ_REG(hw, E1000_TIPG);
+	tipg &= ~E1000_TIPG_IPGT_MASK;
+	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
+	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
+
+	do {
+		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+					       &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
+					       &reg_data2);
+		if (ret_val)
+			return ret_val;
+		i++;
+	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
+
+	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+
+	return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+}
+
+/**
+ *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquire semaphore, then read the PHY register at offset
+ *  using the kumeran interface.  The information retrieved is stored in data.
+ *  Release the semaphore before exiting.
+ **/
+STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+					   u16 *data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
+
+	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(2);
+
+	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+	*data = (u16)kmrnctrlsta;
+
+	e1000_release_mac_csr_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquire semaphore, then write the data to PHY register
+ *  at the offset using the kumeran interface.  Release semaphore
+ *  before exiting.
+ **/
+STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
+					    u16 data)
+{
+	u32 kmrnctrlsta;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
+
+	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+		       E1000_KMRNCTRLSTA_OFFSET) | data;
+	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(2);
+
+	e1000_release_mac_csr_80003es2lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_mac_addr_80003es2lan - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
+
+	/* If there's an alternate MAC address place it in RAR0
+	 * so that it will override the Si installed default perm
+	 * address.
+	 */
+	ret_val = e1000_check_alt_mac_addr_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(hw->mac.ops.check_mng_mode(hw) ||
+	      hw->phy.ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	E1000_READ_REG(hw, E1000_PRC64);
+	E1000_READ_REG(hw, E1000_PRC127);
+	E1000_READ_REG(hw, E1000_PRC255);
+	E1000_READ_REG(hw, E1000_PRC511);
+	E1000_READ_REG(hw, E1000_PRC1023);
+	E1000_READ_REG(hw, E1000_PRC1522);
+	E1000_READ_REG(hw, E1000_PTC64);
+	E1000_READ_REG(hw, E1000_PTC127);
+	E1000_READ_REG(hw, E1000_PTC255);
+	E1000_READ_REG(hw, E1000_PTC511);
+	E1000_READ_REG(hw, E1000_PTC1023);
+	E1000_READ_REG(hw, E1000_PTC1522);
+
+	E1000_READ_REG(hw, E1000_ALGNERRC);
+	E1000_READ_REG(hw, E1000_RXERRC);
+	E1000_READ_REG(hw, E1000_TNCRS);
+	E1000_READ_REG(hw, E1000_CEXTERR);
+	E1000_READ_REG(hw, E1000_TSCTC);
+	E1000_READ_REG(hw, E1000_TSCTFC);
+
+	E1000_READ_REG(hw, E1000_MGTPRC);
+	E1000_READ_REG(hw, E1000_MGTPDC);
+	E1000_READ_REG(hw, E1000_MGTPTC);
+
+	E1000_READ_REG(hw, E1000_IAC);
+	E1000_READ_REG(hw, E1000_ICRXOC);
+
+	E1000_READ_REG(hw, E1000_ICRXPTC);
+	E1000_READ_REG(hw, E1000_ICRXATC);
+	E1000_READ_REG(hw, E1000_ICTXPTC);
+	E1000_READ_REG(hw, E1000_ICTXATC);
+	E1000_READ_REG(hw, E1000_ICTXQEC);
+	E1000_READ_REG(hw, E1000_ICTXQMTC);
+	E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
diff --git a/drivers/net/e1000/base/e1000_80003es2lan.h b/drivers/net/e1000/base/e1000_80003es2lan.h
new file mode 100644
index 0000000..f5fe967
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_80003es2lan.h
@@ -0,0 +1,100 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_80003ES2LAN_H_
+#define _E1000_80003ES2LAN_H_
+
+#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	0x00
+#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	0x02
+#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	0x10
+#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	0x1F
+
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	0x0008
+#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	0x0800
+#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	0x0010
+
+#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
+#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	0x0000
+#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		0x2000
+
+#define E1000_KMRNCTRLSTA_OPMODE_MASK		0x000C
+#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO	0x0004
+
+#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gig Carry Extend Padding */
+#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	0x00010000
+
+#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	0x8
+#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	0x9
+
+/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
+#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	0x0002 /* 1=Reversal Dis */
+#define GG82563_PSCR_CROSSOVER_MODE_MASK	0x0060
+#define GG82563_PSCR_CROSSOVER_MODE_MDI		0x0000 /* 00=Manual MDI */
+#define GG82563_PSCR_CROSSOVER_MODE_MDIX	0x0020 /* 01=Manual MDIX */
+#define GG82563_PSCR_CROSSOVER_MODE_AUTO	0x0060 /* 11=Auto crossover */
+
+/* PHY Specific Control Register 2 (Page 0, Register 26) */
+#define GG82563_PSCR2_REVERSE_AUTO_NEG		0x2000 /* 1=Reverse Auto-Neg */
+
+/* MAC Specific Control Register (Page 2, Register 21) */
+/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
+#define GG82563_MSCR_TX_CLK_MASK		0x0007
+#define GG82563_MSCR_TX_CLK_10MBPS_2_5		0x0004
+#define GG82563_MSCR_TX_CLK_100MBPS_25		0x0005
+#define GG82563_MSCR_TX_CLK_1000MBPS_25		0x0007
+
+#define GG82563_MSCR_ASSERT_CRS_ON_TX		0x0010 /* 1=Assert */
+
+/* DSP Distance Register (Page 5, Register 26)
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-100M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define GG82563_DSPD_CABLE_LENGTH		0x0007
+
+/* Kumeran Mode Control Register (Page 193, Register 16) */
+#define GG82563_KMCR_PASS_FALSE_CARRIER		0x0800
+
+/* Max number of times Kumeran read/write should be validated */
+#define GG82563_MAX_KMRN_RETRY			0x5
+
+/* Power Management Control Register (Page 193, Register 20) */
+/* 1=Enable SERDES Electrical Idle */
+#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	0x0001
+
+/* In-Band Control Register (Page 194, Register 18) */
+#define GG82563_ICR_DIS_PADDING			0x0010 /* Disable Padding */
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_82540.c b/drivers/net/e1000/base/e1000_82540.c
new file mode 100644
index 0000000..fc1fa94
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82540.c
@@ -0,0 +1,717 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82540EM Gigabit Ethernet Controller
+ * 82540EP Gigabit Ethernet Controller
+ * 82545EM Gigabit Ethernet Controller (Copper)
+ * 82545EM Gigabit Ethernet Controller (Fiber)
+ * 82545GM Gigabit Ethernet Controller
+ * 82546EB Gigabit Ethernet Controller (Copper)
+ * 82546EB Gigabit Ethernet Controller (Fiber)
+ * 82546GB Gigabit Ethernet Controller
+ */
+
+#include "e1000_api.h"
+
+STATIC s32  e1000_init_phy_params_82540(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82540(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82540(struct e1000_hw *hw);
+STATIC s32  e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82540(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82540(struct e1000_hw *hw);
+STATIC s32  e1000_set_phy_mode_82540(struct e1000_hw *hw);
+STATIC s32  e1000_set_vco_speed_82540(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_82540(struct e1000_hw *hw);
+STATIC s32  e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw);
+STATIC s32  e1000_read_mac_addr_82540(struct e1000_hw *hw);
+
+/**
+ * e1000_init_phy_params_82540 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	phy->addr		= 1;
+	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us	= 10000;
+	phy->type		= e1000_phy_m88;
+
+	/* Function Pointers */
+	phy->ops.check_polarity	= e1000_check_polarity_m88;
+	phy->ops.commit		= e1000_phy_sw_reset_generic;
+	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+	phy->ops.get_cable_length = e1000_get_cable_length_m88;
+	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
+	phy->ops.read_reg	= e1000_read_phy_reg_m88;
+	phy->ops.reset		= e1000_phy_hw_reset_generic;
+	phy->ops.write_reg	= e1000_write_phy_reg_m88;
+	phy->ops.get_info	= e1000_get_phy_info_m88;
+	phy->ops.power_up	= e1000_power_up_phy_copper;
+	phy->ops.power_down	= e1000_power_down_phy_copper_82540;
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (phy->id == M88E1011_I_PHY_ID)
+			break;
+		/* Fall Through */
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+		break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_init_nvm_params_82540 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	DEBUGFUNC("e1000_init_nvm_params_82540");
+
+	nvm->type = e1000_nvm_eeprom_microwire;
+	nvm->delay_usec = 50;
+	nvm->opcode_bits = 3;
+	switch (nvm->override) {
+	case e1000_nvm_override_microwire_large:
+		nvm->address_bits = 8;
+		nvm->word_size = 256;
+		break;
+	case e1000_nvm_override_microwire_small:
+		nvm->address_bits = 6;
+		nvm->word_size = 64;
+		break;
+	default:
+		nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
+		nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
+		break;
+	}
+
+	/* Function Pointers */
+	nvm->ops.acquire	= e1000_acquire_nvm_generic;
+	nvm->ops.read		= e1000_read_nvm_microwire;
+	nvm->ops.release	= e1000_release_nvm_generic;
+	nvm->ops.update		= e1000_update_nvm_checksum_generic;
+	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
+	nvm->ops.write		= e1000_write_nvm_microwire;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_mac_params_82540 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_mac_params_82540");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545EM_FIBER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546GB_FIBER:
+		hw->phy.media_type = e1000_media_type_fiber;
+		break;
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+	/* function id */
+	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+	/* reset */
+	mac->ops.reset_hw = e1000_reset_hw_82540;
+	/* hw initialization */
+	mac->ops.init_hw = e1000_init_hw_82540;
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_generic;
+	/* physical interface setup */
+	mac->ops.setup_physical_interface =
+		(hw->phy.media_type == e1000_media_type_copper)
+			? e1000_setup_copper_link_82540
+			: e1000_setup_fiber_serdes_link_82540;
+	/* check for link */
+	switch (hw->phy.media_type) {
+	case e1000_media_type_copper:
+		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+		break;
+	case e1000_media_type_fiber:
+		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+		break;
+	case e1000_media_type_internal_serdes:
+		mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
+		break;
+	default:
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+		break;
+	}
+	/* link info */
+	mac->ops.get_link_up_info =
+		(hw->phy.media_type == e1000_media_type_copper)
+			? e1000_get_speed_and_duplex_copper_generic
+			: e1000_get_speed_and_duplex_fiber_serdes_generic;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	mac->ops.write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	mac->ops.clear_vfta = e1000_clear_vfta_generic;
+	/* read mac address */
+	mac->ops.read_mac_addr = e1000_read_mac_addr_82540;
+	/* ID LED init */
+	mac->ops.id_led_init = e1000_id_led_init_generic;
+	/* setup LED */
+	mac->ops.setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	mac->ops.cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	mac->ops.led_on = e1000_led_on_generic;
+	mac->ops.led_off = e1000_led_off_generic;
+	/* clear hardware counters */
+	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_init_function_pointers_82540 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82540(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82540");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_82540;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_82540;
+	hw->phy.ops.init_params = e1000_init_phy_params_82540;
+}
+
+/**
+ *  e1000_reset_hw_82540 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw)
+{
+	u32 ctrl, manc;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_reset_hw_82540");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete
+	 * before resetting the device.
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
+	switch (hw->mac.type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
+		break;
+	default:
+		/*
+		 * These controllers can't ack the 64-bit write when
+		 * issuing the reset, so we use IO-mapping as a
+		 * workaround to issue the reset.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	}
+
+	/* Wait for EEPROM reload */
+	msec_delay(5);
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	manc = E1000_READ_REG(hw, E1000_MANC);
+	manc &= ~E1000_MANC_ARP_EN;
+	E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_READ_REG(hw, E1000_ICR);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82540 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txdctl, ctrl_ext;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82540");
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	if (mac->type < e1000_82545_rev_3)
+		E1000_WRITE_REG(hw, E1000_VET, 0);
+
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		/*
+		 * Avoid back to back register writes by adding the register
+		 * read (flush).  This is to protect against some strange
+		 * bridge configurations that may issue Memory Write Block
+		 * (MWB) to our register space.  The *_rev_3 hardware at
+		 * least doesn't respond correctly to every other dword in an
+		 * MWB to our register space.
+		 */
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	if (mac->type < e1000_82545_rev_3)
+		e1000_pcix_mmrbc_workaround_generic(hw);
+
+	/* Setup link and flow control */
+	ret_val = mac->ops.setup_link(hw);
+
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		  E1000_TXDCTL_FULL_TX_DESC_WB;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82540(hw);
+
+	if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
+	    (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		/*
+		 * Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot.
+		 */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_82540 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).
+ **/
+STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_setup_copper_link_82540");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	ret_val = e1000_set_phy_mode_82540(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.type == e1000_82545_rev_3 ||
+	    hw->mac.type == e1000_82546_rev_3) {
+		ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
+					       &data);
+		if (ret_val)
+			goto out;
+		data |= 0x00000008;
+		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+						data);
+		if (ret_val)
+			goto out;
+	}
+
+	ret_val = e1000_copper_link_setup_m88(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the output amplitude to the value in the EEPROM and adjust the VCO
+ *  speed to improve Bit Error Rate (BER) performance.  Configures collision
+ *  distance and flow control for fiber and serdes links.  Upon successful
+ *  setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
+
+	switch (mac->type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
+			/*
+			 * If we're on serdes media, adjust the output
+			 * amplitude to value set in the EEPROM.
+			 */
+			ret_val = e1000_adjust_serdes_amplitude_82540(hw);
+			if (ret_val)
+				goto out;
+		}
+		/* Adjust VCO speed to improve BER performance */
+		ret_val = e1000_set_vco_speed_82540(hw);
+		if (ret_val)
+			goto out;
+	default:
+		break;
+	}
+
+	ret_val = e1000_setup_fiber_serdes_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Adjust the SERDES output amplitude based on the EEPROM settings.
+ **/
+STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
+	if (ret_val)
+		goto out;
+
+	if (nvm_data != NVM_RESERVED_WORD) {
+		/* Adjust serdes output amplitude only. */
+		nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
+		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL,
+						nvm_data);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_vco_speed_82540 - Set VCO speed for better performance
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the VCO speed to improve Bit Error Rate (BER) performance.
+ **/
+STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
+{
+	s32  ret_val;
+	u16 default_page = 0;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_set_vco_speed_82540");
+
+	/* Set PHY register 30, page 5, bit 8 to 0 */
+
+	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT,
+				       &default_page);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	/* Set PHY register 30, page 4, bit 11 to 1 */
+
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		goto out;
+
+	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
+					default_page);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_phy_mode_82540 - Set PHY to class A mode
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the PHY to class A mode and assumes the following operations will
+ *  follow to enable the new class mode:
+ *    1.  Do a PHY soft reset.
+ *    2.  Restart auto-negotiation or force link.
+ **/
+STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_set_phy_mode_82540");
+
+	if (hw->mac.type != e1000_82545_rev_3)
+		goto out;
+
+	ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
+	if (ret_val) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+	if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
+		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
+						0x000B);
+		if (ret_val) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL,
+						0x8104);
+		if (ret_val) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_clear_hw_cntrs_82540");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	E1000_READ_REG(hw, E1000_PRC64);
+	E1000_READ_REG(hw, E1000_PRC127);
+	E1000_READ_REG(hw, E1000_PRC255);
+	E1000_READ_REG(hw, E1000_PRC511);
+	E1000_READ_REG(hw, E1000_PRC1023);
+	E1000_READ_REG(hw, E1000_PRC1522);
+	E1000_READ_REG(hw, E1000_PTC64);
+	E1000_READ_REG(hw, E1000_PTC127);
+	E1000_READ_REG(hw, E1000_PTC255);
+	E1000_READ_REG(hw, E1000_PTC511);
+	E1000_READ_REG(hw, E1000_PTC1023);
+	E1000_READ_REG(hw, E1000_PTC1522);
+
+	E1000_READ_REG(hw, E1000_ALGNERRC);
+	E1000_READ_REG(hw, E1000_RXERRC);
+	E1000_READ_REG(hw, E1000_TNCRS);
+	E1000_READ_REG(hw, E1000_CEXTERR);
+	E1000_READ_REG(hw, E1000_TSCTC);
+	E1000_READ_REG(hw, E1000_TSCTFC);
+
+	E1000_READ_REG(hw, E1000_MGTPRC);
+	E1000_READ_REG(hw, E1000_MGTPDC);
+	E1000_READ_REG(hw, E1000_MGTPTC);
+}
+
+/**
+ *  e1000_read_mac_addr_82540 - Read device MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the device MAC address from the EEPROM and stores the value.
+ *  Since devices with two ports use the same EEPROM, we increment the
+ *  last bit in the MAC address for the second port.
+ *
+ *  This version is being used over generic because of customer issues
+ *  with VmWare and Virtual Box when using generic. It seems in
+ *  the emulated 82545, RAR[0] does NOT have a valid address after a
+ *  reset, this older method works and using this breaks nothing for
+ *  these legacy adapters.
+ **/
+s32 e1000_read_mac_addr_82540(struct e1000_hw *hw)
+{
+	s32  ret_val = E1000_SUCCESS;
+	u16 offset, nvm_data, i;
+
+	DEBUGFUNC("e1000_read_mac_addr");
+
+	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+		offset = i >> 1;
+		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			goto out;
+		}
+		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+	}
+
+	/* Flip last bit of mac address if we're on second port */
+	if (hw->bus.func == E1000_FUNC_1)
+		hw->mac.perm_addr[5] ^= 1;
+
+	for (i = 0; i < ETH_ADDR_LEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+	return ret_val;
+}
diff --git a/drivers/net/e1000/base/e1000_82541.c b/drivers/net/e1000/base/e1000_82541.c
new file mode 100644
index 0000000..952aea2
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82541.c
@@ -0,0 +1,1268 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82541EI Gigabit Ethernet Controller
+ * 82541ER Gigabit Ethernet Controller
+ * 82541GI Gigabit Ethernet Controller
+ * 82541PI Gigabit Ethernet Controller
+ * 82547EI Gigabit Ethernet Controller
+ * 82547GI Gigabit Ethernet Controller
+ */
+
+#include "e1000_api.h"
+
+STATIC s32  e1000_init_phy_params_82541(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82541(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82541(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82541(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82541(struct e1000_hw *hw);
+STATIC s32  e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+					 u16 *duplex);
+STATIC s32  e1000_phy_hw_reset_82541(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_82541(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_link_82541(struct e1000_hw *hw);
+STATIC s32  e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
+STATIC s32  e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
+					  bool active);
+STATIC s32  e1000_setup_led_82541(struct e1000_hw *hw);
+STATIC s32  e1000_cleanup_led_82541(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
+STATIC s32  e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+						     bool link_up);
+STATIC s32  e1000_phy_init_script_82541(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
+
+STATIC const u16 e1000_igp_cable_length_table[] = {
+	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10,
+	10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30,
+	40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60,
+	60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80,
+	80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100,
+	100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110,
+	110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120,
+	120, 120, 120, 120, 120, 120, 120, 120};
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
+		(sizeof(e1000_igp_cable_length_table) / \
+		 sizeof(e1000_igp_cable_length_table[0]))
+
+/**
+ *  e1000_init_phy_params_82541 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_phy_params_82541");
+
+	phy->addr		= 1;
+	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us	= 10000;
+	phy->type		= e1000_phy_igp;
+
+	/* Function Pointers */
+	phy->ops.check_polarity	= e1000_check_polarity_igp;
+	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+	phy->ops.get_cable_length = e1000_get_cable_length_igp_82541;
+	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
+	phy->ops.get_info	= e1000_get_phy_info_igp;
+	phy->ops.read_reg	= e1000_read_phy_reg_igp;
+	phy->ops.reset		= e1000_phy_hw_reset_82541;
+	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
+	phy->ops.write_reg	= e1000_write_phy_reg_igp;
+	phy->ops.power_up	= e1000_power_up_phy_copper;
+	phy->ops.power_down	= e1000_power_down_phy_copper_82541;
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	if (phy->id != IGP01E1000_I_PHY_ID) {
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82541 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val = E1000_SUCCESS;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_82541");
+
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->type = e1000_nvm_eeprom_spi;
+		eecd |= E1000_EECD_ADDR_BITS;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->type = e1000_nvm_eeprom_spi;
+		eecd &= ~E1000_EECD_ADDR_BITS;
+		break;
+	case e1000_nvm_override_microwire_large:
+		nvm->type = e1000_nvm_eeprom_microwire;
+		eecd |= E1000_EECD_SIZE;
+		break;
+	case e1000_nvm_override_microwire_small:
+		nvm->type = e1000_nvm_eeprom_microwire;
+		eecd &= ~E1000_EECD_SIZE;
+		break;
+	default:
+		nvm->type = eecd & E1000_EECD_TYPE ? e1000_nvm_eeprom_spi
+			    : e1000_nvm_eeprom_microwire;
+		break;
+	}
+
+	if (nvm->type == e1000_nvm_eeprom_spi) {
+		nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 16 : 8;
+		nvm->delay_usec = 1;
+		nvm->opcode_bits = 8;
+		nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) ? 32 : 8;
+
+		/* Function Pointers */
+		nvm->ops.acquire	= e1000_acquire_nvm_generic;
+		nvm->ops.read		= e1000_read_nvm_spi;
+		nvm->ops.release	= e1000_release_nvm_generic;
+		nvm->ops.update		= e1000_update_nvm_checksum_generic;
+		nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+		nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
+		nvm->ops.write		= e1000_write_nvm_spi;
+
+		/*
+		 * nvm->word_size must be discovered after the pointers
+		 * are set so we can verify the size from the nvm image
+		 * itself.  Temporarily set it to a dummy value so the
+		 * read will work.
+		 */
+		nvm->word_size = 64;
+		ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size);
+		if (ret_val)
+			goto out;
+		size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
+		/*
+		 * if size != 0, it can be added to a constant and become
+		 * the left-shift value to set the word_size.  Otherwise,
+		 * word_size stays at 64.
+		 */
+		if (size) {
+			size += NVM_WORD_SIZE_BASE_SHIFT_82541;
+			nvm->word_size = 1 << size;
+		}
+	} else {
+		nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 8 : 6;
+		nvm->delay_usec = 50;
+		nvm->opcode_bits = 3;
+		nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) ? 256 : 64;
+
+		/* Function Pointers */
+		nvm->ops.acquire	= e1000_acquire_nvm_generic;
+		nvm->ops.read		= e1000_read_nvm_microwire;
+		nvm->ops.release	= e1000_release_nvm_generic;
+		nvm->ops.update		= e1000_update_nvm_checksum_generic;
+		nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+		nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
+		nvm->ops.write		= e1000_write_nvm_microwire;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_mac_params_82541 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_init_mac_params_82541");
+
+	/* Set media type */
+	hw->phy.media_type = e1000_media_type_copper;
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = true;
+
+	/* Function Pointers */
+
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+	/* function id */
+	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+	/* reset */
+	mac->ops.reset_hw = e1000_reset_hw_82541;
+	/* hw initialization */
+	mac->ops.init_hw = e1000_init_hw_82541;
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_generic;
+	/* physical interface link setup */
+	mac->ops.setup_physical_interface = e1000_setup_copper_link_82541;
+	/* check for link */
+	mac->ops.check_for_link = e1000_check_for_link_82541;
+	/* link info */
+	mac->ops.get_link_up_info = e1000_get_link_up_info_82541;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	mac->ops.write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	mac->ops.clear_vfta = e1000_clear_vfta_generic;
+	/* ID LED init */
+	mac->ops.id_led_init = e1000_id_led_init_generic;
+	/* setup LED */
+	mac->ops.setup_led = e1000_setup_led_82541;
+	/* cleanup LED */
+	mac->ops.cleanup_led = e1000_cleanup_led_82541;
+	/* turn on/off LED */
+	mac->ops.led_on = e1000_led_on_generic;
+	mac->ops.led_off = e1000_led_off_generic;
+	/* clear hardware counters */
+	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_function_pointers_82541 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82541(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82541");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_82541;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_82541;
+	hw->phy.ops.init_params = e1000_init_phy_params_82541;
+}
+
+/**
+ *  e1000_reset_hw_82541 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw)
+{
+	u32 ledctl, ctrl, manc;
+
+	DEBUGFUNC("e1000_reset_hw_82541");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete
+	 * before resetting the device.
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Must reset the Phy before resetting the MAC */
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
+		E1000_WRITE_FLUSH(hw);
+		msec_delay(5);
+	}
+
+	DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
+	switch (hw->mac.type) {
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		/*
+		 * These controllers can't ack the 64-bit write when
+		 * issuing the reset, so we use IO-mapping as a
+		 * workaround to issue the reset.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	default:
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+		break;
+	}
+
+	/* Wait for NVM reload */
+	msec_delay(20);
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	manc = E1000_READ_REG(hw, E1000_MANC);
+	manc &= ~E1000_MANC_ARP_EN;
+	E1000_WRITE_REG(hw, E1000_MANC, manc);
+
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		e1000_phy_init_script_82541(hw);
+
+		/* Configure activity LED after Phy reset */
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		ledctl &= IGP_ACTIVITY_LED_MASK;
+		ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	}
+
+	/* Once again, mask the interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+
+	/* Clear any pending interrupt events. */
+	E1000_READ_REG(hw, E1000_ICR);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_hw_82541 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+	u32 i, txdctl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_hw_82541");
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Storing the Speed Power Down  value for later use */
+	ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
+				       &dev_spec->spd_default);
+	if (ret_val)
+		goto out;
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		/*
+		 * Avoid back to back register writes by adding the register
+		 * read (flush).  This is to protect against some strange
+		 * bridge configurations that may issue Memory Write Block
+		 * (MWB) to our register space.
+		 */
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/* Setup link and flow control */
+	ret_val = mac->ops.setup_link(hw);
+
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
+		  E1000_TXDCTL_FULL_TX_DESC_WB;
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82541(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ * e1000_get_link_up_info_82541 - Report speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to speed buffer
+ * @duplex: pointer to duplex buffer
+ *
+ * Retrieve the current speed and duplex configuration.
+ **/
+STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
+					u16 *duplex)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_get_link_up_info_82541");
+
+	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+	if (ret_val)
+		goto out;
+
+	if (!phy->speed_downgraded)
+		goto out;
+
+	/*
+	 * IGP01 PHY may advertise full duplex operation after speed
+	 * downgrade even if it is operating at half duplex.
+	 * Here we set the duplex settings to match the duplex in the
+	 * link partner's capabilities.
+	 */
+	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data);
+	if (ret_val)
+		goto out;
+
+	if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
+		*duplex = HALF_DUPLEX;
+	} else {
+		ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data);
+		if (ret_val)
+			goto out;
+
+		if (*speed == SPEED_100) {
+			if (!(data & NWAY_LPAR_100TX_FD_CAPS))
+				*duplex = HALF_DUPLEX;
+		} else if (*speed == SPEED_10) {
+			if (!(data & NWAY_LPAR_10T_FD_CAPS))
+				*duplex = HALF_DUPLEX;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_82541 - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify the reset block is not blocking us from resetting.  Acquire
+ *  semaphore (if necessary) and read/set/write the device control reset
+ *  bit in the PHY.  Wait the appropriate delay time for the device to
+ *  reset and release the semaphore (if necessary).
+ **/
+STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u32 ledctl;
+
+	DEBUGFUNC("e1000_phy_hw_reset_82541");
+
+	ret_val = e1000_phy_hw_reset_generic(hw);
+	if (ret_val)
+		goto out;
+
+	e1000_phy_init_script_82541(hw);
+
+	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		ledctl &= IGP_ACTIVITY_LED_MASK;
+		ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_82541 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).
+ **/
+STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+	s32  ret_val;
+	u32 ctrl, ledctl;
+
+	DEBUGFUNC("e1000_setup_copper_link_82541");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+
+	/* Earlier revs of the IGP phy require us to force MDI. */
+	if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
+		dev_spec->dsp_config = e1000_dsp_config_disabled;
+		phy->mdix = 1;
+	} else {
+		dev_spec->dsp_config = e1000_dsp_config_enabled;
+	}
+
+	ret_val = e1000_copper_link_setup_igp(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.autoneg) {
+		if (dev_spec->ffe_config == e1000_ffe_config_active)
+			dev_spec->ffe_config = e1000_ffe_config_enabled;
+	}
+
+	/* Configure activity LED after Phy reset */
+	ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+	ledctl &= IGP_ACTIVITY_LED_MASK;
+	ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_link_82541 - Check/Store link connection
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks the link condition of the adapter and stores the
+ *  results in the hw->mac structure.
+ **/
+STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_check_for_link_82541");
+
+	/*
+	 * We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/*
+	 * First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link) {
+		ret_val = e1000_config_dsp_after_link_change_82541(hw, false);
+		goto out; /* No link detected */
+	}
+
+	mac->get_link_status = false;
+
+	/*
+	 * Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000_check_downshift_generic(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	ret_val = e1000_config_dsp_after_link_change_82541(hw, true);
+
+	/*
+	 * Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	mac->ops.config_collision_dist(hw);
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val)
+		DEBUGOUT("Error configuring flow control\n");
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_dsp_after_link_change_82541 - Config DSP after link
+ *  @hw: pointer to the HW structure
+ *  @link_up: boolean flag for link up status
+ *
+ *  Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
+ *  at any other case.
+ *
+ *  82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ *  gigabit link is achieved to improve link quality.
+ **/
+STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
+						    bool link_up)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+	s32 ret_val;
+	u32 idle_errs = 0;
+	u16 phy_data, phy_saved_data, speed, duplex, i;
+	u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
+						IGP01E1000_PHY_AGC_PARAM_A,
+						IGP01E1000_PHY_AGC_PARAM_B,
+						IGP01E1000_PHY_AGC_PARAM_C,
+						IGP01E1000_PHY_AGC_PARAM_D};
+
+	DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
+
+	if (link_up) {
+		ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			goto out;
+		}
+
+		if (speed != SPEED_1000) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		ret_val = phy->ops.get_cable_length(hw);
+		if (ret_val)
+			goto out;
+
+		if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
+		    phy->min_cable_length >= 50) {
+
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val = phy->ops.read_reg(hw,
+							    dsp_reg_array[i],
+							    &phy_data);
+				if (ret_val)
+					goto out;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+				ret_val = phy->ops.write_reg(hw,
+							     dsp_reg_array[i],
+							     phy_data);
+				if (ret_val)
+					goto out;
+			}
+			dev_spec->dsp_config = e1000_dsp_config_activated;
+		}
+
+		if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
+		    (phy->min_cable_length >= 50)) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		/* clear previous idle error counts */
+		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			goto out;
+
+		for (i = 0; i < ffe_idle_err_timeout; i++) {
+			usec_delay(1000);
+			ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS,
+						    &phy_data);
+			if (ret_val)
+				goto out;
+
+			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
+			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+				dev_spec->ffe_config = e1000_ffe_config_active;
+
+				ret_val = phy->ops.write_reg(hw,
+						  IGP01E1000_PHY_DSP_FFE,
+						  IGP01E1000_PHY_DSP_FFE_CM_CP);
+				if (ret_val)
+					goto out;
+				break;
+			}
+
+			if (idle_errs)
+				ffe_idle_err_timeout =
+						 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+		}
+	} else {
+		if (dev_spec->dsp_config == e1000_dsp_config_activated) {
+			/*
+			 * Save off the current value of register 0x2F5B
+			 * to be restored at the end of the routines.
+			 */
+			ret_val = phy->ops.read_reg(hw, 0x2F5B,
+						    &phy_saved_data);
+			if (ret_val)
+				goto out;
+
+			/* Disable the PHY transmitter */
+			ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
+			if (ret_val)
+				goto out;
+
+			msec_delay_irq(20);
+
+			ret_val = phy->ops.write_reg(hw, 0x0000,
+						     IGP01E1000_IEEE_FORCE_GIG);
+			if (ret_val)
+				goto out;
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val = phy->ops.read_reg(hw,
+							    dsp_reg_array[i],
+							    &phy_data);
+				if (ret_val)
+					goto out;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+				ret_val = phy->ops.write_reg(hw,
+							     dsp_reg_array[i],
+							     phy_data);
+				if (ret_val)
+					goto out;
+			}
+
+			ret_val = phy->ops.write_reg(hw, 0x0000,
+					       IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				goto out;
+
+			msec_delay_irq(20);
+
+			/* Now enable the transmitter */
+			ret_val = phy->ops.write_reg(hw, 0x2F5B,
+						     phy_saved_data);
+			if (ret_val)
+				goto out;
+
+			dev_spec->dsp_config = e1000_dsp_config_enabled;
+		}
+
+		if (dev_spec->ffe_config != e1000_ffe_config_active) {
+			ret_val = E1000_SUCCESS;
+			goto out;
+		}
+
+		/*
+		 * Save off the current value of register 0x2F5B
+		 * to be restored at the end of the routines.
+		 */
+		ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data);
+		if (ret_val)
+			goto out;
+
+		/* Disable the PHY transmitter */
+		ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
+		if (ret_val)
+			goto out;
+
+		msec_delay_irq(20);
+
+		ret_val = phy->ops.write_reg(hw, 0x0000,
+					     IGP01E1000_IEEE_FORCE_GIG);
+		if (ret_val)
+			goto out;
+
+		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE,
+					     IGP01E1000_PHY_DSP_FFE_DEFAULT);
+		if (ret_val)
+			goto out;
+
+		ret_val = phy->ops.write_reg(hw, 0x0000,
+					     IGP01E1000_IEEE_RESTART_AUTONEG);
+		if (ret_val)
+			goto out;
+
+		msec_delay_irq(20);
+
+		/* Now enable the transmitter */
+		ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data);
+
+		if (ret_val)
+			goto out;
+
+		dev_spec->ffe_config = e1000_ffe_config_enabled;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  The automatic gain control (agc) normalizes the amplitude of the
+ *  received signal, adjusting for the attenuation produced by the
+ *  cable.  By reading the AGC registers, which represent the
+ *  combination of coarse and fine gain value, the value can be put
+ *  into a lookup table to obtain the approximate cable length
+ *  for each channel.
+ **/
+STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, data;
+	u16 cur_agc_value, agc_value = 0;
+	u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+	u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A,
+							 IGP01E1000_PHY_AGC_B,
+							 IGP01E1000_PHY_AGC_C,
+							 IGP01E1000_PHY_AGC_D};
+
+	DEBUGFUNC("e1000_get_cable_length_igp_82541");
+
+	/* Read the AGC registers for all channels */
+	for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data);
+		if (ret_val)
+			goto out;
+
+		cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+		/* Bounds checking */
+		if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+		    (cur_agc_value == 0)) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+
+		agc_value += cur_agc_value;
+
+		if (min_agc_value > cur_agc_value)
+			min_agc_value = cur_agc_value;
+	}
+
+	/* Remove the minimal AGC result for length < 50m */
+	if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
+		agc_value -= min_agc_value;
+		/* Average the three remaining channels for the length. */
+		agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+	} else {
+		/* Average the channels for the length. */
+		agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+	}
+
+	phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
+				 IGP01E1000_AGC_RANGE)
+				? (e1000_igp_cable_length_table[agc_value] -
+				   IGP01E1000_AGC_RANGE)
+				: 0;
+	phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
+				IGP01E1000_AGC_RANGE;
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_82541");
+
+	switch (hw->mac.type) {
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		break;
+	default:
+		ret_val = e1000_set_d3_lplu_state_generic(hw, active);
+		goto out;
+		break;
+	}
+
+	ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data);
+	if (ret_val)
+		goto out;
+
+	if (!active) {
+		data &= ~IGP01E1000_GMII_FLEX_SPD;
+		ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
+		if (ret_val)
+			goto out;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				goto out;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= IGP01E1000_GMII_FLEX_SPD;
+		ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					    &data);
+		if (ret_val)
+			goto out;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					     data);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_led_82541 - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored.
+ **/
+STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_led_82541");
+
+	ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
+				       &dev_spec->spd_default);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
+					(u16)(dev_spec->spd_default &
+					~IGP01E1000_GMII_SPD));
+	if (ret_val)
+		goto out;
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_cleanup_led_82541 - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.
+ **/
+STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_cleanup_led_82541");
+
+	ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
+					dev_spec->spd_default);
+	if (ret_val)
+		goto out;
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_init_script_82541 - Initialize GbE PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes the IGP PHY.
+ **/
+STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+	u32 ret_val;
+	u16 phy_saved_data;
+
+	DEBUGFUNC("e1000_phy_init_script_82541");
+
+	if (!dev_spec->phy_init_script) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	/* Delay after phy reset to enable NVM configuration to load */
+	msec_delay(20);
+
+	/*
+	 * Save off the current value of register 0x2F5B to be restored at
+	 * the end of this routine.
+	 */
+	ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data);
+
+	/* Disabled the PHY transmitter */
+	hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003);
+
+	msec_delay(20);
+
+	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
+
+	msec_delay(5);
+
+	switch (hw->mac.type) {
+	case e1000_82541:
+	case e1000_82547:
+		hw->phy.ops.write_reg(hw, 0x1F95, 0x0001);
+
+		hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21);
+
+		hw->phy.ops.write_reg(hw, 0x1F79, 0x0018);
+
+		hw->phy.ops.write_reg(hw, 0x1F30, 0x1600);
+
+		hw->phy.ops.write_reg(hw, 0x1F31, 0x0014);
+
+		hw->phy.ops.write_reg(hw, 0x1F32, 0x161C);
+
+		hw->phy.ops.write_reg(hw, 0x1F94, 0x0003);
+
+		hw->phy.ops.write_reg(hw, 0x1F96, 0x003F);
+
+		hw->phy.ops.write_reg(hw, 0x2010, 0x0008);
+		break;
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		hw->phy.ops.write_reg(hw, 0x1F73, 0x0099);
+		break;
+	default:
+		break;
+	}
+
+	hw->phy.ops.write_reg(hw, 0x0000, 0x3300);
+
+	msec_delay(20);
+
+	/* Now enable the transmitter */
+	hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data);
+
+	if (hw->mac.type == e1000_82547) {
+		u16 fused, fine, coarse;
+
+		/* Move to analog registers page */
+		hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+				     &fused);
+
+		if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+			hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS,
+					     &fused);
+
+			fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+			coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+			if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+				coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
+				fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+			} else if (coarse ==
+				   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+				fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+			fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+				(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+				(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+			hw->phy.ops.write_reg(hw,
+					      IGP01E1000_ANALOG_FUSE_CONTROL,
+					      fused);
+			hw->phy.ops.write_reg(hw,
+				      IGP01E1000_ANALOG_FUSE_BYPASS,
+				      IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_script_state_82541 - Enable/Disable PHY init script
+ *  @hw: pointer to the HW structure
+ *  @state: boolean value used to enable/disable PHY init script
+ *
+ *  Allows the driver to enable/disable the PHY init script, if the PHY is an
+ *  IGP PHY.
+ **/
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
+{
+	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
+
+	DEBUGFUNC("e1000_init_script_state_82541");
+
+	if (hw->phy.type != e1000_phy_igp) {
+		DEBUGOUT("Initialization script not necessary.\n");
+		goto out;
+	}
+
+	dev_spec->phy_init_script = state;
+
+out:
+	return;
+}
+
+/**
+ * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_clear_hw_cntrs_82541");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	E1000_READ_REG(hw, E1000_PRC64);
+	E1000_READ_REG(hw, E1000_PRC127);
+	E1000_READ_REG(hw, E1000_PRC255);
+	E1000_READ_REG(hw, E1000_PRC511);
+	E1000_READ_REG(hw, E1000_PRC1023);
+	E1000_READ_REG(hw, E1000_PRC1522);
+	E1000_READ_REG(hw, E1000_PTC64);
+	E1000_READ_REG(hw, E1000_PTC127);
+	E1000_READ_REG(hw, E1000_PTC255);
+	E1000_READ_REG(hw, E1000_PTC511);
+	E1000_READ_REG(hw, E1000_PTC1023);
+	E1000_READ_REG(hw, E1000_PTC1522);
+
+	E1000_READ_REG(hw, E1000_ALGNERRC);
+	E1000_READ_REG(hw, E1000_RXERRC);
+	E1000_READ_REG(hw, E1000_TNCRS);
+	E1000_READ_REG(hw, E1000_CEXTERR);
+	E1000_READ_REG(hw, E1000_TSCTC);
+	E1000_READ_REG(hw, E1000_TSCTFC);
+
+	E1000_READ_REG(hw, E1000_MGTPRC);
+	E1000_READ_REG(hw, E1000_MGTPDC);
+	E1000_READ_REG(hw, E1000_MGTPTC);
+}
diff --git a/drivers/net/e1000/base/e1000_82541.h b/drivers/net/e1000/base/e1000_82541.h
new file mode 100644
index 0000000..0f50f55
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82541.h
@@ -0,0 +1,91 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_82541_H_
+#define _E1000_82541_H_
+
+#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1)
+
+#define IGP01E1000_PHY_CHANNEL_NUM		4
+
+#define IGP01E1000_PHY_AGC_A			0x1172
+#define IGP01E1000_PHY_AGC_B			0x1272
+#define IGP01E1000_PHY_AGC_C			0x1472
+#define IGP01E1000_PHY_AGC_D			0x1872
+
+#define IGP01E1000_PHY_AGC_PARAM_A		0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B		0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C		0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D		0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX		0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS	0x8000
+
+#define IGP01E1000_PHY_DSP_RESET		0x1F33
+
+#define IGP01E1000_PHY_DSP_FFE			0x1F35
+#define IGP01E1000_PHY_DSP_FFE_CM_CP		0x0069
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT		0x002A
+
+#define IGP01E1000_IEEE_FORCE_GIG		0x0140
+#define IGP01E1000_IEEE_RESTART_AUTONEG		0x3300
+
+#define IGP01E1000_AGC_LENGTH_SHIFT		7
+#define IGP01E1000_AGC_RANGE			10
+
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20		20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100		100
+
+#define IGP01E1000_ANALOG_FUSE_STATUS		0x20D0
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS	0x20D1
+#define IGP01E1000_ANALOG_FUSE_CONTROL		0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS		0x20DE
+
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED	0x0100
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK	0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK	0x0070
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH	0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10	0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1		0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10		0x0500
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK	0xF000
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
+
+#define IGP01E1000_MSE_CHANNEL_D		0x000F
+#define IGP01E1000_MSE_CHANNEL_C		0x00F0
+#define IGP01E1000_MSE_CHANNEL_B		0x0F00
+#define IGP01E1000_MSE_CHANNEL_A		0xF000
+
+
+void e1000_init_script_state_82541(struct e1000_hw *hw, bool state);
+#endif
diff --git a/drivers/net/e1000/base/e1000_82542.c b/drivers/net/e1000/base/e1000_82542.c
new file mode 100644
index 0000000..afea469
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82542.c
@@ -0,0 +1,588 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82542 Gigabit Ethernet Controller
+ */
+
+#include "e1000_api.h"
+
+STATIC s32  e1000_init_phy_params_82542(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82542(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82542(struct e1000_hw *hw);
+STATIC s32  e1000_get_bus_info_82542(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82542(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82542(struct e1000_hw *hw);
+STATIC s32  e1000_setup_link_82542(struct e1000_hw *hw);
+STATIC s32  e1000_led_on_82542(struct e1000_hw *hw);
+STATIC s32  e1000_led_off_82542(struct e1000_hw *hw);
+STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index);
+STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
+STATIC s32  e1000_read_mac_addr_82542(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_phy_params_82542 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82542");
+
+	phy->type = e1000_phy_none;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82542 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+
+	DEBUGFUNC("e1000_init_nvm_params_82542");
+
+	nvm->address_bits	=  6;
+	nvm->delay_usec		= 50;
+	nvm->opcode_bits	=  3;
+	nvm->type		= e1000_nvm_eeprom_microwire;
+	nvm->word_size		= 64;
+
+	/* Function Pointers */
+	nvm->ops.read		= e1000_read_nvm_microwire;
+	nvm->ops.release	= e1000_stop_nvm;
+	nvm->ops.write		= e1000_write_nvm_microwire;
+	nvm->ops.update		= e1000_update_nvm_checksum_generic;
+	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_82542 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_init_mac_params_82542");
+
+	/* Set media type */
+	hw->phy.media_type = e1000_media_type_fiber;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_82542;
+	/* function id */
+	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+	/* reset */
+	mac->ops.reset_hw = e1000_reset_hw_82542;
+	/* hw initialization */
+	mac->ops.init_hw = e1000_init_hw_82542;
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_82542;
+	/* phy/fiber/serdes setup */
+	mac->ops.setup_physical_interface =
+					e1000_setup_fiber_serdes_link_generic;
+	/* check for link */
+	mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	mac->ops.write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	mac->ops.clear_vfta = e1000_clear_vfta_generic;
+	/* read mac address */
+	mac->ops.read_mac_addr = e1000_read_mac_addr_82542;
+	/* set RAR */
+	mac->ops.rar_set = e1000_rar_set_82542;
+	/* turn on/off LED */
+	mac->ops.led_on = e1000_led_on_82542;
+	mac->ops.led_off = e1000_led_off_82542;
+	/* clear hardware counters */
+	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
+	/* link info */
+	mac->ops.get_link_up_info =
+				e1000_get_speed_and_duplex_fiber_serdes_generic;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_function_pointers_82542 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82542(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82542");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_82542;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_82542;
+	hw->phy.ops.init_params = e1000_init_phy_params_82542;
+}
+
+/**
+ *  e1000_get_bus_info_82542 - Obtain bus information for adapter
+ *  @hw: pointer to the HW structure
+ *
+ *  This will obtain information about the HW bus for which the
+ *  adapter is attached and stores it in the hw structure.
+ **/
+STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_bus_info_82542");
+
+	hw->bus.type = e1000_bus_type_pci;
+	hw->bus.speed = e1000_bus_speed_unknown;
+	hw->bus.width = e1000_bus_width_unknown;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_reset_hw_82542 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_reset_hw_82542");
+
+	if (hw->revision_id == E1000_REVISION_2) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2\n");
+		e1000_pci_clear_mwi(hw);
+	}
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	hw->nvm.ops.reload(hw);
+	msec_delay(2);
+
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_READ_REG(hw, E1000_ICR);
+
+	if (hw->revision_id == E1000_REVISION_2) {
+		if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82542 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542;
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82542");
+
+	/* Disabling VLAN filtering */
+	E1000_WRITE_REG(hw, E1000_VET, 0);
+	mac->ops.clear_vfta(hw);
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->revision_id == E1000_REVISION_2) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH(hw);
+		msec_delay(5);
+	}
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->revision_id == E1000_REVISION_2) {
+		E1000_WRITE_REG(hw, E1000_RCTL, 0);
+		E1000_WRITE_FLUSH(hw);
+		msec_delay(1);
+		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/*
+	 * Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.
+	 */
+	if (dev_spec->dma_fairness) {
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	/* Setup link and flow control */
+	ret_val = e1000_setup_link_82542(hw);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82542(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_link_82542 - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_link_82542");
+
+	ret_val = e1000_set_default_fc_generic(hw);
+	if (ret_val)
+		goto out;
+
+	hw->fc.requested_mode &= ~e1000_fc_tx_pause;
+
+	if (mac->report_tx_early)
+		hw->fc.requested_mode &= ~e1000_fc_rx_pause;
+
+	/*
+	 * Save off the requested flow control mode for use later.  Depending
+	 * on the link partner's capabilities, we may or may not use this mode.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+		  hw->fc.current_mode);
+
+	/* Call the necessary subroutine to configure the link. */
+	ret_val = mac->ops.setup_physical_interface(hw);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
+
+	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+	ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_led_on_82542 - Turn on SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED on.
+ **/
+STATIC s32 e1000_led_on_82542(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_on_82542");
+
+	ctrl |= E1000_CTRL_SWDPIN0;
+	ctrl |= E1000_CTRL_SWDPIO0;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_82542 - Turn off SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED off.
+ **/
+STATIC s32 e1000_led_off_82542(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_off_82542");
+
+	ctrl &= ~E1000_CTRL_SWDPIN0;
+	ctrl |= E1000_CTRL_SWDPIO0;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_rar_set_82542 - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	DEBUGFUNC("e1000_rar_set_82542");
+
+	/*
+	 * HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* If MAC address zero, no need to set the AV bit */
+	if (rar_low || rar_high)
+		rar_high |= E1000_RAH_AV;
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
+	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+}
+
+/**
+ *  e1000_translate_register_82542 - Translate the proper register offset
+ *  @reg: e1000 register to be read
+ *
+ *  Registers in 82542 are located in different offsets than other adapters
+ *  even though they function in the same manner.  This function takes in
+ *  the name of the register to read and returns the correct offset for
+ *  82542 silicon.
+ **/
+u32 e1000_translate_register_82542(u32 reg)
+{
+	/*
+	 * Some of the 82542 registers are located at different
+	 * offsets than they are in newer adapters.
+	 * Despite the difference in location, the registers
+	 * function in the same manner.
+	 */
+	switch (reg) {
+	case E1000_RA:
+		reg = 0x00040;
+		break;
+	case E1000_RDTR:
+		reg = 0x00108;
+		break;
+	case E1000_RDBAL(0):
+		reg = 0x00110;
+		break;
+	case E1000_RDBAH(0):
+		reg = 0x00114;
+		break;
+	case E1000_RDLEN(0):
+		reg = 0x00118;
+		break;
+	case E1000_RDH(0):
+		reg = 0x00120;
+		break;
+	case E1000_RDT(0):
+		reg = 0x00128;
+		break;
+	case E1000_RDBAL(1):
+		reg = 0x00138;
+		break;
+	case E1000_RDBAH(1):
+		reg = 0x0013C;
+		break;
+	case E1000_RDLEN(1):
+		reg = 0x00140;
+		break;
+	case E1000_RDH(1):
+		reg = 0x00148;
+		break;
+	case E1000_RDT(1):
+		reg = 0x00150;
+		break;
+	case E1000_FCRTH:
+		reg = 0x00160;
+		break;
+	case E1000_FCRTL:
+		reg = 0x00168;
+		break;
+	case E1000_MTA:
+		reg = 0x00200;
+		break;
+	case E1000_TDBAL(0):
+		reg = 0x00420;
+		break;
+	case E1000_TDBAH(0):
+		reg = 0x00424;
+		break;
+	case E1000_TDLEN(0):
+		reg = 0x00428;
+		break;
+	case E1000_TDH(0):
+		reg = 0x00430;
+		break;
+	case E1000_TDT(0):
+		reg = 0x00438;
+		break;
+	case E1000_TIDV:
+		reg = 0x00440;
+		break;
+	case E1000_VFTA:
+		reg = 0x00600;
+		break;
+	case E1000_TDFH:
+		reg = 0x08010;
+		break;
+	case E1000_TDFT:
+		reg = 0x08018;
+		break;
+	default:
+		break;
+	}
+
+	return reg;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_clear_hw_cntrs_82542");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	E1000_READ_REG(hw, E1000_PRC64);
+	E1000_READ_REG(hw, E1000_PRC127);
+	E1000_READ_REG(hw, E1000_PRC255);
+	E1000_READ_REG(hw, E1000_PRC511);
+	E1000_READ_REG(hw, E1000_PRC1023);
+	E1000_READ_REG(hw, E1000_PRC1522);
+	E1000_READ_REG(hw, E1000_PTC64);
+	E1000_READ_REG(hw, E1000_PTC127);
+	E1000_READ_REG(hw, E1000_PTC255);
+	E1000_READ_REG(hw, E1000_PTC511);
+	E1000_READ_REG(hw, E1000_PTC1023);
+	E1000_READ_REG(hw, E1000_PTC1522);
+}
+
+/**
+ *  e1000_read_mac_addr_82542 - Read device MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the device MAC address from the EEPROM and stores the value.
+ **/
+s32 e1000_read_mac_addr_82542(struct e1000_hw *hw)
+{
+	s32  ret_val = E1000_SUCCESS;
+	u16 offset, nvm_data, i;
+
+	DEBUGFUNC("e1000_read_mac_addr");
+
+	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+		offset = i >> 1;
+		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			goto out;
+		}
+		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+	}
+
+	for (i = 0; i < ETH_ADDR_LEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+	return ret_val;
+}
diff --git a/drivers/net/e1000/base/e1000_82543.c b/drivers/net/e1000/base/e1000_82543.c
new file mode 100644
index 0000000..36335ba
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82543.c
@@ -0,0 +1,1553 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82543GC Gigabit Ethernet Controller (Fiber)
+ * 82543GC Gigabit Ethernet Controller (Copper)
+ * 82544EI Gigabit Ethernet Controller (Copper)
+ * 82544EI Gigabit Ethernet Controller (Fiber)
+ * 82544GC Gigabit Ethernet Controller (Copper)
+ * 82544GC Gigabit Ethernet Controller (LOM)
+ */
+
+#include "e1000_api.h"
+
+STATIC s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
+STATIC s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
+STATIC s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+				     u16 *data);
+STATIC s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
+				      u16 data);
+STATIC s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
+STATIC s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82543(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82543(struct e1000_hw *hw);
+STATIC s32  e1000_setup_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
+STATIC s32  e1000_led_on_82543(struct e1000_hw *hw);
+STATIC s32  e1000_led_off_82543(struct e1000_hw *hw);
+STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
+				   u32 value);
+STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
+STATIC s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
+STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
+STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+STATIC s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
+STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
+STATIC u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
+STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+					   u16 count);
+STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
+STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
+
+/**
+ *  e1000_init_phy_params_82543 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_init_phy_params_82543");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		goto out;
+	} else {
+		phy->ops.power_up = e1000_power_up_phy_copper;
+		phy->ops.power_down = e1000_power_down_phy_copper;
+	}
+
+	phy->addr		= 1;
+	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us	= 10000;
+	phy->type		= e1000_phy_m88;
+
+	/* Function Pointers */
+	phy->ops.check_polarity	= e1000_check_polarity_m88;
+	phy->ops.commit		= e1000_phy_sw_reset_generic;
+	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
+	phy->ops.get_cable_length = e1000_get_cable_length_m88;
+	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
+	phy->ops.read_reg	= (hw->mac.type == e1000_82543)
+				  ? e1000_read_phy_reg_82543
+				  : e1000_read_phy_reg_m88;
+	phy->ops.reset		= (hw->mac.type == e1000_82543)
+				  ? e1000_phy_hw_reset_82543
+				  : e1000_phy_hw_reset_generic;
+	phy->ops.write_reg	= (hw->mac.type == e1000_82543)
+				  ? e1000_write_phy_reg_82543
+				  : e1000_write_phy_reg_m88;
+	phy->ops.get_info	= e1000_get_phy_info_m88;
+
+	/*
+	 * The external PHY of the 82543 can be in a funky state.
+	 * Resetting helps us read the PHY registers for acquiring
+	 * the PHY ID.
+	 */
+	if (!e1000_init_phy_disabled_82543(hw)) {
+		ret_val = phy->ops.reset(hw);
+		if (ret_val) {
+			DEBUGOUT("Resetting PHY during init failed.\n");
+			goto out;
+		}
+		msec_delay(20);
+	}
+
+	ret_val = e1000_get_phy_id(hw);
+	if (ret_val)
+		goto out;
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82543:
+		if (phy->id != M88E1000_E_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	case e1000_82544:
+		if (phy->id != M88E1000_I_PHY_ID) {
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+		}
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+		break;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+
+	DEBUGFUNC("e1000_init_nvm_params_82543");
+
+	nvm->type		= e1000_nvm_eeprom_microwire;
+	nvm->word_size		= 64;
+	nvm->delay_usec		= 50;
+	nvm->address_bits	=  6;
+	nvm->opcode_bits	=  3;
+
+	/* Function Pointers */
+	nvm->ops.read		= e1000_read_nvm_microwire;
+	nvm->ops.update		= e1000_update_nvm_checksum_generic;
+	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
+	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
+	nvm->ops.write		= e1000_write_nvm_microwire;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_82543 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_init_mac_params_82543");
+
+	/* Set media type */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82544EI_FIBER:
+		hw->phy.media_type = e1000_media_type_fiber;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
+	/* function id */
+	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
+	/* reset */
+	mac->ops.reset_hw = e1000_reset_hw_82543;
+	/* hw initialization */
+	mac->ops.init_hw = e1000_init_hw_82543;
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_82543;
+	/* physical interface setup */
+	mac->ops.setup_physical_interface =
+		(hw->phy.media_type == e1000_media_type_copper)
+		 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
+	/* check for link */
+	mac->ops.check_for_link =
+		(hw->phy.media_type == e1000_media_type_copper)
+		 ? e1000_check_for_copper_link_82543
+		 : e1000_check_for_fiber_link_82543;
+	/* link info */
+	mac->ops.get_link_up_info =
+		(hw->phy.media_type == e1000_media_type_copper)
+		 ? e1000_get_speed_and_duplex_copper_generic
+		 : e1000_get_speed_and_duplex_fiber_serdes_generic;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	mac->ops.write_vfta = e1000_write_vfta_82543;
+	/* clearing VFTA */
+	mac->ops.clear_vfta = e1000_clear_vfta_generic;
+	/* turn on/off LED */
+	mac->ops.led_on = e1000_led_on_82543;
+	mac->ops.led_off = e1000_led_off_82543;
+	/* clear hardware counters */
+	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
+
+	/* Set tbi compatibility */
+	if ((hw->mac.type != e1000_82543) ||
+	    (hw->phy.media_type == e1000_media_type_fiber))
+		e1000_set_tbi_compatibility_82543(hw, false);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_function_pointers_82543 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82543(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82543");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_82543;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
+	hw->phy.ops.init_params = e1000_init_phy_params_82543;
+}
+
+/**
+ *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns the current status of 10-bit Interface (TBI) compatibility
+ *  (enabled/disabled).
+ **/
+STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+	bool state = false;
+
+	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		goto out;
+	}
+
+	state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
+
+out:
+	return state;
+}
+
+/**
+ *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
+ *  @hw: pointer to the HW structure
+ *  @state: enable/disable TBI compatibility
+ *
+ *  Enables or disabled 10-bit Interface (TBI) compatibility.
+ **/
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
+{
+	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+
+	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		goto out;
+	}
+
+	if (state)
+		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
+	else
+		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
+
+out:
+	return;
+}
+
+/**
+ *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
+ *  (enabled/disabled).
+ **/
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+	bool state = false;
+
+	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
+		goto out;
+	}
+
+	state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
+
+out:
+	return state;
+}
+
+/**
+ *  e1000_set_tbi_sbp_82543 - Set TBI SBP
+ *  @hw: pointer to the HW structure
+ *  @state: enable/disable TBI store bad packet
+ *
+ *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
+ **/
+STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
+{
+	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+
+	DEBUGFUNC("e1000_set_tbi_sbp_82543");
+
+	if (state && e1000_tbi_compatibility_enabled_82543(hw))
+		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
+	else
+		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
+
+	return;
+}
+
+/**
+ *  e1000_init_phy_disabled_82543 - Returns init PHY status
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns the current status of whether PHY initialization is disabled.
+ *  True if PHY initialization is disabled else false.
+ **/
+STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+	bool ret_val;
+
+	DEBUGFUNC("e1000_init_phy_disabled_82543");
+
+	if (hw->mac.type != e1000_82543) {
+		ret_val = false;
+		goto out;
+	}
+
+	ret_val = dev_spec->init_phy_disabled;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
+ *  @hw: pointer to the HW structure
+ *  @stats: Struct containing statistic register values
+ *  @frame_len: The length of the frame in question
+ *  @mac_addr: The Ethernet destination address of the frame in question
+ *  @max_frame_size: The maximum frame size
+ *
+ *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ **/
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+				  struct e1000_hw_stats *stats, u32 frame_len,
+				  u8 *mac_addr, u32 max_frame_size)
+{
+	if (!(e1000_tbi_sbp_enabled_82543(hw)))
+		goto out;
+
+	/* First adjust the frame length. */
+	frame_len--;
+	/*
+	 * We need to adjust the statistics counters, since the hardware
+	 * counters overcount this packet as a CRC error and undercount
+	 * the packet as a good packet
+	 */
+	/* This packet should not be counted as a CRC error. */
+	stats->crcerrs--;
+	/* This packet does count as a Good Packet Received. */
+	stats->gprc++;
+
+	/* Adjust the Good Octets received counters */
+	stats->gorc += frame_len;
+
+	/*
+	 * Is this a broadcast or multicast?  Check broadcast first,
+	 * since the test for a multicast frame will test positive on
+	 * a broadcast frame.
+	 */
+	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
+		/* Broadcast packet */
+		stats->bprc++;
+	else if (*mac_addr & 0x01)
+		/* Multicast packet */
+		stats->mprc++;
+
+	/*
+	 * In this case, the hardware has over counted the number of
+	 * oversize frames.
+	 */
+	if ((frame_len == max_frame_size) && (stats->roc > 0))
+		stats->roc--;
+
+	/*
+	 * Adjust the bin counters when the extra byte put the frame in the
+	 * wrong bin. Remember that the frame_len was adjusted above.
+	 */
+	if (frame_len == 64) {
+		stats->prc64++;
+		stats->prc127--;
+	} else if (frame_len == 127) {
+		stats->prc127++;
+		stats->prc255--;
+	} else if (frame_len == 255) {
+		stats->prc255++;
+		stats->prc511--;
+	} else if (frame_len == 511) {
+		stats->prc511++;
+		stats->prc1023--;
+	} else if (frame_len == 1023) {
+		stats->prc1023++;
+		stats->prc1522--;
+	} else if (frame_len == 1522) {
+		stats->prc1522++;
+	}
+
+out:
+	return;
+}
+
+/**
+ *  e1000_read_phy_reg_82543 - Read PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY at offset and stores the information read to data.
+ **/
+STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	u32 mdic;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_phy_reg_82543");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * We must first send a preamble through the MDIO pin to signal the
+	 * beginning of an MII instruction.  This is done by sending 32
+	 * consecutive "1" bits.
+	 */
+	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+	/*
+	 * Now combine the next few fields that are required for a read
+	 * operation.  We use this method instead of calling the
+	 * e1000_shift_out_mdi_bits routine five different times.  The format
+	 * of an MII read instruction consists of a shift out of 14 bits and
+	 * is defined as follows:
+	 *         <Preamble><SOF><Op Code><Phy Addr><Offset>
+	 * followed by a shift in of 18 bits.  This first two bits shifted in
+	 * are TurnAround bits used to avoid contention on the MDIO pin when a
+	 * READ operation is performed.  These two bits are thrown away
+	 * followed by a shift in of 16 bits which contains the desired data.
+	 */
+	mdic = (offset | (hw->phy.addr << 5) |
+		(PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
+
+	/*
+	 * Now that we've shifted out the read command to the MII, we need to
+	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+	 * register address.
+	 */
+	*data = e1000_shift_in_mdi_bits_82543(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_82543 - Write PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be written
+ *  @data: pointer to the data to be written at offset
+ *
+ *  Writes data to the PHY at offset.
+ **/
+STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	u32 mdic;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_phy_reg_82543");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		ret_val = -E1000_ERR_PARAM;
+		goto out;
+	}
+
+	/*
+	 * We'll need to use the SW defined pins to shift the write command
+	 * out to the PHY. We first send a preamble to the PHY to signal the
+	 * beginning of the MII instruction.  This is done by sending 32
+	 * consecutive "1" bits.
+	 */
+	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+	/*
+	 * Now combine the remaining required fields that will indicate a
+	 * write operation. We use this method instead of calling the
+	 * e1000_shift_out_mdi_bits routine for each field in the command. The
+	 * format of a MII write instruction is as follows:
+	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+	 */
+	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
+		(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+	mdic <<= 16;
+	mdic |= (u32)data;
+
+	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
+ *  @hw: pointer to the HW structure
+ *  @ctrl: pointer to the control register
+ *
+ *  Raise the management data input clock by setting the MDC bit in the control
+ *  register.
+ **/
+STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+	/*
+	 * Raise the clock input to the Management Data Clock (by setting the
+	 * MDC bit), and then delay a sufficient amount of time.
+	 */
+	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(10);
+}
+
+/**
+ *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
+ *  @hw: pointer to the HW structure
+ *  @ctrl: pointer to the control register
+ *
+ *  Lower the management data input clock by clearing the MDC bit in the
+ *  control register.
+ **/
+STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
+{
+	/*
+	 * Lower the clock input to the Management Data Clock (by clearing the
+	 * MDC bit), and then delay a sufficient amount of time.
+	 */
+	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(10);
+}
+
+/**
+ *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
+ *  @hw: pointer to the HW structure
+ *  @data: data to send to the PHY
+ *  @count: number of bits to shift out
+ *
+ *  We need to shift 'count' bits out to the PHY.  So, the value in the
+ *  "data" parameter will be shifted out to the PHY one bit at a time.
+ *  In order to do this, "data" must be broken down into bits.
+ **/
+STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
+					   u16 count)
+{
+	u32 ctrl, mask;
+
+	/*
+	 * We need to shift "count" number of bits out to the PHY.  So, the
+	 * value in the "data" parameter will be shifted out to the PHY one
+	 * bit at a time.  In order to do this, "data" must be broken down
+	 * into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count - 1);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+	while (mask) {
+		/*
+		 * A "1" is shifted out to the PHY by setting the MDIO bit to
+		 * "1" and then raising and lowering the Management Data Clock.
+		 * A "0" is shifted out to the PHY by setting the MDIO bit to
+		 * "0" and then raising and lowering the clock.
+		 */
+		if (data & mask)
+			ctrl |= E1000_CTRL_MDIO;
+		else
+			ctrl &= ~E1000_CTRL_MDIO;
+
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		E1000_WRITE_FLUSH(hw);
+
+		usec_delay(10);
+
+		e1000_raise_mdi_clk_82543(hw, &ctrl);
+		e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+		mask >>= 1;
+	}
+}
+
+/**
+ *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  In order to read a register from the PHY, we need to shift 18 bits
+ *  in from the PHY.  Bits are "shifted in" by raising the clock input to
+ *  the PHY (setting the MDC bit), and then reading the value of the data out
+ *  MDIO bit.
+ **/
+STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u16 data = 0;
+	u8 i;
+
+	/*
+	 * In order to read a register from the PHY, we need to shift in a
+	 * total of 18 bits from the PHY.  The first two bit (turnaround)
+	 * times are used to avoid contention on the MDIO pin when a read
+	 * operation is performed.  These two bits are ignored by us and
+	 * thrown away.  Bits are "shifted in" by raising the input to the
+	 * Management Data Clock (setting the MDC bit) and then reading the
+	 * value of the MDIO bit.
+	 */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/*
+	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
+	 * input.
+	 */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	/*
+	 * Raise and lower the clock before reading in the data.  This accounts
+	 * for the turnaround bits.  The first clock occurred when we clocked
+	 * out the last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk_82543(hw, &ctrl);
+	e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data <<= 1;
+		e1000_raise_mdi_clk_82543(hw, &ctrl);
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk_82543(hw, &ctrl);
+	}
+
+	e1000_raise_mdi_clk_82543(hw, &ctrl);
+	e1000_lower_mdi_clk_82543(hw, &ctrl);
+
+	return data;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the function to force speed and duplex for the m88 PHY, and
+ *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
+ *  then call the function for polarity reversal workaround.
+ **/
+STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
+
+	ret_val = e1000_phy_force_speed_duplex_m88(hw);
+	if (ret_val)
+		goto out;
+
+	if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
+	    E1000_ALL_10_SPEED))
+		ret_val = e1000_polarity_reversal_workaround_82543(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
+ *  @hw: pointer to the HW structure
+ *
+ *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
+ *  inadvertently.  To workaround the issue, we disable the transmitter on
+ *  the PHY until we have established the link partner's link parameters.
+ **/
+STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 mii_status_reg;
+	u16 i;
+	bool link;
+
+	if (!(hw->phy.ops.write_reg))
+		goto out;
+
+	/* Polarity reversal workaround for forced 10F/10H links. */
+
+	/* Disable the transmitter on the PHY */
+
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		goto out;
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * This loop will early-out if the NO link condition has been met.
+	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
+	 */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/*
+		 * Read the MII Status Register and wait for Link Status bit
+		 * to be clear.
+		 */
+
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			goto out;
+
+		if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
+			break;
+		msec_delay_irq(100);
+	}
+
+	/* Recommended delay time after link has been lost */
+	msec_delay_irq(1000);
+
+	/* Now we will re-enable the transmitter on the PHY */
+
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+	if (ret_val)
+		goto out;
+	msec_delay_irq(50);
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Read the MII Status Register and wait for Link Status bit
+	 * to be set.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
+	if (ret_val)
+		goto out;
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_82543 - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the PHY_RESET_DIR bit in the extended device control register
+ *  to put the PHY into a reset and waits for completion.  Once the reset
+ *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
+ *  of reset.
+ **/
+STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_hw_reset_82543");
+
+	/*
+	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
+	 * bit to put the PHY into reset...
+	 */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/* ...then take it out of reset. */
+	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(150);
+
+	if (!(hw->phy.ops.get_cfg_done))
+		return E1000_SUCCESS;
+
+	ret_val = hw->phy.ops.get_cfg_done(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_82543 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_reset_hw_82543");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	e1000_set_tbi_sbp_82543(hw, false);
+
+	/*
+	 * Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
+	if (hw->mac.type == e1000_82543) {
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+	} else {
+		/*
+		 * The 82544 can't ACK the 64-bit write when issuing the
+		 * reset, so use IO-mapping as a workaround.
+		 */
+		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+	}
+
+	/*
+	 * After MAC reset, force reload of NVM to restore power-on
+	 * settings to device.
+	 */
+	hw->nvm.ops.reload(hw);
+	msec_delay(2);
+
+	/* Masking off and clearing any pending interrupts */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_READ_REG(hw, E1000_ICR);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82543 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
+	u32 ctrl;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_82543");
+
+	/* Disabling VLAN filtering */
+	E1000_WRITE_REG(hw, E1000_VET, 0);
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	/*
+	 * Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.
+	 */
+	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
+
+	e1000_pcix_mmrbc_workaround_generic(hw);
+
+	/* Setup link and flow control */
+	ret_val = mac->ops.setup_link(hw);
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82543(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_link_82543 - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM to determine the initial polarity value and write the
+ *  extended device control register with the information before calling
+ *  the generic setup link function, which does the following:
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+	s32  ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_setup_link_82543");
+
+	/*
+	 * Take the 4 bits from NVM word 0xF that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before phy setup.
+	 */
+	if (hw->mac.type == e1000_82543) {
+		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			ret_val = -E1000_ERR_NVM;
+			goto out;
+		}
+		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
+			    NVM_SWDPIO_EXT_SHIFT);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	}
+
+	ret_val = e1000_setup_link_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_82543 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
+ *  for link, once link is established calls to configure collision distance
+ *  and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_setup_copper_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
+	/*
+	 * With 82543, we need to force speed and duplex on the MAC
+	 * equal to what the PHY speed and duplex configuration is.
+	 * In addition, we need to perform a hardware reset on the
+	 * PHY to take it out of reset.
+	 */
+	if (hw->mac.type == e1000_82543) {
+		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		ret_val = hw->phy.ops.reset(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	}
+
+	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
+	ret_val = e1000_copper_link_setup_m88(hw);
+	if (ret_val)
+		goto out;
+
+	if (hw->mac.autoneg) {
+		/*
+		 * Setup autoneg and flow control advertisement and perform
+		 * autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			goto out;
+	} else {
+		/*
+		 * PHY will be set to 10H, 10F, 100H or 100F
+		 * depending on user settings.
+		 */
+		DEBUGOUT("Forcing Speed and Duplex\n");
+		ret_val = e1000_phy_force_speed_duplex_82543(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			goto out;
+		}
+	}
+
+	/*
+	 * Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
+					     &link);
+	if (ret_val)
+		goto out;
+
+
+	if (link) {
+		DEBUGOUT("Valid link established!!!\n");
+		/* Config the MAC and PHY after link is up */
+		if (hw->mac.type == e1000_82544) {
+			hw->mac.ops.config_collision_dist(hw);
+		} else {
+			ret_val = e1000_config_mac_to_phy_82543(hw);
+			if (ret_val)
+				goto out;
+		}
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+	} else {
+		DEBUGOUT("Unable to establish link!!!\n");
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_fiber_link_82543 - Setup link for fiber
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber links.  Upon
+ *  successful setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_fiber_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	hw->mac.ops.config_collision_dist(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		goto out;
+
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(1);
+
+	/*
+	 * For these adapters, the SW definable pin 1 is cleared when the
+	 * optics detect a signal.  If we have a signal, then poll for a
+	 * "Link-Up" indication.
+	 */
+	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	else
+		DEBUGOUT("No signal detected\n");
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_copper_link_82543 - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the phy for link, if link exists, do the following:
+ *   - check for downshift
+ *   - do polarity workaround (if necessary)
+ *   - configure collision distance
+ *   - configure flow control after link up
+ *   - configure tbi compatibility
+ **/
+STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 icr, rctl;
+	s32 ret_val;
+	u16 speed, duplex;
+	bool link;
+
+	DEBUGFUNC("e1000_check_for_copper_link_82543");
+
+	if (!mac->get_link_status) {
+		ret_val = E1000_SUCCESS;
+		goto out;
+	}
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		goto out;
+
+	if (!link)
+		goto out; /* No link detected */
+
+	mac->get_link_status = false;
+
+	e1000_check_downshift_generic(hw);
+
+	/*
+	 * If we are forcing speed/duplex, then we can return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg) {
+		/*
+		 * If speed and duplex are forced to 10H or 10F, then we will
+		 * implement the polarity reversal workaround.  We disable
+		 * interrupts first, and upon returning, place the devices
+		 * interrupt state to its previous value except for the link
+		 * status change interrupt which will happened due to the
+		 * execution of this workaround.
+		 */
+		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
+			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
+			ret_val = e1000_polarity_reversal_workaround_82543(hw);
+			icr = E1000_READ_REG(hw, E1000_ICR);
+			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
+			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
+		}
+
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+	 * have Si on board that is 82544 or newer, Auto
+	 * Speed Detection takes care of MAC speed/duplex
+	 * configuration.  So we only need to configure Collision
+	 * Distance in the MAC.  Otherwise, we need to force
+	 * speed/duplex on the MAC to the current PHY speed/duplex
+	 * settings.
+	 */
+	if (mac->type == e1000_82544)
+		hw->mac.ops.config_collision_dist(hw);
+	else {
+		ret_val = e1000_config_mac_to_phy_82543(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring MAC to PHY settings\n");
+			goto out;
+		}
+	}
+
+	/*
+	 * Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val)
+		DEBUGOUT("Error configuring flow control\n");
+
+	/*
+	 * At this point we know that we are on copper and we have
+	 * auto-negotiated link.  These are conditions for checking the link
+	 * partner capability register.  We use the link speed to determine if
+	 * TBI compatibility needs to be turned on or off.  If the link is not
+	 * at gigabit speed, then TBI compatibility is not needed.  If we are
+	 * at gigabit speed, we turn on TBI compatibility.
+	 */
+	if (e1000_tbi_compatibility_enabled_82543(hw)) {
+		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+		if (speed != SPEED_1000) {
+			/*
+			 * If link speed is not set to gigabit speed,
+			 * we do not need to enable TBI compatibility.
+			 */
+			if (e1000_tbi_sbp_enabled_82543(hw)) {
+				/*
+				 * If we previously were in the mode,
+				 * turn it off.
+				 */
+				e1000_set_tbi_sbp_82543(hw, false);
+				rctl = E1000_READ_REG(hw, E1000_RCTL);
+				rctl &= ~E1000_RCTL_SBP;
+				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+			}
+		} else {
+			/*
+			 * If TBI compatibility is was previously off,
+			 * turn it on. For compatibility with a TBI link
+			 * partner, we will store bad packets. Some
+			 * frames have an additional byte on the end and
+			 * will look like CRC errors to to the hardware.
+			 */
+			if (!e1000_tbi_sbp_enabled_82543(hw)) {
+				e1000_set_tbi_sbp_82543(hw, true);
+				rctl = E1000_READ_REG(hw, E1000_RCTL);
+				rctl |= E1000_RCTL_SBP;
+				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+			}
+		}
+	}
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw, ctrl, status;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_fiber_link_82543");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
+	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
+	    (!(status & E1000_STATUS_LU)) &&
+	    (!(rxcw & E1000_RXCW_C))) {
+		if (!mac->autoneg_failed) {
+			mac->autoneg_failed = true;
+			ret_val = 0;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = true;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
+ *  @hw: pointer to the HW structure
+ *
+ *  For the 82543 silicon, we need to set the MAC to match the settings
+ *  of the PHY, even if the PHY is auto-negotiating.
+ **/
+STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_config_mac_to_phy_82543");
+
+	if (!(hw->phy.ops.read_reg))
+		goto out;
+
+	/* Set the bits to force speed and duplex */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+	/*
+	 * Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		goto out;
+
+	ctrl &= ~E1000_CTRL_FD;
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+
+	hw->mac.ops.config_collision_dist(hw);
+
+	/*
+	 * Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_vfta_82543 - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: the 32-bit offset in which to write the value to.
+ *  @value: the 32-bit value to write at location offset.
+ *
+ *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ *  table.
+ **/
+STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	u32 temp;
+
+	DEBUGFUNC("e1000_write_vfta_82543");
+
+	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
+		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
+		E1000_WRITE_FLUSH(hw);
+	} else {
+		e1000_write_vfta_generic(hw, offset, value);
+	}
+}
+
+/**
+ *  e1000_led_on_82543 - Turn on SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED on.
+ **/
+STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_on_82543");
+
+	if (hw->mac.type == e1000_82544 &&
+	    hw->phy.media_type == e1000_media_type_copper) {
+		/* Clear SW-definable Pin 0 to turn on the LED */
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	} else {
+		/* Fiber 82544 and all 82543 use this method */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	}
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_82543 - Turn off SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED off.
+ **/
+STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
+{
+	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGFUNC("e1000_led_off_82543");
+
+	if (hw->mac.type == e1000_82544 &&
+	    hw->phy.media_type == e1000_media_type_copper) {
+		/* Set SW-definable Pin 0 to turn off the LED */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	} else {
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+	}
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	E1000_READ_REG(hw, E1000_PRC64);
+	E1000_READ_REG(hw, E1000_PRC127);
+	E1000_READ_REG(hw, E1000_PRC255);
+	E1000_READ_REG(hw, E1000_PRC511);
+	E1000_READ_REG(hw, E1000_PRC1023);
+	E1000_READ_REG(hw, E1000_PRC1522);
+	E1000_READ_REG(hw, E1000_PTC64);
+	E1000_READ_REG(hw, E1000_PTC127);
+	E1000_READ_REG(hw, E1000_PTC255);
+	E1000_READ_REG(hw, E1000_PTC511);
+	E1000_READ_REG(hw, E1000_PTC1023);
+	E1000_READ_REG(hw, E1000_PTC1522);
+
+	E1000_READ_REG(hw, E1000_ALGNERRC);
+	E1000_READ_REG(hw, E1000_RXERRC);
+	E1000_READ_REG(hw, E1000_TNCRS);
+	E1000_READ_REG(hw, E1000_CEXTERR);
+	E1000_READ_REG(hw, E1000_TSCTC);
+	E1000_READ_REG(hw, E1000_TSCTFC);
+}
diff --git a/drivers/net/e1000/base/e1000_82543.h b/drivers/net/e1000/base/e1000_82543.h
new file mode 100644
index 0000000..51056db
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82543.h
@@ -0,0 +1,56 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_82543_H_
+#define _E1000_82543_H_
+
+#define PHY_PREAMBLE		0xFFFFFFFF
+#define PHY_PREAMBLE_SIZE	32
+#define PHY_SOF			0x1
+#define PHY_OP_READ		0x2
+#define PHY_OP_WRITE		0x1
+#define PHY_TURNAROUND		0x2
+
+#define TBI_COMPAT_ENABLED	0x1 /* Global "knob" for the workaround */
+/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */
+#define TBI_SBP_ENABLED		0x2
+
+void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
+				  struct e1000_hw_stats *stats,
+				  u32 frame_len, u8 *mac_addr,
+				  u32 max_frame_size);
+void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw,
+				       bool state);
+bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw);
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_82571.c b/drivers/net/e1000/base/e1000_82571.c
new file mode 100644
index 0000000..8ae1cb1
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82571.c
@@ -0,0 +1,2026 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/* 82571EB Gigabit Ethernet Controller
+ * 82571EB Gigabit Ethernet Controller (Copper)
+ * 82571EB Gigabit Ethernet Controller (Fiber)
+ * 82571EB Dual Port Gigabit Mezzanine Adapter
+ * 82571EB Quad Port Gigabit Mezzanine Adapter
+ * 82571PT Gigabit PT Quad Port Server ExpressModule
+ * 82572EI Gigabit Ethernet Controller (Copper)
+ * 82572EI Gigabit Ethernet Controller (Fiber)
+ * 82572EI Gigabit Ethernet Controller
+ * 82573V Gigabit Ethernet Controller (Copper)
+ * 82573E Gigabit Ethernet Controller (Copper)
+ * 82573L Gigabit Ethernet Controller
+ * 82574L Gigabit Network Connection
+ * 82583V Gigabit Network Connection
+ */
+
+#include "e1000_api.h"
+
+STATIC s32  e1000_acquire_nvm_82571(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
+STATIC s32  e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
+				  u16 words, u16 *data);
+STATIC s32  e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32  e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32  e1000_get_cfg_done_82571(struct e1000_hw *hw);
+STATIC s32  e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
+					  bool active);
+STATIC s32  e1000_reset_hw_82571(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_82571(struct e1000_hw *hw);
+STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw);
+STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
+STATIC s32 e1000_led_on_82574(struct e1000_hw *hw);
+STATIC s32  e1000_setup_link_82571(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_82571(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
+STATIC s32  e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
+STATIC s32  e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
+STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
+STATIC s32  e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
+STATIC s32  e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
+STATIC s32  e1000_get_phy_id_82571(struct e1000_hw *hw);
+STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
+STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
+STATIC s32  e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
+STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
+STATIC s32  e1000_set_d0_lplu_state_82574(struct e1000_hw *hw,
+					  bool active);
+STATIC s32  e1000_set_d3_lplu_state_82574(struct e1000_hw *hw,
+					  bool active);
+STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
+STATIC s32  e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+				       u16 words, u16 *data);
+STATIC s32  e1000_read_mac_addr_82571(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_phy_params_82571 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_phy_params_82571");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		return E1000_SUCCESS;
+	}
+
+	phy->addr			= 1;
+	phy->autoneg_mask		= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us		= 100;
+
+	phy->ops.check_reset_block	= e1000_check_reset_block_generic;
+	phy->ops.reset			= e1000_phy_hw_reset_generic;
+	phy->ops.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571;
+	phy->ops.set_d3_lplu_state	= e1000_set_d3_lplu_state_generic;
+	phy->ops.power_up		= e1000_power_up_phy_copper;
+	phy->ops.power_down		= e1000_power_down_phy_copper_82571;
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		phy->type		= e1000_phy_igp_2;
+		phy->ops.get_cfg_done	= e1000_get_cfg_done_82571;
+		phy->ops.get_info	= e1000_get_phy_info_igp;
+		phy->ops.check_polarity	= e1000_check_polarity_igp;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+		phy->ops.read_reg	= e1000_read_phy_reg_igp;
+		phy->ops.write_reg	= e1000_write_phy_reg_igp;
+		phy->ops.acquire	= e1000_get_hw_semaphore_82571;
+		phy->ops.release	= e1000_put_hw_semaphore_82571;
+		break;
+	case e1000_82573:
+		phy->type		= e1000_phy_m88;
+		phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
+		phy->ops.get_info	= e1000_get_phy_info_m88;
+		phy->ops.check_polarity	= e1000_check_polarity_m88;
+		phy->ops.commit		= e1000_phy_sw_reset_generic;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		phy->ops.get_cable_length = e1000_get_cable_length_m88;
+		phy->ops.read_reg	= e1000_read_phy_reg_m88;
+		phy->ops.write_reg	= e1000_write_phy_reg_m88;
+		phy->ops.acquire	= e1000_get_hw_semaphore_82571;
+		phy->ops.release	= e1000_put_hw_semaphore_82571;
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex);
+
+		phy->type		= e1000_phy_bm;
+		phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
+		phy->ops.get_info	= e1000_get_phy_info_m88;
+		phy->ops.check_polarity	= e1000_check_polarity_m88;
+		phy->ops.commit		= e1000_phy_sw_reset_generic;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		phy->ops.get_cable_length = e1000_get_cable_length_m88;
+		phy->ops.read_reg	= e1000_read_phy_reg_bm2;
+		phy->ops.write_reg	= e1000_write_phy_reg_bm2;
+		phy->ops.acquire	= e1000_get_hw_semaphore_82574;
+		phy->ops.release	= e1000_put_hw_semaphore_82574;
+		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
+		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	/* This can only be done after all function pointers are setup. */
+	ret_val = e1000_get_phy_id_82571(hw);
+	if (ret_val) {
+		DEBUGOUT("Error getting PHY ID\n");
+		return ret_val;
+	}
+
+	/* Verify phy id */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		if (phy->id != IGP01E1000_I_PHY_ID)
+			ret_val = -E1000_ERR_PHY;
+		break;
+	case e1000_82573:
+		if (phy->id != M88E1111_I_PHY_ID)
+			ret_val = -E1000_ERR_PHY;
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		if (phy->id != BME1000_E_PHY_ID_R2)
+			ret_val = -E1000_ERR_PHY;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+	if (ret_val)
+		DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_82571");
+
+	nvm->opcode_bits = 8;
+	nvm->delay_usec = 1;
+	switch (nvm->override) {
+	case e1000_nvm_override_spi_large:
+		nvm->page_size = 32;
+		nvm->address_bits = 16;
+		break;
+	case e1000_nvm_override_spi_small:
+		nvm->page_size = 8;
+		nvm->address_bits = 8;
+		break;
+	default:
+		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+		break;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (((eecd >> 15) & 0x3) == 0x3) {
+			nvm->type = e1000_nvm_flash_hw;
+			nvm->word_size = 2048;
+			/* Autonomous Flash update bit must be cleared due
+			 * to Flash update issue.
+			 */
+			eecd &= ~E1000_EECD_AUPDEN;
+			E1000_WRITE_REG(hw, E1000_EECD, eecd);
+			break;
+		}
+		/* Fall Through */
+	default:
+		nvm->type = e1000_nvm_eeprom_spi;
+		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+			     E1000_EECD_SIZE_EX_SHIFT);
+		/* Added to a constant, "size" becomes the left-shift value
+		 * for setting word_size.
+		 */
+		size += NVM_WORD_SIZE_BASE_SHIFT;
+
+		/* EEPROM access above 16k is unsupported */
+		if (size > 14)
+			size = 14;
+		nvm->word_size = 1 << size;
+		break;
+	}
+
+	/* Function Pointers */
+	switch (hw->mac.type) {
+	case e1000_82574:
+	case e1000_82583:
+		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
+		nvm->ops.release = e1000_put_hw_semaphore_82574;
+		break;
+	default:
+		nvm->ops.acquire = e1000_acquire_nvm_82571;
+		nvm->ops.release = e1000_release_nvm_82571;
+		break;
+	}
+	nvm->ops.read = e1000_read_nvm_eerd;
+	nvm->ops.update = e1000_update_nvm_checksum_82571;
+	nvm->ops.validate = e1000_validate_nvm_checksum_82571;
+	nvm->ops.valid_led_default = e1000_valid_led_default_82571;
+	nvm->ops.write = e1000_write_nvm_82571;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_82571 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 swsm = 0;
+	u32 swsm2 = 0;
+	bool force_clear_smbi = false;
+
+	DEBUGFUNC("e1000_init_mac_params_82571");
+
+	/* Set media type and media-dependent function pointers */
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+		hw->phy.media_type = e1000_media_type_fiber;
+		mac->ops.setup_physical_interface =
+			e1000_setup_fiber_serdes_link_82571;
+		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
+		mac->ops.get_link_up_info =
+			e1000_get_speed_and_duplex_fiber_serdes_generic;
+		break;
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+	case E1000_DEV_ID_82572EI_SERDES:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		mac->ops.setup_physical_interface =
+			e1000_setup_fiber_serdes_link_82571;
+		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
+		mac->ops.get_link_up_info =
+			e1000_get_speed_and_duplex_fiber_serdes_generic;
+		break;
+	default:
+		hw->phy.media_type = e1000_media_type_copper;
+		mac->ops.setup_physical_interface =
+			e1000_setup_copper_link_82571;
+		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
+		mac->ops.get_link_up_info =
+			e1000_get_speed_and_duplex_copper_generic;
+		break;
+	}
+
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = true;
+	/* Adaptive IFS supported */
+	mac->adaptive_ifs = true;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+	/* reset */
+	mac->ops.reset_hw = e1000_reset_hw_82571;
+	/* hw initialization */
+	mac->ops.init_hw = e1000_init_hw_82571;
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_82571;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* writing VFTA */
+	mac->ops.write_vfta = e1000_write_vfta_generic;
+	/* clearing VFTA */
+	mac->ops.clear_vfta = e1000_clear_vfta_82571;
+	/* read mac address */
+	mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
+	/* ID LED init */
+	mac->ops.id_led_init = e1000_id_led_init_generic;
+	/* setup LED */
+	mac->ops.setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	mac->ops.cleanup_led = e1000_cleanup_led_generic;
+	/* turn off LED */
+	mac->ops.led_off = e1000_led_off_generic;
+	/* clear hardware counters */
+	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
+
+	/* MAC-specific function pointers */
+	switch (hw->mac.type) {
+	case e1000_82573:
+		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+		mac->ops.led_on = e1000_led_on_generic;
+		mac->ops.blink_led = e1000_blink_led_generic;
+
+		/* FWSM register */
+		mac->has_fwsm = true;
+		/* ARC supported; valid only if manageability features are
+		 * enabled.
+		 */
+		mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
+					      E1000_FWSM_MODE_MASK);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
+		mac->ops.led_on = e1000_led_on_82574;
+		break;
+	default:
+		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
+		mac->ops.led_on = e1000_led_on_generic;
+		mac->ops.blink_led = e1000_blink_led_generic;
+
+		/* FWSM register */
+		mac->has_fwsm = true;
+		break;
+	}
+
+	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
+	 * first NVM or PHY access. This should be done for single-port
+	 * devices, and for one port only on dual-port devices so that
+	 * for those devices we can still use the SMBI lock to synchronize
+	 * inter-port accesses to the PHY & NVM.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		swsm2 = E1000_READ_REG(hw, E1000_SWSM2);
+
+		if (!(swsm2 & E1000_SWSM2_LOCK)) {
+			/* Only do this for the first interface on this card */
+			E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 |
+					E1000_SWSM2_LOCK);
+			force_clear_smbi = true;
+		} else {
+			force_clear_smbi = false;
+		}
+		break;
+	default:
+		force_clear_smbi = true;
+		break;
+	}
+
+	if (force_clear_smbi) {
+		/* Make sure SWSM.SMBI is clear */
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		if (swsm & E1000_SWSM_SMBI) {
+			/* This bit should not be set on a first interface, and
+			 * indicates that the bootagent or EFI code has
+			 * improperly left this bit enabled
+			 */
+			DEBUGOUT("Please update your 82571 Bootagent\n");
+		}
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
+	}
+
+	/* Initialze device specific counter of SMBI acquisition timeouts. */
+	 hw->dev_spec._82571.smb_counter = 0;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_function_pointers_82571 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82571");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_82571;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
+	hw->phy.ops.init_params = e1000_init_phy_params_82571;
+}
+
+/**
+ *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_id = 0;
+
+	DEBUGFUNC("e1000_get_phy_id_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/* The 82571 firmware may still be configuring the PHY.
+		 * In this case, we cannot access the PHY until the
+		 * configuration is done.  So we explicitly set the
+		 * PHY ID.
+		 */
+		phy->id = IGP01E1000_I_PHY_ID;
+		break;
+	case e1000_82573:
+		return e1000_get_phy_id(hw);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
+		if (ret_val)
+			return ret_val;
+
+		phy->id = (u32)(phy_id << 16);
+		usec_delay(20);
+		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
+		if (ret_val)
+			return ret_val;
+
+		phy->id |= (u32)(phy_id);
+		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 sw_timeout = hw->nvm.word_size + 1;
+	s32 fw_timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_82571");
+
+	/* If we have timedout 3 times on trying to acquire
+	 * the inter-port SMBI semaphore, there is old code
+	 * operating on the other port, and it is not
+	 * releasing SMBI. Modify the number of times that
+	 * we try for the semaphore to interwork with this
+	 * older code.
+	 */
+	if (hw->dev_spec._82571.smb_counter > 2)
+		sw_timeout = 1;
+
+	/* Get the SW semaphore */
+	while (i < sw_timeout) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		usec_delay(50);
+		i++;
+	}
+
+	if (i == sw_timeout) {
+		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+		hw->dev_spec._82571.smb_counter++;
+	}
+	/* Get the FW semaphore. */
+	for (i = 0; i < fw_timeout; i++) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		usec_delay(50);
+	}
+
+	if (i == fw_timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_82571(hw);
+		DEBUGOUT("Driver can't access the NVM\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+	swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore during reset.
+ *
+ **/
+STATIC s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_82573");
+
+	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+	do {
+		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+			break;
+
+		msec_delay(2);
+		i++;
+	} while (i < MDIO_OWNERSHIP_TIMEOUT);
+
+	if (i == MDIO_OWNERSHIP_TIMEOUT) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_82573(hw);
+		DEBUGOUT("Driver can't access the PHY\n");
+		return -E1000_ERR_PHY;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used during reset.
+ *
+ **/
+STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl;
+
+	DEBUGFUNC("e1000_put_hw_semaphore_82573");
+
+	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
+	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+}
+
+/**
+ *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM.
+ *
+ **/
+STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_82574");
+
+	E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex);
+	ret_val = e1000_get_hw_semaphore_82573(hw);
+	if (ret_val)
+		E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
+	return ret_val;
+}
+
+/**
+ *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ *
+ **/
+STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_put_hw_semaphore_82574");
+
+	e1000_put_hw_semaphore_82573(hw);
+	E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
+}
+
+/**
+ *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.
+ *  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
+{
+	u32 data = E1000_READ_REG(hw, E1000_POEMB);
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_82574");
+
+	if (active)
+		data |= E1000_PHY_CTRL_D0A_LPLU;
+	else
+		data &= ~E1000_PHY_CTRL_D0A_LPLU;
+
+	E1000_WRITE_REG(hw, E1000_POEMB, data);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  when active is true, else clear lplu for D3. LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
+{
+	u32 data = E1000_READ_REG(hw, E1000_POEMB);
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_82574");
+
+	if (!active) {
+		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= E1000_PHY_CTRL_NOND0A_LPLU;
+	}
+
+	E1000_WRITE_REG(hw, E1000_POEMB, data);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
+ *  Then for non-82573 hardware, set the EEPROM access request bit and wait
+ *  for EEPROM access grant bit.  If the access grant bit is not set, release
+ *  hardware semaphore.
+ **/
+STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_82571");
+
+	ret_val = e1000_get_hw_semaphore_82571(hw);
+	if (ret_val)
+		return ret_val;
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+		break;
+	default:
+		ret_val = e1000_acquire_nvm_generic(hw);
+		break;
+	}
+
+	if (ret_val)
+		e1000_put_hw_semaphore_82571(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+STATIC void e1000_release_nvm_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_82571");
+
+	e1000_release_nvm_generic(hw);
+	e1000_put_hw_semaphore_82571(hw);
+}
+
+/**
+ *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function, the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_nvm_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
+		break;
+	default:
+		ret_val = -E1000_ERR_NVM;
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	u32 eecd;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_82571");
+
+	ret_val = e1000_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* If our nvm is an EEPROM, then we're done
+	 * otherwise, commit the checksum to the flash NVM.
+	 */
+	if (hw->nvm.type != e1000_nvm_flash_hw)
+		return E1000_SUCCESS;
+
+	/* Check for pending operations. */
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msec_delay(1);
+		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES)
+		return -E1000_ERR_NVM;
+
+	/* Reset the firmware if using STM opcode. */
+	if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
+		/* The enabling of and the actual reset must be done
+		 * in two write cycles.
+		 */
+		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
+	}
+
+	/* Commit the write to flash */
+	eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+
+	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
+		msec_delay(1);
+		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
+			break;
+	}
+
+	if (i == E1000_FLASH_UPDATES)
+		return -E1000_ERR_NVM;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_validate_nvm_checksum_82571");
+
+	if (hw->nvm.type == e1000_nvm_flash_hw)
+		e1000_fix_nvm_checksum_82571(hw);
+
+	return e1000_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  After checking for invalid values, poll the EEPROM to ensure the previous
+ *  command has completed before trying to write the next word.  After write
+ *  poll for completion.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function, the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
+				      u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eewr = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_nvm_eewr_82571");
+
+	/* A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	for (i = 0; i < words; i++) {
+		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
+			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
+			E1000_NVM_RW_REG_START);
+
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+
+		E1000_WRITE_REG(hw, E1000_EEWR, eewr);
+
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
+		if (ret_val)
+			break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cfg_done_82571 - Poll for configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the management control register for the config done bit to be set.
+ **/
+STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+
+	DEBUGFUNC("e1000_get_cfg_done_82571");
+
+	while (timeout) {
+		if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
+		    E1000_NVM_CFG_DONE_PORT_0)
+			break;
+		msec_delay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		DEBUGOUT("MNG configuration cycle has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
+ *  this function also disables smart speed and vice versa.  LPLU will not be
+ *  activated unless the device autonegotiation advertisement meets standards
+ *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
+ *  pointer entry point only called by PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_82571");
+
+	if (!(phy->ops.read_reg))
+		return E1000_SUCCESS;
+
+	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (active) {
+		data |= IGP02E1000_PM_D0_LPLU;
+		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+					     data);
+		if (ret_val)
+			return ret_val;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					    &data);
+		if (ret_val)
+			return ret_val;
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					     data);
+		if (ret_val)
+			return ret_val;
+	} else {
+		data &= ~IGP02E1000_PM_D0_LPLU;
+		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+					     data);
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_reset_hw_82571 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw)
+{
+	u32 ctrl, ctrl_ext, eecd, tctl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw_82571");
+
+	/* Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val)
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+	tctl &= ~E1000_TCTL_EN;
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/* Must acquire the MDIO ownership before MAC reset.
+	 * Ownership defaults to firmware after a reset.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82573:
+		ret_val = e1000_get_hw_semaphore_82573(hw);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		ret_val = e1000_get_hw_semaphore_82574(hw);
+		break;
+	default:
+		break;
+	}
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	/* Must release MDIO ownership and mutex after MAC reset. */
+	switch (hw->mac.type) {
+	case e1000_82573:
+		/* Release mutex only if the hw semaphore is acquired */
+		if (!ret_val)
+			e1000_put_hw_semaphore_82573(hw);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		/* Release mutex only if the hw semaphore is acquired */
+		if (!ret_val)
+			e1000_put_hw_semaphore_82574(hw);
+		break;
+	default:
+		break;
+	}
+
+	if (hw->nvm.type == e1000_nvm_flash_hw) {
+		usec_delay(10);
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val)
+		/* We don't want to continue accessing MAC registers. */
+		return ret_val;
+
+	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
+	 * Need to wait for Phy configuration completion before accessing
+	 * NVM and Phy.
+	 */
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/* REQ and GNT bits need to be cleared when using AUTO_RD
+		 * to access the EEPROM.
+		 */
+		eecd = E1000_READ_REG(hw, E1000_EECD);
+		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		break;
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		msec_delay(25);
+		break;
+	default:
+		break;
+	}
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_READ_REG(hw, E1000_ICR);
+
+	if (hw->mac.type == e1000_82571) {
+		/* Install any alternate MAC address into RAR0 */
+		ret_val = e1000_check_alt_mac_addr_generic(hw);
+		if (ret_val)
+			return ret_val;
+
+		e1000_set_laa_state_82571(hw, true);
+	}
+
+	/* Reinitialize the 82571 serdes link state machine */
+	if (hw->phy.media_type == e1000_media_type_internal_serdes)
+		hw->mac.serdes_link_state = e1000_serdes_link_down;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_hw_82571 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 reg_data;
+	s32 ret_val;
+	u16 i, rar_count = mac->rar_entry_count;
+
+	DEBUGFUNC("e1000_init_hw_82571");
+
+	e1000_initialize_hw_bits_82571(hw);
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	/* An error is not fatal and we should not stop init due to this */
+	if (ret_val)
+		DEBUGOUT("Error initializing identification LED\n");
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address.
+	 * If, however, a locally administered address was assigned to the
+	 * 82571, we must reserve a RAR for it to work around an issue where
+	 * resetting one port will reload the MAC on the other port.
+	 */
+	if (e1000_get_laa_state_82571(hw))
+		rar_count--;
+	e1000_init_rx_addrs_generic(hw, rar_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = mac->ops.setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy */
+	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
+
+	/* ...for both queues. */
+	switch (mac->type) {
+	case e1000_82573:
+		e1000_enable_tx_pkt_filtering_generic(hw);
+		/* fall through */
+	case e1000_82574:
+	case e1000_82583:
+		reg_data = E1000_READ_REG(hw, E1000_GCR);
+		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
+		E1000_WRITE_REG(hw, E1000_GCR, reg_data);
+		break;
+	default:
+		reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
+		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
+			    E1000_TXDCTL_FULL_TX_DESC_WB |
+			    E1000_TXDCTL_COUNT_DESC);
+		E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
+		break;
+	}
+
+	/* Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82571(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes required hardware-dependent bits needed for normal operation.
+ **/
+STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_82571");
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC(0));
+	reg &= ~(0xF << 27); /* 30:27 */
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
+		break;
+	case e1000_82574:
+	case e1000_82583:
+		reg |= (1 << 26);
+		break;
+	default:
+		break;
+	}
+	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC(1));
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		reg &= ~((1 << 29) | (1 << 30));
+		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
+		if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+			reg &= ~(1 << 28);
+		else
+			reg |= (1 << 28);
+		E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Device Control */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		reg = E1000_READ_REG(hw, E1000_CTRL);
+		reg &= ~(1 << 29);
+		E1000_WRITE_REG(hw, E1000_CTRL, reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Extended Device Control */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		reg &= ~(1 << 23);
+		reg |= (1 << 22);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+		break;
+	default:
+		break;
+	}
+
+	if (hw->mac.type == e1000_82571) {
+		reg = E1000_READ_REG(hw, E1000_PBA_ECC);
+		reg |= E1000_PBA_ECC_CORR_EN;
+		E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
+	}
+
+	/* Workaround for hardware errata.
+	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
+	 */
+	if ((hw->mac.type == e1000_82571) ||
+	   (hw->mac.type == e1000_82572)) {
+		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+	}
+
+	/* Disable IPv6 extension header parsing because some malformed
+	 * IPv6 headers can hang the Rx.
+	 */
+	if (hw->mac.type <= e1000_82573) {
+		reg = E1000_READ_REG(hw, E1000_RFCTL);
+		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
+		E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+	}
+
+	/* PCI-Ex Control Registers */
+	switch (hw->mac.type) {
+	case e1000_82574:
+	case e1000_82583:
+		reg = E1000_READ_REG(hw, E1000_GCR);
+		reg |= (1 << 22);
+		E1000_WRITE_REG(hw, E1000_GCR, reg);
+
+		/* Workaround for hardware errata.
+		 * apply workaround for hardware errata documented in errata
+		 * docs Fixes issue where some error prone or unreliable PCIe
+		 * completions are occurring, particularly with ASPM enabled.
+		 * Without fix, issue can cause Tx timeouts.
+		 */
+		reg = E1000_READ_REG(hw, E1000_GCR2);
+		reg |= 1;
+		E1000_WRITE_REG(hw, E1000_GCR2, reg);
+		break;
+	default:
+		break;
+	}
+
+	return;
+}
+
+/**
+ *  e1000_clear_vfta_82571 - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	DEBUGFUNC("e1000_clear_vfta_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (hw->mng_cookie.vlan_id != 0) {
+			/* The VFTA is a 4096b bit-field, each identifying
+			 * a single VLAN ID.  The following operations
+			 * determine which 32b entry (i.e. offset) into the
+			 * array we want to set the VLAN ID (i.e. bit) of
+			 * the manageability unit.
+			 */
+			vfta_offset = (hw->mng_cookie.vlan_id >>
+				       E1000_VFTA_ENTRY_SHIFT) &
+			    E1000_VFTA_ENTRY_MASK;
+			vfta_bit_in_reg =
+			    1 << (hw->mng_cookie.vlan_id &
+				  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
+		}
+		break;
+	default:
+		break;
+	}
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/* If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of
+		 * the manageability unit.
+		 */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/**
+ *  e1000_check_mng_mode_82574 - Check manageability is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the NVM Initialization Control Word 2 and returns true
+ *  (>0) if any manageability is enabled, else false (0).
+ **/
+STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
+{
+	u16 data;
+
+	DEBUGFUNC("e1000_check_mng_mode_82574");
+
+	hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
+}
+
+/**
+ *  e1000_led_on_82574 - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+STATIC s32 e1000_led_on_82574(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u32 i;
+
+	DEBUGFUNC("e1000_led_on_82574");
+
+	ctrl = hw->mac.ledctl_mode2;
+	if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
+		/* If no link, then turn LED on by setting the invert bit
+		 * for each LED that's "on" (0x0E) in ledctl_mode2.
+		 */
+		for (i = 0; i < 4; i++)
+			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+			    E1000_LEDCTL_MODE_LED_ON)
+				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
+	}
+	E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_check_phy_82574 - check 82574 phy hung state
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns whether phy is hung or not
+ **/
+bool e1000_check_phy_82574(struct e1000_hw *hw)
+{
+	u16 status_1kbt = 0;
+	u16 receive_errors = 0;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_check_phy_82574");
+
+	/* Read PHY Receive Error counter first, if its is max - all F's then
+	 * read the Base1000T status register If both are max then PHY is hung.
+	 */
+	ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
+				       &receive_errors);
+	if (ret_val)
+		return false;
+	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
+		ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
+					       &status_1kbt);
+		if (ret_val)
+			return false;
+		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
+		    E1000_IDLE_ERROR_COUNT_MASK)
+			return true;
+	}
+
+	return false;
+}
+
+
+/**
+ *  e1000_setup_link_82571 - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_setup_link_82571");
+
+	/* 82573 does not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (hw->fc.requested_mode == e1000_fc_default)
+			hw->fc.requested_mode = e1000_fc_full;
+		break;
+	default:
+		break;
+	}
+
+	return e1000_setup_link_generic(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_82571 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
+ *  for link, once link is established calls to configure collision distance
+ *  and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_copper_link_82571");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	switch (hw->phy.type) {
+	case e1000_phy_m88:
+	case e1000_phy_bm:
+		ret_val = e1000_copper_link_setup_m88(hw);
+		break;
+	case e1000_phy_igp_2:
+		ret_val = e1000_copper_link_setup_igp(hw);
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	if (ret_val)
+		return ret_val;
+
+	return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes links.
+ *  Upon successful setup, poll for link.
+ **/
+STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
+
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+		/* If SerDes loopback mode is entered, there is no form
+		 * of reset to take the adapter out of that mode.  So we
+		 * have to explicitly take the adapter out of loopback
+		 * mode.  This prevents drivers from twiddling their thumbs
+		 * if another tool failed to take it out of loopback mode.
+		 */
+		E1000_WRITE_REG(hw, E1000_SCTL,
+				E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+		break;
+	default:
+		break;
+	}
+
+	return e1000_setup_fiber_serdes_link_generic(hw);
+}
+
+/**
+ *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Reports the link state as up or down.
+ *
+ *  If autonegotiation is supported by the link partner, the link state is
+ *  determined by the result of autonegotiation. This is the most likely case.
+ *  If autonegotiation is not supported by the link partner, and the link
+ *  has a valid signal, force the link up.
+ *
+ *  The link state is represented internally here by 4 states:
+ *
+ *  1) down
+ *  2) autoneg_progress
+ *  3) autoneg_complete (the link successfully autonegotiated)
+ *  4) forced_up (the link has been forced up, it did not autonegotiate)
+ *
+ **/
+STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	u32 txcw;
+	u32 i;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_check_for_serdes_link_82571");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	E1000_READ_REG(hw, E1000_RXCW);
+	/* SYNCH bit and IV bit are sticky */
+	usec_delay(10);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
+		/* Receiver is synchronized with no invalid bits.  */
+		switch (mac->serdes_link_state) {
+		case e1000_serdes_link_autoneg_complete:
+			if (!(status & E1000_STATUS_LU)) {
+				/* We have lost link, retry autoneg before
+				 * reporting link failure
+				 */
+				mac->serdes_link_state =
+				    e1000_serdes_link_autoneg_progress;
+				mac->serdes_has_link = false;
+				DEBUGOUT("AN_UP     -> AN_PROG\n");
+			} else {
+				mac->serdes_has_link = true;
+			}
+			break;
+
+		case e1000_serdes_link_forced_up:
+			/* If we are receiving /C/ ordered sets, re-enable
+			 * auto-negotiation in the TXCW register and disable
+			 * forced link in the Device Control register in an
+			 * attempt to auto-negotiate with our link partner.
+			 */
+			if (rxcw & E1000_RXCW_C) {
+				/* Enable autoneg, and unforce link up */
+				E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+				E1000_WRITE_REG(hw, E1000_CTRL,
+				    (ctrl & ~E1000_CTRL_SLU));
+				mac->serdes_link_state =
+				    e1000_serdes_link_autoneg_progress;
+				mac->serdes_has_link = false;
+				DEBUGOUT("FORCED_UP -> AN_PROG\n");
+			} else {
+				mac->serdes_has_link = true;
+			}
+			break;
+
+		case e1000_serdes_link_autoneg_progress:
+			if (rxcw & E1000_RXCW_C) {
+				/* We received /C/ ordered sets, meaning the
+				 * link partner has autonegotiated, and we can
+				 * trust the Link Up (LU) status bit.
+				 */
+				if (status & E1000_STATUS_LU) {
+					mac->serdes_link_state =
+					    e1000_serdes_link_autoneg_complete;
+					DEBUGOUT("AN_PROG   -> AN_UP\n");
+					mac->serdes_has_link = true;
+				} else {
+					/* Autoneg completed, but failed. */
+					mac->serdes_link_state =
+					    e1000_serdes_link_down;
+					DEBUGOUT("AN_PROG   -> DOWN\n");
+				}
+			} else {
+				/* The link partner did not autoneg.
+				 * Force link up and full duplex, and change
+				 * state to forced.
+				 */
+				E1000_WRITE_REG(hw, E1000_TXCW,
+				(mac->txcw & ~E1000_TXCW_ANE));
+				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+				/* Configure Flow Control after link up. */
+				ret_val =
+				    e1000_config_fc_after_link_up_generic(hw);
+				if (ret_val) {
+					DEBUGOUT("Error config flow control\n");
+					break;
+				}
+				mac->serdes_link_state =
+						e1000_serdes_link_forced_up;
+				mac->serdes_has_link = true;
+				DEBUGOUT("AN_PROG   -> FORCED_UP\n");
+			}
+			break;
+
+		case e1000_serdes_link_down:
+		default:
+			/* The link was down but the receiver has now gained
+			 * valid sync, so lets see if we can bring the link
+			 * up.
+			 */
+			E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+			E1000_WRITE_REG(hw, E1000_CTRL, (ctrl &
+					~E1000_CTRL_SLU));
+			mac->serdes_link_state =
+					e1000_serdes_link_autoneg_progress;
+			mac->serdes_has_link = false;
+			DEBUGOUT("DOWN      -> AN_PROG\n");
+			break;
+		}
+	} else {
+		if (!(rxcw & E1000_RXCW_SYNCH)) {
+			mac->serdes_has_link = false;
+			mac->serdes_link_state = e1000_serdes_link_down;
+			DEBUGOUT("ANYSTATE  -> DOWN\n");
+		} else {
+			/* Check several times, if SYNCH bit and CONFIG
+			 * bit both are consistently 1 then simply ignore
+			 * the IV bit and restart Autoneg
+			 */
+			for (i = 0; i < AN_RETRY_COUNT; i++) {
+				usec_delay(10);
+				rxcw = E1000_READ_REG(hw, E1000_RXCW);
+				if ((rxcw & E1000_RXCW_SYNCH) &&
+				    (rxcw & E1000_RXCW_C))
+					continue;
+
+				if (rxcw & E1000_RXCW_IV) {
+					mac->serdes_has_link = false;
+					mac->serdes_link_state =
+							e1000_serdes_link_down;
+					DEBUGOUT("ANYSTATE  -> DOWN\n");
+					break;
+				}
+			}
+
+			if (i == AN_RETRY_COUNT) {
+				txcw = E1000_READ_REG(hw, E1000_TXCW);
+				txcw |= E1000_TXCW_ANE;
+				E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+				mac->serdes_link_state =
+					e1000_serdes_link_autoneg_progress;
+				mac->serdes_has_link = false;
+				DEBUGOUT("ANYSTATE  -> AN_PROG\n");
+			}
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_led_default_82571 - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_82571");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	switch (hw->mac.type) {
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		if (*data == ID_LED_RESERVED_F746)
+			*data = ID_LED_DEFAULT_82573;
+		break;
+	default:
+		if (*data == ID_LED_RESERVED_0000 ||
+		    *data == ID_LED_RESERVED_FFFF)
+			*data = ID_LED_DEFAULT;
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_laa_state_82571 - Get locally administered address state
+ *  @hw: pointer to the HW structure
+ *
+ *  Retrieve and return the current locally administered address state.
+ **/
+bool e1000_get_laa_state_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_laa_state_82571");
+
+	if (hw->mac.type != e1000_82571)
+		return false;
+
+	return hw->dev_spec._82571.laa_is_present;
+}
+
+/**
+ *  e1000_set_laa_state_82571 - Set locally administered address state
+ *  @hw: pointer to the HW structure
+ *  @state: enable/disable locally administered address
+ *
+ *  Enable/Disable the current locally administered address state.
+ **/
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
+{
+	DEBUGFUNC("e1000_set_laa_state_82571");
+
+	if (hw->mac.type != e1000_82571)
+		return;
+
+	hw->dev_spec._82571.laa_is_present = state;
+
+	/* If workaround is activated... */
+	if (state)
+		/* Hold a copy of the LAA in RAR[14] This is done so that
+		 * between the time RAR[0] gets clobbered and the time it
+		 * gets fixed, the actual LAA is in one of the RARs and no
+		 * incoming packets directed to this port are dropped.
+		 * Eventually the LAA will be in RAR[0] and RAR[14].
+		 */
+		hw->mac.ops.rar_set(hw, hw->mac.addr,
+				    hw->mac.rar_entry_count - 1);
+	return;
+}
+
+/**
+ *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies that the EEPROM has completed the update.  After updating the
+ *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
+ *  the checksum fix is not implemented, we need to set the bit and update
+ *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
+ *  we need to return bad checksum.
+ **/
+STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_fix_nvm_checksum_82571");
+
+	if (nvm->type != e1000_nvm_flash_hw)
+		return E1000_SUCCESS;
+
+	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
+	 * 10h-12h.  Checksum may need to be fixed.
+	 */
+	ret_val = nvm->ops.read(hw, 0x10, 1, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (!(data & 0x10)) {
+		/* Read 0x23 and check bit 15.  This bit is a 1
+		 * when the checksum has already been fixed.  If
+		 * the checksum is still wrong and this bit is a
+		 * 1, we need to return bad checksum.  Otherwise,
+		 * we need to set this bit to a 1 and update the
+		 * checksum.
+		 */
+		ret_val = nvm->ops.read(hw, 0x23, 1, &data);
+		if (ret_val)
+			return ret_val;
+
+		if (!(data & 0x8000)) {
+			data |= 0x8000;
+			ret_val = nvm->ops.write(hw, 0x23, 1, &data);
+			if (ret_val)
+				return ret_val;
+			ret_val = nvm->ops.update(hw);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+
+/**
+ *  e1000_read_mac_addr_82571 - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_read_mac_addr_82571");
+
+	if (hw->mac.type == e1000_82571) {
+		s32 ret_val;
+
+		/* If there's an alternate MAC address place it in RAR0
+		 * so that it will override the Si installed default perm
+		 * address.
+		 */
+		ret_val = e1000_check_alt_mac_addr_generic(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	struct e1000_mac_info *mac = &hw->mac;
+
+	if (!phy->ops.check_reset_block)
+		return;
+
+	/* If the management interface is not enabled, then power down */
+	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_clear_hw_cntrs_82571");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	E1000_READ_REG(hw, E1000_PRC64);
+	E1000_READ_REG(hw, E1000_PRC127);
+	E1000_READ_REG(hw, E1000_PRC255);
+	E1000_READ_REG(hw, E1000_PRC511);
+	E1000_READ_REG(hw, E1000_PRC1023);
+	E1000_READ_REG(hw, E1000_PRC1522);
+	E1000_READ_REG(hw, E1000_PTC64);
+	E1000_READ_REG(hw, E1000_PTC127);
+	E1000_READ_REG(hw, E1000_PTC255);
+	E1000_READ_REG(hw, E1000_PTC511);
+	E1000_READ_REG(hw, E1000_PTC1023);
+	E1000_READ_REG(hw, E1000_PTC1522);
+
+	E1000_READ_REG(hw, E1000_ALGNERRC);
+	E1000_READ_REG(hw, E1000_RXERRC);
+	E1000_READ_REG(hw, E1000_TNCRS);
+	E1000_READ_REG(hw, E1000_CEXTERR);
+	E1000_READ_REG(hw, E1000_TSCTC);
+	E1000_READ_REG(hw, E1000_TSCTFC);
+
+	E1000_READ_REG(hw, E1000_MGTPRC);
+	E1000_READ_REG(hw, E1000_MGTPDC);
+	E1000_READ_REG(hw, E1000_MGTPTC);
+
+	E1000_READ_REG(hw, E1000_IAC);
+	E1000_READ_REG(hw, E1000_ICRXOC);
+
+	E1000_READ_REG(hw, E1000_ICRXPTC);
+	E1000_READ_REG(hw, E1000_ICRXATC);
+	E1000_READ_REG(hw, E1000_ICTXPTC);
+	E1000_READ_REG(hw, E1000_ICTXATC);
+	E1000_READ_REG(hw, E1000_ICTXQEC);
+	E1000_READ_REG(hw, E1000_ICTXQMTC);
+	E1000_READ_REG(hw, E1000_ICRXDMTC);
+}
diff --git a/drivers/net/e1000/base/e1000_82571.h b/drivers/net/e1000/base/e1000_82571.h
new file mode 100644
index 0000000..bdf6446
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82571.h
@@ -0,0 +1,65 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_82571_H_
+#define _E1000_82571_H_
+
+#define ID_LED_RESERVED_F746	0xF746
+#define ID_LED_DEFAULT_82573	((ID_LED_DEF1_DEF2 << 12) | \
+				 (ID_LED_OFF1_ON2  <<  8) | \
+				 (ID_LED_DEF1_DEF2 <<  4) | \
+				 (ID_LED_DEF1_DEF2))
+
+#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX	0x08000000
+#define AN_RETRY_COUNT		5 /* Autoneg Retry Count value */
+
+/* Intr Throttling - RW */
+#define E1000_EITR_82574(_n)	(0x000E8 + (0x4 * (_n)))
+
+#define E1000_EIAC_82574	0x000DC /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAC_MASK_82574	0x01F00000
+
+#define E1000_IVAR_INT_ALLOC_VALID	0x8
+
+/* Manageability Operation Mode mask */
+#define E1000_NVM_INIT_CTRL2_MNGM	0x6000
+
+#define E1000_BASE1000T_STATUS		10
+#define E1000_IDLE_ERROR_COUNT_MASK	0xFF
+#define E1000_RECEIVE_ERROR_COUNTER	21
+#define E1000_RECEIVE_ERROR_MAX		0xFFFF
+bool e1000_check_phy_82574(struct e1000_hw *hw);
+bool e1000_get_laa_state_82571(struct e1000_hw *hw);
+void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_82575.c b/drivers/net/e1000/base/e1000_82575.c
new file mode 100644
index 0000000..25fa672
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82575.c
@@ -0,0 +1,3639 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/*
+ * 82575EB Gigabit Network Connection
+ * 82575EB Gigabit Backplane Connection
+ * 82575GB Gigabit Network Connection
+ * 82576 Gigabit Network Connection
+ * 82576 Quad Port Gigabit Mezzanine Adapter
+ * 82580 Gigabit Network Connection
+ * I350 Gigabit Network Connection
+ */
+
+#include "e1000_api.h"
+#include "e1000_i210.h"
+
+STATIC s32  e1000_init_phy_params_82575(struct e1000_hw *hw);
+STATIC s32  e1000_init_mac_params_82575(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_phy_82575(struct e1000_hw *hw);
+STATIC void e1000_release_phy_82575(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_nvm_82575(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_82575(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_link_82575(struct e1000_hw *hw);
+STATIC s32  e1000_check_for_link_media_swap(struct e1000_hw *hw);
+STATIC s32  e1000_get_cfg_done_82575(struct e1000_hw *hw);
+STATIC s32  e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+					 u16 *duplex);
+STATIC s32  e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
+STATIC s32  e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+					   u16 *data);
+STATIC s32  e1000_reset_hw_82575(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_82580(struct e1000_hw *hw);
+STATIC s32  e1000_read_phy_reg_82580(struct e1000_hw *hw,
+				     u32 offset, u16 *data);
+STATIC s32  e1000_write_phy_reg_82580(struct e1000_hw *hw,
+				      u32 offset, u16 data);
+STATIC s32  e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
+					  bool active);
+STATIC s32  e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
+					  bool active);
+STATIC s32  e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
+					  bool active);
+STATIC s32  e1000_setup_copper_link_82575(struct e1000_hw *hw);
+STATIC s32  e1000_setup_serdes_link_82575(struct e1000_hw *hw);
+STATIC s32  e1000_get_media_type_82575(struct e1000_hw *hw);
+STATIC s32  e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
+STATIC s32  e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
+STATIC s32  e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
+					    u32 offset, u16 data);
+STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+STATIC s32  e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+						 u16 *speed, u16 *duplex);
+STATIC s32  e1000_get_phy_id_82575(struct e1000_hw *hw);
+STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw);
+STATIC s32  e1000_reset_init_script_82575(struct e1000_hw *hw);
+STATIC s32  e1000_read_mac_addr_82575(struct e1000_hw *hw);
+STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
+STATIC void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
+STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
+STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
+STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
+STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
+STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
+STATIC s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
+						 u16 offset);
+STATIC s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
+						   u16 offset);
+STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
+STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
+STATIC void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
+STATIC void e1000_clear_vfta_i350(struct e1000_hw *hw);
+
+STATIC void e1000_i2c_start(struct e1000_hw *hw);
+STATIC void e1000_i2c_stop(struct e1000_hw *hw);
+STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
+STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
+STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw);
+STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
+STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
+STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
+STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
+STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
+STATIC bool e1000_get_i2c_data(u32 *i2cctl);
+
+STATIC const u16 e1000_82580_rxpbs_table[] = {
+	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
+#define E1000_82580_RXPBS_TABLE_SIZE \
+	(sizeof(e1000_82580_rxpbs_table) / \
+	 sizeof(e1000_82580_rxpbs_table[0]))
+
+
+/**
+ *  e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to determine if the I2C pins are being used for I2C or as an
+ *  external MDIO interface since the two options are mutually exclusive.
+ **/
+STATIC bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
+{
+	u32 reg = 0;
+	bool ext_mdio = false;
+
+	DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
+
+	switch (hw->mac.type) {
+	case e1000_82575:
+	case e1000_82576:
+		reg = E1000_READ_REG(hw, E1000_MDIC);
+		ext_mdio = !!(reg & E1000_MDIC_DEST);
+		break;
+	case e1000_82580:
+	case e1000_i350:
+	case e1000_i354:
+	case e1000_i210:
+	case e1000_i211:
+		reg = E1000_READ_REG(hw, E1000_MDICNFG);
+		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
+		break;
+	default:
+		break;
+	}
+	return ext_mdio;
+}
+
+/**
+ *  e1000_init_phy_params_82575 - Init PHY func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl_ext;
+
+	DEBUGFUNC("e1000_init_phy_params_82575");
+
+	phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
+	phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		phy->type = e1000_phy_none;
+		goto out;
+	}
+
+	phy->ops.power_up   = e1000_power_up_phy_copper;
+	phy->ops.power_down = e1000_power_down_phy_copper_82575;
+
+	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+	phy->reset_delay_us	= 100;
+
+	phy->ops.acquire	= e1000_acquire_phy_82575;
+	phy->ops.check_reset_block = e1000_check_reset_block_generic;
+	phy->ops.commit		= e1000_phy_sw_reset_generic;
+	phy->ops.get_cfg_done	= e1000_get_cfg_done_82575;
+	phy->ops.release	= e1000_release_phy_82575;
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+	if (e1000_sgmii_active_82575(hw)) {
+		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
+		ctrl_ext |= E1000_CTRL_I2C_ENA;
+	} else {
+		phy->ops.reset = e1000_phy_hw_reset_generic;
+		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
+	}
+
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	e1000_reset_mdicnfg_82580(hw);
+
+	if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
+		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
+		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
+	} else {
+		switch (hw->mac.type) {
+		case e1000_82580:
+		case e1000_i350:
+		case e1000_i354:
+			phy->ops.read_reg = e1000_read_phy_reg_82580;
+			phy->ops.write_reg = e1000_write_phy_reg_82580;
+			break;
+		case e1000_i210:
+		case e1000_i211:
+			phy->ops.read_reg = e1000_read_phy_reg_gs40g;
+			phy->ops.write_reg = e1000_write_phy_reg_gs40g;
+			break;
+		default:
+			phy->ops.read_reg = e1000_read_phy_reg_igp;
+			phy->ops.write_reg = e1000_write_phy_reg_igp;
+		}
+	}
+
+	/* Set phy->phy_addr and phy->id. */
+	ret_val = e1000_get_phy_id_82575(hw);
+
+	/* Verify phy id and set remaining function pointers */
+	switch (phy->id) {
+	case M88E1543_E_PHY_ID:
+	case M88E1512_E_PHY_ID:
+	case I347AT4_E_PHY_ID:
+	case M88E1112_E_PHY_ID:
+	case M88E1340M_E_PHY_ID:
+	case M88E1111_I_PHY_ID:
+		phy->type		= e1000_phy_m88;
+		phy->ops.check_polarity	= e1000_check_polarity_m88;
+		phy->ops.get_info	= e1000_get_phy_info_m88;
+		if (phy->id == I347AT4_E_PHY_ID ||
+		    phy->id == M88E1112_E_PHY_ID ||
+		    phy->id == M88E1340M_E_PHY_ID)
+			phy->ops.get_cable_length =
+					 e1000_get_cable_length_m88_gen2;
+		else if (phy->id == M88E1543_E_PHY_ID ||
+			 phy->id == M88E1512_E_PHY_ID)
+			phy->ops.get_cable_length =
+					 e1000_get_cable_length_m88_gen2;
+		else
+			phy->ops.get_cable_length = e1000_get_cable_length_m88;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		/* Check if this PHY is confgured for media swap. */
+		if (phy->id == M88E1112_E_PHY_ID) {
+			u16 data;
+
+			ret_val = phy->ops.write_reg(hw,
+						     E1000_M88E1112_PAGE_ADDR,
+						     2);
+			if (ret_val)
+				goto out;
+
+			ret_val = phy->ops.read_reg(hw,
+						    E1000_M88E1112_MAC_CTRL_1,
+						    &data);
+			if (ret_val)
+				goto out;
+
+			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
+			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
+			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
+			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
+				hw->mac.ops.check_for_link =
+						e1000_check_for_link_media_swap;
+		}
+		if (phy->id == M88E1512_E_PHY_ID) {
+			ret_val = e1000_initialize_M88E1512_phy(hw);
+			if (ret_val)
+				goto out;
+		}
+		break;
+	case IGP03E1000_E_PHY_ID:
+	case IGP04E1000_E_PHY_ID:
+		phy->type = e1000_phy_igp_3;
+		phy->ops.check_polarity = e1000_check_polarity_igp;
+		phy->ops.get_info = e1000_get_phy_info_igp;
+		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
+		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+		break;
+	case I82580_I_PHY_ID:
+	case I350_I_PHY_ID:
+		phy->type = e1000_phy_82580;
+		phy->ops.check_polarity = e1000_check_polarity_82577;
+		phy->ops.force_speed_duplex =
+					 e1000_phy_force_speed_duplex_82577;
+		phy->ops.get_cable_length = e1000_get_cable_length_82577;
+		phy->ops.get_info = e1000_get_phy_info_82577;
+		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
+		break;
+	case I210_I_PHY_ID:
+		phy->type		= e1000_phy_i210;
+		phy->ops.check_polarity	= e1000_check_polarity_m88;
+		phy->ops.get_info	= e1000_get_phy_info_m88;
+		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
+		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
+		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_82575 - Init NVM func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u16 size;
+
+	DEBUGFUNC("e1000_init_nvm_params_82575");
+
+	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+		     E1000_EECD_SIZE_EX_SHIFT);
+	/*
+	 * Added to a constant, "size" becomes the left-shift value
+	 * for setting word_size.
+	 */
+	size += NVM_WORD_SIZE_BASE_SHIFT;
+
+	/* Just in case size is out of range, cap it to the largest
+	 * EEPROM size supported
+	 */
+	if (size > 15)
+		size = 15;
+
+	nvm->word_size = 1 << size;
+	if (hw->mac.type < e1000_i210) {
+		nvm->opcode_bits = 8;
+		nvm->delay_usec = 1;
+
+		switch (nvm->override) {
+		case e1000_nvm_override_spi_large:
+			nvm->page_size = 32;
+			nvm->address_bits = 16;
+			break;
+		case e1000_nvm_override_spi_small:
+			nvm->page_size = 8;
+			nvm->address_bits = 8;
+			break;
+		default:
+			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
+					    16 : 8;
+			break;
+		}
+		if (nvm->word_size == (1 << 15))
+			nvm->page_size = 128;
+
+		nvm->type = e1000_nvm_eeprom_spi;
+	} else {
+		nvm->type = e1000_nvm_flash_hw;
+	}
+
+	/* Function Pointers */
+	nvm->ops.acquire = e1000_acquire_nvm_82575;
+	nvm->ops.release = e1000_release_nvm_82575;
+	if (nvm->word_size < (1 << 15))
+		nvm->ops.read = e1000_read_nvm_eerd;
+	else
+		nvm->ops.read = e1000_read_nvm_spi;
+
+	nvm->ops.write = e1000_write_nvm_spi;
+	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
+	nvm->ops.update = e1000_update_nvm_checksum_generic;
+	nvm->ops.valid_led_default = e1000_valid_led_default_82575;
+
+	/* override generic family function pointers for specific descendants */
+	switch (hw->mac.type) {
+	case e1000_82580:
+		nvm->ops.validate = e1000_validate_nvm_checksum_82580;
+		nvm->ops.update = e1000_update_nvm_checksum_82580;
+		break;
+	case e1000_i350:
+	case e1000_i354:
+		nvm->ops.validate = e1000_validate_nvm_checksum_i350;
+		nvm->ops.update = e1000_update_nvm_checksum_i350;
+		break;
+	default:
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_82575 - Init MAC func ptrs.
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+
+	DEBUGFUNC("e1000_init_mac_params_82575");
+
+	/* Derives media type */
+	e1000_get_media_type_82575(hw);
+	/* Set mta register count */
+	mac->mta_reg_count = 128;
+	/* Set uta register count */
+	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+	if (mac->type == e1000_82576)
+		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
+	if (mac->type == e1000_82580)
+		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
+	if (mac->type == e1000_i350 || mac->type == e1000_i354)
+		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
+
+	/* Enable EEE default settings for EEE supported devices */
+	if (mac->type >= e1000_i350)
+		dev_spec->eee_disable = false;
+
+	/* Allow a single clear of the SW semaphore on I210 and newer */
+	if (mac->type >= e1000_i210)
+		dev_spec->clear_semaphore_once = true;
+
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = true;
+	/* FWSM register */
+	mac->has_fwsm = true;
+	/* ARC supported; valid only if manageability features are enabled. */
+	mac->arc_subsystem_valid =
+		!!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
+	/* reset */
+	if (mac->type >= e1000_82580)
+		mac->ops.reset_hw = e1000_reset_hw_82580;
+	else
+	mac->ops.reset_hw = e1000_reset_hw_82575;
+	/* hw initialization */
+	if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
+		mac->ops.init_hw = e1000_init_hw_i210;
+	else
+	mac->ops.init_hw = e1000_init_hw_82575;
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_generic;
+	/* physical interface link setup */
+	mac->ops.setup_physical_interface =
+		(hw->phy.media_type == e1000_media_type_copper)
+		? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
+	/* physical interface shutdown */
+	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
+	/* physical interface power up */
+	mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
+	/* check for link */
+	mac->ops.check_for_link = e1000_check_for_link_82575;
+	/* read mac address */
+	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
+	/* configure collision distance */
+	mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
+		/* writing VFTA */
+		mac->ops.write_vfta = e1000_write_vfta_i350;
+		/* clearing VFTA */
+		mac->ops.clear_vfta = e1000_clear_vfta_i350;
+	} else {
+		/* writing VFTA */
+		mac->ops.write_vfta = e1000_write_vfta_generic;
+		/* clearing VFTA */
+		mac->ops.clear_vfta = e1000_clear_vfta_generic;
+	}
+	if (hw->mac.type >= e1000_82580)
+		mac->ops.validate_mdi_setting =
+				e1000_validate_mdi_setting_crossover_generic;
+	/* ID LED init */
+	mac->ops.id_led_init = e1000_id_led_init_generic;
+	/* blink LED */
+	mac->ops.blink_led = e1000_blink_led_generic;
+	/* setup LED */
+	mac->ops.setup_led = e1000_setup_led_generic;
+	/* cleanup LED */
+	mac->ops.cleanup_led = e1000_cleanup_led_generic;
+	/* turn on/off LED */
+	mac->ops.led_on = e1000_led_on_generic;
+	mac->ops.led_off = e1000_led_off_generic;
+	/* clear hardware counters */
+	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
+	/* link info */
+	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
+	/* acquire SW_FW sync */
+	mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
+	mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
+	if (mac->type >= e1000_i210) {
+		mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
+		mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
+	}
+
+	/* set lan id for port to determine which phy lock to use */
+	hw->mac.ops.set_lan_id(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_function_pointers_82575 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_82575(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_82575");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_82575;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
+	hw->phy.ops.init_params = e1000_init_phy_params_82575;
+	hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
+}
+
+/**
+ *  e1000_acquire_phy_82575 - Acquire rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire access rights to the correct PHY.
+ **/
+STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
+{
+	u16 mask = E1000_SWFW_PHY0_SM;
+
+	DEBUGFUNC("e1000_acquire_phy_82575");
+
+	if (hw->bus.func == E1000_FUNC_1)
+		mask = E1000_SWFW_PHY1_SM;
+	else if (hw->bus.func == E1000_FUNC_2)
+		mask = E1000_SWFW_PHY2_SM;
+	else if (hw->bus.func == E1000_FUNC_3)
+		mask = E1000_SWFW_PHY3_SM;
+
+	return hw->mac.ops.acquire_swfw_sync(hw, mask);
+}
+
+/**
+ *  e1000_release_phy_82575 - Release rights to access PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  A wrapper to release access rights to the correct PHY.
+ **/
+STATIC void e1000_release_phy_82575(struct e1000_hw *hw)
+{
+	u16 mask = E1000_SWFW_PHY0_SM;
+
+	DEBUGFUNC("e1000_release_phy_82575");
+
+	if (hw->bus.func == E1000_FUNC_1)
+		mask = E1000_SWFW_PHY1_SM;
+	else if (hw->bus.func == E1000_FUNC_2)
+		mask = E1000_SWFW_PHY2_SM;
+	else if (hw->bus.func == E1000_FUNC_3)
+		mask = E1000_SWFW_PHY3_SM;
+
+	hw->mac.ops.release_swfw_sync(hw, mask);
+}
+
+/**
+ *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset using the serial gigabit media independent
+ *  interface and stores the retrieved information in data.
+ **/
+STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+					  u16 *data)
+{
+	s32 ret_val = -E1000_ERR_PARAM;
+
+	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
+
+	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+		DEBUGOUT1("PHY Address %u is out of range\n", offset);
+		goto out;
+	}
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
+
+	hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset using the serial gigabit
+ *  media independent interface.
+ **/
+STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+					   u16 data)
+{
+	s32 ret_val = -E1000_ERR_PARAM;
+
+	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
+
+	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		goto out;
+	}
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
+
+	hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_id_82575 - Retrieve PHY addr and id
+ *  @hw: pointer to the HW structure
+ *
+ *  Retrieves the PHY address and ID for both PHY's which do and do not use
+ *  sgmi interface.
+ **/
+STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32  ret_val = E1000_SUCCESS;
+	u16 phy_id;
+	u32 ctrl_ext;
+	u32 mdic;
+
+	DEBUGFUNC("e1000_get_phy_id_82575");
+
+	/* some i354 devices need an extra read for phy id */
+	if (hw->mac.type == e1000_i354)
+		e1000_get_phy_id(hw);
+
+	/*
+	 * For SGMII PHYs, we try the list of possible addresses until
+	 * we find one that works.  For non-SGMII PHYs
+	 * (e.g. integrated copper PHYs), an address of 1 should
+	 * work.  The result of this function should mean phy->phy_addr
+	 * and phy->id are set correctly.
+	 */
+	if (!e1000_sgmii_active_82575(hw)) {
+		phy->addr = 1;
+		ret_val = e1000_get_phy_id(hw);
+		goto out;
+	}
+
+	if (e1000_sgmii_uses_mdio_82575(hw)) {
+		switch (hw->mac.type) {
+		case e1000_82575:
+		case e1000_82576:
+			mdic = E1000_READ_REG(hw, E1000_MDIC);
+			mdic &= E1000_MDIC_PHY_MASK;
+			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
+			break;
+		case e1000_82580:
+		case e1000_i350:
+		case e1000_i354:
+		case e1000_i210:
+		case e1000_i211:
+			mdic = E1000_READ_REG(hw, E1000_MDICNFG);
+			mdic &= E1000_MDICNFG_PHY_MASK;
+			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
+			break;
+		default:
+			ret_val = -E1000_ERR_PHY;
+			goto out;
+			break;
+		}
+		ret_val = e1000_get_phy_id(hw);
+		goto out;
+	}
+
+	/* Power on sgmii phy if it is disabled */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+			ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(300);
+
+	/*
+	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
+	 * Therefore, we need to test 1-7
+	 */
+	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
+		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
+		if (ret_val == E1000_SUCCESS) {
+			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
+				  phy_id, phy->addr);
+			/*
+			 * At the time of this writing, The M88 part is
+			 * the only supported SGMII PHY product.
+			 */
+			if (phy_id == M88_VENDOR)
+				break;
+		} else {
+			DEBUGOUT1("PHY address %u was unreadable\n",
+				  phy->addr);
+		}
+	}
+
+	/* A valid PHY type couldn't be found. */
+	if (phy->addr == 8) {
+		phy->addr = 0;
+		ret_val = -E1000_ERR_PHY;
+	} else {
+		ret_val = e1000_get_phy_id(hw);
+	}
+
+	/* restore previous sfp cage power state */
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the PHY using the serial gigabit media independent interface.
+ **/
+STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	struct e1000_phy_info *phy = &hw->phy;
+
+	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
+
+	/*
+	 * This isn't a true "hard" reset, but is the only reset
+	 * available to us at this time.
+	 */
+
+	DEBUGOUT("Soft resetting SGMII attached PHY...\n");
+
+	if (!(hw->phy.ops.write_reg))
+		goto out;
+
+	/*
+	 * SFP documentation requires the following to configure the SPF module
+	 * to work on SGMII.  No further documentation is given.
+	 */
+	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
+	if (ret_val)
+		goto out;
+
+	ret_val = hw->phy.ops.commit(hw);
+	if (ret_val)
+		goto out;
+
+	if (phy->id == M88E1512_E_PHY_ID)
+		ret_val = e1000_initialize_M88E1512_phy(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_82575");
+
+	if (!(hw->phy.ops.read_reg))
+		goto out;
+
+	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		goto out;
+
+	if (active) {
+		data |= IGP02E1000_PM_D0_LPLU;
+		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+					     data);
+		if (ret_val)
+			goto out;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					    &data);
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					     data);
+		if (ret_val)
+			goto out;
+	} else {
+		data &= ~IGP02E1000_PM_D0_LPLU;
+		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+					     data);
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				goto out;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				goto out;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				goto out;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				goto out;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u32 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_82580");
+
+	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+
+	if (active) {
+		data |= E1000_82580_PM_D0_LPLU;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		data &= ~E1000_82580_PM_SPD;
+	} else {
+		data &= ~E1000_82580_PM_D0_LPLU;
+
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on)
+			data |= E1000_82580_PM_SPD;
+		else if (phy->smart_speed == e1000_smart_speed_off)
+			data &= ~E1000_82580_PM_SPD;
+	}
+
+	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
+	return ret_val;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.
+ **/
+s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u32 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_82580");
+
+	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+
+	if (!active) {
+		data &= ~E1000_82580_PM_D3_LPLU;
+		/*
+		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on)
+			data |= E1000_82580_PM_SPD;
+		else if (phy->smart_speed == e1000_smart_speed_off)
+			data &= ~E1000_82580_PM_SPD;
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= E1000_82580_PM_D3_LPLU;
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		data &= ~E1000_82580_PM_SPD;
+	}
+
+	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
+	return ret_val;
+}
+
+/**
+ *  e1000_acquire_nvm_82575 - Request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the necessary semaphores for exclusive access to the EEPROM.
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_82575");
+
+	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+	if (ret_val)
+		goto out;
+
+	/*
+	 * Check if there is some access
+	 * error this access may hook on
+	 */
+	if (hw->mac.type == e1000_i350) {
+		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+		if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
+		    E1000_EECD_TIMEOUT)) {
+			/* Clear all access error flags */
+			E1000_WRITE_REG(hw, E1000_EECD, eecd |
+					E1000_EECD_ERROR_CLR);
+			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
+		}
+	}
+	if (hw->mac.type == e1000_82580) {
+		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+		if (eecd & E1000_EECD_BLOCKED) {
+			/* Clear access error flag */
+			E1000_WRITE_REG(hw, E1000_EECD, eecd |
+					E1000_EECD_BLOCKED);
+			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
+		}
+	}
+
+
+	ret_val = e1000_acquire_nvm_generic(hw);
+	if (ret_val)
+		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ *  then release the semaphores acquired.
+ **/
+STATIC void e1000_release_nvm_82575(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_82575");
+
+	e1000_release_nvm_generic(hw);
+
+	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ *  will also specify which port we're acquiring the lock for.
+ **/
+STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+	u32 swmask = mask;
+	u32 fwmask = mask << 16;
+	s32 ret_val = E1000_SUCCESS;
+	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+	DEBUGFUNC("e1000_acquire_swfw_sync_82575");
+
+	while (i < timeout) {
+		if (e1000_get_hw_semaphore_generic(hw)) {
+			ret_val = -E1000_ERR_SWFW_SYNC;
+			goto out;
+		}
+
+		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/*
+		 * Firmware currently using resource (fwmask)
+		 * or other software thread using resource (swmask)
+		 */
+		e1000_put_hw_semaphore_generic(hw);
+		msec_delay_irq(5);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+		ret_val = -E1000_ERR_SWFW_SYNC;
+		goto out;
+	}
+
+	swfw_sync |= swmask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ *  will also specify which port we're releasing the lock for.
+ **/
+STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+
+	DEBUGFUNC("e1000_release_swfw_sync_82575");
+
+	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
+		; /* Empty */
+
+	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+	swfw_sync &= ~mask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ *  e1000_get_cfg_done_82575 - Read config done bit
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the management control register for the config done bit for
+ *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
+ *  to read the config done bit, so an error is *ONLY* logged and returns
+ *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
+ *  would not be able to be reset or change link.
+ **/
+STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
+{
+	s32 timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+	DEBUGFUNC("e1000_get_cfg_done_82575");
+
+	if (hw->bus.func == E1000_FUNC_1)
+		mask = E1000_NVM_CFG_DONE_PORT_1;
+	else if (hw->bus.func == E1000_FUNC_2)
+		mask = E1000_NVM_CFG_DONE_PORT_2;
+	else if (hw->bus.func == E1000_FUNC_3)
+		mask = E1000_NVM_CFG_DONE_PORT_3;
+	while (timeout) {
+		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+			break;
+		msec_delay(1);
+		timeout--;
+	}
+	if (!timeout)
+		DEBUGOUT("MNG configuration cycle has not completed.\n");
+
+	/* If EEPROM is not marked present, init the PHY manually */
+	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
+	    (hw->phy.type == e1000_phy_igp_3))
+		e1000_phy_init_script_igp3(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_link_up_info_82575 - Get link speed/duplex info
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  This is a wrapper function, if using the serial gigabit media independent
+ *  interface, use PCS to retrieve the link speed and duplex information.
+ *  Otherwise, use the generic function to get the link speed and duplex info.
+ **/
+STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+					u16 *duplex)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_link_up_info_82575");
+
+	if (hw->phy.media_type != e1000_media_type_copper)
+		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
+							       duplex);
+	else
+		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+								    duplex);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_link_82575 - Check for link
+ *  @hw: pointer to the HW structure
+ *
+ *  If sgmii is enabled, then use the pcs register to determine link, otherwise
+ *  use the generic interface for determining link.
+ **/
+STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 speed, duplex;
+
+	DEBUGFUNC("e1000_check_for_link_82575");
+
+	if (hw->phy.media_type != e1000_media_type_copper) {
+		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
+							       &duplex);
+		/*
+		 * Use this flag to determine if link needs to be checked or
+		 * not.  If we have link clear the flag so that we do not
+		 * continue to check for link.
+		 */
+		hw->mac.get_link_status = !hw->mac.serdes_has_link;
+
+		/*
+		 * Configure Flow Control now that Auto-Neg has completed.
+		 * First, we need to restore the desired flow control
+		 * settings because we may have had to re-autoneg with a
+		 * different link partner.
+		 */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val)
+			DEBUGOUT("Error configuring flow control\n");
+	} else {
+		ret_val = e1000_check_for_copper_link_generic(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_link_media_swap - Check which M88E1112 interface linked
+ *  @hw: pointer to the HW structure
+ *
+ *  Poll the M88E1112 interfaces to see which interface achieved link.
+ */
+STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	u8 port = 0;
+
+	DEBUGFUNC("e1000_check_for_link_media_swap");
+
+	/* Check the copper medium. */
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (data & E1000_M88E1112_STATUS_LINK)
+		port = E1000_MEDIA_PORT_COPPER;
+
+	/* Check the other medium. */
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	/* reset page to 0 */
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
+	if (ret_val)
+		return ret_val;
+
+	if (data & E1000_M88E1112_STATUS_LINK)
+		port = E1000_MEDIA_PORT_OTHER;
+
+	/* Determine if a swap needs to happen. */
+	if (port && (hw->dev_spec._82575.media_port != port)) {
+		hw->dev_spec._82575.media_port = port;
+		hw->dev_spec._82575.media_changed = true;
+	} else {
+		ret_val = e1000_check_for_link_82575(hw);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
+ *  @hw: pointer to the HW structure
+ **/
+STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_power_up_serdes_link_82575");
+
+	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+	    !e1000_sgmii_active_82575(hw))
+		return;
+
+	/* Enable PCS to turn on link */
+	reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
+	reg |= E1000_PCS_CFG_PCS_EN;
+	E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
+
+	/* Power up the laser */
+	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+	/* flush the write to verify completion */
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(1);
+}
+
+/**
+ *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Using the physical coding sub-layer (PCS), retrieve the current speed and
+ *  duplex, then store the values in the pointers provided.
+ **/
+STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+						u16 *speed, u16 *duplex)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 pcs;
+	u32 status;
+
+	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
+
+	/*
+	 * Read the PCS Status register for link state. For non-copper mode,
+	 * the status register is not accurate. The PCS status register is
+	 * used instead.
+	 */
+	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+	/*
+	 * The link up bit determines when link is up on autoneg.
+	 */
+	if (pcs & E1000_PCS_LSTS_LINK_OK) {
+		mac->serdes_has_link = true;
+
+		/* Detect and store PCS speed */
+		if (pcs & E1000_PCS_LSTS_SPEED_1000)
+			*speed = SPEED_1000;
+		else if (pcs & E1000_PCS_LSTS_SPEED_100)
+			*speed = SPEED_100;
+		else
+			*speed = SPEED_10;
+
+		/* Detect and store PCS duplex */
+		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
+			*duplex = FULL_DUPLEX;
+		else
+			*duplex = HALF_DUPLEX;
+
+		/* Check if it is an I354 2.5Gb backplane connection. */
+		if (mac->type == e1000_i354) {
+			status = E1000_READ_REG(hw, E1000_STATUS);
+			if ((status & E1000_STATUS_2P5_SKU) &&
+			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
+				*speed = SPEED_2500;
+				*duplex = FULL_DUPLEX;
+				DEBUGOUT("2500 Mbs, ");
+				DEBUGOUT("Full Duplex\n");
+			}
+		}
+
+	} else {
+		mac->serdes_has_link = false;
+		*speed = 0;
+		*duplex = 0;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_shutdown_serdes_link_82575 - Remove link during power down
+ *  @hw: pointer to the HW structure
+ *
+ *  In the case of serdes shut down sfp and PCS on driver unload
+ *  when management pass thru is not enabled.
+ **/
+void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_shutdown_serdes_link_82575");
+
+	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+	    !e1000_sgmii_active_82575(hw))
+		return;
+
+	if (!e1000_enable_mng_pass_thru(hw)) {
+		/* Disable PCS to turn off link */
+		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
+		reg &= ~E1000_PCS_CFG_PCS_EN;
+		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
+
+		/* shutdown the laser */
+		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		reg |= E1000_CTRL_EXT_SDP3_DATA;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+		/* flush the write to verify completion */
+		E1000_WRITE_FLUSH(hw);
+		msec_delay(1);
+	}
+
+	return;
+}
+
+/**
+ *  e1000_reset_hw_82575 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state.
+ **/
+STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw_82575");
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val)
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+	/* set the completion timeout for interface */
+	ret_val = e1000_set_pcie_completion_timeout(hw);
+	if (ret_val)
+		DEBUGOUT("PCI-E Set completion timeout has failed.\n");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	DEBUGOUT("Issuing a global reset to MAC\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val) {
+		/*
+		 * When auto config read does not complete, do not
+		 * return with an error. This can happen in situations
+		 * where there is no eeprom and prevents getting link.
+		 */
+		DEBUGOUT("Auto Read Done did not complete\n");
+	}
+
+	/* If EEPROM is not present, run manual init scripts */
+	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
+		e1000_reset_init_script_82575(hw);
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_READ_REG(hw, E1000_ICR);
+
+	/* Install any alternate MAC address into RAR0 */
+	ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_82575 - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation.
+ **/
+s32 e1000_init_hw_82575(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	u16 i, rar_count = mac->rar_entry_count;
+
+	DEBUGFUNC("e1000_init_hw_82575");
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	if (ret_val) {
+		DEBUGOUT("Error initializing identification LED\n");
+		/* This is not fatal and we should not stop init due to this */
+	}
+
+	/* Disabling VLAN filtering */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	mac->ops.clear_vfta(hw);
+
+	/* Setup the receive address */
+	e1000_init_rx_addrs_generic(hw, rar_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* Zero out the Unicast HASH table */
+	DEBUGOUT("Zeroing the UTA\n");
+	for (i = 0; i < mac->uta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
+
+	/* Setup link and flow control */
+	ret_val = mac->ops.setup_link(hw);
+
+	/* Set the default MTU size */
+	hw->dev_spec._82575.mtu = 1500;
+
+	/*
+	 * Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_82575(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_82575 - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the link for auto-neg or forced speed and duplex.  Then we check
+ *  for link, once link is established calls to configure collision distance
+ *  and flow control are called.
+ **/
+STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u32 phpm_reg;
+
+	DEBUGFUNC("e1000_setup_copper_link_82575");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	/* Clear Go Link Disconnect bit on supported devices */
+	switch (hw->mac.type) {
+	case e1000_82580:
+	case e1000_i350:
+	case e1000_i210:
+	case e1000_i211:
+		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
+		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
+		break;
+	default:
+		break;
+	}
+
+	ret_val = e1000_setup_serdes_link_82575(hw);
+	if (ret_val)
+		goto out;
+
+	if (e1000_sgmii_active_82575(hw)) {
+		/* allow time for SFP cage time to power up phy */
+		msec_delay(300);
+
+		ret_val = hw->phy.ops.reset(hw);
+		if (ret_val) {
+			DEBUGOUT("Error resetting the PHY.\n");
+			goto out;
+		}
+	}
+	switch (hw->phy.type) {
+	case e1000_phy_i210:
+	case e1000_phy_m88:
+		switch (hw->phy.id) {
+		case I347AT4_E_PHY_ID:
+		case M88E1112_E_PHY_ID:
+		case M88E1340M_E_PHY_ID:
+		case M88E1543_E_PHY_ID:
+		case M88E1512_E_PHY_ID:
+		case I210_I_PHY_ID:
+			ret_val = e1000_copper_link_setup_m88_gen2(hw);
+			break;
+		default:
+			ret_val = e1000_copper_link_setup_m88(hw);
+			break;
+		}
+		break;
+	case e1000_phy_igp_3:
+		ret_val = e1000_copper_link_setup_igp(hw);
+		break;
+	case e1000_phy_82580:
+		ret_val = e1000_copper_link_setup_82577(hw);
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_setup_copper_link_generic(hw);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_serdes_link_82575 - Setup link for serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
+ *  used on copper connections where the serialized gigabit media independent
+ *  interface (sgmii), or serdes fiber is being used.  Configures the link
+ *  for auto-negotiation or forces speed/duplex.
+ **/
+STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
+{
+	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
+	bool pcs_autoneg;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_setup_serdes_link_82575");
+
+	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
+	    !e1000_sgmii_active_82575(hw))
+		return ret_val;
+
+	/*
+	 * On the 82575, SerDes loopback mode persists until it is
+	 * explicitly turned off or a power cycle is performed.  A read to
+	 * the register does not indicate its status.  Therefore, we ensure
+	 * loopback mode is disabled during initialization.
+	 */
+	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+
+	/* power on the sfp cage if present */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl_reg |= E1000_CTRL_SLU;
+
+	/* set both sw defined pins on 82575/82576*/
+	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
+		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
+
+	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+	/* default pcs_autoneg to the same setting as mac autoneg */
+	pcs_autoneg = hw->mac.autoneg;
+
+	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
+	case E1000_CTRL_EXT_LINK_MODE_SGMII:
+		/* sgmii mode lets the phy handle forcing speed/duplex */
+		pcs_autoneg = true;
+		/* autoneg time out should be disabled for SGMII mode */
+		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
+		break;
+	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+		/* disable PCS autoneg and support parallel detect only */
+		pcs_autoneg = false;
+		/* fall through to default case */
+	default:
+		if (hw->mac.type == e1000_82575 ||
+		    hw->mac.type == e1000_82576) {
+			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
+			if (ret_val) {
+				DEBUGOUT("NVM Read Error\n");
+				return ret_val;
+			}
+
+			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
+				pcs_autoneg = false;
+		}
+
+		/*
+		 * non-SGMII modes only supports a speed of 1000/Full for the
+		 * link so it is best to just force the MAC and let the pcs
+		 * link either autoneg or be forced to 1000/Full
+		 */
+		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
+			    E1000_CTRL_FD | E1000_CTRL_FRCDPX;
+
+		/* set speed of 1000/Full if speed/duplex is forced */
+		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
+		break;
+	}
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
+
+	/*
+	 * New SerDes mode allows for forcing speed or autonegotiating speed
+	 * at 1gb. Autoneg should be default set by most drivers. This is the
+	 * mode that will be compatible with older link partners and switches.
+	 * However, both are supported by the hardware and some drivers/tools.
+	 */
+	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
+		 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+	if (pcs_autoneg) {
+		/* Set PCS register for autoneg */
+		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
+		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
+
+		/* Disable force flow control for autoneg */
+		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
+
+		/* Configure flow control advertisement for autoneg */
+		anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
+		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
+
+		switch (hw->fc.requested_mode) {
+		case e1000_fc_full:
+		case e1000_fc_rx_pause:
+			anadv_reg |= E1000_TXCW_ASM_DIR;
+			anadv_reg |= E1000_TXCW_PAUSE;
+			break;
+		case e1000_fc_tx_pause:
+			anadv_reg |= E1000_TXCW_ASM_DIR;
+			break;
+		default:
+			break;
+		}
+
+		E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
+
+		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
+	} else {
+		/* Set PCS register for forced link */
+		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */
+
+		/* Force flow control for forced link */
+		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+
+		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
+	}
+
+	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+	if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
+		e1000_force_mac_fc_generic(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_media_type_82575 - derives current media type.
+ *  @hw: pointer to the HW structure
+ *
+ *  The media type is chosen reflecting few settings.
+ *  The following are taken into account:
+ *  - link mode set in the current port Init Control Word #3
+ *  - current link mode settings in CSR register
+ *  - MDIO vs. I2C PHY control interface chosen
+ *  - SFP module media type
+ **/
+STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl_ext = 0;
+	u32 link_mode = 0;
+
+	/* Set internal phy as default */
+	dev_spec->sgmii_active = false;
+	dev_spec->module_plugged = false;
+
+	/* Get CSR setting */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+
+	/* extract link mode setting */
+	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
+
+	switch (link_mode) {
+	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
+		hw->phy.media_type = e1000_media_type_internal_serdes;
+		break;
+	case E1000_CTRL_EXT_LINK_MODE_GMII:
+		hw->phy.media_type = e1000_media_type_copper;
+		break;
+	case E1000_CTRL_EXT_LINK_MODE_SGMII:
+		/* Get phy control interface type set (MDIO vs. I2C)*/
+		if (e1000_sgmii_uses_mdio_82575(hw)) {
+			hw->phy.media_type = e1000_media_type_copper;
+			dev_spec->sgmii_active = true;
+			break;
+		}
+		/* fall through for I2C based SGMII */
+	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
+		/* read media type from SFP EEPROM */
+		ret_val = e1000_set_sfp_media_type_82575(hw);
+		if ((ret_val != E1000_SUCCESS) ||
+		    (hw->phy.media_type == e1000_media_type_unknown)) {
+			/*
+			 * If media type was not identified then return media
+			 * type defined by the CTRL_EXT settings.
+			 */
+			hw->phy.media_type = e1000_media_type_internal_serdes;
+
+			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
+				hw->phy.media_type = e1000_media_type_copper;
+				dev_spec->sgmii_active = true;
+			}
+
+			break;
+		}
+
+		/* do not change link mode for 100BaseFX */
+		if (dev_spec->eth_flags.e100_base_fx)
+			break;
+
+		/* change current link mode setting */
+		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
+
+		if (hw->phy.media_type == e1000_media_type_copper)
+			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
+		else
+			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
+
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_set_sfp_media_type_82575 - derives SFP module media type.
+ *  @hw: pointer to the HW structure
+ *
+ *  The media type is chosen based on SFP module.
+ *  compatibility flags retrieved from SFP ID EEPROM.
+ **/
+STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_ERR_CONFIG;
+	u32 ctrl_ext = 0;
+	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+	struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
+	u8 tranceiver_type = 0;
+	s32 timeout = 3;
+
+	/* Turn I2C interface ON and power on sfp cage */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
+
+	E1000_WRITE_FLUSH(hw);
+
+	/* Read SFP module data */
+	while (timeout) {
+		ret_val = e1000_read_sfp_data_byte(hw,
+			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
+			&tranceiver_type);
+		if (ret_val == E1000_SUCCESS)
+			break;
+		msec_delay(100);
+		timeout--;
+	}
+	if (ret_val != E1000_SUCCESS)
+		goto out;
+
+	ret_val = e1000_read_sfp_data_byte(hw,
+			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
+			(u8 *)eth_flags);
+	if (ret_val != E1000_SUCCESS)
+		goto out;
+
+	/* Check if there is some SFP module plugged and powered */
+	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
+	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
+		dev_spec->module_plugged = true;
+		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
+			hw->phy.media_type = e1000_media_type_internal_serdes;
+		} else if (eth_flags->e100_base_fx) {
+			dev_spec->sgmii_active = true;
+			hw->phy.media_type = e1000_media_type_internal_serdes;
+		} else if (eth_flags->e1000_base_t) {
+			dev_spec->sgmii_active = true;
+			hw->phy.media_type = e1000_media_type_copper;
+		} else {
+			hw->phy.media_type = e1000_media_type_unknown;
+			DEBUGOUT("PHY module has not been recognized\n");
+			goto out;
+		}
+	} else {
+		hw->phy.media_type = e1000_media_type_unknown;
+	}
+	ret_val = E1000_SUCCESS;
+out:
+	/* Restore I2C interface setting */
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_led_default_82575 - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_82575");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+		switch (hw->phy.media_type) {
+		case e1000_media_type_internal_serdes:
+			*data = ID_LED_DEFAULT_82575_SERDES;
+			break;
+		case e1000_media_type_copper:
+		default:
+			*data = ID_LED_DEFAULT;
+			break;
+		}
+	}
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_sgmii_active_82575 - Return sgmii state
+ *  @hw: pointer to the HW structure
+ *
+ *  82575 silicon has a serialized gigabit media independent interface (sgmii)
+ *  which can be enabled for use in the embedded applications.  Simply
+ *  return the current state of the sgmii interface.
+ **/
+STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
+	return dev_spec->sgmii_active;
+}
+
+/**
+ *  e1000_reset_init_script_82575 - Inits HW defaults after reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Inits recommended HW defaults after a reset when there is no EEPROM
+ *  detected. This is only for the 82575.
+ **/
+STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_reset_init_script_82575");
+
+	if (hw->mac.type == e1000_82575) {
+		DEBUGOUT("Running reset init script for 82575\n");
+		/* SerDes configuration via SERDESCTRL */
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
+
+		/* CCM configuration via CCMCTL register */
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
+
+		/* PCIe lanes configuration */
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
+
+		/* PCIe PLL Configuration */
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
+		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_mac_addr_82575 - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_mac_addr_82575");
+
+	/*
+	 * If there's an alternate MAC address place it in RAR0
+	 * so that it will override the Si installed default perm
+	 * address.
+	 */
+	ret_val = e1000_check_alt_mac_addr_generic(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_mac_addr_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_config_collision_dist_82575 - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup.
+ **/
+STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw)
+{
+	u32 tctl_ext;
+
+	DEBUGFUNC("e1000_config_collision_dist_82575");
+
+	tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
+
+	tctl_ext &= ~E1000_TCTL_EXT_COLD;
+	tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
+
+	E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+
+	if (!(phy->ops.check_reset_block))
+		return;
+
+	/* If the management interface is not enabled, then power down */
+	if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the hardware counters by reading the counter registers.
+ **/
+STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_clear_hw_cntrs_82575");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	E1000_READ_REG(hw, E1000_PRC64);
+	E1000_READ_REG(hw, E1000_PRC127);
+	E1000_READ_REG(hw, E1000_PRC255);
+	E1000_READ_REG(hw, E1000_PRC511);
+	E1000_READ_REG(hw, E1000_PRC1023);
+	E1000_READ_REG(hw, E1000_PRC1522);
+	E1000_READ_REG(hw, E1000_PTC64);
+	E1000_READ_REG(hw, E1000_PTC127);
+	E1000_READ_REG(hw, E1000_PTC255);
+	E1000_READ_REG(hw, E1000_PTC511);
+	E1000_READ_REG(hw, E1000_PTC1023);
+	E1000_READ_REG(hw, E1000_PTC1522);
+
+	E1000_READ_REG(hw, E1000_ALGNERRC);
+	E1000_READ_REG(hw, E1000_RXERRC);
+	E1000_READ_REG(hw, E1000_TNCRS);
+	E1000_READ_REG(hw, E1000_CEXTERR);
+	E1000_READ_REG(hw, E1000_TSCTC);
+	E1000_READ_REG(hw, E1000_TSCTFC);
+
+	E1000_READ_REG(hw, E1000_MGTPRC);
+	E1000_READ_REG(hw, E1000_MGTPDC);
+	E1000_READ_REG(hw, E1000_MGTPTC);
+
+	E1000_READ_REG(hw, E1000_IAC);
+	E1000_READ_REG(hw, E1000_ICRXOC);
+
+	E1000_READ_REG(hw, E1000_ICRXPTC);
+	E1000_READ_REG(hw, E1000_ICRXATC);
+	E1000_READ_REG(hw, E1000_ICTXPTC);
+	E1000_READ_REG(hw, E1000_ICTXATC);
+	E1000_READ_REG(hw, E1000_ICTXQEC);
+	E1000_READ_REG(hw, E1000_ICTXQMTC);
+	E1000_READ_REG(hw, E1000_ICRXDMTC);
+
+	E1000_READ_REG(hw, E1000_CBTMPC);
+	E1000_READ_REG(hw, E1000_HTDPMC);
+	E1000_READ_REG(hw, E1000_CBRMPC);
+	E1000_READ_REG(hw, E1000_RPTHC);
+	E1000_READ_REG(hw, E1000_HGPTC);
+	E1000_READ_REG(hw, E1000_HTCBDPC);
+	E1000_READ_REG(hw, E1000_HGORCL);
+	E1000_READ_REG(hw, E1000_HGORCH);
+	E1000_READ_REG(hw, E1000_HGOTCL);
+	E1000_READ_REG(hw, E1000_HGOTCH);
+	E1000_READ_REG(hw, E1000_LENERRS);
+
+	/* This register should not be read in copper configurations */
+	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
+	    e1000_sgmii_active_82575(hw))
+		E1000_READ_REG(hw, E1000_SCVPC);
+}
+
+/**
+ *  e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
+ *  @hw: pointer to the HW structure
+ *
+ *  After rx enable if managability is enabled then there is likely some
+ *  bad data at the start of the fifo and possibly in the DMA fifo.  This
+ *  function clears the fifos and flushes any packets that came in as rx was
+ *  being enabled.
+ **/
+void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
+{
+	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
+	int i, ms_wait;
+
+	DEBUGFUNC("e1000_rx_fifo_workaround_82575");
+	if (hw->mac.type != e1000_82575 ||
+	    !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
+		return;
+
+	/* Disable all Rx queues */
+	for (i = 0; i < 4; i++) {
+		rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
+		E1000_WRITE_REG(hw, E1000_RXDCTL(i),
+				rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
+	}
+	/* Poll all queues to verify they have shut down */
+	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
+		msec_delay(1);
+		rx_enabled = 0;
+		for (i = 0; i < 4; i++)
+			rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
+		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
+			break;
+	}
+
+	if (ms_wait == 10)
+		DEBUGOUT("Queue disable timed out after 10ms\n");
+
+	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
+	 * incoming packets are rejected.  Set enable and wait 2ms so that
+	 * any packet that was coming in as RCTL.EN was set is flushed
+	 */
+	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
+
+	rlpml = E1000_READ_REG(hw, E1000_RLPML);
+	E1000_WRITE_REG(hw, E1000_RLPML, 0);
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
+	temp_rctl |= E1000_RCTL_LPE;
+
+	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
+	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(2);
+
+	/* Enable Rx queues that were previously enabled and restore our
+	 * previous state
+	 */
+	for (i = 0; i < 4; i++)
+		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+	E1000_WRITE_FLUSH(hw);
+
+	E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
+	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+
+	/* Flush receive errors generated by workaround */
+	E1000_READ_REG(hw, E1000_ROC);
+	E1000_READ_REG(hw, E1000_RNBC);
+	E1000_READ_REG(hw, E1000_MPC);
+}
+
+/**
+ *  e1000_set_pcie_completion_timeout - set pci-e completion timeout
+ *  @hw: pointer to the HW structure
+ *
+ *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
+ *  however the hardware default for these parts is 500us to 1ms which is less
+ *  than the 10ms recommended by the pci-e spec.  To address this we need to
+ *  increase the value to either 10ms to 200ms for capability version 1 config,
+ *  or 16ms to 55ms for version 2.
+ **/
+STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
+{
+	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
+	s32 ret_val = E1000_SUCCESS;
+	u16 pcie_devctl2;
+
+	/* only take action if timeout value is defaulted to 0 */
+	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
+		goto out;
+
+	/*
+	 * if capababilities version is type 1 we can write the
+	 * timeout of 10ms to 200ms through the GCR register
+	 */
+	if (!(gcr & E1000_GCR_CAP_VER2)) {
+		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
+		goto out;
+	}
+
+	/*
+	 * for version 2 capabilities we need to write the config space
+	 * directly in order to set the completion timeout value for
+	 * 16ms to 55ms
+	 */
+	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+					  &pcie_devctl2);
+	if (ret_val)
+		goto out;
+
+	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
+
+	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
+					   &pcie_devctl2);
+out:
+	/* disable completion timeout resend */
+	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
+
+	E1000_WRITE_REG(hw, E1000_GCR, gcr);
+	return ret_val;
+}
+
+/**
+ *  e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
+ *  @hw: pointer to the hardware struct
+ *  @enable: state to enter, either enabled or disabled
+ *  @pf: Physical Function pool - do not set anti-spoofing for the PF
+ *
+ *  enables/disables L2 switch anti-spoofing functionality.
+ **/
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
+{
+	u32 reg_val, reg_offset;
+
+	switch (hw->mac.type) {
+	case e1000_82576:
+		reg_offset = E1000_DTXSWC;
+		break;
+	case e1000_i350:
+	case e1000_i354:
+		reg_offset = E1000_TXSWC;
+		break;
+	default:
+		return;
+	}
+
+	reg_val = E1000_READ_REG(hw, reg_offset);
+	if (enable) {
+		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
+			     E1000_DTXSWC_VLAN_SPOOF_MASK);
+		/* The PF can spoof - it has to in order to
+		 * support emulation mode NICs
+		 */
+		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
+	} else {
+		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
+			     E1000_DTXSWC_VLAN_SPOOF_MASK);
+	}
+	E1000_WRITE_REG(hw, reg_offset, reg_val);
+}
+
+/**
+ *  e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
+ *  @hw: pointer to the hardware struct
+ *  @enable: state to enter, either enabled or disabled
+ *
+ *  enables/disables L2 switch loopback functionality.
+ **/
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
+{
+	u32 dtxswc;
+
+	switch (hw->mac.type) {
+	case e1000_82576:
+		dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
+		if (enable)
+			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+		else
+			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+		E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
+		break;
+	case e1000_i350:
+	case e1000_i354:
+		dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
+		if (enable)
+			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+		else
+			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
+		E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
+		break;
+	default:
+		/* Currently no other hardware supports loopback */
+		break;
+	}
+
+
+}
+
+/**
+ *  e1000_vmdq_set_replication_pf - enable or disable vmdq replication
+ *  @hw: pointer to the hardware struct
+ *  @enable: state to enter, either enabled or disabled
+ *
+ *  enables/disables replication of packets across multiple pools.
+ **/
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
+{
+	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
+
+	if (enable)
+		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
+	else
+		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
+
+	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
+}
+
+/**
+ *  e1000_read_phy_reg_82580 - Read 82580 MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the MDI control register in the PHY at offset and stores the
+ *  information read to data.
+ **/
+STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg_82580");
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
+
+	hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_82580 - Write 82580 MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write to register at offset
+ *
+ *  Writes data to MDI control register in the PHY at offset.
+ **/
+STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg_82580");
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
+
+	hw->phy.ops.release(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
+ *  the values found in the EEPROM.  This addresses an issue in which these
+ *  bits are not restored from EEPROM after reset.
+ **/
+STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u32 mdicnfg;
+	u16 nvm_data = 0;
+
+	DEBUGFUNC("e1000_reset_mdicnfg_82580");
+
+	if (hw->mac.type != e1000_82580)
+		goto out;
+	if (!e1000_sgmii_active_82575(hw))
+		goto out;
+
+	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
+				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
+				   &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
+	if (nvm_data & NVM_WORD24_EXT_MDIO)
+		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
+	if (nvm_data & NVM_WORD24_COM_MDIO)
+		mdicnfg |= E1000_MDICNFG_COM_MDIO;
+	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_82580 - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets function or entire device (all ports, etc.)
+ *  to a known state.
+ **/
+STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	/* BH SW mailbox bit in SW_FW_SYNC */
+	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
+	u32 ctrl;
+	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
+
+	DEBUGFUNC("e1000_reset_hw_82580");
+
+	hw->dev_spec._82575.global_device_reset = false;
+
+	/* 82580 does not reliably do global_device_reset due to hw errata */
+	if (hw->mac.type == e1000_82580)
+		global_device_reset = false;
+
+	/* Get current control state. */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/*
+	 * Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val)
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/* Determine whether or not a global dev reset is requested */
+	if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
+	    swmbsw_mask))
+			global_device_reset = false;
+
+	if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
+	    E1000_STAT_DEV_RST_SET))
+		ctrl |= E1000_CTRL_DEV_RST;
+	else
+		ctrl |= E1000_CTRL_RST;
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	/* Add delay to insure DEV_RST has time to complete */
+	if (global_device_reset)
+		msec_delay(5);
+
+	ret_val = e1000_get_auto_rd_done_generic(hw);
+	if (ret_val) {
+		/*
+		 * When auto config read does not complete, do not
+		 * return with an error. This can happen in situations
+		 * where there is no eeprom and prevents getting link.
+		 */
+		DEBUGOUT("Auto Read Done did not complete\n");
+	}
+
+	/* clear global device reset status bit */
+	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
+
+	/* Clear any pending interrupt events. */
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_READ_REG(hw, E1000_ICR);
+
+	ret_val = e1000_reset_mdicnfg_82580(hw);
+	if (ret_val)
+		DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
+
+	/* Install any alternate MAC address into RAR0 */
+	ret_val = e1000_check_alt_mac_addr_generic(hw);
+
+	/* Release semaphore */
+	if (global_device_reset)
+		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
+ *  @data: data received by reading RXPBS register
+ *
+ *  The 82580 uses a table based approach for packet buffer allocation sizes.
+ *  This function converts the retrieved value into the correct table value
+ *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
+ *  0x0 36  72 144   1   2   4   8  16
+ *  0x8 35  70 140 rsv rsv rsv rsv rsv
+ */
+u16 e1000_rxpbs_adjust_82580(u32 data)
+{
+	u16 ret_val = 0;
+
+	if (data < E1000_82580_RXPBS_TABLE_SIZE)
+		ret_val = e1000_82580_rxpbs_table[data];
+
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_with_offset - Validate EEPROM
+ *  checksum
+ *  @hw: pointer to the HW structure
+ *  @offset: offset in words of the checksum protected region
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
+
+	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
+		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			goto out;
+		}
+		checksum += nvm_data;
+	}
+
+	if (checksum != (u16) NVM_SUM) {
+		DEBUGOUT("NVM Checksum Invalid\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_with_offset - Update EEPROM
+ *  checksum
+ *  @hw: pointer to the HW structure
+ *  @offset: offset in words of the checksum protected region
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
+
+	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
+		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error while updating checksum.\n");
+			goto out;
+		}
+		checksum += nvm_data;
+	}
+	checksum = (u16) NVM_SUM - checksum;
+	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
+				    &checksum);
+	if (ret_val)
+		DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM section checksum by reading/adding each word of
+ *  the EEPROM and then verifies that the sum of the EEPROM is
+ *  equal to 0xBABA.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 eeprom_regions_count = 1;
+	u16 j, nvm_data;
+	u16 nvm_offset;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_82580");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
+		/* if chekcsums compatibility bit is set validate checksums
+		 * for all 4 ports. */
+		eeprom_regions_count = 4;
+	}
+
+	for (j = 0; j < eeprom_regions_count; j++) {
+		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+								  nvm_offset);
+		if (ret_val != E1000_SUCCESS)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_82580 - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM section checksums for all 4 ports by reading/adding
+ *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
+ *  checksum and writes the value to the EEPROM.
+ **/
+STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 j, nvm_data;
+	u16 nvm_offset;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_82580");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
+		goto out;
+	}
+
+	if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
+		/* set compatibility bit to validate checksums appropriately */
+		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
+		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
+					    &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
+			goto out;
+		}
+	}
+
+	for (j = 0; j < 4; j++) {
+		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM section checksum by reading/adding each word of
+ *  the EEPROM and then verifies that the sum of the EEPROM is
+ *  equal to 0xBABA.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 j;
+	u16 nvm_offset;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_i350");
+
+	for (j = 0; j < 4; j++) {
+		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
+								  nvm_offset);
+		if (ret_val != E1000_SUCCESS)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_update_nvm_checksum_i350 - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM section checksums for all 4 ports by reading/adding
+ *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
+ *  checksum and writes the value to the EEPROM.
+ **/
+STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 j;
+	u16 nvm_offset;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_i350");
+
+	for (j = 0; j < 4; j++) {
+		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
+		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
+		if (ret_val != E1000_SUCCESS)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  __e1000_access_emi_reg - Read/write EMI register
+ *  @hw: pointer to the HW structure
+ *  @addr: EMI address to program
+ *  @data: pointer to value to read/write from/to the EMI address
+ *  @read: boolean flag to indicate read or write
+ **/
+STATIC s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
+				  u16 *data, bool read)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("__e1000_access_emi_reg");
+
+	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
+	if (ret_val)
+		return ret_val;
+
+	if (read)
+		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
+	else
+		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_emi_reg - Read Extended Management Interface register
+ *  @hw: pointer to the HW structure
+ *  @addr: EMI address to program
+ *  @data: value to be read from the EMI address
+ **/
+s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
+{
+	DEBUGFUNC("e1000_read_emi_reg");
+
+	return __e1000_access_emi_reg(hw, addr, data, true);
+}
+
+/**
+ *  e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize Marverl 1512 to work correctly with Avoton.
+ **/
+s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_initialize_M88E1512_phy");
+
+	/* Check if this is correct PHY. */
+	if (phy->id != M88E1512_E_PHY_ID)
+		goto out;
+
+	/* Switch to PHY page 0xFF. */
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
+	if (ret_val)
+		goto out;
+
+	/* Switch to PHY page 0xFB. */
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
+	if (ret_val)
+		goto out;
+
+	/* Switch to PHY page 0x12. */
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
+	if (ret_val)
+		goto out;
+
+	/* Change mode to SGMII-to-Copper */
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
+	if (ret_val)
+		goto out;
+
+	/* Return the PHY to page 0. */
+	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
+	if (ret_val)
+		goto out;
+
+	ret_val = phy->ops.commit(hw);
+	if (ret_val) {
+		DEBUGOUT("Error committing the PHY changes\n");
+		return ret_val;
+	}
+
+	msec_delay(1000);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_eee_i350 - Enable/disable EEE support
+ *  @hw: pointer to the HW structure
+ *
+ *  Enable/disable EEE based on setting in dev_spec structure.
+ *
+ **/
+s32 e1000_set_eee_i350(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u32 ipcnfg, eeer;
+
+	DEBUGFUNC("e1000_set_eee_i350");
+
+	if ((hw->mac.type < e1000_i350) ||
+	    (hw->phy.media_type != e1000_media_type_copper))
+		goto out;
+	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
+	eeer = E1000_READ_REG(hw, E1000_EEER);
+
+	/* enable or disable per user setting */
+	if (!(hw->dev_spec._82575.eee_disable)) {
+		u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
+
+		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
+		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
+			 E1000_EEER_LPI_FC);
+
+		/* This bit should not be set in normal operation. */
+		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
+			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
+	} else {
+		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
+		eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
+			  E1000_EEER_LPI_FC);
+	}
+	E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
+	E1000_WRITE_REG(hw, E1000_EEER, eeer);
+	E1000_READ_REG(hw, E1000_IPCNFG);
+	E1000_READ_REG(hw, E1000_EEER);
+out:
+
+	return ret_val;
+}
+
+/**
+ *  e1000_set_eee_i354 - Enable/disable EEE support
+ *  @hw: pointer to the HW structure
+ *
+ *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
+ *
+ **/
+s32 e1000_set_eee_i354(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_set_eee_i354");
+
+	if ((hw->phy.media_type != e1000_media_type_copper) ||
+	    ((phy->id != M88E1543_E_PHY_ID) &&
+	    (phy->id != M88E1512_E_PHY_ID)))
+		goto out;
+
+	if (!hw->dev_spec._82575.eee_disable) {
+		/* Switch to PHY page 18. */
+		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
+		if (ret_val)
+			goto out;
+
+		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
+					    &phy_data);
+		if (ret_val)
+			goto out;
+
+		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
+		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
+					     phy_data);
+		if (ret_val)
+			goto out;
+
+		/* Return the PHY to page 0. */
+		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
+		if (ret_val)
+			goto out;
+
+		/* Turn on EEE advertisement. */
+		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+					       E1000_EEE_ADV_DEV_I354,
+					       &phy_data);
+		if (ret_val)
+			goto out;
+
+		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
+			    E1000_EEE_ADV_1000_SUPPORTED;
+		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+						E1000_EEE_ADV_DEV_I354,
+						phy_data);
+	} else {
+		/* Turn off EEE advertisement. */
+		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+					       E1000_EEE_ADV_DEV_I354,
+					       &phy_data);
+		if (ret_val)
+			goto out;
+
+		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
+			      E1000_EEE_ADV_1000_SUPPORTED);
+		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
+						E1000_EEE_ADV_DEV_I354,
+						phy_data);
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_eee_status_i354 - Get EEE status
+ *  @hw: pointer to the HW structure
+ *  @status: EEE status
+ *
+ *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
+ *  been received.
+ **/
+s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_get_eee_status_i354");
+
+	/* Check if EEE is supported on this device. */
+	if ((hw->phy.media_type != e1000_media_type_copper) ||
+	    ((phy->id != M88E1543_E_PHY_ID) &&
+	    (phy->id != M88E1512_E_PHY_ID)))
+		goto out;
+
+	ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
+				       E1000_PCS_STATUS_DEV_I354,
+				       &phy_data);
+	if (ret_val)
+		goto out;
+
+	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
+			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
+
+out:
+	return ret_val;
+}
+
+/* Due to a hw errata, if the host tries to  configure the VFTA register
+ * while performing queries from the BMC or DMA, then the VFTA in some
+ * cases won't be written.
+ */
+
+/**
+ *  e1000_clear_vfta_i350 - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void e1000_clear_vfta_i350(struct e1000_hw *hw)
+{
+	u32 offset;
+	int i;
+
+	DEBUGFUNC("e1000_clear_vfta_350");
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		for (i = 0; i < 10; i++)
+			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/**
+ *  e1000_write_vfta_i350 - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	int i;
+
+	DEBUGFUNC("e1000_write_vfta_350");
+
+	for (i = 0; i < 10; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+
+	E1000_WRITE_FLUSH(hw);
+}
+
+
+/**
+ *  e1000_set_i2c_bb - Enable I2C bit-bang
+ *  @hw: pointer to the HW structure
+ *
+ *  Enable I2C bit-bang interface
+ *
+ **/
+s32 e1000_set_i2c_bb(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u32 ctrl_ext, i2cparams;
+
+	DEBUGFUNC("e1000_set_i2c_bb");
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_I2C_ENA;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
+	i2cparams |= E1000_I2CBB_EN;
+	i2cparams |= E1000_I2C_DATA_OE_N;
+	i2cparams |= E1000_I2C_CLK_OE_N;
+	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
+	E1000_WRITE_FLUSH(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
+ *  @hw: pointer to hardware structure
+ *  @byte_offset: byte offset to read
+ *  @dev_addr: device address
+ *  @data: value read
+ *
+ *  Performs byte read operation over I2C interface at
+ *  a specified device address.
+ **/
+s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+				u8 dev_addr, u8 *data)
+{
+	s32 status = E1000_SUCCESS;
+	u32 max_retry = 10;
+	u32 retry = 1;
+	u16 swfw_mask = 0;
+
+	bool nack = true;
+
+	DEBUGFUNC("e1000_read_i2c_byte_generic");
+
+	swfw_mask = E1000_SWFW_PHY0_SM;
+
+	do {
+		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
+		    != E1000_SUCCESS) {
+			status = E1000_ERR_SWFW_SYNC;
+			goto read_byte_out;
+		}
+
+		e1000_i2c_start(hw);
+
+		/* Device Address and write indication */
+		status = e1000_clock_out_i2c_byte(hw, dev_addr);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_get_i2c_ack(hw);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_clock_out_i2c_byte(hw, byte_offset);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_get_i2c_ack(hw);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		e1000_i2c_start(hw);
+
+		/* Device Address and read indication */
+		status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_get_i2c_ack(hw);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_clock_in_i2c_byte(hw, data);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_clock_out_i2c_bit(hw, nack);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		e1000_i2c_stop(hw);
+		break;
+
+fail:
+		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+		msec_delay(100);
+		e1000_i2c_bus_clear(hw);
+		retry++;
+		if (retry < max_retry)
+			DEBUGOUT("I2C byte read error - Retrying.\n");
+		else
+			DEBUGOUT("I2C byte read error.\n");
+
+	} while (retry < max_retry);
+
+	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+
+read_byte_out:
+
+	return status;
+}
+
+/**
+ *  e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
+ *  @hw: pointer to hardware structure
+ *  @byte_offset: byte offset to write
+ *  @dev_addr: device address
+ *  @data: value to write
+ *
+ *  Performs byte write operation over I2C interface at
+ *  a specified device address.
+ **/
+s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+				 u8 dev_addr, u8 data)
+{
+	s32 status = E1000_SUCCESS;
+	u32 max_retry = 1;
+	u32 retry = 0;
+	u16 swfw_mask = 0;
+
+	DEBUGFUNC("e1000_write_i2c_byte_generic");
+
+	swfw_mask = E1000_SWFW_PHY0_SM;
+
+	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
+		status = E1000_ERR_SWFW_SYNC;
+		goto write_byte_out;
+	}
+
+	do {
+		e1000_i2c_start(hw);
+
+		status = e1000_clock_out_i2c_byte(hw, dev_addr);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_get_i2c_ack(hw);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_clock_out_i2c_byte(hw, byte_offset);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_get_i2c_ack(hw);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_clock_out_i2c_byte(hw, data);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		status = e1000_get_i2c_ack(hw);
+		if (status != E1000_SUCCESS)
+			goto fail;
+
+		e1000_i2c_stop(hw);
+		break;
+
+fail:
+		e1000_i2c_bus_clear(hw);
+		retry++;
+		if (retry < max_retry)
+			DEBUGOUT("I2C byte write error - Retrying.\n");
+		else
+			DEBUGOUT("I2C byte write error.\n");
+	} while (retry < max_retry);
+
+	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
+
+write_byte_out:
+
+	return status;
+}
+
+/**
+ *  e1000_i2c_start - Sets I2C start condition
+ *  @hw: pointer to hardware structure
+ *
+ *  Sets I2C start condition (High -> Low on SDA while SCL is High)
+ **/
+STATIC void e1000_i2c_start(struct e1000_hw *hw)
+{
+	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+	DEBUGFUNC("e1000_i2c_start");
+
+	/* Start condition must begin with data and clock high */
+	e1000_set_i2c_data(hw, &i2cctl, 1);
+	e1000_raise_i2c_clk(hw, &i2cctl);
+
+	/* Setup time for start condition (4.7us) */
+	usec_delay(E1000_I2C_T_SU_STA);
+
+	e1000_set_i2c_data(hw, &i2cctl, 0);
+
+	/* Hold time for start condition (4us) */
+	usec_delay(E1000_I2C_T_HD_STA);
+
+	e1000_lower_i2c_clk(hw, &i2cctl);
+
+	/* Minimum low period of clock is 4.7 us */
+	usec_delay(E1000_I2C_T_LOW);
+
+}
+
+/**
+ *  e1000_i2c_stop - Sets I2C stop condition
+ *  @hw: pointer to hardware structure
+ *
+ *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
+ **/
+STATIC void e1000_i2c_stop(struct e1000_hw *hw)
+{
+	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+	DEBUGFUNC("e1000_i2c_stop");
+
+	/* Stop condition must begin with data low and clock high */
+	e1000_set_i2c_data(hw, &i2cctl, 0);
+	e1000_raise_i2c_clk(hw, &i2cctl);
+
+	/* Setup time for stop condition (4us) */
+	usec_delay(E1000_I2C_T_SU_STO);
+
+	e1000_set_i2c_data(hw, &i2cctl, 1);
+
+	/* bus free time between stop and start (4.7us)*/
+	usec_delay(E1000_I2C_T_BUF);
+}
+
+/**
+ *  e1000_clock_in_i2c_byte - Clocks in one byte via I2C
+ *  @hw: pointer to hardware structure
+ *  @data: data byte to clock in
+ *
+ *  Clocks in one byte data via I2C data/clock
+ **/
+STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
+{
+	s32 i;
+	bool bit = 0;
+
+	DEBUGFUNC("e1000_clock_in_i2c_byte");
+
+	*data = 0;
+	for (i = 7; i >= 0; i--) {
+		e1000_clock_in_i2c_bit(hw, &bit);
+		*data |= bit << i;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_clock_out_i2c_byte - Clocks out one byte via I2C
+ *  @hw: pointer to hardware structure
+ *  @data: data byte clocked out
+ *
+ *  Clocks out one byte data via I2C data/clock
+ **/
+STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
+{
+	s32 status = E1000_SUCCESS;
+	s32 i;
+	u32 i2cctl;
+	bool bit = 0;
+
+	DEBUGFUNC("e1000_clock_out_i2c_byte");
+
+	for (i = 7; i >= 0; i--) {
+		bit = (data >> i) & 0x1;
+		status = e1000_clock_out_i2c_bit(hw, bit);
+
+		if (status != E1000_SUCCESS)
+			break;
+	}
+
+	/* Release SDA line (set high) */
+	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+	i2cctl |= E1000_I2C_DATA_OE_N;
+	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
+	E1000_WRITE_FLUSH(hw);
+
+	return status;
+}
+
+/**
+ *  e1000_get_i2c_ack - Polls for I2C ACK
+ *  @hw: pointer to hardware structure
+ *
+ *  Clocks in/out one bit via I2C data/clock
+ **/
+STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw)
+{
+	s32 status = E1000_SUCCESS;
+	u32 i = 0;
+	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+	u32 timeout = 10;
+	bool ack = true;
+
+	DEBUGFUNC("e1000_get_i2c_ack");
+
+	e1000_raise_i2c_clk(hw, &i2cctl);
+
+	/* Minimum high period of clock is 4us */
+	usec_delay(E1000_I2C_T_HIGH);
+
+	/* Wait until SCL returns high */
+	for (i = 0; i < timeout; i++) {
+		usec_delay(1);
+		i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+		if (i2cctl & E1000_I2C_CLK_IN)
+			break;
+	}
+	if (!(i2cctl & E1000_I2C_CLK_IN))
+		return E1000_ERR_I2C;
+
+	ack = e1000_get_i2c_data(&i2cctl);
+	if (ack) {
+		DEBUGOUT("I2C ack was not received.\n");
+		status = E1000_ERR_I2C;
+	}
+
+	e1000_lower_i2c_clk(hw, &i2cctl);
+
+	/* Minimum low period of clock is 4.7 us */
+	usec_delay(E1000_I2C_T_LOW);
+
+	return status;
+}
+
+/**
+ *  e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
+ *  @hw: pointer to hardware structure
+ *  @data: read data value
+ *
+ *  Clocks in one bit via I2C data/clock
+ **/
+STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
+{
+	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+	DEBUGFUNC("e1000_clock_in_i2c_bit");
+
+	e1000_raise_i2c_clk(hw, &i2cctl);
+
+	/* Minimum high period of clock is 4us */
+	usec_delay(E1000_I2C_T_HIGH);
+
+	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+	*data = e1000_get_i2c_data(&i2cctl);
+
+	e1000_lower_i2c_clk(hw, &i2cctl);
+
+	/* Minimum low period of clock is 4.7 us */
+	usec_delay(E1000_I2C_T_LOW);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
+ *  @hw: pointer to hardware structure
+ *  @data: data value to write
+ *
+ *  Clocks out one bit via I2C data/clock
+ **/
+STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
+{
+	s32 status;
+	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+
+	DEBUGFUNC("e1000_clock_out_i2c_bit");
+
+	status = e1000_set_i2c_data(hw, &i2cctl, data);
+	if (status == E1000_SUCCESS) {
+		e1000_raise_i2c_clk(hw, &i2cctl);
+
+		/* Minimum high period of clock is 4us */
+		usec_delay(E1000_I2C_T_HIGH);
+
+		e1000_lower_i2c_clk(hw, &i2cctl);
+
+		/* Minimum low period of clock is 4.7 us.
+		 * This also takes care of the data hold time.
+		 */
+		usec_delay(E1000_I2C_T_LOW);
+	} else {
+		status = E1000_ERR_I2C;
+		DEBUGOUT1("I2C data was not set to %X\n", data);
+	}
+
+	return status;
+}
+/**
+ *  e1000_raise_i2c_clk - Raises the I2C SCL clock
+ *  @hw: pointer to hardware structure
+ *  @i2cctl: Current value of I2CCTL register
+ *
+ *  Raises the I2C clock line '0'->'1'
+ **/
+STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
+{
+	DEBUGFUNC("e1000_raise_i2c_clk");
+
+	*i2cctl |= E1000_I2C_CLK_OUT;
+	*i2cctl &= ~E1000_I2C_CLK_OE_N;
+	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+	E1000_WRITE_FLUSH(hw);
+
+	/* SCL rise time (1000ns) */
+	usec_delay(E1000_I2C_T_RISE);
+}
+
+/**
+ *  e1000_lower_i2c_clk - Lowers the I2C SCL clock
+ *  @hw: pointer to hardware structure
+ *  @i2cctl: Current value of I2CCTL register
+ *
+ *  Lowers the I2C clock line '1'->'0'
+ **/
+STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
+{
+
+	DEBUGFUNC("e1000_lower_i2c_clk");
+
+	*i2cctl &= ~E1000_I2C_CLK_OUT;
+	*i2cctl &= ~E1000_I2C_CLK_OE_N;
+	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+	E1000_WRITE_FLUSH(hw);
+
+	/* SCL fall time (300ns) */
+	usec_delay(E1000_I2C_T_FALL);
+}
+
+/**
+ *  e1000_set_i2c_data - Sets the I2C data bit
+ *  @hw: pointer to hardware structure
+ *  @i2cctl: Current value of I2CCTL register
+ *  @data: I2C data value (0 or 1) to set
+ *
+ *  Sets the I2C data bit
+ **/
+STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
+{
+	s32 status = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_set_i2c_data");
+
+	if (data)
+		*i2cctl |= E1000_I2C_DATA_OUT;
+	else
+		*i2cctl &= ~E1000_I2C_DATA_OUT;
+
+	*i2cctl &= ~E1000_I2C_DATA_OE_N;
+	*i2cctl |= E1000_I2C_CLK_OE_N;
+	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
+	E1000_WRITE_FLUSH(hw);
+
+	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
+	usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
+
+	*i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+	if (data != e1000_get_i2c_data(i2cctl)) {
+		status = E1000_ERR_I2C;
+		DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
+	}
+
+	return status;
+}
+
+/**
+ *  e1000_get_i2c_data - Reads the I2C SDA data bit
+ *  @hw: pointer to hardware structure
+ *  @i2cctl: Current value of I2CCTL register
+ *
+ *  Returns the I2C data bit value
+ **/
+STATIC bool e1000_get_i2c_data(u32 *i2cctl)
+{
+	bool data;
+
+	DEBUGFUNC("e1000_get_i2c_data");
+
+	if (*i2cctl & E1000_I2C_DATA_IN)
+		data = 1;
+	else
+		data = 0;
+
+	return data;
+}
+
+/**
+ *  e1000_i2c_bus_clear - Clears the I2C bus
+ *  @hw: pointer to hardware structure
+ *
+ *  Clears the I2C bus by sending nine clock pulses.
+ *  Used when data line is stuck low.
+ **/
+void e1000_i2c_bus_clear(struct e1000_hw *hw)
+{
+	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
+	u32 i;
+
+	DEBUGFUNC("e1000_i2c_bus_clear");
+
+	e1000_i2c_start(hw);
+
+	e1000_set_i2c_data(hw, &i2cctl, 1);
+
+	for (i = 0; i < 9; i++) {
+		e1000_raise_i2c_clk(hw, &i2cctl);
+
+		/* Min high period of clock is 4us */
+		usec_delay(E1000_I2C_T_HIGH);
+
+		e1000_lower_i2c_clk(hw, &i2cctl);
+
+		/* Min low period of clock is 4.7us*/
+		usec_delay(E1000_I2C_T_LOW);
+	}
+
+	e1000_i2c_start(hw);
+
+	/* Put the i2c bus back to default state */
+	e1000_i2c_stop(hw);
+}
+
diff --git a/drivers/net/e1000/base/e1000_82575.h b/drivers/net/e1000/base/e1000_82575.h
new file mode 100644
index 0000000..09b7bf2
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_82575.h
@@ -0,0 +1,520 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_82575_H_
+#define _E1000_82575_H_
+
+#define ID_LED_DEFAULT_82575_SERDES	((ID_LED_DEF1_DEF2 << 12) | \
+					 (ID_LED_DEF1_DEF2 <<  8) | \
+					 (ID_LED_DEF1_DEF2 <<  4) | \
+					 (ID_LED_OFF1_ON2))
+/*
+ * Receive Address Register Count
+ * Number of high/low register pairs in the RAR.  The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * These entries are also used for MAC-based filtering.
+ */
+/*
+ * For 82576, there are an additional set of RARs that begin at an offset
+ * separate from the first set of RARs.
+ */
+#define E1000_RAR_ENTRIES_82575	16
+#define E1000_RAR_ENTRIES_82576	24
+#define E1000_RAR_ENTRIES_82580	24
+#define E1000_RAR_ENTRIES_I350	32
+#define E1000_SW_SYNCH_MB	0x00000100
+#define E1000_STAT_DEV_RST_SET	0x00100000
+#define E1000_CTRL_DEV_RST	0x20000000
+
+#ifdef E1000_BIT_FIELDS
+struct e1000_adv_data_desc {
+	__le64 buffer_addr;    /* Address of the descriptor's data buffer */
+	union {
+		u32 data;
+		struct {
+			u32 datalen:16; /* Data buffer length */
+			u32 rsvd:4;
+			u32 dtyp:4;  /* Descriptor type */
+			u32 dcmd:8;  /* Descriptor command */
+		} config;
+	} lower;
+	union {
+		u32 data;
+		struct {
+			u32 status:4;  /* Descriptor status */
+			u32 idx:4;
+			u32 popts:6;  /* Packet Options */
+			u32 paylen:18; /* Payload length */
+		} options;
+	} upper;
+};
+
+#define E1000_TXD_DTYP_ADV_C	0x2  /* Advanced Context Descriptor */
+#define E1000_TXD_DTYP_ADV_D	0x3  /* Advanced Data Descriptor */
+#define E1000_ADV_TXD_CMD_DEXT	0x20 /* Descriptor extension (0 = legacy) */
+#define E1000_ADV_TUCMD_IPV4	0x2  /* IP Packet Type: 1=IPv4 */
+#define E1000_ADV_TUCMD_IPV6	0x0  /* IP Packet Type: 0=IPv6 */
+#define E1000_ADV_TUCMD_L4T_UDP	0x0  /* L4 Packet TYPE of UDP */
+#define E1000_ADV_TUCMD_L4T_TCP	0x4  /* L4 Packet TYPE of TCP */
+#define E1000_ADV_TUCMD_MKRREQ	0x10 /* Indicates markers are required */
+#define E1000_ADV_DCMD_EOP	0x1  /* End of Packet */
+#define E1000_ADV_DCMD_IFCS	0x2  /* Insert FCS (Ethernet CRC) */
+#define E1000_ADV_DCMD_RS	0x8  /* Report Status */
+#define E1000_ADV_DCMD_VLE	0x40 /* Add VLAN tag */
+#define E1000_ADV_DCMD_TSE	0x80 /* TCP Seg enable */
+/* Extended Device Control */
+#define E1000_CTRL_EXT_NSICR	0x00000001 /* Disable Intr Clear all on read */
+
+struct e1000_adv_context_desc {
+	union {
+		u32 ip_config;
+		struct {
+			u32 iplen:9;
+			u32 maclen:7;
+			u32 vlan_tag:16;
+		} fields;
+	} ip_setup;
+	u32 seq_num;
+	union {
+		u64 l4_config;
+		struct {
+			u32 mkrloc:9;
+			u32 tucmd:11;
+			u32 dtyp:4;
+			u32 adv:8;
+			u32 rsvd:4;
+			u32 idx:4;
+			u32 l4len:8;
+			u32 mss:16;
+		} fields;
+	} l4_setup;
+};
+#endif
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT		10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK		0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT		2  /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY		0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF	0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT		0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS	0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION	0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK		0x0E000000
+#define E1000_SRRCTL_TIMESTAMP			0x40000000
+#define E1000_SRRCTL_DROP_EN			0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK		0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK		0x00003F00
+
+#define E1000_TX_HEAD_WB_ENABLE		0x1
+#define E1000_TX_SEQNUM_WB_ENABLE	0x2
+
+#define E1000_MRQC_ENABLE_RSS_4Q		0x00000002
+#define E1000_MRQC_ENABLE_VMDQ			0x00000003
+#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q		0x00000005
+#define E1000_MRQC_RSS_FIELD_IPV4_UDP		0x00400000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP		0x00800000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX	0x01000000
+#define E1000_MRQC_ENABLE_RSS_8Q		0x00000002
+
+#define E1000_VMRCTL_MIRROR_PORT_SHIFT		8
+#define E1000_VMRCTL_MIRROR_DSTPORT_MASK	(7 << \
+						 E1000_VMRCTL_MIRROR_PORT_SHIFT)
+#define E1000_VMRCTL_POOL_MIRROR_ENABLE		(1 << 0)
+#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE	(1 << 1)
+#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE	(1 << 2)
+
+#define E1000_EICR_TX_QUEUE ( \
+	E1000_EICR_TX_QUEUE0 |    \
+	E1000_EICR_TX_QUEUE1 |    \
+	E1000_EICR_TX_QUEUE2 |    \
+	E1000_EICR_TX_QUEUE3)
+
+#define E1000_EICR_RX_QUEUE ( \
+	E1000_EICR_RX_QUEUE0 |    \
+	E1000_EICR_RX_QUEUE1 |    \
+	E1000_EICR_RX_QUEUE2 |    \
+	E1000_EICR_RX_QUEUE3)
+
+#define E1000_EIMS_RX_QUEUE	E1000_EICR_RX_QUEUE
+#define E1000_EIMS_TX_QUEUE	E1000_EICR_TX_QUEUE
+
+#define EIMS_ENABLE_MASK ( \
+	E1000_EIMS_RX_QUEUE  | \
+	E1000_EIMS_TX_QUEUE  | \
+	E1000_EIMS_TCP_TIMER | \
+	E1000_EIMS_OTHER)
+
+/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
+#define E1000_IMIR_PORT_IM_EN	0x00010000  /* TCP port enable */
+#define E1000_IMIR_PORT_BP	0x00020000  /* TCP port check bypass */
+#define E1000_IMIREXT_SIZE_BP	0x00001000  /* Packet size bypass */
+#define E1000_IMIREXT_CTRL_URG	0x00002000  /* Check URG bit in header */
+#define E1000_IMIREXT_CTRL_ACK	0x00004000  /* Check ACK bit in header */
+#define E1000_IMIREXT_CTRL_PSH	0x00008000  /* Check PSH bit in header */
+#define E1000_IMIREXT_CTRL_RST	0x00010000  /* Check RST bit in header */
+#define E1000_IMIREXT_CTRL_SYN	0x00020000  /* Check SYN bit in header */
+#define E1000_IMIREXT_CTRL_FIN	0x00040000  /* Check FIN bit in header */
+#define E1000_IMIREXT_CTRL_BP	0x00080000  /* Bypass check of ctrl bits */
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+	struct {
+		__le64 pkt_addr; /* Packet buffer address */
+		__le64 hdr_addr; /* Header buffer address */
+	} read;
+	struct {
+		struct {
+			union {
+				__le32 data;
+				struct {
+					__le16 pkt_info; /*RSS type, Pkt type*/
+					/* Split Header, header buffer len */
+					__le16 hdr_info;
+				} hs_rss;
+			} lo_dword;
+			union {
+				__le32 rss; /* RSS Hash */
+				struct {
+					__le16 ip_id; /* IP id */
+					__le16 csum; /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error; /* ext status/error */
+			__le16 length; /* Packet length */
+			__le16 vlan; /* VLAN tag */
+		} upper;
+	} wb;  /* writeback */
+};
+
+#define E1000_RXDADV_RSSTYPE_MASK	0x0000000F
+#define E1000_RXDADV_RSSTYPE_SHIFT	12
+#define E1000_RXDADV_HDRBUFLEN_MASK	0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT	5
+#define E1000_RXDADV_SPLITHEADER_EN	0x00001000
+#define E1000_RXDADV_SPH		0x8000
+#define E1000_RXDADV_STAT_TS		0x10000 /* Pkt was time stamped */
+#define E1000_RXDADV_STAT_TSIP		0x08000 /* timestamp in packet */
+#define E1000_RXDADV_ERR_HBO		0x00800000
+
+/* RSS Hash results */
+#define E1000_RXDADV_RSSTYPE_NONE	0x00000000
+#define E1000_RXDADV_RSSTYPE_IPV4_TCP	0x00000001
+#define E1000_RXDADV_RSSTYPE_IPV4	0x00000002
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP	0x00000003
+#define E1000_RXDADV_RSSTYPE_IPV6_EX	0x00000004
+#define E1000_RXDADV_RSSTYPE_IPV6	0x00000005
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
+#define E1000_RXDADV_RSSTYPE_IPV4_UDP	0x00000007
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP	0x00000008
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
+
+/* RSS Packet Types as indicated in the receive descriptor */
+#define E1000_RXDADV_PKTTYPE_ILMASK	0x000000F0
+#define E1000_RXDADV_PKTTYPE_TLMASK	0x00000F00
+#define E1000_RXDADV_PKTTYPE_NONE	0x00000000
+#define E1000_RXDADV_PKTTYPE_IPV4	0x00000010 /* IPV4 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV4_EX	0x00000020 /* IPV4 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_IPV6	0x00000040 /* IPV6 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV6_EX	0x00000080 /* IPV6 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_TCP	0x00000100 /* TCP hdr present */
+#define E1000_RXDADV_PKTTYPE_UDP	0x00000200 /* UDP hdr present */
+#define E1000_RXDADV_PKTTYPE_SCTP	0x00000400 /* SCTP hdr present */
+#define E1000_RXDADV_PKTTYPE_NFS	0x00000800 /* NFS hdr present */
+
+#define E1000_RXDADV_PKTTYPE_IPSEC_ESP	0x00001000 /* IPSec ESP */
+#define E1000_RXDADV_PKTTYPE_IPSEC_AH	0x00002000 /* IPSec AH */
+#define E1000_RXDADV_PKTTYPE_LINKSEC	0x00004000 /* LinkSec Encap */
+#define E1000_RXDADV_PKTTYPE_ETQF	0x00008000 /* PKTTYPE is ETQF index */
+#define E1000_RXDADV_PKTTYPE_ETQF_MASK	0x00000070 /* ETQF has 8 indices */
+#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT	4 /* Right-shift 4 bits */
+
+/* LinkSec results */
+/* Security Processing bit Indication */
+#define E1000_RXDADV_LNKSEC_STATUS_SECP		0x00020000
+#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK	0x18000000
+#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH	0x08000000
+#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR	0x10000000
+#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG	0x18000000
+
+#define E1000_RXDADV_IPSEC_STATUS_SECP			0x00020000
+#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK		0x18000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL	0x08000000
+#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH		0x10000000
+#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED	0x18000000
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+	struct {
+		__le64 buffer_addr;    /* Address of descriptor's data buf */
+		__le32 cmd_type_len;
+		__le32 olinfo_status;
+	} read;
+	struct {
+		__le64 rsvd;       /* Reserved */
+		__le32 nxtseq_seed;
+		__le32 status;
+	} wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT	0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA	0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP	0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS	0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS	0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DDTYP_ISCSI	0x10000000 /* DDP hdr type or iSCSI */
+#define E1000_ADVTXD_DCMD_DEXT	0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE	0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE	0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_MAC_LINKSEC	0x00040000 /* Apply LinkSec on pkt */
+#define E1000_ADVTXD_MAC_TSTAMP		0x00080000 /* IEEE1588 Timestamp pkt */
+#define E1000_ADVTXD_STAT_SN_CRC	0x00000002 /* NXTSEQ/SEED prsnt in WB */
+#define E1000_ADVTXD_IDX_SHIFT		4  /* Adv desc Index shift */
+#define E1000_ADVTXD_POPTS_ISCO_1ST	0x00000000 /* 1st TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_MDL	0x00000800 /* Middle TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_LAST	0x00001000 /* Last TSO of iSCSI PDU */
+/* 1st & Last TSO-full iSCSI PDU*/
+#define E1000_ADVTXD_POPTS_ISCO_FULL	0x00001800
+#define E1000_ADVTXD_POPTS_IPSEC	0x00000400 /* IPSec offload request */
+#define E1000_ADVTXD_PAYLEN_SHIFT	14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+	__le32 vlan_macip_lens;
+	__le32 seqnum_seed;
+	__le32 type_tucmd_mlhl;
+	__le32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT	9  /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_VLAN_SHIFT		16  /* Adv ctxt vlan tag shift */
+#define E1000_ADVTXD_TUCMD_IPV4		0x00000400  /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_IPV6		0x00000000  /* IP Packet Type: 0=IPv6 */
+#define E1000_ADVTXD_TUCMD_L4T_UDP	0x00000000  /* L4 Packet TYPE of UDP */
+#define E1000_ADVTXD_TUCMD_L4T_TCP	0x00000800  /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_TUCMD_L4T_SCTP	0x00001000  /* L4 Packet TYPE of SCTP */
+#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP	0x00002000 /* IPSec Type ESP */
+/* IPSec Encrypt Enable for ESP */
+#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN	0x00004000
+/* Req requires Markers and CRC */
+#define E1000_ADVTXD_TUCMD_MKRREQ	0x00002000
+#define E1000_ADVTXD_L4LEN_SHIFT	8  /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT		16  /* Adv ctxt MSS shift */
+/* Adv ctxt IPSec SA IDX mask */
+#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK	0x000000FF
+/* Adv ctxt IPSec ESP len mask */
+#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK		0x000000FF
+
+/* Additional Transmit Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE	0x02000000 /* Ena specific Tx Queue */
+#define E1000_TXDCTL_SWFLSH		0x04000000 /* Tx Desc. wbk flushing */
+/* Tx Queue Arbitration Priority 0=low, 1=high */
+#define E1000_TXDCTL_PRIORITY		0x08000000
+
+/* Additional Receive Descriptor Control definitions */
+#define E1000_RXDCTL_QUEUE_ENABLE	0x02000000 /* Ena specific Rx Queue */
+#define E1000_RXDCTL_SWFLSH		0x04000000 /* Rx Desc. wbk flushing */
+
+/* Direct Cache Access (DCA) definitions */
+#define E1000_DCA_CTRL_DCA_ENABLE	0x00000000 /* DCA Enable */
+#define E1000_DCA_CTRL_DCA_DISABLE	0x00000001 /* DCA Disable */
+
+#define E1000_DCA_CTRL_DCA_MODE_CB1	0x00 /* DCA Mode CB1 */
+#define E1000_DCA_CTRL_DCA_MODE_CB2	0x02 /* DCA Mode CB2 */
+
+#define E1000_DCA_RXCTRL_CPUID_MASK	0x0000001F /* Rx CPUID Mask */
+#define E1000_DCA_RXCTRL_DESC_DCA_EN	(1 << 5) /* DCA Rx Desc enable */
+#define E1000_DCA_RXCTRL_HEAD_DCA_EN	(1 << 6) /* DCA Rx Desc header ena */
+#define E1000_DCA_RXCTRL_DATA_DCA_EN	(1 << 7) /* DCA Rx Desc payload ena */
+#define E1000_DCA_RXCTRL_DESC_RRO_EN	(1 << 9) /* DCA Rx Desc Relax Order */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK	0x0000001F /* Tx CPUID Mask */
+#define E1000_DCA_TXCTRL_DESC_DCA_EN	(1 << 5) /* DCA Tx Desc enable */
+#define E1000_DCA_TXCTRL_DESC_RRO_EN	(1 << 9) /* Tx rd Desc Relax Order */
+#define E1000_DCA_TXCTRL_TX_WB_RO_EN	(1 << 11) /* Tx Desc writeback RO bit */
+#define E1000_DCA_TXCTRL_DATA_RRO_EN	(1 << 13) /* Tx rd data Relax Order */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK_82576	0xFF000000 /* Tx CPUID Mask */
+#define E1000_DCA_RXCTRL_CPUID_MASK_82576	0xFF000000 /* Rx CPUID Mask */
+#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576	24 /* Tx CPUID */
+#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576	24 /* Rx CPUID */
+
+/* Additional interrupt register bit definitions */
+#define E1000_ICR_LSECPNS	0x00000020 /* PN threshold - server */
+#define E1000_IMS_LSECPNS	E1000_ICR_LSECPNS /* PN threshold - server */
+#define E1000_ICS_LSECPNS	E1000_ICR_LSECPNS /* PN threshold - server */
+
+/* ETQF register bit definitions */
+#define E1000_ETQF_FILTER_ENABLE	(1 << 26)
+#define E1000_ETQF_IMM_INT		(1 << 29)
+#define E1000_ETQF_1588			(1 << 30)
+#define E1000_ETQF_QUEUE_ENABLE		(1 << 31)
+/*
+ * ETQF filter list: one static filter per filter consumer. This is
+ *                   to avoid filter collisions later. Add new filters
+ *                   here!!
+ *
+ * Current filters:
+ *    EAPOL 802.1x (0x888e): Filter 0
+ */
+#define E1000_ETQF_FILTER_EAPOL		0
+
+#define E1000_FTQF_VF_BP		0x00008000
+#define E1000_FTQF_1588_TIME_STAMP	0x08000000
+#define E1000_FTQF_MASK			0xF0000000
+#define E1000_FTQF_MASK_PROTO_BP	0x10000000
+#define E1000_FTQF_MASK_SOURCE_ADDR_BP	0x20000000
+#define E1000_FTQF_MASK_DEST_ADDR_BP	0x40000000
+#define E1000_FTQF_MASK_SOURCE_PORT_BP	0x80000000
+
+#define E1000_NVM_APME_82575		0x0400
+#define MAX_NUM_VFS			7
+
+#define E1000_DTXSWC_MAC_SPOOF_MASK	0x000000FF /* Per VF MAC spoof cntrl */
+#define E1000_DTXSWC_VLAN_SPOOF_MASK	0x0000FF00 /* Per VF VLAN spoof cntrl */
+#define E1000_DTXSWC_LLE_MASK		0x00FF0000 /* Per VF Local LB enables */
+#define E1000_DTXSWC_VLAN_SPOOF_SHIFT	8
+#define E1000_DTXSWC_LLE_SHIFT		16
+#define E1000_DTXSWC_VMDQ_LOOPBACK_EN	(1 << 31)  /* global VF LB enable */
+
+/* Easy defines for setting default pool, would normally be left a zero */
+#define E1000_VT_CTL_DEFAULT_POOL_SHIFT	7
+#define E1000_VT_CTL_DEFAULT_POOL_MASK	(0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
+
+/* Other useful VMD_CTL register defines */
+#define E1000_VT_CTL_IGNORE_MAC		(1 << 28)
+#define E1000_VT_CTL_DISABLE_DEF_POOL	(1 << 29)
+#define E1000_VT_CTL_VM_REPL_EN		(1 << 30)
+
+/* Per VM Offload register setup */
+#define E1000_VMOLR_RLPML_MASK	0x00003FFF /* Long Packet Maximum Length mask */
+#define E1000_VMOLR_LPE		0x00010000 /* Accept Long packet */
+#define E1000_VMOLR_RSSE	0x00020000 /* Enable RSS */
+#define E1000_VMOLR_AUPE	0x01000000 /* Accept untagged packets */
+#define E1000_VMOLR_ROMPE	0x02000000 /* Accept overflow multicast */
+#define E1000_VMOLR_ROPE	0x04000000 /* Accept overflow unicast */
+#define E1000_VMOLR_BAM		0x08000000 /* Accept Broadcast packets */
+#define E1000_VMOLR_MPME	0x10000000 /* Multicast promiscuous mode */
+#define E1000_VMOLR_STRVLAN	0x40000000 /* Vlan stripping enable */
+#define E1000_VMOLR_STRCRC	0x80000000 /* CRC stripping enable */
+
+#define E1000_VMOLR_VPE		0x00800000 /* VLAN promiscuous enable */
+#define E1000_VMOLR_UPE		0x20000000 /* Unicast promisuous enable */
+#define E1000_DVMOLR_HIDVLAN	0x20000000 /* Vlan hiding enable */
+#define E1000_DVMOLR_STRVLAN	0x40000000 /* Vlan stripping enable */
+#define E1000_DVMOLR_STRCRC	0x80000000 /* CRC stripping enable */
+
+#define E1000_PBRWAC_WALPB	0x00000007 /* Wrap around event on LAN Rx PB */
+#define E1000_PBRWAC_PBE	0x00000008 /* Rx packet buffer empty */
+
+#define E1000_VLVF_ARRAY_SIZE		32
+#define E1000_VLVF_VLANID_MASK		0x00000FFF
+#define E1000_VLVF_POOLSEL_SHIFT	12
+#define E1000_VLVF_POOLSEL_MASK		(0xFF << E1000_VLVF_POOLSEL_SHIFT)
+#define E1000_VLVF_LVLAN		0x00100000
+#define E1000_VLVF_VLANID_ENABLE	0x80000000
+
+#define E1000_VMVIR_VLANA_DEFAULT	0x40000000 /* Always use default VLAN */
+#define E1000_VMVIR_VLANA_NEVER		0x80000000 /* Never insert VLAN tag */
+
+#define E1000_VF_INIT_TIMEOUT	200 /* Number of retries to clear RSTI */
+
+#define E1000_IOVCTL		0x05BBC
+#define E1000_IOVCTL_REUSE_VFQ	0x00000001
+
+#define E1000_RPLOLR_STRVLAN	0x40000000
+#define E1000_RPLOLR_STRCRC	0x80000000
+
+#define E1000_TCTL_EXT_COLD	0x000FFC00
+#define E1000_TCTL_EXT_COLD_SHIFT	10
+
+#define E1000_DTXCTL_8023LL	0x0004
+#define E1000_DTXCTL_VLAN_ADDED	0x0008
+#define E1000_DTXCTL_OOS_ENABLE	0x0010
+#define E1000_DTXCTL_MDP_EN	0x0020
+#define E1000_DTXCTL_SPOOF_INT	0x0040
+
+#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT	(1 << 14)
+
+#define ALL_QUEUES		0xFFFF
+
+/* Rx packet buffer size defines */
+#define E1000_RXPBS_SIZE_MASK_82576	0x0000007F
+void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable);
+void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf);
+void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable);
+s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
+s32  e1000_init_hw_82575(struct e1000_hw *hw);
+
+enum e1000_promisc_type {
+	e1000_promisc_disabled = 0,   /* all promisc modes disabled */
+	e1000_promisc_unicast = 1,    /* unicast promiscuous enabled */
+	e1000_promisc_multicast = 2,  /* multicast promiscuous enabled */
+	e1000_promisc_enabled = 3,    /* both uni and multicast promisc */
+	e1000_num_promisc_types
+};
+
+void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
+void e1000_rlpml_set_vf(struct e1000_hw *, u16);
+s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type);
+u16 e1000_rxpbs_adjust_82580(u32 data);
+s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data);
+s32 e1000_set_eee_i350(struct e1000_hw *);
+s32 e1000_set_eee_i354(struct e1000_hw *);
+s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *);
+s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw);
+
+/* I2C SDA and SCL timing parameters for standard mode */
+#define E1000_I2C_T_HD_STA	4
+#define E1000_I2C_T_LOW		5
+#define E1000_I2C_T_HIGH	4
+#define E1000_I2C_T_SU_STA	5
+#define E1000_I2C_T_HD_DATA	5
+#define E1000_I2C_T_SU_DATA	1
+#define E1000_I2C_T_RISE	1
+#define E1000_I2C_T_FALL	1
+#define E1000_I2C_T_SU_STO	4
+#define E1000_I2C_T_BUF		5
+
+s32 e1000_set_i2c_bb(struct e1000_hw *hw);
+s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+				u8 dev_addr, u8 *data);
+s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
+				 u8 dev_addr, u8 data);
+void e1000_i2c_bus_clear(struct e1000_hw *hw);
+#endif /* _E1000_82575_H_ */
diff --git a/drivers/net/e1000/base/e1000_api.c b/drivers/net/e1000/base/e1000_api.c
new file mode 100644
index 0000000..a064565
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_api.c
@@ -0,0 +1,1357 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+/**
+ *  e1000_init_mac_params - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function initializes the function pointers for the MAC
+ *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mac_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->mac.ops.init_params) {
+		ret_val = hw->mac.ops.init_params(hw);
+		if (ret_val) {
+			DEBUGOUT("MAC Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("mac.init_mac_params was NULL\n");
+		ret_val = -E1000_ERR_CONFIG;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function initializes the function pointers for the NVM
+ *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_nvm_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->nvm.ops.init_params) {
+		ret_val = hw->nvm.ops.init_params(hw);
+		if (ret_val) {
+			DEBUGOUT("NVM Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("nvm.init_nvm_params was NULL\n");
+		ret_val = -E1000_ERR_CONFIG;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_phy_params - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function initializes the function pointers for the PHY
+ *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_phy_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->phy.ops.init_params) {
+		ret_val = hw->phy.ops.init_params(hw);
+		if (ret_val) {
+			DEBUGOUT("PHY Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("phy.init_phy_params was NULL\n");
+		ret_val =  -E1000_ERR_CONFIG;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_mbx_params - Initialize mailbox function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function initializes the function pointers for the PHY
+ *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
+ **/
+s32 e1000_init_mbx_params(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	if (hw->mbx.ops.init_params) {
+		ret_val = hw->mbx.ops.init_params(hw);
+		if (ret_val) {
+			DEBUGOUT("Mailbox Initialization Error\n");
+			goto out;
+		}
+	} else {
+		DEBUGOUT("mbx.init_mbx_params was NULL\n");
+		ret_val =  -E1000_ERR_CONFIG;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_set_mac_type - Sets MAC type
+ *  @hw: pointer to the HW structure
+ *
+ *  This function sets the mac type of the adapter based on the
+ *  device ID stored in the hw structure.
+ *  MUST BE FIRST FUNCTION CALLED (explicitly or through
+ *  e1000_setup_init_funcs()).
+ **/
+s32 e1000_set_mac_type(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_set_mac_type");
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82542:
+		mac->type = e1000_82542;
+		break;
+	case E1000_DEV_ID_82543GC_FIBER:
+	case E1000_DEV_ID_82543GC_COPPER:
+		mac->type = e1000_82543;
+		break;
+	case E1000_DEV_ID_82544EI_COPPER:
+	case E1000_DEV_ID_82544EI_FIBER:
+	case E1000_DEV_ID_82544GC_COPPER:
+	case E1000_DEV_ID_82544GC_LOM:
+		mac->type = e1000_82544;
+		break;
+	case E1000_DEV_ID_82540EM:
+	case E1000_DEV_ID_82540EM_LOM:
+	case E1000_DEV_ID_82540EP:
+	case E1000_DEV_ID_82540EP_LOM:
+	case E1000_DEV_ID_82540EP_LP:
+		mac->type = e1000_82540;
+		break;
+	case E1000_DEV_ID_82545EM_COPPER:
+	case E1000_DEV_ID_82545EM_FIBER:
+		mac->type = e1000_82545;
+		break;
+	case E1000_DEV_ID_82545GM_COPPER:
+	case E1000_DEV_ID_82545GM_FIBER:
+	case E1000_DEV_ID_82545GM_SERDES:
+		mac->type = e1000_82545_rev_3;
+		break;
+	case E1000_DEV_ID_82546EB_COPPER:
+	case E1000_DEV_ID_82546EB_FIBER:
+	case E1000_DEV_ID_82546EB_QUAD_COPPER:
+		mac->type = e1000_82546;
+		break;
+	case E1000_DEV_ID_82546GB_COPPER:
+	case E1000_DEV_ID_82546GB_FIBER:
+	case E1000_DEV_ID_82546GB_SERDES:
+	case E1000_DEV_ID_82546GB_PCIE:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER:
+	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
+		mac->type = e1000_82546_rev_3;
+		break;
+	case E1000_DEV_ID_82541EI:
+	case E1000_DEV_ID_82541EI_MOBILE:
+	case E1000_DEV_ID_82541ER_LOM:
+		mac->type = e1000_82541;
+		break;
+	case E1000_DEV_ID_82541ER:
+	case E1000_DEV_ID_82541GI:
+	case E1000_DEV_ID_82541GI_LF:
+	case E1000_DEV_ID_82541GI_MOBILE:
+		mac->type = e1000_82541_rev_2;
+		break;
+	case E1000_DEV_ID_82547EI:
+	case E1000_DEV_ID_82547EI_MOBILE:
+		mac->type = e1000_82547;
+		break;
+	case E1000_DEV_ID_82547GI:
+		mac->type = e1000_82547_rev_2;
+		break;
+	case E1000_DEV_ID_82571EB_COPPER:
+	case E1000_DEV_ID_82571EB_FIBER:
+	case E1000_DEV_ID_82571EB_SERDES:
+	case E1000_DEV_ID_82571EB_SERDES_DUAL:
+	case E1000_DEV_ID_82571EB_SERDES_QUAD:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER:
+	case E1000_DEV_ID_82571PT_QUAD_COPPER:
+	case E1000_DEV_ID_82571EB_QUAD_FIBER:
+	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
+		mac->type = e1000_82571;
+		break;
+	case E1000_DEV_ID_82572EI:
+	case E1000_DEV_ID_82572EI_COPPER:
+	case E1000_DEV_ID_82572EI_FIBER:
+	case E1000_DEV_ID_82572EI_SERDES:
+		mac->type = e1000_82572;
+		break;
+	case E1000_DEV_ID_82573E:
+	case E1000_DEV_ID_82573E_IAMT:
+	case E1000_DEV_ID_82573L:
+		mac->type = e1000_82573;
+		break;
+	case E1000_DEV_ID_82574L:
+	case E1000_DEV_ID_82574LA:
+		mac->type = e1000_82574;
+		break;
+	case E1000_DEV_ID_82583V:
+		mac->type = e1000_82583;
+		break;
+	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
+	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
+	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
+		mac->type = e1000_80003es2lan;
+		break;
+	case E1000_DEV_ID_ICH8_IFE:
+	case E1000_DEV_ID_ICH8_IFE_GT:
+	case E1000_DEV_ID_ICH8_IFE_G:
+	case E1000_DEV_ID_ICH8_IGP_M:
+	case E1000_DEV_ID_ICH8_IGP_M_AMT:
+	case E1000_DEV_ID_ICH8_IGP_AMT:
+	case E1000_DEV_ID_ICH8_IGP_C:
+	case E1000_DEV_ID_ICH8_82567V_3:
+		mac->type = e1000_ich8lan;
+		break;
+	case E1000_DEV_ID_ICH9_IFE:
+	case E1000_DEV_ID_ICH9_IFE_GT:
+	case E1000_DEV_ID_ICH9_IFE_G:
+	case E1000_DEV_ID_ICH9_IGP_M:
+	case E1000_DEV_ID_ICH9_IGP_M_AMT:
+	case E1000_DEV_ID_ICH9_IGP_M_V:
+	case E1000_DEV_ID_ICH9_IGP_AMT:
+	case E1000_DEV_ID_ICH9_BM:
+	case E1000_DEV_ID_ICH9_IGP_C:
+	case E1000_DEV_ID_ICH10_R_BM_LM:
+	case E1000_DEV_ID_ICH10_R_BM_LF:
+	case E1000_DEV_ID_ICH10_R_BM_V:
+		mac->type = e1000_ich9lan;
+		break;
+	case E1000_DEV_ID_ICH10_D_BM_LM:
+	case E1000_DEV_ID_ICH10_D_BM_LF:
+	case E1000_DEV_ID_ICH10_D_BM_V:
+		mac->type = e1000_ich10lan;
+		break;
+	case E1000_DEV_ID_PCH_D_HV_DM:
+	case E1000_DEV_ID_PCH_D_HV_DC:
+	case E1000_DEV_ID_PCH_M_HV_LM:
+	case E1000_DEV_ID_PCH_M_HV_LC:
+		mac->type = e1000_pchlan;
+		break;
+	case E1000_DEV_ID_PCH2_LV_LM:
+	case E1000_DEV_ID_PCH2_LV_V:
+		mac->type = e1000_pch2lan;
+		break;
+	case E1000_DEV_ID_PCH_LPT_I217_LM:
+	case E1000_DEV_ID_PCH_LPT_I217_V:
+	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
+	case E1000_DEV_ID_PCH_LPTLP_I218_V:
+		mac->type = e1000_pch_lpt;
+		break;
+	case E1000_DEV_ID_82575EB_COPPER:
+	case E1000_DEV_ID_82575EB_FIBER_SERDES:
+	case E1000_DEV_ID_82575GB_QUAD_COPPER:
+		mac->type = e1000_82575;
+		break;
+	case E1000_DEV_ID_82576:
+	case E1000_DEV_ID_82576_FIBER:
+	case E1000_DEV_ID_82576_SERDES:
+	case E1000_DEV_ID_82576_QUAD_COPPER:
+	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
+	case E1000_DEV_ID_82576_NS:
+	case E1000_DEV_ID_82576_NS_SERDES:
+	case E1000_DEV_ID_82576_SERDES_QUAD:
+		mac->type = e1000_82576;
+		break;
+	case E1000_DEV_ID_82580_COPPER:
+	case E1000_DEV_ID_82580_FIBER:
+	case E1000_DEV_ID_82580_SERDES:
+	case E1000_DEV_ID_82580_SGMII:
+	case E1000_DEV_ID_82580_COPPER_DUAL:
+	case E1000_DEV_ID_82580_QUAD_FIBER:
+	case E1000_DEV_ID_DH89XXCC_SGMII:
+	case E1000_DEV_ID_DH89XXCC_SERDES:
+	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
+	case E1000_DEV_ID_DH89XXCC_SFP:
+		mac->type = e1000_82580;
+		break;
+	case E1000_DEV_ID_I350_COPPER:
+	case E1000_DEV_ID_I350_FIBER:
+	case E1000_DEV_ID_I350_SERDES:
+	case E1000_DEV_ID_I350_SGMII:
+	case E1000_DEV_ID_I350_DA4:
+		mac->type = e1000_i350;
+		break;
+	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
+	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
+	case E1000_DEV_ID_I210_COPPER:
+	case E1000_DEV_ID_I210_COPPER_OEM1:
+	case E1000_DEV_ID_I210_COPPER_IT:
+	case E1000_DEV_ID_I210_FIBER:
+	case E1000_DEV_ID_I210_SERDES:
+	case E1000_DEV_ID_I210_SGMII:
+		mac->type = e1000_i210;
+		break;
+	case E1000_DEV_ID_I211_COPPER:
+		mac->type = e1000_i211;
+		break;
+	case E1000_DEV_ID_82576_VF:
+	case E1000_DEV_ID_82576_VF_HV:
+		mac->type = e1000_vfadapt;
+		break;
+	case E1000_DEV_ID_I350_VF:
+	case E1000_DEV_ID_I350_VF_HV:
+		mac->type = e1000_vfadapt_i350;
+		break;
+
+	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
+	case E1000_DEV_ID_I354_SGMII:
+	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
+		mac->type = e1000_i354;
+		break;
+	default:
+		/* Should never have loaded on this device */
+		ret_val = -E1000_ERR_MAC_INIT;
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_init_funcs - Initializes function pointers
+ *  @hw: pointer to the HW structure
+ *  @init_device: true will initialize the rest of the function pointers
+ *		  getting the device ready for use.  false will only set
+ *		  MAC type and the function pointers for the other init
+ *		  functions.  Passing false will not generate any hardware
+ *		  reads or writes.
+ *
+ *  This function must be called by a driver in order to use the rest
+ *  of the 'shared' code files. Called by drivers only.
+ **/
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
+{
+	s32 ret_val;
+
+	/* Can't do much good without knowing the MAC type. */
+	ret_val = e1000_set_mac_type(hw);
+	if (ret_val) {
+		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
+		goto out;
+	}
+
+	if (!hw->hw_addr) {
+		DEBUGOUT("ERROR: Registers not mapped\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	/*
+	 * Init function pointers to generic implementations. We do this first
+	 * allowing a driver module to override it afterward.
+	 */
+	e1000_init_mac_ops_generic(hw);
+	e1000_init_phy_ops_generic(hw);
+	e1000_init_nvm_ops_generic(hw);
+	e1000_init_mbx_ops_generic(hw);
+
+	/*
+	 * Set up the init function pointers. These are functions within the
+	 * adapter family file that sets up function pointers for the rest of
+	 * the functions in that family.
+	 */
+	switch (hw->mac.type) {
+	case e1000_82542:
+		e1000_init_function_pointers_82542(hw);
+		break;
+	case e1000_82543:
+	case e1000_82544:
+		e1000_init_function_pointers_82543(hw);
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		e1000_init_function_pointers_82540(hw);
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		e1000_init_function_pointers_82541(hw);
+		break;
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+		e1000_init_function_pointers_82571(hw);
+		break;
+	case e1000_80003es2lan:
+		e1000_init_function_pointers_80003es2lan(hw);
+		break;
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+	case e1000_pchlan:
+	case e1000_pch2lan:
+	case e1000_pch_lpt:
+		e1000_init_function_pointers_ich8lan(hw);
+		break;
+	case e1000_82575:
+	case e1000_82576:
+	case e1000_82580:
+	case e1000_i350:
+	case e1000_i354:
+		e1000_init_function_pointers_82575(hw);
+		break;
+	case e1000_i210:
+	case e1000_i211:
+		e1000_init_function_pointers_i210(hw);
+		break;
+	case e1000_vfadapt:
+		e1000_init_function_pointers_vf(hw);
+		break;
+	case e1000_vfadapt_i350:
+		e1000_init_function_pointers_vf(hw);
+		break;
+	default:
+		DEBUGOUT("Hardware not supported\n");
+		ret_val = -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/*
+	 * Initialize the rest of the function pointers. These require some
+	 * register reads/writes in some cases.
+	 */
+	if (!(ret_val) && init_device) {
+		ret_val = e1000_init_mac_params(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_init_nvm_params(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_init_phy_params(hw);
+		if (ret_val)
+			goto out;
+
+		ret_val = e1000_init_mbx_params(hw);
+		if (ret_val)
+			goto out;
+	}
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info - Obtain bus information for adapter
+ *  @hw: pointer to the HW structure
+ *
+ *  This will obtain information about the HW bus for which the
+ *  adapter is attached and stores it in the hw structure. This is a
+ *  function pointer entry point called by drivers.
+ **/
+s32 e1000_get_bus_info(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.get_bus_info)
+		return hw->mac.ops.get_bus_info(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_clear_vfta - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  This clears the VLAN filter table on the adapter. This is a function
+ *  pointer entry point called by drivers.
+ **/
+void e1000_clear_vfta(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.clear_vfta)
+		hw->mac.ops.clear_vfta(hw);
+}
+
+/**
+ *  e1000_write_vfta - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: the 32-bit offset in which to write the value to.
+ *  @value: the 32-bit value to write at location offset.
+ *
+ *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ *  table. This is a function pointer entry point called by drivers.
+ **/
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	if (hw->mac.ops.write_vfta)
+		hw->mac.ops.write_vfta(hw, offset, value);
+}
+
+/**
+ *  e1000_update_mc_addr_list - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates the Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+			       u32 mc_addr_count)
+{
+	if (hw->mac.ops.update_mc_addr_list)
+		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
+						mc_addr_count);
+}
+
+/**
+ *  e1000_force_mac_fc - Force MAC flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings. Currently no func pointer exists
+ *  and all implementations are handled in the generic version of this
+ *  function.
+ **/
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
+{
+	return e1000_force_mac_fc_generic(hw);
+}
+
+/**
+ *  e1000_check_for_link - Check/Store link connection
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks the link condition of the adapter and stores the
+ *  results in the hw->mac structure. This is a function pointer entry
+ *  point called by drivers.
+ **/
+s32 e1000_check_for_link(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.check_for_link)
+		return hw->mac.ops.check_for_link(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_check_mng_mode - Check management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks if the adapter has manageability enabled.
+ *  This is a function pointer entry point called by drivers.
+ **/
+bool e1000_check_mng_mode(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.check_mng_mode)
+		return hw->mac.ops.check_mng_mode(hw);
+
+	return false;
+}
+
+/**
+ *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface
+ *  @length: size of the buffer
+ *
+ *  Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
+}
+
+/**
+ *  e1000_reset_hw - Reset hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This resets the hardware into a known state. This is a function pointer
+ *  entry point called by drivers.
+ **/
+s32 e1000_reset_hw(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.reset_hw)
+		return hw->mac.ops.reset_hw(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_init_hw - Initialize hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  This inits the hardware readying it for operation. This is a function
+ *  pointer entry point called by drivers.
+ **/
+s32 e1000_init_hw(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.init_hw)
+		return hw->mac.ops.init_hw(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_setup_link - Configures link and flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  This configures link and flow control settings for the adapter. This
+ *  is a function pointer entry point called by drivers. While modules can
+ *  also call this, they probably call their own version of this function.
+ **/
+s32 e1000_setup_link(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.setup_link)
+		return hw->mac.ops.setup_link(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_get_speed_and_duplex - Returns current speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to a 16-bit value to store the speed
+ *  @duplex: pointer to a 16-bit value to store the duplex.
+ *
+ *  This returns the speed and duplex of the adapter in the two 'out'
+ *  variables passed in. This is a function pointer entry point called
+ *  by drivers.
+ **/
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+	if (hw->mac.ops.get_link_up_info)
+		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_setup_led - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored. This is a function pointer entry
+ *  point called by drivers.
+ **/
+s32 e1000_setup_led(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.setup_led)
+		return hw->mac.ops.setup_led(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_cleanup_led - Restores SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This restores the SW controllable LED to the value saved off by
+ *  e1000_setup_led. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.cleanup_led)
+		return hw->mac.ops.cleanup_led(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_blink_led - Blink SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This starts the adapter LED blinking. Request the LED to be setup first
+ *  and cleaned up after. This is a function pointer entry point called by
+ *  drivers.
+ **/
+s32 e1000_blink_led(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.blink_led)
+		return hw->mac.ops.blink_led(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_id_led_init - store LED configurations in SW
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes the LED config in SW. This is a function pointer entry point
+ *  called by drivers.
+ **/
+s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.id_led_init)
+		return hw->mac.ops.id_led_init(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_on - Turn on SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED on. This is a function pointer entry point
+ *  called by drivers.
+ **/
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.led_on)
+		return hw->mac.ops.led_on(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off - Turn off SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Turns the SW defined LED off. This is a function pointer entry point
+ *  called by drivers.
+ **/
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.led_off)
+		return hw->mac.ops.led_off(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_reset_adaptive - Reset adaptive IFS
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the adaptive IFS. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void e1000_reset_adaptive(struct e1000_hw *hw)
+{
+	e1000_reset_adaptive_generic(hw);
+}
+
+/**
+ *  e1000_update_adaptive - Update adaptive IFS
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates adapter IFS. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+void e1000_update_adaptive(struct e1000_hw *hw)
+{
+	e1000_update_adaptive_generic(hw);
+}
+
+/**
+ *  e1000_disable_pcie_master - Disable PCI-Express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests. Currently no func pointer exists and all implementations are
+ *  handled in the generic version of this function.
+ **/
+s32 e1000_disable_pcie_master(struct e1000_hw *hw)
+{
+	return e1000_disable_pcie_master_generic(hw);
+}
+
+/**
+ *  e1000_config_collision_dist - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup.
+ **/
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.config_collision_dist)
+		hw->mac.ops.config_collision_dist(hw);
+}
+
+/**
+ *  e1000_rar_set - Sets a receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: address to set the RAR to
+ *  @index: the RAR to set
+ *
+ *  Sets a Receive Address Register (RAR) to the specified address.
+ **/
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	if (hw->mac.ops.rar_set)
+		hw->mac.ops.rar_set(hw, addr, index);
+}
+
+/**
+ *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
+ *  @hw: pointer to the HW structure
+ *
+ *  Ensures that the MDI/MDIX SW state is valid.
+ **/
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.validate_mdi_setting)
+		return hw->mac.ops.validate_mdi_setting(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_hash_mc_addr - Determines address location in multicast table
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: Multicast address to hash.
+ *
+ *  This hashes an address to determine its location in the multicast
+ *  table. Currently no func pointer exists and all implementations
+ *  are handled in the generic version of this function.
+ **/
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+	return e1000_hash_mc_addr_generic(hw, mc_addr);
+}
+
+/**
+ *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
+ *  @hw: pointer to the HW structure
+ *
+ *  Enables packet filtering on transmit packets if manageability is enabled
+ *  and host interface is enabled.
+ *  Currently no func pointer exists and all implementations are handled in the
+ *  generic version of this function.
+ **/
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+	return e1000_enable_tx_pkt_filtering_generic(hw);
+}
+
+/**
+ *  e1000_mng_host_if_write - Writes to the manageability host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface buffer
+ *  @length: size of the buffer
+ *  @offset: location in the buffer to write to
+ *  @sum: sum of the data (not checksum)
+ *
+ *  This function writes the buffer content at the offset given on the host if.
+ *  It also does alignment considerations to do the writes in most efficient
+ *  way.  Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
+			    u16 offset, u8 *sum)
+{
+	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
+}
+
+/**
+ *  e1000_mng_write_cmd_header - Writes manageability command header
+ *  @hw: pointer to the HW structure
+ *  @hdr: pointer to the host interface command header
+ *
+ *  Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+			       struct e1000_host_mng_command_header *hdr)
+{
+	return e1000_mng_write_cmd_header_generic(hw, hdr);
+}
+
+/**
+ *  e1000_mng_enable_host_if - Checks host interface is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ *  This function checks whether the HOST IF is enabled for command operation
+ *  and also checks whether the previous command is completed.  It busy waits
+ *  in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
+{
+	return e1000_mng_enable_host_if_generic(hw);
+}
+
+/**
+ *  e1000_check_reset_block - Verifies PHY can be reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks if the PHY is in a state that can be reset or if manageability
+ *  has it tied up. This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_check_reset_block(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.check_reset_block)
+		return hw->phy.ops.check_reset_block(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_phy_reg - Reads PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: the register to read
+ *  @data: the buffer to store the 16-bit read.
+ *
+ *  Reads the PHY register and returns the value in data.
+ *  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	if (hw->phy.ops.read_reg)
+		return hw->phy.ops.read_reg(hw, offset, data);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg - Writes PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: the register to write
+ *  @data: the value to write.
+ *
+ *  Writes the PHY register at offset with the value in data.
+ *  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	if (hw->phy.ops.write_reg)
+		return hw->phy.ops.write_reg(hw, offset, data);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_release_phy - Generic release PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Return if silicon family does not require a semaphore when accessing the
+ *  PHY.
+ **/
+void e1000_release_phy(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.release)
+		hw->phy.ops.release(hw);
+}
+
+/**
+ *  e1000_acquire_phy - Generic acquire PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Return success if silicon family does not require a semaphore when
+ *  accessing the PHY.
+ **/
+s32 e1000_acquire_phy(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.acquire)
+		return hw->phy.ops.acquire(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_cfg_on_link_up - Configure PHY upon link up
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.cfg_on_link_up)
+		return hw->phy.ops.cfg_on_link_up(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_kmrn_reg - Reads register using Kumeran interface
+ *  @hw: pointer to the HW structure
+ *  @offset: the register to read
+ *  @data: the location to store the 16-bit value read.
+ *
+ *  Reads a register out of the Kumeran interface. Currently no func pointer
+ *  exists and all implementations are handled in the generic version of
+ *  this function.
+ **/
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return e1000_read_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ *  e1000_write_kmrn_reg - Writes register using Kumeran interface
+ *  @hw: pointer to the HW structure
+ *  @offset: the register to write
+ *  @data: the value to write.
+ *
+ *  Writes a register to the Kumeran interface. Currently no func pointer
+ *  exists and all implementations are handled in the generic version of
+ *  this function.
+ **/
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return e1000_write_kmrn_reg_generic(hw, offset, data);
+}
+
+/**
+ *  e1000_get_cable_length - Retrieves cable length estimation
+ *  @hw: pointer to the HW structure
+ *
+ *  This function estimates the cable length and stores them in
+ *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
+ *  entry point called by drivers.
+ **/
+s32 e1000_get_cable_length(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.get_cable_length)
+		return hw->phy.ops.get_cable_length(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_info - Retrieves PHY information from registers
+ *  @hw: pointer to the HW structure
+ *
+ *  This function gets some information from various PHY registers and
+ *  populates hw->phy values with it. This is a function pointer entry
+ *  point called by drivers.
+ **/
+s32 e1000_get_phy_info(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.get_info)
+		return hw->phy.ops.get_info(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_hw_reset - Hard PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs a hard PHY reset. This is a function pointer entry point called
+ *  by drivers.
+ **/
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.reset)
+		return hw->phy.ops.reset(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_commit - Soft PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs a soft PHY reset on those that apply. This is a function pointer
+ *  entry point called by drivers.
+ **/
+s32 e1000_phy_commit(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.commit)
+		return hw->phy.ops.commit(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_d0_lplu_state - Sets low power link up state for D0
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D0
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D0
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+	if (hw->phy.ops.set_d0_lplu_state)
+		return hw->phy.ops.set_d0_lplu_state(hw, active);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_d3_lplu_state - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+	if (hw->phy.ops.set_d3_lplu_state)
+		return hw->phy.ops.set_d3_lplu_state(hw, active);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_mac_addr - Reads MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the MAC address out of the adapter and stores it in the HW structure.
+ *  Currently no func pointer exists and all implementations are handled in the
+ *  generic version of this function.
+ **/
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.read_mac_addr)
+		return hw->mac.ops.read_mac_addr(hw);
+
+	return e1000_read_mac_addr_generic(hw);
+}
+
+/**
+ *  e1000_read_pba_string - Read device part number string
+ *  @hw: pointer to the HW structure
+ *  @pba_num: pointer to device part number
+ *  @pba_num_size: size of part number buffer
+ *
+ *  Reads the product board assembly (PBA) number from the EEPROM and stores
+ *  the value in pba_num.
+ *  Currently no func pointer exists and all implementations are handled in the
+ *  generic version of this function.
+ **/
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
+{
+	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
+}
+
+/**
+ *  e1000_read_pba_length - Read device part number string length
+ *  @hw: pointer to the HW structure
+ *  @pba_num_size: size of part number buffer
+ *
+ *  Reads the product board assembly (PBA) number length from the EEPROM and
+ *  stores the value in pba_num.
+ *  Currently no func pointer exists and all implementations are handled in the
+ *  generic version of this function.
+ **/
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
+{
+	return e1000_read_pba_length_generic(hw, pba_num_size);
+}
+
+/**
+ *  e1000_read_pba_num - Read device part number
+ *  @hw: pointer to the HW structure
+ *  @pba_num: pointer to device part number
+ *
+ *  Reads the product board assembly (PBA) number from the EEPROM and stores
+ *  the value in pba_num.
+ *  Currently no func pointer exists and all implementations are handled in the
+ *  generic version of this function.
+ **/
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
+{
+	return e1000_read_pba_num_generic(hw, pba_num);
+}
+
+/**
+ *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Validates the NVM checksum is correct. This is a function pointer entry
+ *  point called by drivers.
+ **/
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+	if (hw->nvm.ops.validate)
+		return hw->nvm.ops.validate(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the NVM checksum. Currently no func pointer exists and all
+ *  implementations are handled in the generic version of this function.
+ **/
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
+{
+	if (hw->nvm.ops.update)
+		return hw->nvm.ops.update(hw);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_reload_nvm - Reloads EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ *  extended control register.
+ **/
+void e1000_reload_nvm(struct e1000_hw *hw)
+{
+	if (hw->nvm.ops.reload)
+		hw->nvm.ops.reload(hw);
+}
+
+/**
+ *  e1000_read_nvm - Reads NVM (EEPROM)
+ *  @hw: pointer to the HW structure
+ *  @offset: the word offset to read
+ *  @words: number of 16-bit words to read
+ *  @data: pointer to the properly sized buffer for the data.
+ *
+ *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
+ *  pointer entry point called by drivers.
+ **/
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	if (hw->nvm.ops.read)
+		return hw->nvm.ops.read(hw, offset, words, data);
+
+	return -E1000_ERR_CONFIG;
+}
+
+/**
+ *  e1000_write_nvm - Writes to NVM (EEPROM)
+ *  @hw: pointer to the HW structure
+ *  @offset: the word offset to read
+ *  @words: number of 16-bit words to write
+ *  @data: pointer to the properly sized buffer for the data.
+ *
+ *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
+ *  pointer entry point called by drivers.
+ **/
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	if (hw->nvm.ops.write)
+		return hw->nvm.ops.write(hw, offset, words, data);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
+ *  @hw: pointer to the HW structure
+ *  @reg: 32bit register offset
+ *  @offset: the register to write
+ *  @data: the value to write.
+ *
+ *  Writes the PHY register at offset with the value in data.
+ *  This is a function pointer entry point called by drivers.
+ **/
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
+			      u8 data)
+{
+	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
+}
+
+/**
+ * e1000_power_up_phy - Restores link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_up_phy(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.power_up)
+		hw->phy.ops.power_up(hw);
+
+	e1000_setup_link(hw);
+}
+
+/**
+ * e1000_power_down_phy - Power down PHY
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ **/
+void e1000_power_down_phy(struct e1000_hw *hw)
+{
+	if (hw->phy.ops.power_down)
+		hw->phy.ops.power_down(hw);
+}
+
+/**
+ *  e1000_power_up_fiber_serdes_link - Power up serdes link
+ *  @hw: pointer to the HW structure
+ *
+ *  Power on the optics and PCS.
+ **/
+void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.power_up_serdes)
+		hw->mac.ops.power_up_serdes(hw);
+}
+
+/**
+ *  e1000_shutdown_fiber_serdes_link - Remove link during power down
+ *  @hw: pointer to the HW structure
+ *
+ *  Shutdown the optics and PCS on driver unload.
+ **/
+void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
+{
+	if (hw->mac.ops.shutdown_serdes)
+		hw->mac.ops.shutdown_serdes(hw);
+}
+
diff --git a/drivers/net/e1000/base/e1000_api.h b/drivers/net/e1000/base/e1000_api.h
new file mode 100644
index 0000000..02b16da
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_api.h
@@ -0,0 +1,167 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_API_H_
+#define _E1000_API_H_
+
+#include "e1000_hw.h"
+
+extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
+extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
+extern void e1000_init_function_pointers_i210(struct e1000_hw *hw);
+
+s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr);
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
+s32 e1000_init_mac_params(struct e1000_hw *hw);
+s32 e1000_init_nvm_params(struct e1000_hw *hw);
+s32 e1000_init_phy_params(struct e1000_hw *hw);
+s32 e1000_init_mbx_params(struct e1000_hw *hw);
+s32 e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_clear_vfta(struct e1000_hw *hw);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+			       u32 mc_addr_count);
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_check_reset_block(struct e1000_hw *hw);
+s32 e1000_blink_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+s32 e1000_id_led_init(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+s32 e1000_get_cable_length(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
+			      u8 data);
+s32 e1000_get_phy_info(struct e1000_hw *hw);
+void e1000_release_phy(struct e1000_hw *hw);
+s32 e1000_acquire_phy(struct e1000_hw *hw);
+s32 e1000_cfg_on_link_up(struct e1000_hw *hw);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_commit(struct e1000_hw *hw);
+void e1000_power_up_phy(struct e1000_hw *hw);
+void e1000_power_down_phy(struct e1000_hw *hw);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
+s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size);
+s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
+void e1000_reload_nvm(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
+			    u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+			       struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
+u32  e1000_translate_register_82542(u32 reg);
+
+
+
+/*
+ * TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ *      adapter = a pointer to struct e1000_hw
+ *      status = the 8 bit status field of the Rx descriptor with EOP set
+ *      error = the 8 bit error field of the Rx descriptor with EOP set
+ *      length = the sum of all the length fields of the Rx descriptors that
+ *               make up the current frame
+ *      last_byte = the last byte of the frame DMAed by the hardware
+ *      max_frame_length = the maximum frame length we want to accept.
+ *      min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ *  ...
+ *  if (TBI_ACCEPT) {
+ *      accept_frame = true;
+ *      e1000_tbi_adjust_stats(adapter, MacAddress);
+ *      frame_length--;
+ *  } else {
+ *      accept_frame = false;
+ *  }
+ *  ...
+ */
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION   0x0F
+
+#define TBI_ACCEPT(a, status, errors, length, last_byte, \
+		   min_frame_size, max_frame_size) \
+	(e1000_tbi_sbp_enabled_82543(a) && \
+	 (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+	 ((last_byte) == CARRIER_EXTENSION) && \
+	 (((status) & E1000_RXD_STAT_VP) ? \
+	  (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
+	  ((length) <= (max_frame_size + 1))) : \
+	  (((length) > min_frame_size) && \
+	  ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b))
+#define E1000_DIVIDE_ROUND_UP(a, b)	(((a) + (b) - 1) / (b)) /* ceil(a/b) */
+#endif /* _E1000_API_H_ */
diff --git a/drivers/net/e1000/base/e1000_defines.h b/drivers/net/e1000/base/e1000_defines.h
new file mode 100644
index 0000000..278c507
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_defines.h
@@ -0,0 +1,1498 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_DEFINES_H_
+#define _E1000_DEFINES_H_
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE  8
+#define REQ_RX_DESCRIPTOR_MULTIPLE  8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME		0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN	0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS	0x00000004 /* PME Status */
+#define E1000_WUC_APMPME	0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_PHY_WAKE	0x00000100 /* if PHY supports wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC	0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG	0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX	0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC	0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC	0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP	0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4	0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_FLX0		0x00010000 /* Flexible Filter 0 Enable */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC		E1000_WUFC_LNKC
+#define E1000_WUS_MAG		E1000_WUFC_MAG
+#define E1000_WUS_EX		E1000_WUFC_EX
+#define E1000_WUS_MC		E1000_WUFC_MC
+#define E1000_WUS_BC		E1000_WUFC_BC
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_LPCD		0x00000004 /* LCD Power Cycle Done */
+#define E1000_CTRL_EXT_SDP4_DATA	0x00000010 /* SW Definable Pin 4 data */
+#define E1000_CTRL_EXT_SDP6_DATA	0x00000040 /* SW Definable Pin 6 data */
+#define E1000_CTRL_EXT_SDP3_DATA	0x00000080 /* SW Definable Pin 3 data */
+/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
+#define E1000_CTRL_EXT_SDP4_DIR	0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR	0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP3_DIR	0x00000800 /* Direction of SDP3 0=in 1=out */
+#define E1000_CTRL_EXT_FORCE_SMBUS	0x00000800 /* Force SMBus mode */
+#define E1000_CTRL_EXT_EE_RST	0x00002000 /* Reinitialize from EEPROM */
+/* Physical Func Reset Done Indication */
+#define E1000_CTRL_EXT_PFRSTD	0x00004000
+#define E1000_CTRL_EXT_SDLPE	0X00040000  /* SerDes Low Power Enable */
+#define E1000_CTRL_EXT_SPD_BYPS	0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS	0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_DMA_DYN_CLK_EN	0x00080000 /* DMA Dynamic Clk Gating */
+#define E1000_CTRL_EXT_LINK_MODE_MASK	0x00C00000
+/* Offset of the link mode field in Ctrl Ext register */
+#define E1000_CTRL_EXT_LINK_MODE_OFFSET	22
+#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX	0x00400000
+#define E1000_CTRL_EXT_LINK_MODE_GMII	0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES	0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII	0x00800000
+#define E1000_CTRL_EXT_EIAME		0x01000000
+#define E1000_CTRL_EXT_IRCA		0x00000001
+#define E1000_CTRL_EXT_DRV_LOAD		0x10000000 /* Drv loaded bit for FW */
+#define E1000_CTRL_EXT_IAME		0x08000000 /* Int ACK Auto-mask */
+#define E1000_CTRL_EXT_PBA_CLR		0x80000000 /* PBA Clear */
+#define E1000_CTRL_EXT_LSECCK		0x00001000
+#define E1000_CTRL_EXT_PHYPDEN		0x00100000
+#define E1000_I2CCMD_REG_ADDR_SHIFT	16
+#define E1000_I2CCMD_PHY_ADDR_SHIFT	24
+#define E1000_I2CCMD_OPCODE_READ	0x08000000
+#define E1000_I2CCMD_OPCODE_WRITE	0x00000000
+#define E1000_I2CCMD_READY		0x20000000
+#define E1000_I2CCMD_ERROR		0x80000000
+#define E1000_I2CCMD_SFP_DATA_ADDR(a)	(0x0000 + (a))
+#define E1000_I2CCMD_SFP_DIAG_ADDR(a)	(0x0100 + (a))
+#define E1000_MAX_SGMII_PHY_REG_ADDR	255
+#define E1000_I2CCMD_PHY_TIMEOUT	200
+#define E1000_IVAR_VALID	0x80
+#define E1000_GPIE_NSICR	0x00000001
+#define E1000_GPIE_MSIX_MODE	0x00000010
+#define E1000_GPIE_EIAME	0x40000000
+#define E1000_GPIE_PBA		0x80000000
+
+/* Receive Descriptor bit definitions */
+#define E1000_RXD_STAT_DD	0x01    /* Descriptor Done */
+#define E1000_RXD_STAT_EOP	0x02    /* End of Packet */
+#define E1000_RXD_STAT_IXSM	0x04    /* Ignore checksum */
+#define E1000_RXD_STAT_VP	0x08    /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS	0x10    /* UDP xsum calculated */
+#define E1000_RXD_STAT_TCPCS	0x20    /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS	0x40    /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF	0x80    /* passed in-exact filter */
+#define E1000_RXD_STAT_IPIDV	0x200   /* IP identification valid */
+#define E1000_RXD_STAT_UDPV	0x400   /* Valid UDP checksum */
+#define E1000_RXD_STAT_DYNINT	0x800   /* Pkt caused INT via DYNINT */
+#define E1000_RXD_ERR_CE	0x01    /* CRC Error */
+#define E1000_RXD_ERR_SE	0x02    /* Symbol Error */
+#define E1000_RXD_ERR_SEQ	0x04    /* Sequence Error */
+#define E1000_RXD_ERR_CXE	0x10    /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE	0x20    /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE	0x40    /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE	0x80    /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK	0x0FFF  /* VLAN ID is in lower 12 bits */
+
+#define E1000_RXDEXT_STATERR_TST	0x00000100 /* Time Stamp taken */
+#define E1000_RXDEXT_STATERR_LB		0x00040000
+#define E1000_RXDEXT_STATERR_CE		0x01000000
+#define E1000_RXDEXT_STATERR_SE		0x02000000
+#define E1000_RXDEXT_STATERR_SEQ	0x04000000
+#define E1000_RXDEXT_STATERR_CXE	0x10000000
+#define E1000_RXDEXT_STATERR_TCPE	0x20000000
+#define E1000_RXDEXT_STATERR_IPE	0x40000000
+#define E1000_RXDEXT_STATERR_RXE	0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+	E1000_RXD_ERR_CE  |		\
+	E1000_RXD_ERR_SE  |		\
+	E1000_RXD_ERR_SEQ |		\
+	E1000_RXD_ERR_CXE |		\
+	E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+	E1000_RXDEXT_STATERR_CE  |	\
+	E1000_RXDEXT_STATERR_SE  |	\
+	E1000_RXDEXT_STATERR_SEQ |	\
+	E1000_RXDEXT_STATERR_CXE |	\
+	E1000_RXDEXT_STATERR_RXE)
+
+#if !defined(EXTERNAL_RELEASE) || defined(E1000E_MQ)
+#define E1000_MRQC_ENABLE_RSS_2Q		0x00000001
+#endif /* !EXTERNAL_RELEASE || E1000E_MQ */
+#define E1000_MRQC_RSS_FIELD_MASK		0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP		0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4		0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX	0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6		0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP		0x00200000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP		0x00008000
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN	0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN	0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_ARP_EN	0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_RCV_TCO_EN	0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE	0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER	0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST		0x00200000
+
+#define E1000_MANC2H_PORT_623		0x00000020 /* Port 0x26f */
+#define E1000_MANC2H_PORT_664		0x00000040 /* Port 0x298 */
+#define E1000_MDEF_PORT_623		0x00000800 /* Port 0x26f */
+#define E1000_MDEF_PORT_664		0x00000400 /* Port 0x298 */
+
+/* Receive Control */
+#define E1000_RCTL_RST		0x00000001 /* Software reset */
+#define E1000_RCTL_EN		0x00000002 /* enable */
+#define E1000_RCTL_SBP		0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE		0x00000008 /* unicast promisc enable */
+#define E1000_RCTL_MPE		0x00000010 /* multicast promisc enable */
+#define E1000_RCTL_LPE		0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO	0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC	0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_TCVR	0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_PS	0x00000400 /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF	0x00000000 /* Rx desc min thresh size */
+#define E1000_RCTL_MO_SHIFT	12 /* multicast offset shift */
+#define E1000_RCTL_MO_3		0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_BAM		0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048	0x00000000 /* Rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024	0x00010000 /* Rx buffer size 1024 */
+#define E1000_RCTL_SZ_512	0x00020000 /* Rx buffer size 512 */
+#define E1000_RCTL_SZ_256	0x00030000 /* Rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384	0x00010000 /* Rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192	0x00020000 /* Rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096	0x00030000 /* Rx buffer size 4096 */
+#define E1000_RCTL_VFE		0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN	0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI		0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF		0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF		0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX		0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC	0x04000000 /* Strip Ethernet CRC */
+
+/* Use byte values for the following shift parameters
+ * Usage:
+ *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ *		  E1000_PSRCTL_BSIZE0_MASK) |
+ *		((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ *		  E1000_PSRCTL_BSIZE1_MASK) |
+ *		((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ *		  E1000_PSRCTL_BSIZE2_MASK) |
+ *		((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ *		  E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256],  default=256
+ *       value1 = [1024..64512], default=4096
+ *       value2 = [0..64512],    default=4096
+ *       value3 = [0..64512],    default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK	0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK	0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK	0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK	0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT	7    /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT	2    /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT	6    /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT	14   /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM	0x01
+#define E1000_SWFW_PHY0_SM	0x02
+#define E1000_SWFW_PHY1_SM	0x04
+#define E1000_SWFW_CSR_SM	0x08
+#define E1000_SWFW_PHY2_SM	0x20
+#define E1000_SWFW_PHY3_SM	0x40
+#define E1000_SWFW_SW_MNG_SM	0x400
+
+/* Device Control */
+#define E1000_CTRL_FD		0x00000001  /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_PRIOR	0x00000004  /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */
+#define E1000_CTRL_LRST		0x00000008  /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_ASDE		0x00000020  /* Auto-speed detect enable */
+#define E1000_CTRL_SLU		0x00000040  /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS		0x00000080  /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL	0x00000300  /* Speed Select Mask */
+#define E1000_CTRL_SPD_10	0x00000000  /* Force 10Mb */
+#define E1000_CTRL_SPD_100	0x00000100  /* Force 100Mb */
+#define E1000_CTRL_SPD_1000	0x00000200  /* Force 1Gb */
+#define E1000_CTRL_FRCSPD	0x00000800  /* Force Speed */
+#define E1000_CTRL_FRCDPX	0x00001000  /* Force Duplex */
+#define E1000_CTRL_LANPHYPC_OVERRIDE	0x00010000 /* SW control of LANPHYPC */
+#define E1000_CTRL_LANPHYPC_VALUE	0x00020000 /* SW value of LANPHYPC */
+#define E1000_CTRL_MEHE		0x00080000 /* Memory Error Handling Enable */
+#define E1000_CTRL_SWDPIN0	0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1	0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2	0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_ADVD3WUC	0x00100000 /* D3 WUC */
+#define E1000_CTRL_EN_PHY_PWR_MGMT	0x00200000 /* PHY PM enable */
+#define E1000_CTRL_SWDPIN3	0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0	0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO2	0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3	0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST		0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE		0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE		0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_VME		0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST	0x80000000 /* PHY Reset */
+#define E1000_CTRL_I2C_ENA	0x02000000 /* I2C enable */
+
+#define E1000_CTRL_MDIO_DIR		E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO			E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR		E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC			E1000_CTRL_SWDPIN3
+
+#define E1000_CONNSW_ENRGSRC		0x4
+#define E1000_CONNSW_PHYSD		0x400
+#define E1000_CONNSW_PHY_PDN		0x800
+#define E1000_CONNSW_SERDESD		0x200
+#define E1000_CONNSW_AUTOSENSE_CONF	0x2
+#define E1000_CONNSW_AUTOSENSE_EN	0x1
+#define E1000_PCS_CFG_PCS_EN		8
+#define E1000_PCS_LCTL_FLV_LINK_UP	1
+#define E1000_PCS_LCTL_FSV_10		0
+#define E1000_PCS_LCTL_FSV_100		2
+#define E1000_PCS_LCTL_FSV_1000		4
+#define E1000_PCS_LCTL_FDV_FULL		8
+#define E1000_PCS_LCTL_FSD		0x10
+#define E1000_PCS_LCTL_FORCE_LINK	0x20
+#define E1000_PCS_LCTL_FORCE_FCTRL	0x80
+#define E1000_PCS_LCTL_AN_ENABLE	0x10000
+#define E1000_PCS_LCTL_AN_RESTART	0x20000
+#define E1000_PCS_LCTL_AN_TIMEOUT	0x40000
+#define E1000_ENABLE_SERDES_LOOPBACK	0x0410
+
+#define E1000_PCS_LSTS_LINK_OK		1
+#define E1000_PCS_LSTS_SPEED_100	2
+#define E1000_PCS_LSTS_SPEED_1000	4
+#define E1000_PCS_LSTS_DUPLEX_FULL	8
+#define E1000_PCS_LSTS_SYNK_OK		0x10
+#define E1000_PCS_LSTS_AN_COMPLETE	0x10000
+
+/* Device Status */
+#define E1000_STATUS_FD			0x00000001 /* Duplex 0=half 1=full */
+#define E1000_STATUS_LU			0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK		0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT		2
+#define E1000_STATUS_FUNC_1		0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF		0x00000010 /* transmission paused */
+#define E1000_STATUS_SPEED_MASK	0x000000C0
+#define E1000_STATUS_SPEED_10		0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100		0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000		0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE	0x00000200 /* Lan Init Compltn by NVM */
+#define E1000_STATUS_PHYRA		0x00000400 /* PHY Reset Asserted */
+#define E1000_STATUS_GIO_MASTER_ENABLE	0x00080000 /* Master request status */
+#define E1000_STATUS_PCI66		0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64		0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_2P5_SKU		0x00001000 /* Val of 2.5GBE SKU strap */
+#define E1000_STATUS_2P5_SKU_OVER	0x00002000 /* Val of 2.5GBE SKU Over */
+#define E1000_STATUS_PCIX_MODE		0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED		0x0000C000 /* PCI-X bus speed */
+
+/* Constants used to interpret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66	0x00000000 /* PCI-X bus spd 50-66MHz */
+#define E1000_STATUS_PCIX_SPEED_100	0x00004000 /* PCI-X bus spd 66-100MHz */
+#define E1000_STATUS_PCIX_SPEED_133	0x00008000 /* PCI-X bus spd 100-133MHz*/
+
+#define SPEED_10	10
+#define SPEED_100	100
+#define SPEED_1000	1000
+#define SPEED_2500	2500
+#define HALF_DUPLEX	1
+#define FULL_DUPLEX	2
+
+#define PHY_FORCE_TIME	20
+
+#define ADVERTISE_10_HALF		0x0001
+#define ADVERTISE_10_FULL		0x0002
+#define ADVERTISE_100_HALF		0x0004
+#define ADVERTISE_100_FULL		0x0008
+#define ADVERTISE_1000_HALF		0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL		0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX	( \
+	ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
+	ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG	( \
+	ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
+	ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED	(ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED	(ADVERTISE_10_HALF | ADVERTISE_10_FULL)
+#define E1000_ALL_HALF_DUPLEX	(ADVERTISE_10_HALF | ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT		E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_PHY_LED0_MODE_MASK	0x00000007
+#define E1000_PHY_LED0_IVRT		0x00000008
+#define E1000_PHY_LED0_MASK		0x0000001F
+
+#define E1000_LEDCTL_LED0_MODE_MASK	0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT	0
+#define E1000_LEDCTL_LED0_IVRT		0x00000040
+#define E1000_LEDCTL_LED0_BLINK		0x00000080
+
+#define E1000_LEDCTL_MODE_LINK_UP	0x2
+#define E1000_LEDCTL_MODE_LED_ON	0xE
+#define E1000_LEDCTL_MODE_LED_OFF	0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D	0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C	0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM	0x01       /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM	0x02       /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP	0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS	0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC	0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS	0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS	0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT	0x20000000 /* Desc extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE	0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE	0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD	0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC	0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC	0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU	0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP	0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP	0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE	0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC	0x00000004 /* Tx Underrun */
+#define E1000_TXD_EXTCMD_TSTAMP	0x00000010 /* IEEE1588 Timestamp packet */
+
+/* Transmit Control */
+#define E1000_TCTL_EN		0x00000002 /* enable Tx */
+#define E1000_TCTL_PSP		0x00000008 /* pad short packets */
+#define E1000_TCTL_CT		0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD		0x003ff000 /* collision distance */
+#define E1000_TCTL_RTLC		0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_MULR		0x10000000 /* Multiple request support */
+
+/* Transmit Arbitration Count */
+#define E1000_TARC0_ENABLE	0x00000400 /* Enable Tx Queue 0 */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK	0x0400
+#define E1000_SCTL_ENABLE_SERDES_LOOPBACK	0x0410
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_IPOFL	0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL	0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_CRCOFL	0x00000800 /* CRC32 offload enable */
+#define E1000_RXCSUM_IPPCSE	0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD	0x00002000 /* packet checksum disabled */
+
+/* Header split receive */
+#define E1000_RFCTL_NFSW_DIS		0x00000040
+#define E1000_RFCTL_NFSR_DIS		0x00000080
+#define E1000_RFCTL_ACK_DIS		0x00001000
+#define E1000_RFCTL_EXTEN		0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS		0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS	0x00020000
+#define E1000_RFCTL_LEF			0x00040000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD	15
+#define E1000_CT_SHIFT			4
+#define E1000_COLLISION_DISTANCE	63
+#define E1000_COLD_SHIFT		12
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT		10
+#define DEFAULT_82543_TIPG_IPGT_FIBER	9
+#define DEFAULT_82543_TIPG_IPGT_COPPER	8
+
+#define E1000_TIPG_IPGT_MASK		0x000003FF
+
+#define DEFAULT_82542_TIPG_IPGR1	2
+#define DEFAULT_82543_TIPG_IPGR1	8
+#define E1000_TIPG_IPGR1_SHIFT		10
+
+#define DEFAULT_82542_TIPG_IPGR2	10
+#define DEFAULT_82543_TIPG_IPGR2	6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2	7
+#define E1000_TIPG_IPGR2_SHIFT		20
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE		0x8100  /* 802.3ac packet */
+
+#define ETHERNET_FCS_SIZE		4
+#define MAX_JUMBO_FRAME_SIZE		0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP	0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE	0x00000001
+#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE	0x00000008
+#define E1000_EXTCNF_CTRL_SWFLAG		0x00000020
+#define E1000_EXTCNF_CTRL_GATE_PHY_CFG		0x00000080
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK	0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT	16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK	0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT	16
+
+#define E1000_PHY_CTRL_D0A_LPLU			0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU		0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE	0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE		0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS			0x00050000
+
+/* Low Power IDLE Control */
+#define E1000_LPIC_LPIET_SHIFT		24	/* Low Power Idle Entry Time */
+
+/* PBA constants */
+#define E1000_PBA_8K		0x0008    /* 8KB */
+#define E1000_PBA_10K		0x000A    /* 10KB */
+#define E1000_PBA_12K		0x000C    /* 12KB */
+#define E1000_PBA_14K		0x000E    /* 14KB */
+#define E1000_PBA_16K		0x0010    /* 16KB */
+#define E1000_PBA_18K		0x0012
+#define E1000_PBA_20K		0x0014
+#define E1000_PBA_22K		0x0016
+#define E1000_PBA_24K		0x0018
+#define E1000_PBA_26K		0x001A
+#define E1000_PBA_30K		0x001E
+#define E1000_PBA_32K		0x0020
+#define E1000_PBA_34K		0x0022
+#define E1000_PBA_35K		0x0023
+#define E1000_PBA_38K		0x0026
+#define E1000_PBA_40K		0x0028
+#define E1000_PBA_48K		0x0030    /* 48KB */
+#define E1000_PBA_64K		0x0040    /* 64KB */
+
+#define E1000_PBA_RXA_MASK	0xFFFF
+
+#define E1000_PBS_16K		E1000_PBA_16K
+
+/* Uncorrectable/correctable ECC Error counts and enable bits */
+#define E1000_PBECCSTS_CORR_ERR_CNT_MASK	0x000000FF
+#define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK	0x0000FF00
+#define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT	8
+#define E1000_PBECCSTS_ECC_ENABLE		0x00010000
+
+#define IFS_MAX			80
+#define IFS_MIN			40
+#define IFS_RATIO		4
+#define IFS_STEP		10
+#define MIN_NUM_XMITS		1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI		0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI	0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_DRV_LOAD	0x00000008 /* Driver Loaded Bit */
+
+#define E1000_SWSM2_LOCK	0x00000002 /* Secondary driver semaphore bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW		0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE		0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC		0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ		0x00000008 /* Rx sequence error */
+#define E1000_ICR_RXDMT0	0x00000010 /* Rx desc min. threshold (0) */
+#define E1000_ICR_RXO		0x00000040 /* Rx overrun */
+#define E1000_ICR_RXT0		0x00000080 /* Rx timer intr (ring 0) */
+#define E1000_ICR_VMMB		0x00000100 /* VM MB event */
+#define E1000_ICR_RXCFG		0x00000400 /* Rx /c/ ordered set */
+#define E1000_ICR_GPI_EN0	0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1	0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2	0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3	0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW	0x00008000
+#define E1000_ICR_MNG		0x00040000 /* Manageability event */
+#define E1000_ICR_ECCER		0x00400000 /* Uncorrectable ECC Error */
+#define E1000_ICR_TS		0x00080000 /* Time Sync Interrupt */
+#define E1000_ICR_DRSTA		0x40000000 /* Device Reset Asserted */
+/* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_INT_ASSERTED	0x80000000
+#define E1000_ICR_DOUTSYNC	0x10000000 /* NIC DMA out of sync */
+#define E1000_ICR_RXQ0		0x00100000 /* Rx Queue 0 Interrupt */
+#define E1000_ICR_RXQ1		0x00200000 /* Rx Queue 1 Interrupt */
+#define E1000_ICR_TXQ0		0x00400000 /* Tx Queue 0 Interrupt */
+#define E1000_ICR_TXQ1		0x00800000 /* Tx Queue 1 Interrupt */
+#define E1000_ICR_OTHER		0x01000000 /* Other Interrupts */
+#define E1000_ICR_FER		0x00400000 /* Fatal Error */
+
+#define E1000_ICR_THS		0x00800000 /* ICR.THS: Thermal Sensor Event*/
+#define E1000_ICR_MDDET		0x10000000 /* Malicious Driver Detect */
+
+/* PBA ECC Register */
+#define E1000_PBA_ECC_COUNTER_MASK	0xFFF00000 /* ECC counter mask */
+#define E1000_PBA_ECC_COUNTER_SHIFT	20 /* ECC counter shift value */
+#define E1000_PBA_ECC_CORR_EN	0x00000001 /* Enable ECC error correction */
+#define E1000_PBA_ECC_STAT_CLR	0x00000002 /* Clear ECC error counter */
+#define E1000_PBA_ECC_INT_EN	0x00000004 /* Enable ICR bit 5 on ECC error */
+
+/* Extended Interrupt Cause Read */
+#define E1000_EICR_RX_QUEUE0	0x00000001 /* Rx Queue 0 Interrupt */
+#define E1000_EICR_RX_QUEUE1	0x00000002 /* Rx Queue 1 Interrupt */
+#define E1000_EICR_RX_QUEUE2	0x00000004 /* Rx Queue 2 Interrupt */
+#define E1000_EICR_RX_QUEUE3	0x00000008 /* Rx Queue 3 Interrupt */
+#define E1000_EICR_TX_QUEUE0	0x00000100 /* Tx Queue 0 Interrupt */
+#define E1000_EICR_TX_QUEUE1	0x00000200 /* Tx Queue 1 Interrupt */
+#define E1000_EICR_TX_QUEUE2	0x00000400 /* Tx Queue 2 Interrupt */
+#define E1000_EICR_TX_QUEUE3	0x00000800 /* Tx Queue 3 Interrupt */
+#define E1000_EICR_TCP_TIMER	0x40000000 /* TCP Timer */
+#define E1000_EICR_OTHER	0x80000000 /* Interrupt Cause Active */
+/* TCP Timer */
+#define E1000_TCPTIMER_KS	0x00000100 /* KickStart */
+#define E1000_TCPTIMER_COUNT_ENABLE	0x00000200 /* Count Enable */
+#define E1000_TCPTIMER_COUNT_FINISH	0x00000400 /* Count finish */
+#define E1000_TCPTIMER_LOOP	0x00000800 /* Loop */
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register.  Each bit is documented below:
+ *   o RXT0   = Receiver Timer Interrupt (ring 0)
+ *   o TXDW   = Transmit Descriptor Written Back
+ *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ *   o RXSEQ  = Receive Sequence Error
+ *   o LSC    = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+	E1000_IMS_RXT0   |    \
+	E1000_IMS_TXDW   |    \
+	E1000_IMS_RXDMT0 |    \
+	E1000_IMS_RXSEQ  |    \
+	E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW		E1000_ICR_TXDW    /* Tx desc written back */
+#define E1000_IMS_TXQE		E1000_ICR_TXQE    /* Transmit Queue empty */
+#define E1000_IMS_LSC		E1000_ICR_LSC     /* Link Status Change */
+#define E1000_IMS_VMMB		E1000_ICR_VMMB    /* Mail box activity */
+#define E1000_IMS_RXSEQ		E1000_ICR_RXSEQ   /* Rx sequence error */
+#define E1000_IMS_RXDMT0	E1000_ICR_RXDMT0  /* Rx desc min. threshold */
+#define E1000_IMS_RXO		E1000_ICR_RXO     /* Rx overrun */
+#define E1000_IMS_RXT0		E1000_ICR_RXT0    /* Rx timer intr */
+#define E1000_IMS_TXD_LOW	E1000_ICR_TXD_LOW
+#define E1000_IMS_ECCER		E1000_ICR_ECCER   /* Uncorrectable ECC Error */
+#define E1000_IMS_TS		E1000_ICR_TS      /* Time Sync Interrupt */
+#define E1000_IMS_DRSTA		E1000_ICR_DRSTA   /* Device Reset Asserted */
+#define E1000_IMS_DOUTSYNC	E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
+#define E1000_IMS_RXQ0		E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
+#define E1000_IMS_RXQ1		E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
+#define E1000_IMS_TXQ0		E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
+#define E1000_IMS_TXQ1		E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
+#define E1000_IMS_OTHER		E1000_ICR_OTHER /* Other Interrupts */
+#define E1000_IMS_FER		E1000_ICR_FER /* Fatal Error */
+
+#define E1000_IMS_THS		E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/
+#define E1000_IMS_MDDET		E1000_ICR_MDDET /* Malicious Driver Detect */
+/* Extended Interrupt Mask Set */
+#define E1000_EIMS_RX_QUEUE0	E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EIMS_RX_QUEUE1	E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EIMS_RX_QUEUE2	E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EIMS_RX_QUEUE3	E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EIMS_TX_QUEUE0	E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EIMS_TX_QUEUE1	E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EIMS_TX_QUEUE2	E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EIMS_TX_QUEUE3	E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EIMS_TCP_TIMER	E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EIMS_OTHER	E1000_EICR_OTHER   /* Interrupt Cause Active */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_LSC		E1000_ICR_LSC       /* Link Status Change */
+#define E1000_ICS_RXSEQ		E1000_ICR_RXSEQ     /* Rx sequence error */
+#define E1000_ICS_RXDMT0	E1000_ICR_RXDMT0    /* Rx desc min. threshold */
+
+/* Extended Interrupt Cause Set */
+#define E1000_EICS_RX_QUEUE0	E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EICS_RX_QUEUE1	E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EICS_RX_QUEUE2	E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EICS_RX_QUEUE3	E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EICS_TX_QUEUE0	E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EICS_TX_QUEUE1	E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EICS_TX_QUEUE2	E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EICS_TX_QUEUE3	E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EICS_TCP_TIMER	E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EICS_OTHER	E1000_EICR_OTHER   /* Interrupt Cause Active */
+
+#define E1000_EITR_ITR_INT_MASK	0x0000FFFF
+/* E1000_EITR_CNT_IGNR is only for 82576 and newer */
+#define E1000_EITR_CNT_IGNR	0x80000000 /* Don't reset counters on write */
+#define E1000_EITR_INTERVAL 0x00007FFC
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH	0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH	0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH	0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN	0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_FULL_TX_DESC_WB	0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of descriptors still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC	0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW	0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH	0x00000100
+#define FLOW_CONTROL_TYPE		0x8808
+
+/* 802.1q VLAN Packet Size */
+#define VLAN_TAG_SIZE			4    /* 802.3ac tag (not DMA'd) */
+#define E1000_VLAN_FILTER_TBL_SIZE	128  /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots.  However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES	15
+#define E1000_RAH_AV		0x80000000 /* Receive descriptor valid */
+#define E1000_RAL_MAC_ADDR_LEN	4
+#define E1000_RAH_MAC_ADDR_LEN	2
+#define E1000_RAH_QUEUE_MASK_82575	0x000C0000
+#define E1000_RAH_POOL_1	0x00040000
+
+/* Error Codes */
+#define E1000_SUCCESS			0
+#define E1000_ERR_NVM			1
+#define E1000_ERR_PHY			2
+#define E1000_ERR_CONFIG		3
+#define E1000_ERR_PARAM			4
+#define E1000_ERR_MAC_INIT		5
+#define E1000_ERR_PHY_TYPE		6
+#define E1000_ERR_RESET			9
+#define E1000_ERR_MASTER_REQUESTS_PENDING	10
+#define E1000_ERR_HOST_INTERFACE_COMMAND	11
+#define E1000_BLK_PHY_RESET		12
+#define E1000_ERR_SWFW_SYNC		13
+#define E1000_NOT_IMPLEMENTED		14
+#define E1000_ERR_MBX			15
+#define E1000_ERR_INVALID_ARGUMENT	16
+#define E1000_ERR_NO_SPACE		17
+#define E1000_ERR_NVM_PBA_SECTION	18
+#define E1000_ERR_I2C			19
+#define E1000_ERR_INVM_VALUE_NOT_FOUND	20
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT		50
+#define COPPER_LINK_UP_LIMIT		10
+#define PHY_AUTO_NEG_LIMIT		45
+#define PHY_FORCE_LIMIT			20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT		800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT			100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT		10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT		10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH		0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTL_RTL		0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE	0x80000000 /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD		0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_PAUSE	0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR	0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK	0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_ANE		0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW		0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_IV		0x08000000 /* Receive config invalid */
+#define E1000_RXCW_C		0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH	0x40000000 /* Receive config synch */
+
+#define E1000_TSYNCTXCTL_VALID		0x00000001 /* Tx timestamp valid */
+#define E1000_TSYNCTXCTL_ENABLED	0x00000010 /* enable Tx timestamping */
+
+#define E1000_TSYNCRXCTL_VALID		0x00000001 /* Rx timestamp valid */
+#define E1000_TSYNCRXCTL_TYPE_MASK	0x0000000E /* Rx type mask */
+#define E1000_TSYNCRXCTL_TYPE_L2_V2	0x00
+#define E1000_TSYNCRXCTL_TYPE_L4_V1	0x02
+#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2	0x04
+#define E1000_TSYNCRXCTL_TYPE_ALL	0x08
+#define E1000_TSYNCRXCTL_TYPE_EVENT_V2	0x0A
+#define E1000_TSYNCRXCTL_ENABLED	0x00000010 /* enable Rx timestamping */
+#define E1000_TSYNCRXCTL_SYSCFI		0x00000020 /* Sys clock frequency */
+
+#define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE	0x00000000
+#define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE	0x00010000
+
+#define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE	0x00000000
+#define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE	0x01000000
+
+#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK		0x000000FF
+#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE		0x00
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE	0x01
+#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE	0x02
+#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE	0x03
+#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE	0x04
+
+#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK		0x00000F00
+#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE		0x0000
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE	0x0100
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE	0x0200
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE	0x0300
+#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE	0x0800
+#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE	0x0900
+#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
+#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE	0x0B00
+#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE	0x0C00
+#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE	0x0D00
+
+#define E1000_TIMINCA_16NS_SHIFT	24
+#define E1000_TIMINCA_INCPERIOD_SHIFT	24
+#define E1000_TIMINCA_INCVALUE_MASK	0x00FFFFFF
+
+#define E1000_TSICR_TXTS		0x00000002
+#define E1000_TSIM_TXTS			0x00000002
+/* TUPLE Filtering Configuration */
+#define E1000_TTQF_DISABLE_MASK		0xF0008000 /* TTQF Disable Mask */
+#define E1000_TTQF_QUEUE_ENABLE		0x100   /* TTQF Queue Enable Bit */
+#define E1000_TTQF_PROTOCOL_MASK	0xFF    /* TTQF Protocol Mask */
+/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */
+#define E1000_TTQF_PROTOCOL_TCP		0x0
+/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
+#define E1000_TTQF_PROTOCOL_UDP		0x1
+/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
+#define E1000_TTQF_PROTOCOL_SCTP	0x2
+#define E1000_TTQF_PROTOCOL_SHIFT	5       /* TTQF Protocol Shift */
+#define E1000_TTQF_QUEUE_SHIFT		16      /* TTQF Queue Shfit */
+#define E1000_TTQF_RX_QUEUE_MASK	0x70000 /* TTQF Queue Mask */
+#define E1000_TTQF_MASK_ENABLE		0x10000000 /* TTQF Mask Enable Bit */
+#define E1000_IMIR_CLEAR_MASK		0xF001FFFF /* IMIR Reg Clear Mask */
+#define E1000_IMIR_PORT_BYPASS		0x20000 /* IMIR Port Bypass Bit */
+#define E1000_IMIR_PRIORITY_SHIFT	29 /* IMIR Priority Shift */
+#define E1000_IMIREXT_CLEAR_MASK	0x7FFFF /* IMIREXT Reg Clear Mask */
+
+#define E1000_MDICNFG_EXT_MDIO		0x80000000 /* MDI ext/int destination */
+#define E1000_MDICNFG_COM_MDIO		0x40000000 /* MDI shared w/ lan 0 */
+#define E1000_MDICNFG_PHY_MASK		0x03E00000
+#define E1000_MDICNFG_PHY_SHIFT		21
+
+#define E1000_MEDIA_PORT_COPPER			1
+#define E1000_MEDIA_PORT_OTHER			2
+#define E1000_M88E1112_AUTO_COPPER_SGMII	0x2
+#define E1000_M88E1112_AUTO_COPPER_BASEX	0x3
+#define E1000_M88E1112_STATUS_LINK		0x0004 /* Interface Link Bit */
+#define E1000_M88E1112_MAC_CTRL_1		0x10
+#define E1000_M88E1112_MAC_CTRL_1_MODE_MASK	0x0380 /* Mode Select */
+#define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT	7
+#define E1000_M88E1112_PAGE_ADDR		0x16
+#define E1000_M88E1112_STATUS			0x01
+
+#define E1000_THSTAT_LOW_EVENT		0x20000000 /* Low thermal threshold */
+#define E1000_THSTAT_MID_EVENT		0x00200000 /* Mid thermal threshold */
+#define E1000_THSTAT_HIGH_EVENT		0x00002000 /* High thermal threshold */
+#define E1000_THSTAT_PWR_DOWN		0x00000001 /* Power Down Event */
+#define E1000_THSTAT_LINK_THROTTLE	0x00000002 /* Link Spd Throttle Event */
+
+/* I350 EEE defines */
+#define E1000_IPCNFG_EEE_1G_AN		0x00000008 /* IPCNFG EEE Ena 1G AN */
+#define E1000_IPCNFG_EEE_100M_AN	0x00000004 /* IPCNFG EEE Ena 100M AN */
+#define E1000_EEER_TX_LPI_EN		0x00010000 /* EEER Tx LPI Enable */
+#define E1000_EEER_RX_LPI_EN		0x00020000 /* EEER Rx LPI Enable */
+#define E1000_EEER_LPI_FC		0x00040000 /* EEER Ena on Flow Cntrl */
+/* EEE status */
+#define E1000_EEER_EEE_NEG		0x20000000 /* EEE capability nego */
+#define E1000_EEER_RX_LPI_STATUS	0x40000000 /* Rx in LPI state */
+#define E1000_EEER_TX_LPI_STATUS	0x80000000 /* Tx in LPI state */
+#define E1000_EEE_LP_ADV_ADDR_I350	0x040F     /* EEE LP Advertisement */
+#define E1000_M88E1543_PAGE_ADDR	0x16       /* Page Offset Register */
+#define E1000_M88E1543_EEE_CTRL_1	0x0
+#define E1000_M88E1543_EEE_CTRL_1_MS	0x0001     /* EEE Master/Slave */
+#define E1000_EEE_ADV_DEV_I354		7
+#define E1000_EEE_ADV_ADDR_I354		60
+#define E1000_EEE_ADV_100_SUPPORTED	(1 << 1)   /* 100BaseTx EEE Supported */
+#define E1000_EEE_ADV_1000_SUPPORTED	(1 << 2)   /* 1000BaseT EEE Supported */
+#define E1000_PCS_STATUS_DEV_I354	3
+#define E1000_PCS_STATUS_ADDR_I354	1
+#define E1000_PCS_STATUS_RX_LPI_RCVD	0x0400
+#define E1000_PCS_STATUS_TX_LPI_RCVD	0x0800
+#define E1000_M88E1512_CFG_REG_1	0x0010
+#define E1000_M88E1512_CFG_REG_2	0x0011
+#define E1000_M88E1512_CFG_REG_3	0x0007
+#define E1000_M88E1512_MODE		0x0014
+#define E1000_EEE_SU_LPI_CLK_STP	0x00800000 /* EEE LPI Clock Stop */
+#define E1000_EEE_LP_ADV_DEV_I210	7          /* EEE LP Adv Device */
+#define E1000_EEE_LP_ADV_ADDR_I210	61         /* EEE LP Adv Register */
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP		0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP	0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP	0x00000004
+#define E1000_GCR_TXD_NO_SNOOP		0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP	0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP	0x00000020
+#define E1000_GCR_CMPL_TMOUT_MASK	0x0000F000
+#define E1000_GCR_CMPL_TMOUT_10ms	0x00001000
+#define E1000_GCR_CMPL_TMOUT_RESEND	0x00010000
+#define E1000_GCR_CAP_VER2		0x00040000
+
+#define PCIE_NO_SNOOP_ALL	(E1000_GCR_RXD_NO_SNOOP | \
+				 E1000_GCR_RXDSCW_NO_SNOOP | \
+				 E1000_GCR_RXDSCR_NO_SNOOP | \
+				 E1000_GCR_TXD_NO_SNOOP    | \
+				 E1000_GCR_TXDSCW_NO_SNOOP | \
+				 E1000_GCR_TXDSCR_NO_SNOOP)
+
+#define E1000_MMDAC_FUNC_DATA	0x4000 /* Data, no post increment */
+
+/* mPHY address control and data registers */
+#define E1000_MPHY_ADDR_CTL		0x0024 /* Address Control Reg */
+#define E1000_MPHY_ADDR_CTL_OFFSET_MASK	0xFFFF0000
+#define E1000_MPHY_DATA			0x0E10 /* Data Register */
+
+/* AFE CSR Offset for PCS CLK */
+#define E1000_MPHY_PCS_CLK_REG_OFFSET	0x0004
+/* Override for near end digital loopback. */
+#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN	0x10
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB	0x0040  /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE	0x0080  /* Collision test enable */
+#define MII_CR_FULL_DUPLEX	0x0100  /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG	0x0200  /* Restart auto negotiation */
+#define MII_CR_ISOLATE		0x0400  /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN	0x0800  /* Power down */
+#define MII_CR_AUTO_NEG_EN	0x1000  /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB	0x2000  /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK		0x4000  /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET		0x8000  /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000	0x0040
+#define MII_CR_SPEED_100	0x2000
+#define MII_CR_SPEED_10		0x0000
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS	0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT	0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS	0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS	0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT	0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE	0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS	0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS	0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS	0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS	0x0800 /* 10T   Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS	0x1000 /* 10T   Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS	0x2000 /* 100X  Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS	0x4000 /* 100X  Full Duplex Capable */
+#define MII_SR_100T4_CAPS	0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD	0x0001   /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS	0x0020   /* 10T   Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS	0x0040   /* 10T   Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS	0x0080   /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS	0x0100   /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS	0x0200   /* 100T4 Capable */
+#define NWAY_AR_PAUSE		0x0400   /* Pause operation desired */
+#define NWAY_AR_ASM_DIR		0x0800   /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT	0x2000   /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE	0x8000   /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD	0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS		0x0020 /* LP 10T Half Dplx Capable */
+#define NWAY_LPAR_10T_FD_CAPS		0x0040 /* LP 10T Full Dplx Capable */
+#define NWAY_LPAR_100TX_HD_CAPS		0x0080 /* LP 100TX Half Dplx Capable */
+#define NWAY_LPAR_100TX_FD_CAPS		0x0100 /* LP 100TX Full Dplx Capable */
+#define NWAY_LPAR_100T4_CAPS		0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE			0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR		0x0800 /* LP Asym Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT		0x2000 /* LP detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE		0x4000 /* LP rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE		0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS		0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD		0x0002 /* LP 10T Half Dplx Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS		0x0004 /* LP 10T Full Dplx Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS	0x0008 /* LP 100TX Half Dplx Capable */
+#define NWAY_ER_PAR_DETECT_FAULT	0x0010 /* LP 100TX Full Dplx Capable */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE	0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS	0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS	0x0200 /* Advertise 1000T FD capability  */
+/* 1=Repeater/switch device port 0=DTE device */
+#define CR_1000T_REPEATER_DTE	0x0400
+/* 1=Configure PHY as Master 0=Configure PHY as Slave */
+#define CR_1000T_MS_VALUE	0x0800
+/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */
+#define CR_1000T_MS_ENABLE	0x1000
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1	0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2	0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3	0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4	0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT		0x00FF /* Num idle err since last rd */
+#define SR_1000T_ASYM_PAUSE_DIR		0x0100 /* LP asym pause direction bit */
+#define SR_1000T_LP_HD_CAPS		0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS		0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS	0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS	0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES		0x4000 /* 1=Local Tx Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT	0x8000 /* Master/Slave config fault */
+
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT	5
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL		0x00 /* Control Register */
+#define PHY_STATUS		0x01 /* Status Register */
+#define PHY_ID1			0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2			0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV		0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY		0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP		0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX	0x07 /* Next Page Tx */
+#define PHY_LP_NEXT_PAGE	0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL		0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS	0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS		0x0F /* Extended Status Reg */
+
+#define PHY_CONTROL_LB		0x4000 /* PHY Loopback bit */
+
+/* NVM Control */
+#define E1000_EECD_SK		0x00000001 /* NVM Clock */
+#define E1000_EECD_CS		0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI		0x00000004 /* NVM Data In */
+#define E1000_EECD_DO		0x00000008 /* NVM Data Out */
+#define E1000_EECD_REQ		0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT		0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES		0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE		0x00000200 /* NVM Size (0=64 word 1=256 word) */
+#define E1000_EECD_BLOCKED	0x00008000 /* Bit banging access blocked flag */
+#define E1000_EECD_ABORT	0x00010000 /* NVM operation aborted flag */
+#define E1000_EECD_TIMEOUT	0x00020000 /* NVM read operation timeout flag */
+#define E1000_EECD_ERROR_CLR	0x00040000 /* NVM error status clear bit */
+/* NVM Addressing bits based on type 0=small, 1=large */
+#define E1000_EECD_ADDR_BITS	0x00000400
+#define E1000_EECD_TYPE		0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_NVM_GRANT_ATTEMPTS
+#define E1000_NVM_GRANT_ATTEMPTS	1000 /* NVM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD		0x00000200  /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK		0x00007800  /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT	11
+#define E1000_EECD_FLUPD		0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN		0x00100000 /* Ena Auto FLASH update */
+#define E1000_EECD_SEC1VAL		0x00400000 /* Sector One Valid */
+#define E1000_EECD_SEC1VAL_VALID_MASK	(E1000_EECD_AUTO_RD | E1000_EECD_PRES)
+#define E1000_EECD_FLUPD_I210		0x00800000 /* Update FLASH */
+#define E1000_EECD_FLUDONE_I210		0x04000000 /* Update FLASH done */
+#define E1000_EECD_FLASH_DETECTED_I210	0x00080000 /* FLASH detected */
+#define E1000_EECD_SEC1VAL_I210		0x02000000 /* Sector One Valid */
+#define E1000_FLUDONE_ATTEMPTS		20000
+#define E1000_EERD_EEWR_MAX_COUNT	512 /* buffered EEPROM words rw */
+#define E1000_I210_FIFO_SEL_RX		0x00
+#define E1000_I210_FIFO_SEL_TX_QAV(_i)	(0x02 + (_i))
+#define E1000_I210_FIFO_SEL_TX_LEGACY	E1000_I210_FIFO_SEL_TX_QAV(0)
+#define E1000_I210_FIFO_SEL_BMC2OS_TX	0x06
+#define E1000_I210_FIFO_SEL_BMC2OS_RX	0x01
+
+#define E1000_I210_FLASH_SECTOR_SIZE	0x1000 /* 4KB FLASH sector unit size */
+/* Secure FLASH mode requires removing MSb */
+#define E1000_I210_FW_PTR_MASK		0x7FFF
+/* Firmware code revision field word offset*/
+#define E1000_I210_FW_VER_OFFSET	328
+
+#define E1000_NVM_RW_REG_DATA	16  /* Offset to data in NVM read/write regs */
+#define E1000_NVM_RW_REG_DONE	2   /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START	1   /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT	2   /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE	1   /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ	0   /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES	2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT			0x0003
+#define NVM_ID_LED_SETTINGS		0x0004
+#define NVM_VERSION			0x0005
+#define NVM_SERDES_AMPLITUDE		0x0006 /* SERDES output amplitude */
+#define NVM_PHY_CLASS_WORD		0x0007
+#define E1000_I210_NVM_FW_MODULE_PTR	0x0010
+#define E1000_I350_NVM_FW_MODULE_PTR	0x0051
+#define NVM_FUTURE_INIT_WORD1		0x0019
+#define NVM_ETRACK_WORD			0x0042
+#define NVM_ETRACK_HIWORD		0x0043
+#define NVM_COMB_VER_OFF		0x0083
+#define NVM_COMB_VER_PTR		0x003d
+
+/* NVM version defines */
+#define NVM_MAJOR_MASK			0xF000
+#define NVM_MINOR_MASK			0x0FF0
+#define NVM_IMAGE_ID_MASK		0x000F
+#define NVM_COMB_VER_MASK		0x00FF
+#define NVM_MAJOR_SHIFT			12
+#define NVM_MINOR_SHIFT			4
+#define NVM_COMB_VER_SHFT		8
+#define NVM_VER_INVALID			0xFFFF
+#define NVM_ETRACK_SHIFT		16
+#define NVM_ETRACK_VALID		0x8000
+#define NVM_NEW_DEC_MASK		0x0F00
+#define NVM_HEX_CONV			16
+#define NVM_HEX_TENS			10
+
+/* FW version defines */
+/* Offset of "Loader patch ptr" in Firmware Header */
+#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET	0x01
+/* Patch generation hour & minutes */
+#define E1000_I350_NVM_FW_VER_WORD1_OFFSET		0x04
+/* Patch generation month & day */
+#define E1000_I350_NVM_FW_VER_WORD2_OFFSET		0x05
+/* Patch generation year */
+#define E1000_I350_NVM_FW_VER_WORD3_OFFSET		0x06
+/* Patch major & minor numbers */
+#define E1000_I350_NVM_FW_VER_WORD4_OFFSET		0x07
+
+#define NVM_MAC_ADDR			0x0000
+#define NVM_SUB_DEV_ID			0x000B
+#define NVM_SUB_VEN_ID			0x000C
+#define NVM_DEV_ID			0x000D
+#define NVM_VEN_ID			0x000E
+#define NVM_INIT_CTRL_2			0x000F
+#define NVM_INIT_CTRL_4			0x0013
+#define NVM_LED_1_CFG			0x001C
+#define NVM_LED_0_2_CFG			0x001F
+
+#define NVM_COMPAT_VALID_CSUM		0x0001
+#define NVM_FUTURE_INIT_WORD1_VALID_CSUM	0x0040
+
+#define NVM_INIT_CONTROL2_REG		0x000F
+#define NVM_INIT_CONTROL3_PORT_B	0x0014
+#define NVM_INIT_3GIO_3			0x001A
+#define NVM_SWDEF_PINS_CTRL_PORT_0	0x0020
+#define NVM_INIT_CONTROL3_PORT_A	0x0024
+#define NVM_CFG				0x0012
+#define NVM_ALT_MAC_ADDR_PTR		0x0037
+#define NVM_CHECKSUM_REG		0x003F
+#define NVM_COMPATIBILITY_REG_3		0x0003
+#define NVM_COMPATIBILITY_BIT_MASK	0x8000
+
+#define E1000_NVM_CFG_DONE_PORT_0	0x040000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1	0x080000 /* ...for second port */
+#define E1000_NVM_CFG_DONE_PORT_2	0x100000 /* ...for third port */
+#define E1000_NVM_CFG_DONE_PORT_3	0x200000 /* ...for fourth port */
+
+#define NVM_82580_LAN_FUNC_OFFSET(a)	((a) ? (0x40 + (0x40 * (a))) : 0)
+
+/* Mask bits for fields in Word 0x24 of the NVM */
+#define NVM_WORD24_COM_MDIO		0x0008 /* MDIO interface shared */
+#define NVM_WORD24_EXT_MDIO		0x0004 /* MDIO accesses routed extrnl */
+/* Offset of Link Mode bits for 82575/82576 */
+#define NVM_WORD24_LNK_MODE_OFFSET	8
+/* Offset of Link Mode bits for 82580 up */
+#define NVM_WORD24_82580_LNK_MODE_OFFSET	4
+
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK		0x3000
+#define NVM_WORD0F_PAUSE		0x1000
+#define NVM_WORD0F_ASM_DIR		0x2000
+#define NVM_WORD0F_SWPDIO_EXT_MASK	0x00F0
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK		0x000C
+
+/* Mask bits for fields in Word 0x03 of the EEPROM */
+#define NVM_COMPAT_LOM			0x0800
+
+/* length of string needed to store PBA number */
+#define E1000_PBANUM_LENGTH		11
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM				0xBABA
+
+/* PBA (printed board assembly) number words */
+#define NVM_PBA_OFFSET_0		8
+#define NVM_PBA_OFFSET_1		9
+#define NVM_PBA_PTR_GUARD		0xFAFA
+#define NVM_RESERVED_WORD		0xFFFF
+#define NVM_PHY_CLASS_A			0x8000
+#define NVM_SERDES_AMPLITUDE_MASK	0x000F
+#define NVM_SIZE_MASK			0x1C00
+#define NVM_SIZE_SHIFT			10
+#define NVM_WORD_SIZE_BASE_SHIFT	6
+#define NVM_SWDPIO_EXT_SHIFT		4
+
+/* NVM Commands - Microwire */
+#define NVM_READ_OPCODE_MICROWIRE	0x6  /* NVM read opcode */
+#define NVM_WRITE_OPCODE_MICROWIRE	0x5  /* NVM write opcode */
+#define NVM_ERASE_OPCODE_MICROWIRE	0x7  /* NVM erase opcode */
+#define NVM_EWEN_OPCODE_MICROWIRE	0x13 /* NVM erase/write enable */
+#define NVM_EWDS_OPCODE_MICROWIRE	0x10 /* NVM erase/write disable */
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI	5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI	0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI	0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI	0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI	0x06 /* NVM set Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI	0x05 /* NVM read Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI	0x01
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000	0x0000
+#define ID_LED_RESERVED_FFFF	0xFFFF
+#define ID_LED_DEFAULT		((ID_LED_OFF1_ON2  << 12) | \
+				 (ID_LED_OFF1_OFF2 <<  8) | \
+				 (ID_LED_DEF1_DEF2 <<  4) | \
+				 (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2	0x1
+#define ID_LED_DEF1_ON2		0x2
+#define ID_LED_DEF1_OFF2	0x3
+#define ID_LED_ON1_DEF2		0x4
+#define ID_LED_ON1_ON2		0x5
+#define ID_LED_ON1_OFF2		0x6
+#define ID_LED_OFF1_DEF2	0x7
+#define ID_LED_OFF1_ON2		0x8
+#define ID_LED_OFF1_OFF2	0x9
+
+#define IGP_ACTIVITY_LED_MASK	0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE	0x0300
+#define IGP_LED3_MODE		0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCIX_COMMAND_REGISTER		0xE6
+#define PCIX_STATUS_REGISTER_LO		0xE8
+#define PCIX_STATUS_REGISTER_HI		0xEA
+#define PCI_HEADER_TYPE_REGISTER	0x0E
+#define PCIE_LINK_STATUS		0x12
+#define PCIE_DEVICE_CONTROL2		0x28
+
+#define PCIX_COMMAND_MMRBC_MASK		0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT	0x2
+#define PCIX_STATUS_HI_MMRBC_MASK	0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT	0x5
+#define PCIX_STATUS_HI_MMRBC_4K		0x3
+#define PCIX_STATUS_HI_MMRBC_2K		0x2
+#define PCIX_STATUS_LO_FUNC_MASK	0x7
+#define PCI_HEADER_TYPE_MULTIFUNC	0x80
+#define PCIE_LINK_WIDTH_MASK		0x3F0
+#define PCIE_LINK_WIDTH_SHIFT		4
+#define PCIE_LINK_SPEED_MASK		0x0F
+#define PCIE_LINK_SPEED_2500		0x01
+#define PCIE_LINK_SPEED_5000		0x02
+#define PCIE_DEVICE_CONTROL2_16ms	0x0005
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN			6
+#endif
+
+#define PHY_REVISION_MASK		0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS		0x1F  /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG		0xF
+
+/* Bit definitions for valid PHY IDs.
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID	0x01410C50
+#define M88E1000_I_PHY_ID	0x01410C30
+#define M88E1011_I_PHY_ID	0x01410C20
+#define IGP01E1000_I_PHY_ID	0x02A80380
+#define M88E1111_I_PHY_ID	0x01410CC0
+#define M88E1543_E_PHY_ID	0x01410EA0
+#define M88E1512_E_PHY_ID	0x01410DD0
+#define M88E1112_E_PHY_ID	0x01410C90
+#define I347AT4_E_PHY_ID	0x01410DC0
+#define M88E1340M_E_PHY_ID	0x01410DF0
+#define GG82563_E_PHY_ID	0x01410CA0
+#define IGP03E1000_E_PHY_ID	0x02A80390
+#define IFE_E_PHY_ID		0x02A80330
+#define IFE_PLUS_E_PHY_ID	0x02A80320
+#define IFE_C_E_PHY_ID		0x02A80310
+#define BME1000_E_PHY_ID	0x01410CB0
+#define BME1000_E_PHY_ID_R2	0x01410CB1
+#define I82577_E_PHY_ID		0x01540050
+#define I82578_E_PHY_ID		0x004DD040
+#define I82579_E_PHY_ID		0x01540090
+#define I217_E_PHY_ID		0x015400A0
+#define I82580_I_PHY_ID		0x015403A0
+#define I350_I_PHY_ID		0x015403B0
+#define I210_I_PHY_ID		0x01410C00
+#define IGP04E1000_E_PHY_ID	0x02A80391
+#define M88_VENDOR		0x0141
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL		0x10  /* PHY Specific Control Reg */
+#define M88E1000_PHY_SPEC_STATUS	0x11  /* PHY Specific Status Reg */
+#define M88E1000_EXT_PHY_SPEC_CTRL	0x14  /* Extended PHY Specific Cntrl */
+#define M88E1000_RX_ERR_CNTR		0x15  /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL		0x1A  /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT	0x1D  /* Reg 29 for pg number setting */
+#define M88E1000_PHY_GEN_CONTROL	0x1E  /* meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8	0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11	0x800 /* improved BER performance */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_POLARITY_REVERSAL	0x0002 /* 1=Polarity Reverse enabled */
+/* MDI Crossover Mode bits 6:5 Manual MDI configuration */
+#define M88E1000_PSCR_MDI_MANUAL_MODE	0x0000
+#define M88E1000_PSCR_MDIX_MANUAL_MODE	0x0020  /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T	0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE	0x0060
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX	0x0800 /* 1=Assert CRS on Tx */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_REV_POLARITY	0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT		0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX		0x0040 /* 1=MDIX; 0=MDI */
+/* 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-110M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define M88E1000_PSSR_CABLE_LENGTH	0x0380
+#define M88E1000_PSSR_LINK		0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED	0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_DPLX		0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED		0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_100MBS		0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS		0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT	7
+
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK	0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X	0x0000
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK	0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X	0x0100
+#define M88E1000_EPSCR_TX_CLK_25	0x0070 /* 25  MHz TX_CLK */
+
+/* Intel I347AT4 Registers */
+#define I347AT4_PCDL		0x10 /* PHY Cable Diagnostics Length */
+#define I347AT4_PCDC		0x15 /* PHY Cable Diagnostics Control */
+#define I347AT4_PAGE_SELECT	0x16
+
+/* I347AT4 Extended PHY Specific Control Register */
+
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define I347AT4_PSCR_DOWNSHIFT_ENABLE	0x0800
+#define I347AT4_PSCR_DOWNSHIFT_MASK	0x7000
+#define I347AT4_PSCR_DOWNSHIFT_1X	0x0000
+#define I347AT4_PSCR_DOWNSHIFT_2X	0x1000
+#define I347AT4_PSCR_DOWNSHIFT_3X	0x2000
+#define I347AT4_PSCR_DOWNSHIFT_4X	0x3000
+#define I347AT4_PSCR_DOWNSHIFT_5X	0x4000
+#define I347AT4_PSCR_DOWNSHIFT_6X	0x5000
+#define I347AT4_PSCR_DOWNSHIFT_7X	0x6000
+#define I347AT4_PSCR_DOWNSHIFT_8X	0x7000
+
+/* I347AT4 PHY Cable Diagnostics Control */
+#define I347AT4_PCDC_CABLE_LENGTH_UNIT	0x0400 /* 0=cm 1=meters */
+
+/* M88E1112 only registers */
+#define M88E1112_VCT_DSP_DISTANCE	0x001A
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK	0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X	0x0800
+
+#define I82578_EPSCR_DOWNSHIFT_ENABLE		0x0020
+#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK	0x001C
+
+/* BME1000 PHY Specific Control Register */
+#define BME1000_PSCR_ENABLE_DOWNSHIFT	0x0800 /* 1 = enable downshift */
+
+/* Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT	5
+#define GG82563_REG(page, reg)	\
+	(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG	30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL		GG82563_REG(0, 16) /* PHY Spec Cntrl */
+#define GG82563_PHY_PAGE_SELECT		GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2		GG82563_REG(0, 26) /* PHY Spec Cntrl2 */
+#define GG82563_PHY_PAGE_SELECT_ALT	GG82563_REG(0, 29) /* Alt Page Select */
+
+/* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL	GG82563_REG(2, 21)
+
+#define GG82563_PHY_DSP_DISTANCE	GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+/* Kumeran Mode Control */
+#define GG82563_PHY_KMRN_MODE_CTRL	GG82563_REG(193, 16)
+#define GG82563_PHY_PWR_MGMT_CTRL	GG82563_REG(193, 20) /* Pwr Mgt Ctrl */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_INBAND_CTRL		GG82563_REG(194, 18) /* Inband Ctrl */
+
+/* MDI Control */
+#define E1000_MDIC_REG_MASK	0x001F0000
+#define E1000_MDIC_REG_SHIFT	16
+#define E1000_MDIC_PHY_MASK	0x03E00000
+#define E1000_MDIC_PHY_SHIFT	21
+#define E1000_MDIC_OP_WRITE	0x04000000
+#define E1000_MDIC_OP_READ	0x08000000
+#define E1000_MDIC_READY	0x10000000
+#define E1000_MDIC_ERROR	0x40000000
+#define E1000_MDIC_DEST		0x80000000
+
+/* SerDes Control */
+#define E1000_GEN_CTL_READY		0x80000000
+#define E1000_GEN_CTL_ADDRESS_SHIFT	8
+#define E1000_GEN_POLL_TIMEOUT		640
+
+/* LinkSec register fields */
+#define E1000_LSECTXCAP_SUM_MASK	0x00FF0000
+#define E1000_LSECTXCAP_SUM_SHIFT	16
+#define E1000_LSECRXCAP_SUM_MASK	0x00FF0000
+#define E1000_LSECRXCAP_SUM_SHIFT	16
+
+#define E1000_LSECTXCTRL_EN_MASK	0x00000003
+#define E1000_LSECTXCTRL_DISABLE	0x0
+#define E1000_LSECTXCTRL_AUTH		0x1
+#define E1000_LSECTXCTRL_AUTH_ENCRYPT	0x2
+#define E1000_LSECTXCTRL_AISCI		0x00000020
+#define E1000_LSECTXCTRL_PNTHRSH_MASK	0xFFFFFF00
+#define E1000_LSECTXCTRL_RSV_MASK	0x000000D8
+
+#define E1000_LSECRXCTRL_EN_MASK	0x0000000C
+#define E1000_LSECRXCTRL_EN_SHIFT	2
+#define E1000_LSECRXCTRL_DISABLE	0x0
+#define E1000_LSECRXCTRL_CHECK		0x1
+#define E1000_LSECRXCTRL_STRICT		0x2
+#define E1000_LSECRXCTRL_DROP		0x3
+#define E1000_LSECRXCTRL_PLSH		0x00000040
+#define E1000_LSECRXCTRL_RP		0x00000080
+#define E1000_LSECRXCTRL_RSV_MASK	0xFFFFFF33
+
+/* Tx Rate-Scheduler Config fields */
+#define E1000_RTTBCNRC_RS_ENA		0x80000000
+#define E1000_RTTBCNRC_RF_DEC_MASK	0x00003FFF
+#define E1000_RTTBCNRC_RF_INT_SHIFT	14
+#define E1000_RTTBCNRC_RF_INT_MASK	\
+	(E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT)
+
+/* DMA Coalescing register fields */
+/* DMA Coalescing Watchdog Timer */
+#define E1000_DMACR_DMACWT_MASK		0x00003FFF
+/* DMA Coalescing Rx Threshold */
+#define E1000_DMACR_DMACTHR_MASK	0x00FF0000
+#define E1000_DMACR_DMACTHR_SHIFT	16
+/* Lx when no PCIe transactions */
+#define E1000_DMACR_DMAC_LX_MASK	0x30000000
+#define E1000_DMACR_DMAC_LX_SHIFT	28
+#define E1000_DMACR_DMAC_EN		0x80000000 /* Enable DMA Coalescing */
+/* DMA Coalescing BMC-to-OS Watchdog Enable */
+#define E1000_DMACR_DC_BMC2OSW_EN	0x00008000
+
+/* DMA Coalescing Transmit Threshold */
+#define E1000_DMCTXTH_DMCTTHR_MASK	0x00000FFF
+
+#define E1000_DMCTLX_TTLX_MASK		0x00000FFF /* Time to LX request */
+
+/* Rx Traffic Rate Threshold */
+#define E1000_DMCRTRH_UTRESH_MASK	0x0007FFFF
+/* Rx packet rate in current window */
+#define E1000_DMCRTRH_LRPRCW		0x80000000
+
+/* DMA Coal Rx Traffic Current Count */
+#define E1000_DMCCNT_CCOUNT_MASK	0x01FFFFFF
+
+/* Flow ctrl Rx Threshold High val */
+#define E1000_FCRTC_RTH_COAL_MASK	0x0003FFF0
+#define E1000_FCRTC_RTH_COAL_SHIFT	4
+/* Lx power decision based on DMA coal */
+#define E1000_PCIEMISC_LX_DECISION	0x00000080
+
+#define E1000_RXPBS_CFG_TS_EN		0x80000000 /* Timestamp in Rx buffer */
+#define E1000_RXPBS_SIZE_I210_MASK	0x0000003F /* Rx packet buffer size */
+#define E1000_TXPB0S_SIZE_I210_MASK	0x0000003F /* Tx packet buffer 0 size */
+
+/* Proxy Filter Control */
+#define E1000_PROXYFC_D0		0x00000001 /* Enable offload in D0 */
+#define E1000_PROXYFC_EX		0x00000004 /* Directed exact proxy */
+#define E1000_PROXYFC_MC		0x00000008 /* Directed MC Proxy */
+#define E1000_PROXYFC_BC		0x00000010 /* Broadcast Proxy Enable */
+#define E1000_PROXYFC_ARP_DIRECTED	0x00000020 /* Directed ARP Proxy Ena */
+#define E1000_PROXYFC_IPV4		0x00000040 /* Directed IPv4 Enable */
+#define E1000_PROXYFC_IPV6		0x00000080 /* Directed IPv6 Enable */
+#define E1000_PROXYFC_NS		0x00000200 /* IPv6 Neighbor Solicitation */
+#define E1000_PROXYFC_ARP		0x00000800 /* ARP Request Proxy Ena */
+/* Proxy Status */
+#define E1000_PROXYS_CLEAR		0xFFFFFFFF /* Clear */
+
+/* Firmware Status */
+#define E1000_FWSTS_FWRI		0x80000000 /* FW Reset Indication */
+/* VF Control */
+#define E1000_VTCTRL_RST		0x04000000 /* Reset VF */
+
+#define E1000_STATUS_LAN_ID_MASK	0x00000000C /* Mask for Lan ID field */
+/* Lan ID bit field offset in status register */
+#define E1000_STATUS_LAN_ID_OFFSET	2
+#define E1000_VFTA_ENTRIES		128
+#ifndef E1000_UNUSEDARG
+#define E1000_UNUSEDARG
+#endif /* E1000_UNUSEDARG */
+#ifndef ERROR_REPORT
+#define ERROR_REPORT(fmt)	do { } while (0)
+#endif /* ERROR_REPORT */
+#endif /* _E1000_DEFINES_H_ */
diff --git a/drivers/net/e1000/base/e1000_hw.h b/drivers/net/e1000/base/e1000_hw.h
new file mode 100644
index 0000000..4dd92a3
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_hw.h
@@ -0,0 +1,1026 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82542			0x1000
+#define E1000_DEV_ID_82543GC_FIBER		0x1001
+#define E1000_DEV_ID_82543GC_COPPER		0x1004
+#define E1000_DEV_ID_82544EI_COPPER		0x1008
+#define E1000_DEV_ID_82544EI_FIBER		0x1009
+#define E1000_DEV_ID_82544GC_COPPER		0x100C
+#define E1000_DEV_ID_82544GC_LOM		0x100D
+#define E1000_DEV_ID_82540EM			0x100E
+#define E1000_DEV_ID_82540EM_LOM		0x1015
+#define E1000_DEV_ID_82540EP_LOM		0x1016
+#define E1000_DEV_ID_82540EP			0x1017
+#define E1000_DEV_ID_82540EP_LP			0x101E
+#define E1000_DEV_ID_82545EM_COPPER		0x100F
+#define E1000_DEV_ID_82545EM_FIBER		0x1011
+#define E1000_DEV_ID_82545GM_COPPER		0x1026
+#define E1000_DEV_ID_82545GM_FIBER		0x1027
+#define E1000_DEV_ID_82545GM_SERDES		0x1028
+#define E1000_DEV_ID_82546EB_COPPER		0x1010
+#define E1000_DEV_ID_82546EB_FIBER		0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER	0x101D
+#define E1000_DEV_ID_82546GB_COPPER		0x1079
+#define E1000_DEV_ID_82546GB_FIBER		0x107A
+#define E1000_DEV_ID_82546GB_SERDES		0x107B
+#define E1000_DEV_ID_82546GB_PCIE		0x108A
+#define E1000_DEV_ID_82546GB_QUAD_COPPER	0x1099
+#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3	0x10B5
+#define E1000_DEV_ID_82541EI			0x1013
+#define E1000_DEV_ID_82541EI_MOBILE		0x1018
+#define E1000_DEV_ID_82541ER_LOM		0x1014
+#define E1000_DEV_ID_82541ER			0x1078
+#define E1000_DEV_ID_82541GI			0x1076
+#define E1000_DEV_ID_82541GI_LF			0x107C
+#define E1000_DEV_ID_82541GI_MOBILE		0x1077
+#define E1000_DEV_ID_82547EI			0x1019
+#define E1000_DEV_ID_82547EI_MOBILE		0x101A
+#define E1000_DEV_ID_82547GI			0x1075
+#define E1000_DEV_ID_82571EB_COPPER		0x105E
+#define E1000_DEV_ID_82571EB_FIBER		0x105F
+#define E1000_DEV_ID_82571EB_SERDES		0x1060
+#define E1000_DEV_ID_82571EB_SERDES_DUAL	0x10D9
+#define E1000_DEV_ID_82571EB_SERDES_QUAD	0x10DA
+#define E1000_DEV_ID_82571EB_QUAD_COPPER	0x10A4
+#define E1000_DEV_ID_82571PT_QUAD_COPPER	0x10D5
+#define E1000_DEV_ID_82571EB_QUAD_FIBER		0x10A5
+#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP	0x10BC
+#define E1000_DEV_ID_82572EI_COPPER		0x107D
+#define E1000_DEV_ID_82572EI_FIBER		0x107E
+#define E1000_DEV_ID_82572EI_SERDES		0x107F
+#define E1000_DEV_ID_82572EI			0x10B9
+#define E1000_DEV_ID_82573E			0x108B
+#define E1000_DEV_ID_82573E_IAMT		0x108C
+#define E1000_DEV_ID_82573L			0x109A
+#define E1000_DEV_ID_82574L			0x10D3
+#define E1000_DEV_ID_82574LA			0x10F6
+#define E1000_DEV_ID_82583V			0x150C
+#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT	0x1096
+#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT	0x1098
+#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT	0x10BA
+#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT	0x10BB
+#define E1000_DEV_ID_ICH8_82567V_3		0x1501
+#define E1000_DEV_ID_ICH8_IGP_M_AMT		0x1049
+#define E1000_DEV_ID_ICH8_IGP_AMT		0x104A
+#define E1000_DEV_ID_ICH8_IGP_C			0x104B
+#define E1000_DEV_ID_ICH8_IFE			0x104C
+#define E1000_DEV_ID_ICH8_IFE_GT		0x10C4
+#define E1000_DEV_ID_ICH8_IFE_G			0x10C5
+#define E1000_DEV_ID_ICH8_IGP_M			0x104D
+#define E1000_DEV_ID_ICH9_IGP_M			0x10BF
+#define E1000_DEV_ID_ICH9_IGP_M_AMT		0x10F5
+#define E1000_DEV_ID_ICH9_IGP_M_V		0x10CB
+#define E1000_DEV_ID_ICH9_IGP_AMT		0x10BD
+#define E1000_DEV_ID_ICH9_BM			0x10E5
+#define E1000_DEV_ID_ICH9_IGP_C			0x294C
+#define E1000_DEV_ID_ICH9_IFE			0x10C0
+#define E1000_DEV_ID_ICH9_IFE_GT		0x10C3
+#define E1000_DEV_ID_ICH9_IFE_G			0x10C2
+#define E1000_DEV_ID_ICH10_R_BM_LM		0x10CC
+#define E1000_DEV_ID_ICH10_R_BM_LF		0x10CD
+#define E1000_DEV_ID_ICH10_R_BM_V		0x10CE
+#define E1000_DEV_ID_ICH10_D_BM_LM		0x10DE
+#define E1000_DEV_ID_ICH10_D_BM_LF		0x10DF
+#define E1000_DEV_ID_ICH10_D_BM_V		0x1525
+#define E1000_DEV_ID_PCH_M_HV_LM		0x10EA
+#define E1000_DEV_ID_PCH_M_HV_LC		0x10EB
+#define E1000_DEV_ID_PCH_D_HV_DM		0x10EF
+#define E1000_DEV_ID_PCH_D_HV_DC		0x10F0
+#define E1000_DEV_ID_PCH2_LV_LM			0x1502
+#define E1000_DEV_ID_PCH2_LV_V			0x1503
+#define E1000_DEV_ID_PCH_LPT_I217_LM		0x153A
+#define E1000_DEV_ID_PCH_LPT_I217_V		0x153B
+#define E1000_DEV_ID_PCH_LPTLP_I218_LM		0x155A
+#define E1000_DEV_ID_PCH_LPTLP_I218_V		0x1559
+#define E1000_DEV_ID_82576			0x10C9
+#define E1000_DEV_ID_82576_FIBER		0x10E6
+#define E1000_DEV_ID_82576_SERDES		0x10E7
+#define E1000_DEV_ID_82576_QUAD_COPPER		0x10E8
+#define E1000_DEV_ID_82576_QUAD_COPPER_ET2	0x1526
+#define E1000_DEV_ID_82576_NS			0x150A
+#define E1000_DEV_ID_82576_NS_SERDES		0x1518
+#define E1000_DEV_ID_82576_SERDES_QUAD		0x150D
+#define E1000_DEV_ID_82576_VF			0x10CA
+#define E1000_DEV_ID_82576_VF_HV		0x152D
+#define E1000_DEV_ID_I350_VF			0x1520
+#define E1000_DEV_ID_I350_VF_HV			0x152F
+#define E1000_DEV_ID_82575EB_COPPER		0x10A7
+#define E1000_DEV_ID_82575EB_FIBER_SERDES	0x10A9
+#define E1000_DEV_ID_82575GB_QUAD_COPPER	0x10D6
+#define E1000_DEV_ID_82580_COPPER		0x150E
+#define E1000_DEV_ID_82580_FIBER		0x150F
+#define E1000_DEV_ID_82580_SERDES		0x1510
+#define E1000_DEV_ID_82580_SGMII		0x1511
+#define E1000_DEV_ID_82580_COPPER_DUAL		0x1516
+#define E1000_DEV_ID_82580_QUAD_FIBER		0x1527
+#define E1000_DEV_ID_I350_COPPER		0x1521
+#define E1000_DEV_ID_I350_FIBER			0x1522
+#define E1000_DEV_ID_I350_SERDES		0x1523
+#define E1000_DEV_ID_I350_SGMII			0x1524
+#define E1000_DEV_ID_I350_DA4			0x1546
+#define E1000_DEV_ID_I210_COPPER		0x1533
+#define E1000_DEV_ID_I210_COPPER_OEM1		0x1534
+#define E1000_DEV_ID_I210_COPPER_IT		0x1535
+#define E1000_DEV_ID_I210_FIBER			0x1536
+#define E1000_DEV_ID_I210_SERDES		0x1537
+#define E1000_DEV_ID_I210_SGMII			0x1538
+#define E1000_DEV_ID_I210_COPPER_FLASHLESS	0x157B
+#define E1000_DEV_ID_I210_SERDES_FLASHLESS	0x157C
+#define E1000_DEV_ID_I211_COPPER		0x1539
+#define E1000_DEV_ID_I354_BACKPLANE_1GBPS	0x1F40
+#define E1000_DEV_ID_I354_SGMII			0x1F41
+#define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS	0x1F45
+#define E1000_DEV_ID_DH89XXCC_SGMII		0x0438
+#define E1000_DEV_ID_DH89XXCC_SERDES		0x043A
+#define E1000_DEV_ID_DH89XXCC_BACKPLANE		0x043C
+#define E1000_DEV_ID_DH89XXCC_SFP		0x0440
+
+#define E1000_REVISION_0	0
+#define E1000_REVISION_1	1
+#define E1000_REVISION_2	2
+#define E1000_REVISION_3	3
+#define E1000_REVISION_4	4
+
+#define E1000_FUNC_0		0
+#define E1000_FUNC_1		1
+#define E1000_FUNC_2		2
+#define E1000_FUNC_3		3
+
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0	0
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1	3
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2	6
+#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3	9
+
+enum e1000_mac_type {
+	e1000_undefined = 0,
+	e1000_82542,
+	e1000_82543,
+	e1000_82544,
+	e1000_82540,
+	e1000_82545,
+	e1000_82545_rev_3,
+	e1000_82546,
+	e1000_82546_rev_3,
+	e1000_82541,
+	e1000_82541_rev_2,
+	e1000_82547,
+	e1000_82547_rev_2,
+	e1000_82571,
+	e1000_82572,
+	e1000_82573,
+	e1000_82574,
+	e1000_82583,
+	e1000_80003es2lan,
+	e1000_ich8lan,
+	e1000_ich9lan,
+	e1000_ich10lan,
+	e1000_pchlan,
+	e1000_pch2lan,
+	e1000_pch_lpt,
+	e1000_82575,
+	e1000_82576,
+	e1000_82580,
+	e1000_i350,
+	e1000_i354,
+	e1000_i210,
+	e1000_i211,
+	e1000_vfadapt,
+	e1000_vfadapt_i350,
+	e1000_num_macs  /* List is 1-based, so subtract 1 for true count. */
+};
+
+enum e1000_media_type {
+	e1000_media_type_unknown = 0,
+	e1000_media_type_copper = 1,
+	e1000_media_type_fiber = 2,
+	e1000_media_type_internal_serdes = 3,
+	e1000_num_media_types
+};
+
+enum e1000_nvm_type {
+	e1000_nvm_unknown = 0,
+	e1000_nvm_none,
+	e1000_nvm_eeprom_spi,
+	e1000_nvm_eeprom_microwire,
+	e1000_nvm_flash_hw,
+	e1000_nvm_invm,
+	e1000_nvm_flash_sw
+};
+
+enum e1000_nvm_override {
+	e1000_nvm_override_none = 0,
+	e1000_nvm_override_spi_small,
+	e1000_nvm_override_spi_large,
+	e1000_nvm_override_microwire_small,
+	e1000_nvm_override_microwire_large
+};
+
+enum e1000_phy_type {
+	e1000_phy_unknown = 0,
+	e1000_phy_none,
+	e1000_phy_m88,
+	e1000_phy_igp,
+	e1000_phy_igp_2,
+	e1000_phy_gg82563,
+	e1000_phy_igp_3,
+	e1000_phy_ife,
+	e1000_phy_bm,
+	e1000_phy_82578,
+	e1000_phy_82577,
+	e1000_phy_82579,
+	e1000_phy_i217,
+	e1000_phy_82580,
+	e1000_phy_vf,
+	e1000_phy_i210,
+};
+
+enum e1000_bus_type {
+	e1000_bus_type_unknown = 0,
+	e1000_bus_type_pci,
+	e1000_bus_type_pcix,
+	e1000_bus_type_pci_express,
+	e1000_bus_type_reserved
+};
+
+enum e1000_bus_speed {
+	e1000_bus_speed_unknown = 0,
+	e1000_bus_speed_33,
+	e1000_bus_speed_66,
+	e1000_bus_speed_100,
+	e1000_bus_speed_120,
+	e1000_bus_speed_133,
+	e1000_bus_speed_2500,
+	e1000_bus_speed_5000,
+	e1000_bus_speed_reserved
+};
+
+enum e1000_bus_width {
+	e1000_bus_width_unknown = 0,
+	e1000_bus_width_pcie_x1,
+	e1000_bus_width_pcie_x2,
+	e1000_bus_width_pcie_x4 = 4,
+	e1000_bus_width_pcie_x8 = 8,
+	e1000_bus_width_32,
+	e1000_bus_width_64,
+	e1000_bus_width_reserved
+};
+
+enum e1000_1000t_rx_status {
+	e1000_1000t_rx_status_not_ok = 0,
+	e1000_1000t_rx_status_ok,
+	e1000_1000t_rx_status_undefined = 0xFF
+};
+
+enum e1000_rev_polarity {
+	e1000_rev_polarity_normal = 0,
+	e1000_rev_polarity_reversed,
+	e1000_rev_polarity_undefined = 0xFF
+};
+
+enum e1000_fc_mode {
+	e1000_fc_none = 0,
+	e1000_fc_rx_pause,
+	e1000_fc_tx_pause,
+	e1000_fc_full,
+	e1000_fc_default = 0xFF
+};
+
+enum e1000_ffe_config {
+	e1000_ffe_config_enabled = 0,
+	e1000_ffe_config_active,
+	e1000_ffe_config_blocked
+};
+
+enum e1000_dsp_config {
+	e1000_dsp_config_disabled = 0,
+	e1000_dsp_config_enabled,
+	e1000_dsp_config_activated,
+	e1000_dsp_config_undefined = 0xFF
+};
+
+enum e1000_ms_type {
+	e1000_ms_hw_default = 0,
+	e1000_ms_force_master,
+	e1000_ms_force_slave,
+	e1000_ms_auto
+};
+
+enum e1000_smart_speed {
+	e1000_smart_speed_default = 0,
+	e1000_smart_speed_on,
+	e1000_smart_speed_off
+};
+
+enum e1000_serdes_link_state {
+	e1000_serdes_link_down = 0,
+	e1000_serdes_link_autoneg_progress,
+	e1000_serdes_link_autoneg_complete,
+	e1000_serdes_link_forced_up
+};
+
+#define __le16 u16
+#define __le32 u32
+#define __le64 u64
+/* Receive Descriptor */
+struct e1000_rx_desc {
+	__le64 buffer_addr; /* Address of the descriptor's data buffer */
+	__le16 length;      /* Length of data DMAed into data buffer */
+	__le16 csum; /* Packet checksum */
+	u8  status;  /* Descriptor status */
+	u8  errors;  /* Descriptor Errors */
+	__le16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+	struct {
+		__le64 buffer_addr;
+		__le64 reserved;
+	} read;
+	struct {
+		struct {
+			__le32 mrq; /* Multiple Rx Queues */
+			union {
+				__le32 rss; /* RSS Hash */
+				struct {
+					__le16 ip_id;  /* IP id */
+					__le16 csum;   /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;  /* ext status/error */
+			__le16 length;
+			__le16 vlan; /* VLAN tag */
+		} upper;
+	} wb;  /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+
+/* Number of packet split data buffers (not including the header buffer) */
+#define PS_PAGE_BUFFERS	(MAX_PS_BUFFERS - 1)
+
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+	struct {
+		/* one buffer for protocol header(s), three data buffers */
+		__le64 buffer_addr[MAX_PS_BUFFERS];
+	} read;
+	struct {
+		struct {
+			__le32 mrq;  /* Multiple Rx Queues */
+			union {
+				__le32 rss; /* RSS Hash */
+				struct {
+					__le16 ip_id;    /* IP id */
+					__le16 csum;     /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			__le32 status_error;  /* ext status/error */
+			__le16 length0;  /* length of buffer 0 */
+			__le16 vlan;  /* VLAN tag */
+		} middle;
+		struct {
+			__le16 header_status;
+			/* length of buffers 1-3 */
+			__le16 length[PS_PAGE_BUFFERS];
+		} upper;
+		__le64 reserved;
+	} wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+	__le64 buffer_addr;   /* Address of the descriptor's data buffer */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;  /* Data buffer length */
+			u8 cso;  /* Checksum offset */
+			u8 cmd;  /* Descriptor control */
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status; /* Descriptor status */
+			u8 css;  /* Checksum start */
+			__le16 special;
+		} fields;
+	} upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+	union {
+		__le32 ip_config;
+		struct {
+			u8 ipcss;  /* IP checksum start */
+			u8 ipcso;  /* IP checksum offset */
+			__le16 ipcse;  /* IP checksum end */
+		} ip_fields;
+	} lower_setup;
+	union {
+		__le32 tcp_config;
+		struct {
+			u8 tucss;  /* TCP checksum start */
+			u8 tucso;  /* TCP checksum offset */
+			__le16 tucse;  /* TCP checksum end */
+		} tcp_fields;
+	} upper_setup;
+	__le32 cmd_and_length;
+	union {
+		__le32 data;
+		struct {
+			u8 status;  /* Descriptor status */
+			u8 hdr_len;  /* Header length */
+			__le16 mss;  /* Maximum segment size */
+		} fields;
+	} tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+	__le64 buffer_addr;  /* Address of the descriptor's buffer address */
+	union {
+		__le32 data;
+		struct {
+			__le16 length;  /* Data buffer length */
+			u8 typ_len_ext;
+			u8 cmd;
+		} flags;
+	} lower;
+	union {
+		__le32 data;
+		struct {
+			u8 status;  /* Descriptor status */
+			u8 popts;  /* Packet Options */
+			__le16 special;
+		} fields;
+	} upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+	u64 crcerrs;
+	u64 algnerrc;
+	u64 symerrs;
+	u64 rxerrc;
+	u64 mpc;
+	u64 scc;
+	u64 ecol;
+	u64 mcc;
+	u64 latecol;
+	u64 colc;
+	u64 dc;
+	u64 tncrs;
+	u64 sec;
+	u64 cexterr;
+	u64 rlec;
+	u64 xonrxc;
+	u64 xontxc;
+	u64 xoffrxc;
+	u64 xofftxc;
+	u64 fcruc;
+	u64 prc64;
+	u64 prc127;
+	u64 prc255;
+	u64 prc511;
+	u64 prc1023;
+	u64 prc1522;
+	u64 gprc;
+	u64 bprc;
+	u64 mprc;
+	u64 gptc;
+	u64 gorc;
+	u64 gotc;
+	u64 rnbc;
+	u64 ruc;
+	u64 rfc;
+	u64 roc;
+	u64 rjc;
+	u64 mgprc;
+	u64 mgpdc;
+	u64 mgptc;
+	u64 tor;
+	u64 tot;
+	u64 tpr;
+	u64 tpt;
+	u64 ptc64;
+	u64 ptc127;
+	u64 ptc255;
+	u64 ptc511;
+	u64 ptc1023;
+	u64 ptc1522;
+	u64 mptc;
+	u64 bptc;
+	u64 tsctc;
+	u64 tsctfc;
+	u64 iac;
+	u64 icrxptc;
+	u64 icrxatc;
+	u64 ictxptc;
+	u64 ictxatc;
+	u64 ictxqec;
+	u64 ictxqmtc;
+	u64 icrxdmtc;
+	u64 icrxoc;
+	u64 cbtmpc;
+	u64 htdpmc;
+	u64 cbrdpc;
+	u64 cbrmpc;
+	u64 rpthc;
+	u64 hgptc;
+	u64 htcbdpc;
+	u64 hgorc;
+	u64 hgotc;
+	u64 lenerrs;
+	u64 scvpc;
+	u64 hrmpc;
+	u64 doosync;
+	u64 o2bgptc;
+	u64 o2bspc;
+	u64 b2ospc;
+	u64 b2ogprc;
+};
+
+struct e1000_vf_stats {
+	u64 base_gprc;
+	u64 base_gptc;
+	u64 base_gorc;
+	u64 base_gotc;
+	u64 base_mprc;
+	u64 base_gotlbc;
+	u64 base_gptlbc;
+	u64 base_gorlbc;
+	u64 base_gprlbc;
+
+	u32 last_gprc;
+	u32 last_gptc;
+	u32 last_gorc;
+	u32 last_gotc;
+	u32 last_mprc;
+	u32 last_gotlbc;
+	u32 last_gptlbc;
+	u32 last_gorlbc;
+	u32 last_gprlbc;
+
+	u64 gprc;
+	u64 gptc;
+	u64 gorc;
+	u64 gotc;
+	u64 mprc;
+	u64 gotlbc;
+	u64 gptlbc;
+	u64 gorlbc;
+	u64 gprlbc;
+};
+
+struct e1000_phy_stats {
+	u32 idle_errors;
+	u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+	u32 signature;
+	u8  status;
+	u8  reserved0;
+	u16 vlan_id;
+	u32 reserved1;
+	u16 reserved2;
+	u8  reserved3;
+	u8  checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+	u8 command_id;
+	u8 command_length;
+	u8 command_options;
+	u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH	252
+struct e1000_host_command_info {
+	struct e1000_host_command_header command_header;
+	u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+	u8  command_id;
+	u8  checksum;
+	u16 reserved1;
+	u16 reserved2;
+	u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH	0x6F8
+struct e1000_host_mng_command_info {
+	struct e1000_host_mng_command_header command_header;
+	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+#include "e1000_mac.h"
+#include "e1000_phy.h"
+#include "e1000_nvm.h"
+#include "e1000_manage.h"
+#include "e1000_mbx.h"
+
+/* Function pointers for the MAC. */
+struct e1000_mac_operations {
+	s32  (*init_params)(struct e1000_hw *);
+	s32  (*id_led_init)(struct e1000_hw *);
+	s32  (*blink_led)(struct e1000_hw *);
+	bool (*check_mng_mode)(struct e1000_hw *);
+	s32  (*check_for_link)(struct e1000_hw *);
+	s32  (*cleanup_led)(struct e1000_hw *);
+	void (*clear_hw_cntrs)(struct e1000_hw *);
+	void (*clear_vfta)(struct e1000_hw *);
+	s32  (*get_bus_info)(struct e1000_hw *);
+	void (*set_lan_id)(struct e1000_hw *);
+	s32  (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+	s32  (*led_on)(struct e1000_hw *);
+	s32  (*led_off)(struct e1000_hw *);
+	void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+	s32  (*reset_hw)(struct e1000_hw *);
+	s32  (*init_hw)(struct e1000_hw *);
+	void (*shutdown_serdes)(struct e1000_hw *);
+	void (*power_up_serdes)(struct e1000_hw *);
+	s32  (*setup_link)(struct e1000_hw *);
+	s32  (*setup_physical_interface)(struct e1000_hw *);
+	s32  (*setup_led)(struct e1000_hw *);
+	void (*write_vfta)(struct e1000_hw *, u32, u32);
+	void (*config_collision_dist)(struct e1000_hw *);
+	void (*rar_set)(struct e1000_hw *, u8*, u32);
+	s32  (*read_mac_addr)(struct e1000_hw *);
+	s32  (*validate_mdi_setting)(struct e1000_hw *);
+	s32  (*acquire_swfw_sync)(struct e1000_hw *, u16);
+	void (*release_swfw_sync)(struct e1000_hw *, u16);
+};
+
+/* When to use various PHY register access functions:
+ *
+ *                 Func   Caller
+ *   Function      Does   Does    When to use
+ *   ~~~~~~~~~~~~  ~~~~~  ~~~~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *   X_reg         L,P,A  n/a     for simple PHY reg accesses
+ *   X_reg_locked  P,A    L       for multiple accesses of different regs
+ *                                on different pages
+ *   X_reg_page    A      L,P     for multiple accesses of different regs
+ *                                on the same page
+ *
+ * Where X=[read|write], L=locking, P=sets page, A=register access
+ *
+ */
+struct e1000_phy_operations {
+	s32  (*init_params)(struct e1000_hw *);
+	s32  (*acquire)(struct e1000_hw *);
+	s32  (*cfg_on_link_up)(struct e1000_hw *);
+	s32  (*check_polarity)(struct e1000_hw *);
+	s32  (*check_reset_block)(struct e1000_hw *);
+	s32  (*commit)(struct e1000_hw *);
+	s32  (*force_speed_duplex)(struct e1000_hw *);
+	s32  (*get_cfg_done)(struct e1000_hw *hw);
+	s32  (*get_cable_length)(struct e1000_hw *);
+	s32  (*get_info)(struct e1000_hw *);
+	s32  (*set_page)(struct e1000_hw *, u16);
+	s32  (*read_reg)(struct e1000_hw *, u32, u16 *);
+	s32  (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
+	s32  (*read_reg_page)(struct e1000_hw *, u32, u16 *);
+	void (*release)(struct e1000_hw *);
+	s32  (*reset)(struct e1000_hw *);
+	s32  (*set_d0_lplu_state)(struct e1000_hw *, bool);
+	s32  (*set_d3_lplu_state)(struct e1000_hw *, bool);
+	s32  (*write_reg)(struct e1000_hw *, u32, u16);
+	s32  (*write_reg_locked)(struct e1000_hw *, u32, u16);
+	s32  (*write_reg_page)(struct e1000_hw *, u32, u16);
+	void (*power_up)(struct e1000_hw *);
+	void (*power_down)(struct e1000_hw *);
+	s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *);
+	s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8);
+};
+
+/* Function pointers for the NVM. */
+struct e1000_nvm_operations {
+	s32  (*init_params)(struct e1000_hw *);
+	s32  (*acquire)(struct e1000_hw *);
+	s32  (*read)(struct e1000_hw *, u16, u16, u16 *);
+	void (*release)(struct e1000_hw *);
+	void (*reload)(struct e1000_hw *);
+	s32  (*update)(struct e1000_hw *);
+	s32  (*valid_led_default)(struct e1000_hw *, u16 *);
+	s32  (*validate)(struct e1000_hw *);
+	s32  (*write)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+	struct e1000_mac_operations ops;
+	u8 addr[ETH_ADDR_LEN];
+	u8 perm_addr[ETH_ADDR_LEN];
+
+	enum e1000_mac_type type;
+
+	u32 collision_delta;
+	u32 ledctl_default;
+	u32 ledctl_mode1;
+	u32 ledctl_mode2;
+	u32 mc_filter_type;
+	u32 tx_packet_delta;
+	u32 txcw;
+
+	u16 current_ifs_val;
+	u16 ifs_max_val;
+	u16 ifs_min_val;
+	u16 ifs_ratio;
+	u16 ifs_step_size;
+	u16 mta_reg_count;
+	u16 uta_reg_count;
+
+	/* Maximum size of the MTA register table in all supported adapters */
+	#define MAX_MTA_REG 128
+	u32 mta_shadow[MAX_MTA_REG];
+	u16 rar_entry_count;
+
+	u8  forced_speed_duplex;
+
+	bool adaptive_ifs;
+	bool has_fwsm;
+	bool arc_subsystem_valid;
+	bool asf_firmware_present;
+	bool autoneg;
+	bool autoneg_failed;
+	bool get_link_status;
+	bool in_ifs_mode;
+	bool report_tx_early;
+	enum e1000_serdes_link_state serdes_link_state;
+	bool serdes_has_link;
+	bool tx_pkt_filtering;
+};
+
+struct e1000_phy_info {
+	struct e1000_phy_operations ops;
+	enum e1000_phy_type type;
+
+	enum e1000_1000t_rx_status local_rx;
+	enum e1000_1000t_rx_status remote_rx;
+	enum e1000_ms_type ms_type;
+	enum e1000_ms_type original_ms_type;
+	enum e1000_rev_polarity cable_polarity;
+	enum e1000_smart_speed smart_speed;
+
+	u32 addr;
+	u32 id;
+	u32 reset_delay_us; /* in usec */
+	u32 revision;
+
+	enum e1000_media_type media_type;
+
+	u16 autoneg_advertised;
+	u16 autoneg_mask;
+	u16 cable_length;
+	u16 max_cable_length;
+	u16 min_cable_length;
+
+	u8 mdix;
+
+	bool disable_polarity_correction;
+	bool is_mdix;
+	bool polarity_correction;
+	bool speed_downgraded;
+	bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+	struct e1000_nvm_operations ops;
+	enum e1000_nvm_type type;
+	enum e1000_nvm_override override;
+
+	u32 flash_bank_size;
+	u32 flash_base_addr;
+
+	u16 word_size;
+	u16 delay_usec;
+	u16 address_bits;
+	u16 opcode_bits;
+	u16 page_size;
+};
+
+struct e1000_bus_info {
+	enum e1000_bus_type type;
+	enum e1000_bus_speed speed;
+	enum e1000_bus_width width;
+
+	u16 func;
+	u16 pci_cmd_word;
+};
+
+struct e1000_fc_info {
+	u32 high_water;  /* Flow control high-water mark */
+	u32 low_water;  /* Flow control low-water mark */
+	u16 pause_time;  /* Flow control pause timer */
+	u16 refresh_time;  /* Flow control refresh timer */
+	bool send_xon;  /* Flow control send XON */
+	bool strict_ieee;  /* Strict IEEE mode */
+	enum e1000_fc_mode current_mode;  /* FC mode in effect */
+	enum e1000_fc_mode requested_mode;  /* FC mode requested by caller */
+};
+
+struct e1000_mbx_operations {
+	s32 (*init_params)(struct e1000_hw *hw);
+	s32 (*read)(struct e1000_hw *, u32 *, u16,  u16);
+	s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
+	s32 (*read_posted)(struct e1000_hw *, u32 *, u16,  u16);
+	s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
+	s32 (*check_for_msg)(struct e1000_hw *, u16);
+	s32 (*check_for_ack)(struct e1000_hw *, u16);
+	s32 (*check_for_rst)(struct e1000_hw *, u16);
+};
+
+struct e1000_mbx_stats {
+	u32 msgs_tx;
+	u32 msgs_rx;
+
+	u32 acks;
+	u32 reqs;
+	u32 rsts;
+};
+
+struct e1000_mbx_info {
+	struct e1000_mbx_operations ops;
+	struct e1000_mbx_stats stats;
+	u32 timeout;
+	u32 usec_delay;
+	u16 size;
+};
+
+struct e1000_dev_spec_82541 {
+	enum e1000_dsp_config dsp_config;
+	enum e1000_ffe_config ffe_config;
+	u16 spd_default;
+	bool phy_init_script;
+};
+
+struct e1000_dev_spec_82542 {
+	bool dma_fairness;
+};
+
+struct e1000_dev_spec_82543 {
+	u32  tbi_compatibility;
+	bool dma_fairness;
+	bool init_phy_disabled;
+};
+
+struct e1000_dev_spec_82571 {
+	bool laa_is_present;
+	u32 smb_counter;
+	E1000_MUTEX swflag_mutex;
+};
+
+struct e1000_dev_spec_80003es2lan {
+	bool  mdic_wa_enable;
+};
+
+struct e1000_shadow_ram {
+	u16  value;
+	bool modified;
+};
+
+#define E1000_SHADOW_RAM_WORDS		2048
+
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+/* I218 PHY Ultra Low Power (ULP) states */
+enum e1000_ulp_state {
+	e1000_ulp_state_unknown,
+	e1000_ulp_state_off,
+	e1000_ulp_state_on,
+};
+
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+struct e1000_dev_spec_ich8lan {
+	bool kmrn_lock_loss_workaround_enabled;
+	struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS];
+	E1000_MUTEX nvm_mutex;
+	E1000_MUTEX swflag_mutex;
+	bool nvm_k1_enabled;
+	bool eee_disable;
+	u16 eee_lp_ability;
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+	enum e1000_ulp_state ulp_state;
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+	u16 lat_enc;
+	u16 max_ltr_enc;
+	bool smbus_disable;
+};
+
+struct e1000_dev_spec_82575 {
+	bool sgmii_active;
+	bool global_device_reset;
+	bool eee_disable;
+	bool module_plugged;
+	bool clear_semaphore_once;
+	u32 mtu;
+	struct sfp_e1000_flags eth_flags;
+	u8 media_port;
+	bool media_changed;
+};
+
+struct e1000_dev_spec_vf {
+	u32 vf_number;
+	u32 v2p_mailbox;
+};
+
+struct e1000_hw {
+	void *back;
+
+	u8 *hw_addr;
+	u8 *flash_address;
+	unsigned long io_base;
+
+	struct e1000_mac_info  mac;
+	struct e1000_fc_info   fc;
+	struct e1000_phy_info  phy;
+	struct e1000_nvm_info  nvm;
+	struct e1000_bus_info  bus;
+	struct e1000_mbx_info mbx;
+	struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+	union {
+		struct e1000_dev_spec_82541 _82541;
+		struct e1000_dev_spec_82542 _82542;
+		struct e1000_dev_spec_82543 _82543;
+		struct e1000_dev_spec_82571 _82571;
+		struct e1000_dev_spec_80003es2lan _80003es2lan;
+		struct e1000_dev_spec_ich8lan ich8lan;
+		struct e1000_dev_spec_82575 _82575;
+		struct e1000_dev_spec_vf vf;
+	} dev_spec;
+
+	u16 device_id;
+	u16 subsystem_vendor_id;
+	u16 subsystem_device_id;
+	u16 vendor_id;
+
+	u8  revision_id;
+};
+
+#include "e1000_82541.h"
+#include "e1000_82543.h"
+#include "e1000_82571.h"
+#include "e1000_80003es2lan.h"
+#include "e1000_ich8lan.h"
+#include "e1000_82575.h"
+#include "e1000_i210.h"
+
+/* These functions must be implemented by drivers */
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+s32  e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+s32  e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_i210.c b/drivers/net/e1000/base/e1000_i210.c
new file mode 100644
index 0000000..1f5600d
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_i210.c
@@ -0,0 +1,1000 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+
+STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_i210(struct e1000_hw *hw);
+STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
+STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data);
+STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
+STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
+
+/**
+ *  e1000_acquire_nvm_i210 - Request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the necessary semaphores for exclusive access to the EEPROM.
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_acquire_nvm_i210");
+
+	ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_nvm_i210 - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ *  then release the semaphores acquired.
+ **/
+STATIC void e1000_release_nvm_i210(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_i210");
+
+	e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
+}
+
+/**
+ *  e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
+ *  will also specify which port we're acquiring the lock for.
+ **/
+s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+	u32 swmask = mask;
+	u32 fwmask = mask << 16;
+	s32 ret_val = E1000_SUCCESS;
+	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+	DEBUGFUNC("e1000_acquire_swfw_sync_i210");
+
+	while (i < timeout) {
+		if (e1000_get_hw_semaphore_i210(hw)) {
+			ret_val = -E1000_ERR_SWFW_SYNC;
+			goto out;
+		}
+
+		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+		if (!(swfw_sync & (fwmask | swmask)))
+			break;
+
+		/*
+		 * Firmware currently using resource (fwmask)
+		 * or other software thread using resource (swmask)
+		 */
+		e1000_put_hw_semaphore_generic(hw);
+		msec_delay_irq(5);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+		ret_val = -E1000_ERR_SWFW_SYNC;
+		goto out;
+	}
+
+	swfw_sync |= swmask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swfw_sync_i210 - Release SW/FW semaphore
+ *  @hw: pointer to the HW structure
+ *  @mask: specifies which semaphore to acquire
+ *
+ *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
+ *  will also specify which port we're releasing the lock for.
+ **/
+void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
+{
+	u32 swfw_sync;
+
+	DEBUGFUNC("e1000_release_swfw_sync_i210");
+
+	while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
+		; /* Empty */
+
+	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+	swfw_sync &= ~mask;
+	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+	e1000_put_hw_semaphore_generic(hw);
+}
+
+/**
+ *  e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_i210");
+
+	/* Get the SW semaphore */
+	while (i < timeout) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		usec_delay(50);
+		i++;
+	}
+
+	if (i == timeout) {
+		/* In rare circumstances, the SW semaphore may already be held
+		 * unintentionally. Clear the semaphore once before giving up.
+		 */
+		if (hw->dev_spec._82575.clear_semaphore_once) {
+			hw->dev_spec._82575.clear_semaphore_once = false;
+			e1000_put_hw_semaphore_generic(hw);
+			for (i = 0; i < timeout; i++) {
+				swsm = E1000_READ_REG(hw, E1000_SWSM);
+				if (!(swsm & E1000_SWSM_SMBI))
+					break;
+
+				usec_delay(50);
+			}
+		}
+
+		/* If we do not have the semaphore here, we have to give up. */
+		if (i == timeout) {
+			DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+			return -E1000_ERR_NVM;
+		}
+	}
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		usec_delay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_generic(hw);
+		DEBUGOUT("Driver can't access the NVM\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the Shadow Ram to read
+ *  @words: number of words to read
+ *  @data: word read from the Shadow Ram
+ *
+ *  Reads a 16 bit word from the Shadow Ram using the EERD register.
+ *  Uses necessary synchronization semaphores.
+ **/
+s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
+			     u16 *data)
+{
+	s32 status = E1000_SUCCESS;
+	u16 i, count;
+
+	DEBUGFUNC("e1000_read_nvm_srrd_i210");
+
+	/* We cannot hold synchronization semaphores for too long,
+	 * because of forceful takeover procedure. However it is more efficient
+	 * to read in bursts than synchronizing access for each word. */
+	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
+		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
+			E1000_EERD_EEWR_MAX_COUNT : (words - i);
+		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
+			status = e1000_read_nvm_eerd(hw, offset, count,
+						     data + i);
+			hw->nvm.ops.release(hw);
+		} else {
+			status = E1000_ERR_SWFW_SYNC;
+		}
+
+		if (status != E1000_SUCCESS)
+			break;
+	}
+
+	return status;
+}
+
+/**
+ *  e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the Shadow RAM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the Shadow RAM
+ *
+ *  Writes data to Shadow RAM at offset using EEWR register.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function , the
+ *  data will not be committed to FLASH and also Shadow RAM will most likely
+ *  contain an invalid checksum.
+ *
+ *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
+ *  partially written.
+ **/
+s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
+			      u16 *data)
+{
+	s32 status = E1000_SUCCESS;
+	u16 i, count;
+
+	DEBUGFUNC("e1000_write_nvm_srwr_i210");
+
+	/* We cannot hold synchronization semaphores for too long,
+	 * because of forceful takeover procedure. However it is more efficient
+	 * to write in bursts than synchronizing access for each word. */
+	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
+		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
+			E1000_EERD_EEWR_MAX_COUNT : (words - i);
+		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
+			status = e1000_write_nvm_srwr(hw, offset, count,
+						      data + i);
+			hw->nvm.ops.release(hw);
+		} else {
+			status = E1000_ERR_SWFW_SYNC;
+		}
+
+		if (status != E1000_SUCCESS)
+			break;
+	}
+
+	return status;
+}
+
+/**
+ *  e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the Shadow Ram to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the Shadow Ram
+ *
+ *  Writes data to Shadow Ram at offset using EEWR register.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function , the
+ *  Shadow Ram will most likely contain an invalid checksum.
+ **/
+STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, k, eewr = 0;
+	u32 attempts = 100000;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_nvm_srwr");
+
+	/*
+	 * A check for invalid values:  offset too large, too many words,
+	 * too many words for the offset, and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	for (i = 0; i < words; i++) {
+		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
+			(data[i] << E1000_NVM_RW_REG_DATA) |
+			E1000_NVM_RW_REG_START;
+
+		E1000_WRITE_REG(hw, E1000_SRWR, eewr);
+
+		for (k = 0; k < attempts; k++) {
+			if (E1000_NVM_RW_REG_DONE &
+			    E1000_READ_REG(hw, E1000_SRWR)) {
+				ret_val = E1000_SUCCESS;
+				break;
+			}
+			usec_delay(5);
+		}
+
+		if (ret_val != E1000_SUCCESS) {
+			DEBUGOUT("Shadow RAM write EEWR timed out\n");
+			break;
+		}
+	}
+
+out:
+	return ret_val;
+}
+
+/** e1000_read_invm_word_i210 - Reads OTP
+ *  @hw: pointer to the HW structure
+ *  @address: the word address (aka eeprom offset) to read
+ *  @data: pointer to the data read
+ *
+ *  Reads 16-bit words from the OTP. Return error when the word is not
+ *  stored in OTP.
+ **/
+STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
+{
+	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
+	u32 invm_dword;
+	u16 i;
+	u8 record_type, word_address;
+
+	DEBUGFUNC("e1000_read_invm_word_i210");
+
+	for (i = 0; i < E1000_INVM_SIZE; i++) {
+		invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
+		/* Get record type */
+		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
+		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
+			break;
+		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
+			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
+		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
+			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
+		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
+			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
+			if (word_address == address) {
+				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
+				DEBUGOUT2("Read INVM Word 0x%02x = %x",
+					  address, *data);
+				status = E1000_SUCCESS;
+				break;
+			}
+		}
+	}
+	if (status != E1000_SUCCESS)
+		DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
+	return status;
+}
+
+/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
+ *  @hw: pointer to the HW structure
+ *  @address: the word address (aka eeprom offset) to read
+ *  @data: pointer to the data read
+ *
+ *  Wrapper function to return data formerly found in the NVM.
+ **/
+STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
+				u16 E1000_UNUSEDARG words, u16 *data)
+{
+	s32 ret_val = E1000_SUCCESS;
+	UNREFERENCED_1PARAMETER(words);
+
+	DEBUGFUNC("e1000_read_invm_i210");
+
+	/* Only the MAC addr is required to be present in the iNVM */
+	switch (offset) {
+	case NVM_MAC_ADDR:
+		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
+		ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
+						     &data[1]);
+		ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
+						     &data[2]);
+		if (ret_val != E1000_SUCCESS)
+			DEBUGOUT("MAC Addr not found in iNVM\n");
+		break;
+	case NVM_INIT_CTRL_2:
+		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+		if (ret_val != E1000_SUCCESS) {
+			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
+			ret_val = E1000_SUCCESS;
+		}
+		break;
+	case NVM_INIT_CTRL_4:
+		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+		if (ret_val != E1000_SUCCESS) {
+			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
+			ret_val = E1000_SUCCESS;
+		}
+		break;
+	case NVM_LED_1_CFG:
+		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+		if (ret_val != E1000_SUCCESS) {
+			*data = NVM_LED_1_CFG_DEFAULT_I211;
+			ret_val = E1000_SUCCESS;
+		}
+		break;
+	case NVM_LED_0_2_CFG:
+		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+		if (ret_val != E1000_SUCCESS) {
+			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
+			ret_val = E1000_SUCCESS;
+		}
+		break;
+	case NVM_ID_LED_SETTINGS:
+		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
+		if (ret_val != E1000_SUCCESS) {
+			*data = ID_LED_RESERVED_FFFF;
+			ret_val = E1000_SUCCESS;
+		}
+		break;
+	case NVM_SUB_DEV_ID:
+		*data = hw->subsystem_device_id;
+		break;
+	case NVM_SUB_VEN_ID:
+		*data = hw->subsystem_vendor_id;
+		break;
+	case NVM_DEV_ID:
+		*data = hw->device_id;
+		break;
+	case NVM_VEN_ID:
+		*data = hw->vendor_id;
+		break;
+	default:
+		DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
+		*data = NVM_RESERVED_WORD;
+		break;
+	}
+	return ret_val;
+}
+
+/**
+ *  e1000_read_invm_version - Reads iNVM version and image type
+ *  @hw: pointer to the HW structure
+ *  @invm_ver: version structure for the version read
+ *
+ *  Reads iNVM version and image type.
+ **/
+s32 e1000_read_invm_version(struct e1000_hw *hw,
+			    struct e1000_fw_version *invm_ver)
+{
+	u32 *record = NULL;
+	u32 *next_record = NULL;
+	u32 i = 0;
+	u32 invm_dword = 0;
+	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
+					     E1000_INVM_RECORD_SIZE_IN_BYTES);
+	u32 buffer[E1000_INVM_SIZE];
+	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
+	u16 version = 0;
+
+	DEBUGFUNC("e1000_read_invm_version");
+
+	/* Read iNVM memory */
+	for (i = 0; i < E1000_INVM_SIZE; i++) {
+		invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
+		buffer[i] = invm_dword;
+	}
+
+	/* Read version number */
+	for (i = 1; i < invm_blocks; i++) {
+		record = &buffer[invm_blocks - i];
+		next_record = &buffer[invm_blocks - i + 1];
+
+		/* Check if we have first version location used */
+		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
+			version = 0;
+			status = E1000_SUCCESS;
+			break;
+		}
+		/* Check if we have second version location used */
+		else if ((i == 1) &&
+			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
+			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
+			status = E1000_SUCCESS;
+			break;
+		}
+		/*
+		 * Check if we have odd version location
+		 * used and it is the last one used
+		 */
+		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
+			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
+			 (i != 1))) {
+			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
+				  >> 13;
+			status = E1000_SUCCESS;
+			break;
+		}
+		/*
+		 * Check if we have even version location
+		 * used and it is the last one used
+		 */
+		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
+			 ((*record & 0x3) == 0)) {
+			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
+			status = E1000_SUCCESS;
+			break;
+		}
+	}
+
+	if (status == E1000_SUCCESS) {
+		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
+					>> E1000_INVM_MAJOR_SHIFT;
+		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
+	}
+	/* Read Image Type */
+	for (i = 1; i < invm_blocks; i++) {
+		record = &buffer[invm_blocks - i];
+		next_record = &buffer[invm_blocks - i + 1];
+
+		/* Check if we have image type in first location used */
+		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
+			invm_ver->invm_img_type = 0;
+			status = E1000_SUCCESS;
+			break;
+		}
+		/* Check if we have image type in first location used */
+		else if ((((*record & 0x3) == 0) &&
+			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
+			 ((((*record & 0x3) != 0) && (i != 1)))) {
+			invm_ver->invm_img_type =
+				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
+			status = E1000_SUCCESS;
+			break;
+		}
+	}
+	return status;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
+{
+	s32 status = E1000_SUCCESS;
+	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_i210");
+
+	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
+
+		/*
+		 * Replace the read function with semaphore grabbing with
+		 * the one that skips this for a while.
+		 * We have semaphore taken already here.
+		 */
+		read_op_ptr = hw->nvm.ops.read;
+		hw->nvm.ops.read = e1000_read_nvm_eerd;
+
+		status = e1000_validate_nvm_checksum_generic(hw);
+
+		/* Revert original read operation. */
+		hw->nvm.ops.read = read_op_ptr;
+
+		hw->nvm.ops.release(hw);
+	} else {
+		status = E1000_ERR_SWFW_SYNC;
+	}
+
+	return status;
+}
+
+
+/**
+ *  e1000_update_nvm_checksum_i210 - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM. Next commit EEPROM data onto the Flash.
+ **/
+s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_i210");
+
+	/*
+	 * Read the first word from the EEPROM. If this times out or fails, do
+	 * not continue or we could be in for a very long wait while every
+	 * EEPROM read fails
+	 */
+	ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
+	if (ret_val != E1000_SUCCESS) {
+		DEBUGOUT("EEPROM read failed\n");
+		goto out;
+	}
+
+	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
+		/*
+		 * Do not use hw->nvm.ops.write, hw->nvm.ops.read
+		 * because we do not want to take the synchronization
+		 * semaphores twice here.
+		 */
+
+		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+			ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
+			if (ret_val) {
+				hw->nvm.ops.release(hw);
+				DEBUGOUT("NVM Read Error while updating checksum.\n");
+				goto out;
+			}
+			checksum += nvm_data;
+		}
+		checksum = (u16) NVM_SUM - checksum;
+		ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
+						&checksum);
+		if (ret_val != E1000_SUCCESS) {
+			hw->nvm.ops.release(hw);
+			DEBUGOUT("NVM Write Error while updating checksum.\n");
+			goto out;
+		}
+
+		hw->nvm.ops.release(hw);
+
+		ret_val = e1000_update_flash_i210(hw);
+	} else {
+		ret_val = E1000_ERR_SWFW_SYNC;
+	}
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_get_flash_presence_i210 - Check if flash device is detected.
+ *  @hw: pointer to the HW structure
+ *
+ **/
+bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
+{
+	u32 eec = 0;
+	bool ret_val = false;
+
+	DEBUGFUNC("e1000_get_flash_presence_i210");
+
+	eec = E1000_READ_REG(hw, E1000_EECD);
+
+	if (eec & E1000_EECD_FLASH_DETECTED_I210)
+		ret_val = true;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_update_flash_i210 - Commit EEPROM to the flash
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_update_flash_i210(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u32 flup;
+
+	DEBUGFUNC("e1000_update_flash_i210");
+
+	ret_val = e1000_pool_flash_update_done_i210(hw);
+	if (ret_val == -E1000_ERR_NVM) {
+		DEBUGOUT("Flash update time out\n");
+		goto out;
+	}
+
+	flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
+	E1000_WRITE_REG(hw, E1000_EECD, flup);
+
+	ret_val = e1000_pool_flash_update_done_i210(hw);
+	if (ret_val == E1000_SUCCESS)
+		DEBUGOUT("Flash update complete\n");
+	else
+		DEBUGOUT("Flash update time out\n");
+
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
+{
+	s32 ret_val = -E1000_ERR_NVM;
+	u32 i, reg;
+
+	DEBUGFUNC("e1000_pool_flash_update_done_i210");
+
+	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
+		reg = E1000_READ_REG(hw, E1000_EECD);
+		if (reg & E1000_EECD_FLUDONE_I210) {
+			ret_val = E1000_SUCCESS;
+			break;
+		}
+		usec_delay(5);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize the i210/i211 NVM parameters and function pointers.
+ **/
+STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	struct e1000_nvm_info *nvm = &hw->nvm;
+
+	DEBUGFUNC("e1000_init_nvm_params_i210");
+
+	ret_val = e1000_init_nvm_params_82575(hw);
+	nvm->ops.acquire = e1000_acquire_nvm_i210;
+	nvm->ops.release = e1000_release_nvm_i210;
+	nvm->ops.valid_led_default = e1000_valid_led_default_i210;
+	if (e1000_get_flash_presence_i210(hw)) {
+		hw->nvm.type = e1000_nvm_flash_hw;
+		nvm->ops.read    = e1000_read_nvm_srrd_i210;
+		nvm->ops.write   = e1000_write_nvm_srwr_i210;
+		nvm->ops.validate = e1000_validate_nvm_checksum_i210;
+		nvm->ops.update   = e1000_update_nvm_checksum_i210;
+	} else {
+		hw->nvm.type = e1000_nvm_invm;
+		nvm->ops.read     = e1000_read_invm_i210;
+		nvm->ops.write    = e1000_null_write_nvm;
+		nvm->ops.validate = e1000_null_ops_generic;
+		nvm->ops.update   = e1000_null_ops_generic;
+	}
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_i210 - Init func ptrs.
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to initialize all function pointers and parameters.
+ **/
+void e1000_init_function_pointers_i210(struct e1000_hw *hw)
+{
+	e1000_init_function_pointers_82575(hw);
+	hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
+
+	return;
+}
+
+/**
+ *  e1000_valid_led_default_i210 - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_i210");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		goto out;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
+		switch (hw->phy.media_type) {
+		case e1000_media_type_internal_serdes:
+			*data = ID_LED_DEFAULT_I210_SERDES;
+			break;
+		case e1000_media_type_copper:
+		default:
+			*data = ID_LED_DEFAULT_I210;
+			break;
+		}
+	}
+out:
+	return ret_val;
+}
+
+/**
+ *  __e1000_access_xmdio_reg - Read/write XMDIO register
+ *  @hw: pointer to the HW structure
+ *  @address: XMDIO address to program
+ *  @dev_addr: device address to program
+ *  @data: pointer to value to read/write from/to the XMDIO address
+ *  @read: boolean flag to indicate read or write
+ **/
+STATIC s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
+				    u8 dev_addr, u16 *data, bool read)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("__e1000_access_xmdio_reg");
+
+	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
+							 dev_addr);
+	if (ret_val)
+		return ret_val;
+
+	if (read)
+		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
+	else
+		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
+	if (ret_val)
+		return ret_val;
+
+	/* Recalibrate the device back to 0 */
+	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
+	if (ret_val)
+		return ret_val;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_xmdio_reg - Read XMDIO register
+ *  @hw: pointer to the HW structure
+ *  @addr: XMDIO address to program
+ *  @dev_addr: device address to program
+ *  @data: value to be read from the EMI address
+ **/
+s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
+{
+	DEBUGFUNC("e1000_read_xmdio_reg");
+
+	return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true);
+}
+
+/**
+ *  e1000_write_xmdio_reg - Write XMDIO register
+ *  @hw: pointer to the HW structure
+ *  @addr: XMDIO address to program
+ *  @dev_addr: device address to program
+ *  @data: value to be written to the XMDIO address
+ **/
+s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
+{
+	DEBUGFUNC("e1000_read_xmdio_reg");
+
+	return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false);
+}
+
+/**
+ * e1000_pll_workaround_i210
+ * @hw: pointer to the HW structure
+ *
+ * Works around an errata in the PLL circuit where it occasionally
+ * provides the wrong clock frequency after power up.
+ **/
+STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u32 wuc, mdicnfg, ctrl_ext, reg_val;
+	u16 nvm_word, phy_word, pci_word, tmp_nvm;
+	int i;
+
+	/* Get and set needed register values */
+	wuc = E1000_READ_REG(hw, E1000_WUC);
+	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
+	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
+	E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
+
+	/* Get data from NVM, or set default */
+	ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
+					    &nvm_word);
+	if (ret_val != E1000_SUCCESS)
+		nvm_word = E1000_INVM_DEFAULT_AL;
+	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
+	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
+		/* check current state */
+		hw->phy.ops.read_reg(hw, (E1000_PHY_PLL_FREQ_PAGE |
+				     E1000_PHY_PLL_FREQ_REG), &phy_word);
+		if ((phy_word & E1000_PHY_PLL_UNCONF)
+		    != E1000_PHY_PLL_UNCONF) {
+			ret_val = E1000_SUCCESS;
+			break;
+		} else {
+			ret_val = -E1000_ERR_PHY;
+		}
+		hw->phy.ops.reset(hw);
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+		E1000_WRITE_REG(hw, E1000_WUC, 0);
+		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
+		E1000_WRITE_REG(hw, E1000_EEARBC, reg_val);
+
+		e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+		pci_word |= E1000_PCI_PMCSR_D3;
+		e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+		msec_delay(1);
+		pci_word &= ~E1000_PCI_PMCSR_D3;
+		e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
+		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
+		E1000_WRITE_REG(hw, E1000_EEARBC, reg_val);
+
+		/* restore WUC register */
+		E1000_WRITE_REG(hw, E1000_WUC, wuc);
+	}
+	/* restore MDICNFG setting */
+	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_i210 - Init hw for I210/I211
+ *  @hw: pointer to the HW structure
+ *
+ *  Called to initialize hw for i210 hw family.
+ **/
+s32 e1000_init_hw_i210(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_hw_i210");
+	if ((hw->mac.type >= e1000_i210) &&
+	    !(e1000_get_flash_presence_i210(hw))) {
+		ret_val = e1000_pll_workaround_i210(hw);
+		if (ret_val != E1000_SUCCESS)
+			return ret_val;
+	}
+	ret_val = e1000_init_hw_82575(hw);
+	return ret_val;
+}
diff --git a/drivers/net/e1000/base/e1000_i210.h b/drivers/net/e1000/base/e1000_i210.h
new file mode 100644
index 0000000..f2bd43b
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_i210.h
@@ -0,0 +1,110 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_I210_H_
+#define _E1000_I210_H_
+
+bool e1000_get_flash_presence_i210(struct e1000_hw *hw);
+s32 e1000_update_flash_i210(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw);
+s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset,
+			      u16 words, u16 *data);
+s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset,
+			     u16 words, u16 *data);
+s32 e1000_read_invm_version(struct e1000_hw *hw,
+			    struct e1000_fw_version *invm_ver);
+s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
+void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
+s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr,
+			 u16 *data);
+s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr,
+			  u16 data);
+s32 e1000_init_hw_i210(struct e1000_hw *hw);
+
+#define E1000_STM_OPCODE		0xDB00
+#define E1000_EEPROM_FLASH_SIZE_WORD	0x11
+
+#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \
+	(u8)((invm_dword) & 0x7)
+#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \
+	(u8)(((invm_dword) & 0x0000FE00) >> 9)
+#define INVM_DWORD_TO_WORD_DATA(invm_dword) \
+	(u16)(((invm_dword) & 0xFFFF0000) >> 16)
+
+enum E1000_INVM_STRUCTURE_TYPE {
+	E1000_INVM_UNINITIALIZED_STRUCTURE		= 0x00,
+	E1000_INVM_WORD_AUTOLOAD_STRUCTURE		= 0x01,
+	E1000_INVM_CSR_AUTOLOAD_STRUCTURE		= 0x02,
+	E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE	= 0x03,
+	E1000_INVM_RSA_KEY_SHA256_STRUCTURE		= 0x04,
+	E1000_INVM_INVALIDATED_STRUCTURE		= 0x0F,
+};
+
+#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS	8
+#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS	1
+#define E1000_INVM_ULT_BYTES_SIZE	8
+#define E1000_INVM_RECORD_SIZE_IN_BYTES	4
+#define E1000_INVM_VER_FIELD_ONE	0x1FF8
+#define E1000_INVM_VER_FIELD_TWO	0x7FE000
+#define E1000_INVM_IMGTYPE_FIELD	0x1F800000
+
+#define E1000_INVM_MAJOR_MASK	0x3F0
+#define E1000_INVM_MINOR_MASK	0xF
+#define E1000_INVM_MAJOR_SHIFT	4
+
+#define ID_LED_DEFAULT_I210		((ID_LED_OFF1_ON2  << 8) | \
+					 (ID_LED_DEF1_DEF2 <<  4) | \
+					 (ID_LED_OFF1_OFF2))
+#define ID_LED_DEFAULT_I210_SERDES	((ID_LED_DEF1_DEF2 << 8) | \
+					 (ID_LED_DEF1_DEF2 <<  4) | \
+					 (ID_LED_OFF1_ON2))
+
+/* NVM offset defaults for I211 devices */
+#define NVM_INIT_CTRL_2_DEFAULT_I211	0X7243
+#define NVM_INIT_CTRL_4_DEFAULT_I211	0x00C1
+#define NVM_LED_1_CFG_DEFAULT_I211	0x0184
+#define NVM_LED_0_2_CFG_DEFAULT_I211	0x200C
+
+/* PLL Defines */
+#define E1000_PCI_PMCSR			0x44
+#define E1000_PCI_PMCSR_D3		0x03
+#define E1000_MAX_PLL_TRIES		5
+#define E1000_PHY_PLL_UNCONF		0xFF
+#define E1000_PHY_PLL_FREQ_PAGE		0xFC0000
+#define E1000_PHY_PLL_FREQ_REG		0x000E
+#define E1000_INVM_DEFAULT_AL		0x202F
+#define E1000_INVM_AUTOLOAD		0x0A
+#define E1000_INVM_PLL_WO_VAL		0x0010
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_ich8lan.c b/drivers/net/e1000/base/e1000_ich8lan.c
new file mode 100644
index 0000000..3b1627b
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_ich8lan.c
@@ -0,0 +1,5260 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+/* 82562G 10/100 Network Connection
+ * 82562G-2 10/100 Network Connection
+ * 82562GT 10/100 Network Connection
+ * 82562GT-2 10/100 Network Connection
+ * 82562V 10/100 Network Connection
+ * 82562V-2 10/100 Network Connection
+ * 82566DC-2 Gigabit Network Connection
+ * 82566DC Gigabit Network Connection
+ * 82566DM-2 Gigabit Network Connection
+ * 82566DM Gigabit Network Connection
+ * 82566MC Gigabit Network Connection
+ * 82566MM Gigabit Network Connection
+ * 82567LM Gigabit Network Connection
+ * 82567LF Gigabit Network Connection
+ * 82567V Gigabit Network Connection
+ * 82567LM-2 Gigabit Network Connection
+ * 82567LF-2 Gigabit Network Connection
+ * 82567V-2 Gigabit Network Connection
+ * 82567LF-3 Gigabit Network Connection
+ * 82567LM-3 Gigabit Network Connection
+ * 82567LM-4 Gigabit Network Connection
+ * 82577LM Gigabit Network Connection
+ * 82577LC Gigabit Network Connection
+ * 82578DM Gigabit Network Connection
+ * 82578DC Gigabit Network Connection
+ * 82579LM Gigabit Network Connection
+ * 82579V Gigabit Network Connection
+ * Ethernet Connection I217-LM
+ * Ethernet Connection I217-V
+ * Ethernet Connection I218-V
+ * Ethernet Connection I218-LM
+ */
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
+STATIC s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
+STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
+STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
+STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
+STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
+STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
+#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
+STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
+					      u8 *mc_addr_list,
+					      u32 mc_addr_count);
+#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
+STATIC s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
+STATIC s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
+					    bool active);
+STATIC s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
+					    bool active);
+STATIC s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+				   u16 words, u16 *data);
+STATIC s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
+				    u16 words, u16 *data);
+STATIC s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
+					    u16 *data);
+STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
+STATIC s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
+STATIC s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
+					   u16 *speed, u16 *duplex);
+STATIC s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
+STATIC s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
+STATIC s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
+STATIC s32  e1000_led_on_pchlan(struct e1000_hw *hw);
+STATIC s32  e1000_led_off_pchlan(struct e1000_hw *hw);
+STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
+STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
+STATIC s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
+					  u32 offset, u8 *data);
+STATIC s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 size, u16 *data);
+STATIC s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
+					  u32 offset, u16 *data);
+STATIC s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+						 u32 offset, u8 byte);
+STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
+STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
+STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
+STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
+STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
+
+/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
+/* Offset 04h HSFSTS */
+union ich8_hws_flash_status {
+	struct ich8_hsfsts {
+		u16 flcdone:1; /* bit 0 Flash Cycle Done */
+		u16 flcerr:1; /* bit 1 Flash Cycle Error */
+		u16 dael:1; /* bit 2 Direct Access error Log */
+		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
+		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
+		u16 reserved1:2; /* bit 13:6 Reserved */
+		u16 reserved2:6; /* bit 13:6 Reserved */
+		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
+		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
+	} hsf_status;
+	u16 regval;
+};
+
+/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
+/* Offset 06h FLCTL */
+union ich8_hws_flash_ctrl {
+	struct ich8_hsflctl {
+		u16 flcgo:1;   /* 0 Flash Cycle Go */
+		u16 flcycle:2;   /* 2:1 Flash Cycle */
+		u16 reserved:5;   /* 7:3 Reserved  */
+		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
+		u16 flockdn:6;   /* 15:10 Reserved */
+	} hsf_ctrl;
+	u16 regval;
+};
+
+/* ICH Flash Region Access Permissions */
+union ich8_hws_flash_regacc {
+	struct ich8_flracc {
+		u32 grra:8; /* 0:7 GbE region Read Access */
+		u32 grwa:8; /* 8:15 GbE region Write Access */
+		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
+		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
+	} hsf_flregacc;
+	u16 regval;
+};
+
+/**
+ *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
+ *  @hw: pointer to the HW structure
+ *
+ *  Test access to the PHY registers by reading the PHY ID registers.  If
+ *  the PHY ID is already known (e.g. resume path) compare it with known ID,
+ *  otherwise assume the read PHY ID is correct if it is valid.
+ *
+ *  Assumes the sw/fw/hw semaphore is already acquired.
+ **/
+STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
+{
+	u16 phy_reg = 0;
+	u32 phy_id = 0;
+	s32 ret_val = 0;
+	u16 retry_count;
+	u32 mac_reg = 0;
+
+	for (retry_count = 0; retry_count < 2; retry_count++) {
+		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
+		if (ret_val || (phy_reg == 0xFFFF))
+			continue;
+		phy_id = (u32)(phy_reg << 16);
+
+		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
+		if (ret_val || (phy_reg == 0xFFFF)) {
+			phy_id = 0;
+			continue;
+		}
+		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
+		break;
+	}
+
+	if (hw->phy.id) {
+		if  (hw->phy.id == phy_id)
+			goto out;
+	} else if (phy_id) {
+		hw->phy.id = phy_id;
+		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
+		goto out;
+	}
+
+	/* In case the PHY needs to be in mdio slow mode,
+	 * set slow mode and try to get the PHY id again.
+	 */
+	if (hw->mac.type < e1000_pch_lpt) {
+		hw->phy.ops.release(hw);
+		ret_val = e1000_set_mdio_slow_mode_hv(hw);
+		if (!ret_val)
+			ret_val = e1000_get_phy_id(hw);
+		hw->phy.ops.acquire(hw);
+	}
+
+	if (ret_val)
+		return false;
+out:
+	if (hw->mac.type == e1000_pch_lpt) {
+		/* Unforce SMBus mode in PHY */
+		hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
+		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
+		hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
+
+		/* Unforce SMBus mode in MAC */
+		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+	}
+
+	return true;
+}
+
+/**
+ *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
+ *  @hw: pointer to the HW structure
+ *
+ *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
+ *  used to reset the PHY to a quiescent state when necessary.
+ **/
+STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
+{
+	u32 mac_reg;
+
+	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
+
+	/* Set Phy Config Counter to 50msec */
+	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
+	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
+	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
+	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
+
+	/* Toggle LANPHYPC Value bit */
+	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
+	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
+	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
+	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(10);
+	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
+	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
+	E1000_WRITE_FLUSH(hw);
+
+	if (hw->mac.type < e1000_pch_lpt) {
+		msec_delay(50);
+	} else {
+		u16 count = 20;
+
+		do {
+			msec_delay(5);
+		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
+			   E1000_CTRL_EXT_LPCD) && count--);
+
+		msec_delay(30);
+	}
+}
+
+/**
+ *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
+ *  @hw: pointer to the HW structure
+ *
+ *  Workarounds/flow necessary for PHY initialization during driver load
+ *  and resume paths.
+ **/
+STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
+{
+	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
+
+	/* Gate automatic PHY configuration by hardware on managed and
+	 * non-managed 82579 and newer adapters.
+	 */
+	e1000_gate_hw_phy_config_ich8lan(hw, true);
+
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+	/* It is not possible to be certain of the current state of ULP
+	 * so forcibly disable it.
+	 */
+	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
+
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val) {
+		DEBUGOUT("Failed to initialize PHY flow\n");
+		goto out;
+	}
+
+	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
+	 * inaccessible and resetting the PHY is not blocked, toggle the
+	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
+	 */
+	switch (hw->mac.type) {
+	case e1000_pch_lpt:
+		if (e1000_phy_is_accessible_pchlan(hw))
+			break;
+
+		/* Before toggling LANPHYPC, see if PHY is accessible by
+		 * forcing MAC to SMBus mode first.
+		 */
+		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+		/* Wait 50 milliseconds for MAC to finish any retries
+		 * that it might be trying to perform from previous
+		 * attempts to acknowledge any phy read requests.
+		 */
+		 msec_delay(50);
+
+		/* fall-through */
+	case e1000_pch2lan:
+		if (e1000_phy_is_accessible_pchlan(hw))
+			break;
+
+		/* fall-through */
+	case e1000_pchlan:
+		if ((hw->mac.type == e1000_pchlan) &&
+		    (fwsm & E1000_ICH_FWSM_FW_VALID))
+			break;
+
+		if (hw->phy.ops.check_reset_block(hw)) {
+			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
+			ret_val = -E1000_ERR_PHY;
+			break;
+		}
+
+		/* Toggle LANPHYPC Value bit */
+		e1000_toggle_lanphypc_pch_lpt(hw);
+		if (hw->mac.type >= e1000_pch_lpt) {
+			if (e1000_phy_is_accessible_pchlan(hw))
+				break;
+
+			/* Toggling LANPHYPC brings the PHY out of SMBus mode
+			 * so ensure that the MAC is also out of SMBus mode
+			 */
+			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
+			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+			if (e1000_phy_is_accessible_pchlan(hw))
+				break;
+
+			ret_val = -E1000_ERR_PHY;
+		}
+		break;
+	default:
+		break;
+	}
+
+	hw->phy.ops.release(hw);
+	if (!ret_val) {
+
+		/* Check to see if able to reset PHY.  Print error if not */
+		if (hw->phy.ops.check_reset_block(hw)) {
+			ERROR_REPORT("Reset blocked by ME\n");
+			goto out;
+		}
+
+		/* Reset the PHY before any access to it.  Doing so, ensures
+		 * that the PHY is in a known good state before we read/write
+		 * PHY registers.  The generic reset is sufficient here,
+		 * because we haven't determined the PHY type yet.
+		 */
+		ret_val = e1000_phy_hw_reset_generic(hw);
+		if (ret_val)
+			goto out;
+
+		/* On a successful reset, possibly need to wait for the PHY
+		 * to quiesce to an accessible state before returning control
+		 * to the calling function.  If the PHY does not quiesce, then
+		 * return E1000E_BLK_PHY_RESET, as this is the condition that
+		 *  the PHY is in.
+		 */
+		ret_val = hw->phy.ops.check_reset_block(hw);
+		if (ret_val)
+			ERROR_REPORT("ME blocked access to PHY after reset\n");
+	}
+
+out:
+	/* Ungate automatic PHY configuration on non-managed 82579 */
+	if ((hw->mac.type == e1000_pch2lan) &&
+	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
+		msec_delay(10);
+		e1000_gate_hw_phy_config_ich8lan(hw, false);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_init_phy_params_pchlan");
+
+	phy->addr		= 1;
+	phy->reset_delay_us	= 100;
+
+	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
+	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
+	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
+	phy->ops.set_page	= e1000_set_page_igp;
+	phy->ops.read_reg	= e1000_read_phy_reg_hv;
+	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
+	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
+	phy->ops.release	= e1000_release_swflag_ich8lan;
+	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
+	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
+	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
+	phy->ops.write_reg	= e1000_write_phy_reg_hv;
+	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
+	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
+	phy->ops.power_up	= e1000_power_up_phy_copper;
+	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
+	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	phy->id = e1000_phy_unknown;
+
+	ret_val = e1000_init_phy_workarounds_pchlan(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (phy->id == e1000_phy_unknown)
+		switch (hw->mac.type) {
+		default:
+			ret_val = e1000_get_phy_id(hw);
+			if (ret_val)
+				return ret_val;
+			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
+				break;
+			/* fall-through */
+		case e1000_pch2lan:
+		case e1000_pch_lpt:
+			/* In case the PHY needs to be in mdio slow mode,
+			 * set slow mode and try to get the PHY id again.
+			 */
+			ret_val = e1000_set_mdio_slow_mode_hv(hw);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000_get_phy_id(hw);
+			if (ret_val)
+				return ret_val;
+			break;
+		}
+	phy->type = e1000_get_phy_type_from_id(phy->id);
+
+	switch (phy->type) {
+	case e1000_phy_82577:
+	case e1000_phy_82579:
+	case e1000_phy_i217:
+		phy->ops.check_polarity = e1000_check_polarity_82577;
+		phy->ops.force_speed_duplex =
+			e1000_phy_force_speed_duplex_82577;
+		phy->ops.get_cable_length = e1000_get_cable_length_82577;
+		phy->ops.get_info = e1000_get_phy_info_82577;
+		phy->ops.commit = e1000_phy_sw_reset_generic;
+		break;
+	case e1000_phy_82578:
+		phy->ops.check_polarity = e1000_check_polarity_m88;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		phy->ops.get_cable_length = e1000_get_cable_length_m88;
+		phy->ops.get_info = e1000_get_phy_info_m88;
+		break;
+	default:
+		ret_val = -E1000_ERR_PHY;
+		break;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific PHY parameters and function pointers.
+ **/
+STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 i = 0;
+
+	DEBUGFUNC("e1000_init_phy_params_ich8lan");
+
+	phy->addr		= 1;
+	phy->reset_delay_us	= 100;
+
+	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
+	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
+	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
+	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
+	phy->ops.read_reg	= e1000_read_phy_reg_igp;
+	phy->ops.release	= e1000_release_swflag_ich8lan;
+	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
+	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
+	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
+	phy->ops.write_reg	= e1000_write_phy_reg_igp;
+	phy->ops.power_up	= e1000_power_up_phy_copper;
+	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
+
+	/* We may need to do this twice - once for IGP and if that fails,
+	 * we'll set BM func pointers and try again
+	 */
+	ret_val = e1000_determine_phy_address(hw);
+	if (ret_val) {
+		phy->ops.write_reg = e1000_write_phy_reg_bm;
+		phy->ops.read_reg  = e1000_read_phy_reg_bm;
+		ret_val = e1000_determine_phy_address(hw);
+		if (ret_val) {
+			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
+			return ret_val;
+		}
+	}
+
+	phy->id = 0;
+	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
+	       (i++ < 100)) {
+		msec_delay(1);
+		ret_val = e1000_get_phy_id(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Verify phy id */
+	switch (phy->id) {
+	case IGP03E1000_E_PHY_ID:
+		phy->type = e1000_phy_igp_3;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
+		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
+		phy->ops.get_info = e1000_get_phy_info_igp;
+		phy->ops.check_polarity = e1000_check_polarity_igp;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy->type = e1000_phy_ife;
+		phy->autoneg_mask = E1000_ALL_NOT_GIG;
+		phy->ops.get_info = e1000_get_phy_info_ife;
+		phy->ops.check_polarity = e1000_check_polarity_ife;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
+		break;
+	case BME1000_E_PHY_ID:
+		phy->type = e1000_phy_bm;
+		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+		phy->ops.read_reg = e1000_read_phy_reg_bm;
+		phy->ops.write_reg = e1000_write_phy_reg_bm;
+		phy->ops.commit = e1000_phy_sw_reset_generic;
+		phy->ops.get_info = e1000_get_phy_info_m88;
+		phy->ops.check_polarity = e1000_check_polarity_m88;
+		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+		break;
+	default:
+		return -E1000_ERR_PHY;
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific NVM parameters and function
+ *  pointers.
+ **/
+STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 gfpreg, sector_base_addr, sector_end_addr;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
+
+	/* Can't read flash registers if the register set isn't mapped. */
+	nvm->type = e1000_nvm_flash_sw;
+	if (!hw->flash_address) {
+		DEBUGOUT("ERROR: Flash registers not mapped\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
+
+	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
+	 * Add 1 to sector_end_addr since this sector is included in
+	 * the overall size.
+	 */
+	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
+	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
+
+	/* flash_base_addr is byte-aligned */
+	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
+
+	/* find total size of the NVM, then cut in half since the total
+	 * size represents two separate NVM banks.
+	 */
+	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
+				<< FLASH_SECTOR_ADDR_SHIFT);
+	nvm->flash_bank_size /= 2;
+	/* Adjust to word count */
+	nvm->flash_bank_size /= sizeof(u16);
+
+	nvm->word_size = E1000_SHADOW_RAM_WORDS;
+
+	/* Clear shadow ram */
+	for (i = 0; i < nvm->word_size; i++) {
+		dev_spec->shadow_ram[i].modified = false;
+		dev_spec->shadow_ram[i].value    = 0xFFFF;
+	}
+
+	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
+	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
+
+	/* Function Pointers */
+	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
+	nvm->ops.release	= e1000_release_nvm_ich8lan;
+	nvm->ops.read		= e1000_read_nvm_ich8lan;
+	nvm->ops.update		= e1000_update_nvm_checksum_ich8lan;
+	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
+	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
+	nvm->ops.write		= e1000_write_nvm_ich8lan;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific MAC parameters and function
+ *  pointers.
+ **/
+STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
+	u16 pci_cfg;
+#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
+
+	DEBUGFUNC("e1000_init_mac_params_ich8lan");
+
+	/* Set media type function pointer */
+	hw->phy.media_type = e1000_media_type_copper;
+
+	/* Set mta register count */
+	mac->mta_reg_count = 32;
+	/* Set rar entry count */
+	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
+	if (mac->type == e1000_ich8lan)
+		mac->rar_entry_count--;
+	/* Set if part includes ASF firmware */
+	mac->asf_firmware_present = true;
+	/* FWSM register */
+	mac->has_fwsm = true;
+	/* ARC subsystem not supported */
+	mac->arc_subsystem_valid = false;
+	/* Adaptive IFS supported */
+	mac->adaptive_ifs = true;
+
+	/* Function pointers */
+
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
+	/* function id */
+	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
+	/* reset */
+	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
+	/* hw initialization */
+	mac->ops.init_hw = e1000_init_hw_ich8lan;
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_ich8lan;
+	/* physical interface setup */
+	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
+	/* check for link */
+	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
+	/* link info */
+	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
+	/* clear hardware counters */
+	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
+
+	/* LED and other operations */
+	switch (mac->type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+		/* check management mode */
+		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
+		/* ID LED init */
+		mac->ops.id_led_init = e1000_id_led_init_generic;
+		/* blink LED */
+		mac->ops.blink_led = e1000_blink_led_generic;
+		/* setup LED */
+		mac->ops.setup_led = e1000_setup_led_generic;
+		/* cleanup LED */
+		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
+		/* turn on/off LED */
+		mac->ops.led_on = e1000_led_on_ich8lan;
+		mac->ops.led_off = e1000_led_off_ich8lan;
+		break;
+	case e1000_pch2lan:
+		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
+		mac->ops.rar_set = e1000_rar_set_pch2lan;
+		/* fall-through */
+	case e1000_pch_lpt:
+#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
+		/* multicast address update for pch2 */
+		mac->ops.update_mc_addr_list =
+			e1000_update_mc_addr_list_pch2lan;
+#endif
+	case e1000_pchlan:
+#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
+		/* save PCH revision_id */
+		e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
+		hw->revision_id = (u8)(pci_cfg &= 0x000F);
+#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
+		/* check management mode */
+		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
+		/* ID LED init */
+		mac->ops.id_led_init = e1000_id_led_init_pchlan;
+		/* setup LED */
+		mac->ops.setup_led = e1000_setup_led_pchlan;
+		/* cleanup LED */
+		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
+		/* turn on/off LED */
+		mac->ops.led_on = e1000_led_on_pchlan;
+		mac->ops.led_off = e1000_led_off_pchlan;
+		break;
+	default:
+		break;
+	}
+
+	if (mac->type == e1000_pch_lpt) {
+		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
+		mac->ops.rar_set = e1000_rar_set_pch_lpt;
+		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
+	}
+
+	/* Enable PCS Lock-loss workaround for ICH8 */
+	if (mac->type == e1000_ich8lan)
+		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  __e1000_access_emi_reg_locked - Read/write EMI register
+ *  @hw: pointer to the HW structure
+ *  @addr: EMI address to program
+ *  @data: pointer to value to read/write from/to the EMI address
+ *  @read: boolean flag to indicate read or write
+ *
+ *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
+					 u16 *data, bool read)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("__e1000_access_emi_reg_locked");
+
+	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
+	if (ret_val)
+		return ret_val;
+
+	if (read)
+		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
+						      data);
+	else
+		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
+						       *data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_emi_reg_locked - Read Extended Management Interface register
+ *  @hw: pointer to the HW structure
+ *  @addr: EMI address to program
+ *  @data: value to be read from the EMI address
+ *
+ *  Assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
+{
+	DEBUGFUNC("e1000_read_emi_reg_locked");
+
+	return __e1000_access_emi_reg_locked(hw, addr, data, true);
+}
+
+/**
+ *  e1000_write_emi_reg_locked - Write Extended Management Interface register
+ *  @hw: pointer to the HW structure
+ *  @addr: EMI address to program
+ *  @data: value to be written to the EMI address
+ *
+ *  Assumes the SW/FW/HW Semaphore is already acquired.
+ **/
+s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
+{
+	DEBUGFUNC("e1000_read_emi_reg_locked");
+
+	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
+}
+
+/**
+ *  e1000_set_eee_pchlan - Enable/disable EEE support
+ *  @hw: pointer to the HW structure
+ *
+ *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
+ *  the link and the EEE capabilities of the link partner.  The LPI Control
+ *  register bits will remain set only if/when link is up.
+ *
+ *  EEE LPI must not be asserted earlier than one second after link is up.
+ *  On 82579, EEE LPI should not be enabled until such time otherwise there
+ *  can be link issues with some switches.  Other devices can have EEE LPI
+ *  enabled immediately upon link up since they have a timer in hardware which
+ *  prevents LPI from being asserted too early.
+ **/
+s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	s32 ret_val;
+	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
+
+	DEBUGFUNC("e1000_set_eee_pchlan");
+
+	switch (hw->phy.type) {
+	case e1000_phy_82579:
+		lpa = I82579_EEE_LP_ABILITY;
+		pcs_status = I82579_EEE_PCS_STATUS;
+		adv_addr = I82579_EEE_ADVERTISEMENT;
+		break;
+	case e1000_phy_i217:
+		lpa = I217_EEE_LP_ABILITY;
+		pcs_status = I217_EEE_PCS_STATUS;
+		adv_addr = I217_EEE_ADVERTISEMENT;
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
+	if (ret_val)
+		goto release;
+
+	/* Clear bits that enable EEE in various speeds */
+	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
+
+	/* Enable EEE if not disabled by user */
+	if (!dev_spec->eee_disable) {
+		/* Save off link partner's EEE ability */
+		ret_val = e1000_read_emi_reg_locked(hw, lpa,
+						    &dev_spec->eee_lp_ability);
+		if (ret_val)
+			goto release;
+
+		/* Read EEE advertisement */
+		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
+		if (ret_val)
+			goto release;
+
+		/* Enable EEE only for speeds in which the link partner is
+		 * EEE capable and for which we advertise EEE.
+		 */
+		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
+			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
+
+		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
+			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
+			if (data & NWAY_LPAR_100TX_FD_CAPS)
+				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
+			else
+				/* EEE is not supported in 100Half, so ignore
+				 * partner's EEE in 100 ability if full-duplex
+				 * is not advertised.
+				 */
+				dev_spec->eee_lp_ability &=
+				    ~I82579_EEE_100_SUPPORTED;
+		}
+	}
+
+	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
+	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
+	if (ret_val)
+		goto release;
+
+	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
+release:
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
+ *  @hw:   pointer to the HW structure
+ *  @link: link up bool flag
+ *
+ *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
+ *  preventing further DMA write requests.  Workaround the issue by disabling
+ *  the de-assertion of the clock request when in 1Gpbs mode.
+ *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
+ *  speeds in order to avoid Tx hangs.
+ **/
+STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
+{
+	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
+	u32 status = E1000_READ_REG(hw, E1000_STATUS);
+	s32 ret_val = E1000_SUCCESS;
+	u16 reg;
+
+	if (link && (status & E1000_STATUS_SPEED_1000)) {
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val =
+		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+					       &reg);
+		if (ret_val)
+			goto release;
+
+		ret_val =
+		    e1000_write_kmrn_reg_locked(hw,
+						E1000_KMRNCTRLSTA_K1_CONFIG,
+						reg &
+						~E1000_KMRNCTRLSTA_K1_ENABLE);
+		if (ret_val)
+			goto release;
+
+		usec_delay(10);
+
+		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
+				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
+
+		ret_val =
+		    e1000_write_kmrn_reg_locked(hw,
+						E1000_KMRNCTRLSTA_K1_CONFIG,
+						reg);
+release:
+		hw->phy.ops.release(hw);
+	} else {
+		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
+		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
+
+		if (!link || ((status & E1000_STATUS_SPEED_100) &&
+			      (status & E1000_STATUS_FD)))
+			goto update_fextnvm6;
+
+		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
+		if (ret_val)
+			return ret_val;
+
+		/* Clear link status transmit timeout */
+		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
+
+		if (status & E1000_STATUS_SPEED_100) {
+			/* Set inband Tx timeout to 5x10us for 100Half */
+			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
+
+			/* Do not extend the K1 entry latency for 100Half */
+			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
+		} else {
+			/* Set inband Tx timeout to 50x10us for 10Full/Half */
+			reg |= 50 <<
+			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
+
+			/* Extend the K1 entry latency for 10 Mbps */
+			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
+		}
+
+		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
+		if (ret_val)
+			return ret_val;
+
+update_fextnvm6:
+		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
+	}
+
+	return ret_val;
+}
+
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+/**
+ *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
+ *  @hw: pointer to the HW structure
+ *  @to_sx: boolean indicating a system power state transition to Sx
+ *
+ *  When link is down, configure ULP mode to significantly reduce the power
+ *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
+ *  ME firmware to start the ULP configuration.  If not on an ME enabled
+ *  system, configure the ULP mode by software.
+ */
+s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
+{
+	u32 mac_reg;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_reg;
+
+	if ((hw->mac.type < e1000_pch_lpt) ||
+	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
+	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
+	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
+		return 0;
+
+	if (!to_sx) {
+		int i = 0;
+
+		/* Poll up to 5 seconds for Cable Disconnected indication */
+		while (!(E1000_READ_REG(hw, E1000_FEXT) &
+			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
+			/* Bail if link is re-acquired */
+			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
+				return -E1000_ERR_PHY;
+
+			if (i++ == 100)
+				break;
+
+			msec_delay(50);
+		}
+		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
+			  (E1000_READ_REG(hw, E1000_FEXT) &
+			   E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
+			  i * 50);
+	}
+
+	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
+		/* Request ME configure ULP mode in the PHY */
+		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
+		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
+		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
+
+		goto out;
+	}
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	/* During S0 Idle keep the phy in PCI-E mode */
+	if (hw->dev_spec.ich8lan.smbus_disable)
+		goto skip_smbus;
+
+	/* Force SMBus mode in PHY */
+	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
+	if (ret_val)
+		goto release;
+	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
+	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
+
+	/* Force SMBus mode in MAC */
+	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+skip_smbus:
+	if (!to_sx) {
+		/* Change the 'Link Status Change' interrupt to trigger
+		 * on 'Cable Status Change'
+		 */
+		ret_val = e1000_read_kmrn_reg_locked(hw,
+						     E1000_KMRNCTRLSTA_OP_MODES,
+						     &phy_reg);
+		if (ret_val)
+			goto release;
+		phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
+		e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
+					    phy_reg);
+	}
+
+	/* Set Inband ULP Exit, Reset to SMBus mode and
+	 * Disable SMBus Release on PERST# in PHY
+	 */
+	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
+	if (ret_val)
+		goto release;
+	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
+		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
+	if (to_sx) {
+		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
+			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
+
+		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
+	} else {
+		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
+	}
+	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
+
+	/* Set Disable SMBus Release on PERST# in MAC */
+	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
+	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
+	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
+
+	/* Commit ULP changes in PHY by starting auto ULP configuration */
+	phy_reg |= I218_ULP_CONFIG1_START;
+	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
+
+	if (!to_sx) {
+		/* Disable Tx so that the MAC doesn't send any (buffered)
+		 * packets to the PHY.
+		 */
+		mac_reg = E1000_READ_REG(hw, E1000_TCTL);
+		mac_reg &= ~E1000_TCTL_EN;
+		E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
+	}
+release:
+	hw->phy.ops.release(hw);
+out:
+	if (ret_val)
+		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
+	else
+		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
+ *  @hw: pointer to the HW structure
+ *  @force: boolean indicating whether or not to force disabling ULP
+ *
+ *  Un-configure ULP mode when link is up, the system is transitioned from
+ *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
+ *  system, poll for an indication from ME that ULP has been un-configured.
+ *  If not on an ME enabled system, un-configure the ULP mode by software.
+ *
+ *  During nominal operation, this function is called when link is acquired
+ *  to disable ULP mode (force=false); otherwise, for example when unloading
+ *  the driver or during Sx->S0 transitions, this is called with force=true
+ *  to forcibly disable ULP.
+
+ *  When the cable is plugged in while the device is in D0, a Cable Status
+ *  Change interrupt is generated which causes this function to be called
+ *  to partially disable ULP mode and restart autonegotiation.  This function
+ *  is then called again due to the resulting Link Status Change interrupt
+ *  to finish cleaning up after the ULP flow.
+ */
+s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u32 mac_reg;
+	u16 phy_reg;
+	int i = 0;
+
+	if ((hw->mac.type < e1000_pch_lpt) ||
+	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
+	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
+	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
+		return 0;
+
+	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
+		if (force) {
+			/* Request ME un-configure ULP mode in the PHY */
+			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
+			mac_reg &= ~E1000_H2ME_ULP;
+			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
+			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
+		}
+
+		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
+		while (E1000_READ_REG(hw, E1000_FWSM) &
+		       E1000_FWSM_ULP_CFG_DONE) {
+			if (i++ == 10) {
+				ret_val = -E1000_ERR_PHY;
+				goto out;
+			}
+
+			msec_delay(10);
+		}
+		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
+
+		if (force) {
+			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
+			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
+			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
+		} else {
+			/* Clear H2ME.ULP after ME ULP configuration */
+			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
+			mac_reg &= ~E1000_H2ME_ULP;
+			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
+
+			/* Restore link speed advertisements and restart
+			 * Auto-negotiation
+			 */
+			ret_val = e1000_phy_setup_autoneg(hw);
+			if (ret_val)
+				goto out;
+
+			ret_val = e1000_oem_bits_config_ich8lan(hw, true);
+		}
+
+		goto out;
+	}
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		goto out;
+
+	/* Revert the change to the 'Link Status Change'
+	 * interrupt to trigger on 'Cable Status Change'
+	 */
+	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
+					     &phy_reg);
+	if (ret_val)
+		goto release;
+	phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
+	e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg);
+
+	if (force)
+		/* Toggle LANPHYPC Value bit */
+		e1000_toggle_lanphypc_pch_lpt(hw);
+
+	/* Unforce SMBus mode in PHY */
+	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
+	if (ret_val) {
+		/* The MAC might be in PCIe mode, so temporarily force to
+		 * SMBus mode in order to access the PHY.
+		 */
+		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+		msec_delay(50);
+
+		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
+						       &phy_reg);
+		if (ret_val)
+			goto release;
+	}
+	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
+	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
+
+	/* Unforce SMBus mode in MAC */
+	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
+
+	/* When ULP mode was previously entered, K1 was disabled by the
+	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
+	 */
+	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
+	if (ret_val)
+		goto release;
+	phy_reg |= HV_PM_CTRL_K1_ENABLE;
+	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
+
+	/* Clear ULP enabled configuration */
+	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
+	if (ret_val)
+		goto release;
+	/* CSC interrupt received due to ULP Indication */
+	if ((phy_reg & I218_ULP_CONFIG1_IND) || force) {
+		phy_reg &= ~(I218_ULP_CONFIG1_IND |
+			     I218_ULP_CONFIG1_STICKY_ULP |
+			     I218_ULP_CONFIG1_RESET_TO_SMBUS |
+			     I218_ULP_CONFIG1_WOL_HOST |
+			     I218_ULP_CONFIG1_INBAND_EXIT |
+			     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
+		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
+
+		/* Commit ULP changes by starting auto ULP configuration */
+		phy_reg |= I218_ULP_CONFIG1_START;
+		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
+
+		/* Clear Disable SMBus Release on PERST# in MAC */
+		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
+		mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
+		E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
+
+		if (!force) {
+			hw->phy.ops.release(hw);
+
+			if (hw->mac.autoneg)
+				e1000_phy_setup_autoneg(hw);
+
+			e1000_sw_lcd_config_ich8lan(hw);
+
+			e1000_oem_bits_config_ich8lan(hw, true);
+
+			/* Set ULP state to unknown and return non-zero to
+			 * indicate no link (yet) and re-enter on the next LSC
+			 * to finish disabling ULP flow.
+			 */
+			hw->dev_spec.ich8lan.ulp_state =
+			    e1000_ulp_state_unknown;
+
+			return 1;
+		}
+	}
+
+	/* Re-enable Tx */
+	mac_reg = E1000_READ_REG(hw, E1000_TCTL);
+	mac_reg |= E1000_TCTL_EN;
+	E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
+
+release:
+	hw->phy.ops.release(hw);
+	if (force) {
+		hw->phy.ops.reset(hw);
+		msec_delay(50);
+	}
+out:
+	if (ret_val)
+		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
+	else
+		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
+
+	return ret_val;
+}
+
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+/**
+ *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link = false;
+	u16 phy_reg;
+
+	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
+
+	/* We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status)
+		return E1000_SUCCESS;
+
+	if ((hw->mac.type < e1000_pch_lpt) ||
+	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
+	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) {
+		/* First we want to see if the MII Status Register reports
+		 * link.  If so, then we want to get the current speed/duplex
+		 * of the PHY.
+		 */
+		ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* Check the MAC's STATUS register to determine link state
+		 * since the PHY could be inaccessible while in ULP mode.
+		 */
+		link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
+		if (link)
+			ret_val = e1000_disable_ulp_lpt_lp(hw, false);
+		else
+			ret_val = e1000_enable_ulp_lpt_lp(hw, false);
+
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->mac.type == e1000_pchlan) {
+		ret_val = e1000_k1_gig_workaround_hv(hw, link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* When connected at 10Mbps half-duplex, some parts are excessively
+	 * aggressive resulting in many collisions. To avoid this, increase
+	 * the IPG and reduce Rx latency in the PHY.
+	 */
+	if (((hw->mac.type == e1000_pch2lan) ||
+	     (hw->mac.type == e1000_pch_lpt)) && link) {
+		u32 reg;
+		reg = E1000_READ_REG(hw, E1000_STATUS);
+		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
+			u16 emi_addr;
+
+			reg = E1000_READ_REG(hw, E1000_TIPG);
+			reg &= ~E1000_TIPG_IPGT_MASK;
+			reg |= 0xFF;
+			E1000_WRITE_REG(hw, E1000_TIPG, reg);
+
+			/* Reduce Rx latency in analog PHY */
+			ret_val = hw->phy.ops.acquire(hw);
+			if (ret_val)
+				return ret_val;
+
+			if (hw->mac.type == e1000_pch2lan)
+				emi_addr = I82579_RX_CONFIG;
+			else
+				emi_addr = I217_RX_CONFIG;
+			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
+
+			hw->phy.ops.release(hw);
+
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	/* Work-around I218 hang issue */
+	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
+	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
+		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Clear link partner's EEE ability */
+	hw->dev_spec.ich8lan.eee_lp_ability = 0;
+
+	if (!link)
+		return E1000_SUCCESS; /* No link detected */
+
+	mac->get_link_status = false;
+
+	switch (hw->mac.type) {
+	case e1000_pch2lan:
+		ret_val = e1000_k1_workaround_lv(hw);
+		if (ret_val)
+			return ret_val;
+		/* fall-thru */
+	case e1000_pchlan:
+		if (hw->phy.type == e1000_phy_82578) {
+			ret_val = e1000_link_stall_workaround_hv(hw);
+			if (ret_val)
+				return ret_val;
+		}
+
+		/* Workaround for PCHx parts in half-duplex:
+		 * Set the number of preambles removed from the packet
+		 * when it is passed from the PHY to the MAC to prevent
+		 * the MAC from misinterpreting the packet type.
+		 */
+		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
+		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
+
+		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
+		    E1000_STATUS_FD)
+			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
+
+		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
+		break;
+	default:
+		break;
+	}
+
+	/* Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000_check_downshift_generic(hw);
+
+	/* Enable/Disable EEE after link up */
+	if (hw->phy.type > e1000_phy_82579) {
+		ret_val = e1000_set_eee_pchlan(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg)
+		return -E1000_ERR_CONFIG;
+
+	/* Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	mac->ops.config_collision_dist(hw);
+
+	/* Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val)
+		DEBUGOUT("Error configuring flow control\n");
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Initialize family-specific function pointers for PHY, MAC, and NVM.
+ **/
+void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
+		break;
+	case e1000_pchlan:
+	case e1000_pch2lan:
+	case e1000_pch_lpt:
+		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
+		break;
+	default:
+		break;
+	}
+}
+
+/**
+ *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the mutex for performing NVM operations.
+ **/
+STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
+
+	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_release_nvm_ich8lan - Release NVM mutex
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the mutex used while performing NVM operations.
+ **/
+STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_release_nvm_ich8lan");
+
+	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
+
+	return;
+}
+
+/**
+ *  e1000_acquire_swflag_ich8lan - Acquire software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquires the software control flag for performing PHY and select
+ *  MAC CSR accesses.
+ **/
+STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
+
+	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+	while (timeout) {
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
+			break;
+
+		msec_delay_irq(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		DEBUGOUT("SW has already locked the resource.\n");
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+	timeout = SW_FLAG_TIMEOUT;
+
+	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
+	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+
+	while (timeout) {
+		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
+			break;
+
+		msec_delay_irq(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
+			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
+		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+		ret_val = -E1000_ERR_CONFIG;
+		goto out;
+	}
+
+out:
+	if (ret_val)
+		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_release_swflag_ich8lan - Release software control flag
+ *  @hw: pointer to the HW structure
+ *
+ *  Releases the software control flag for performing PHY and select
+ *  MAC CSR accesses.
+ **/
+STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
+{
+	u32 extcnf_ctrl;
+
+	DEBUGFUNC("e1000_release_swflag_ich8lan");
+
+	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
+		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
+		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+	} else {
+		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
+	}
+
+	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+	return;
+}
+
+/**
+ *  e1000_check_mng_mode_ich8lan - Checks management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks if the adapter has any manageability enabled.
+ *  This is a function pointer entry point only called by read/write
+ *  routines for the PHY and NVM parts.
+ **/
+STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
+
+	fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
+	       ((fwsm & E1000_FWSM_MODE_MASK) ==
+		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ *  e1000_check_mng_mode_pchlan - Checks management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  This checks if the adapter has iAMT enabled.
+ *  This is a function pointer entry point only called by read/write
+ *  routines for the PHY and NVM parts.
+ **/
+STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+
+	DEBUGFUNC("e1000_check_mng_mode_pchlan");
+
+	fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
+	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/**
+ *  e1000_rar_set_pch2lan - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.  For 82579, RAR[0] is the base address register that is to
+ *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
+ *  Use SHRA[0-3] in place of those reserved for ME.
+ **/
+STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	DEBUGFUNC("e1000_rar_set_pch2lan");
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] |
+		   ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* If MAC address zero, no need to set the AV bit */
+	if (rar_low || rar_high)
+		rar_high |= E1000_RAH_AV;
+
+	if (index == 0) {
+		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+		E1000_WRITE_FLUSH(hw);
+		return;
+	}
+
+	/* RAR[1-6] are owned by manageability.  Skip those and program the
+	 * next address into the SHRA register array.
+	 */
+	if (index < (u32) (hw->mac.rar_entry_count)) {
+		s32 ret_val;
+
+		ret_val = e1000_acquire_swflag_ich8lan(hw);
+		if (ret_val)
+			goto out;
+
+		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
+		E1000_WRITE_FLUSH(hw);
+
+		e1000_release_swflag_ich8lan(hw);
+
+		/* verify the register updates */
+		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
+		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
+			return;
+
+		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
+			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
+	}
+
+out:
+	DEBUGOUT1("Failed to write receive address at index %d\n", index);
+}
+
+/**
+ *  e1000_rar_set_pch_lpt - Set receive address registers
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address register array at index to the address passed
+ *  in by addr. For LPT, RAR[0] is the base address register that is to
+ *  contain the MAC address. SHRA[0-10] are the shared receive address
+ *  registers that are shared between the Host and manageability engine (ME).
+ **/
+STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+	u32 wlock_mac;
+
+	DEBUGFUNC("e1000_rar_set_pch_lpt");
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* If MAC address zero, no need to set the AV bit */
+	if (rar_low || rar_high)
+		rar_high |= E1000_RAH_AV;
+
+	if (index == 0) {
+		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+		E1000_WRITE_FLUSH(hw);
+		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+		E1000_WRITE_FLUSH(hw);
+		return;
+	}
+
+	/* The manageability engine (ME) can lock certain SHRAR registers that
+	 * it is using - those registers are unavailable for use.
+	 */
+	if (index < hw->mac.rar_entry_count) {
+		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
+			    E1000_FWSM_WLOCK_MAC_MASK;
+		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
+
+		/* Check if all SHRAR registers are locked */
+		if (wlock_mac == 1)
+			goto out;
+
+		if ((wlock_mac == 0) || (index <= wlock_mac)) {
+			s32 ret_val;
+
+			ret_val = e1000_acquire_swflag_ich8lan(hw);
+
+			if (ret_val)
+				goto out;
+
+			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
+					rar_low);
+			E1000_WRITE_FLUSH(hw);
+			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
+					rar_high);
+			E1000_WRITE_FLUSH(hw);
+
+			e1000_release_swflag_ich8lan(hw);
+
+			/* verify the register updates */
+			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
+			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
+				return;
+		}
+	}
+
+out:
+	DEBUGOUT1("Failed to write receive address at index %d\n", index);
+}
+
+#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
+/**
+ *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
+					      u8 *mc_addr_list,
+					      u32 mc_addr_count)
+{
+	u16 phy_reg = 0;
+	int i;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
+
+	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return;
+
+	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+	if (ret_val)
+		goto release;
+
+	for (i = 0; i < hw->mac.mta_reg_count; i++) {
+		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
+					   (u16)(hw->mac.mta_shadow[i] &
+						 0xFFFF));
+		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
+					   (u16)((hw->mac.mta_shadow[i] >> 16) &
+						 0xFFFF));
+	}
+
+	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+release:
+	hw->phy.ops.release(hw);
+}
+
+#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
+/**
+ *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks if firmware is blocking the reset of the PHY.
+ *  This is a function pointer entry point only called by
+ *  reset routines.
+ **/
+STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
+{
+	u32 fwsm;
+	bool blocked = false;
+	int i = 0;
+
+	DEBUGFUNC("e1000_check_reset_block_ich8lan");
+
+	do {
+		fwsm = E1000_READ_REG(hw, E1000_FWSM);
+		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
+			blocked = true;
+			msec_delay(10);
+			continue;
+		}
+		blocked = false;
+	} while (blocked && (i++ < 10));
+	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
+ *  @hw: pointer to the HW structure
+ *
+ *  Assumes semaphore already acquired.
+ *
+ **/
+STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw)
+{
+	u16 phy_data;
+	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
+	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
+		E1000_STRAP_SMT_FREQ_SHIFT;
+	s32 ret_val;
+
+	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
+
+	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~HV_SMB_ADDR_MASK;
+	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
+	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
+
+	if (hw->phy.type == e1000_phy_i217) {
+		/* Restore SMBus frequency */
+		if (freq--) {
+			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
+			phy_data |= (freq & (1 << 0)) <<
+				HV_SMB_ADDR_FREQ_LOW_SHIFT;
+			phy_data |= (freq & (1 << 1)) <<
+				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
+		} else {
+			DEBUGOUT("Unsupported SMB frequency in PHY\n");
+		}
+	}
+
+	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
+}
+
+/**
+ *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
+ *  @hw:   pointer to the HW structure
+ *
+ *  SW should configure the LCD from the NVM extended configuration region
+ *  as a workaround for certain parts.
+ **/
+STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
+	s32 ret_val = E1000_SUCCESS;
+	u16 word_addr, reg_data, reg_addr, phy_page = 0;
+
+	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
+
+	/* Initialize the PHY from the NVM on ICH platforms.  This
+	 * is needed due to an issue where the NVM configuration is
+	 * not properly autoloaded after power transitions.
+	 * Therefore, after each PHY reset, we will load the
+	 * configuration data out of the NVM manually.
+	 */
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+		if (phy->type != e1000_phy_igp_3)
+			return ret_val;
+
+		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
+		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
+			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
+			break;
+		}
+		/* Fall-thru */
+	case e1000_pchlan:
+	case e1000_pch2lan:
+	case e1000_pch_lpt:
+		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
+		break;
+	default:
+		return ret_val;
+	}
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	data = E1000_READ_REG(hw, E1000_FEXTNVM);
+	if (!(data & sw_cfg_mask))
+		goto release;
+
+	/* Make sure HW does not configure LCD from PHY
+	 * extended configuration before SW configuration
+	 */
+	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+	if ((hw->mac.type < e1000_pch2lan) &&
+	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
+			goto release;
+
+	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
+	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
+	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
+	if (!cnf_size)
+		goto release;
+
+	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
+	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
+
+	if (((hw->mac.type == e1000_pchlan) &&
+	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
+	    (hw->mac.type > e1000_pchlan)) {
+		/* HW configures the SMBus address and LEDs when the
+		 * OEM and LCD Write Enable bits are set in the NVM.
+		 * When both NVM bits are cleared, SW will configure
+		 * them instead.
+		 */
+		ret_val = e1000_write_smbus_addr(hw);
+		if (ret_val)
+			goto release;
+
+		data = E1000_READ_REG(hw, E1000_LEDCTL);
+		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
+							(u16)data);
+		if (ret_val)
+			goto release;
+	}
+
+	/* Configure LCD from extended configuration region. */
+
+	/* cnf_base_addr is in DWORD */
+	word_addr = (u16)(cnf_base_addr << 1);
+
+	for (i = 0; i < cnf_size; i++) {
+		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
+					   &reg_data);
+		if (ret_val)
+			goto release;
+
+		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
+					   1, &reg_addr);
+		if (ret_val)
+			goto release;
+
+		/* Save off the PHY page for future writes. */
+		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
+			phy_page = reg_data;
+			continue;
+		}
+
+		reg_addr &= PHY_REG_MASK;
+		reg_addr |= phy_page;
+
+		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
+						    reg_data);
+		if (ret_val)
+			goto release;
+	}
+
+release:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_k1_gig_workaround_hv - K1 Si workaround
+ *  @hw:   pointer to the HW structure
+ *  @link: link up bool flag
+ *
+ *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
+ *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
+ *  If link is down, the function will restore the default K1 setting located
+ *  in the NVM.
+ **/
+STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 status_reg = 0;
+	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
+
+	DEBUGFUNC("e1000_k1_gig_workaround_hv");
+
+	if (hw->mac.type != e1000_pchlan)
+		return E1000_SUCCESS;
+
+	/* Wrap the whole flow with the sw flag */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
+	if (link) {
+		if (hw->phy.type == e1000_phy_82578) {
+			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
+							      &status_reg);
+			if (ret_val)
+				goto release;
+
+			status_reg &= (BM_CS_STATUS_LINK_UP |
+				       BM_CS_STATUS_RESOLVED |
+				       BM_CS_STATUS_SPEED_MASK);
+
+			if (status_reg == (BM_CS_STATUS_LINK_UP |
+					   BM_CS_STATUS_RESOLVED |
+					   BM_CS_STATUS_SPEED_1000))
+				k1_enable = false;
+		}
+
+		if (hw->phy.type == e1000_phy_82577) {
+			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
+							      &status_reg);
+			if (ret_val)
+				goto release;
+
+			status_reg &= (HV_M_STATUS_LINK_UP |
+				       HV_M_STATUS_AUTONEG_COMPLETE |
+				       HV_M_STATUS_SPEED_MASK);
+
+			if (status_reg == (HV_M_STATUS_LINK_UP |
+					   HV_M_STATUS_AUTONEG_COMPLETE |
+					   HV_M_STATUS_SPEED_1000))
+				k1_enable = false;
+		}
+
+		/* Link stall fix for link up */
+		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+						       0x0100);
+		if (ret_val)
+			goto release;
+
+	} else {
+		/* Link stall fix for link down */
+		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
+						       0x4100);
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
+
+release:
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_configure_k1_ich8lan - Configure K1 power state
+ *  @hw: pointer to the HW structure
+ *  @enable: K1 state to configure
+ *
+ *  Configure the K1 power state based on the provided parameter.
+ *  Assumes semaphore already acquired.
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ **/
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
+{
+	s32 ret_val;
+	u32 ctrl_reg = 0;
+	u32 ctrl_ext = 0;
+	u32 reg = 0;
+	u16 kmrn_reg = 0;
+
+	DEBUGFUNC("e1000_configure_k1_ich8lan");
+
+	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+					     &kmrn_reg);
+	if (ret_val)
+		return ret_val;
+
+	if (k1_enable)
+		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
+	else
+		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
+
+	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
+					      kmrn_reg);
+	if (ret_val)
+		return ret_val;
+
+	usec_delay(20);
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
+
+	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+	reg |= E1000_CTRL_FRCSPD;
+	E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(20);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(20);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
+ *  @hw:       pointer to the HW structure
+ *  @d0_state: boolean if entering d0 or d3 device state
+ *
+ *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
+ *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
+ *  in NVM determines whether HW should configure LPLU and Gbe Disable.
+ **/
+STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
+{
+	s32 ret_val = 0;
+	u32 mac_reg;
+	u16 oem_reg;
+
+	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
+
+	if (hw->mac.type < e1000_pchlan)
+		return ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->mac.type == e1000_pchlan) {
+		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
+			goto release;
+	}
+
+	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
+	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
+		goto release;
+
+	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
+	if (ret_val)
+		goto release;
+
+	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
+
+	if (d0_state) {
+		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
+			oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
+			oem_reg |= HV_OEM_BITS_LPLU;
+	} else {
+		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
+		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
+			oem_reg |= HV_OEM_BITS_GBE_DIS;
+
+		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
+		    E1000_PHY_CTRL_NOND0A_LPLU))
+			oem_reg |= HV_OEM_BITS_LPLU;
+	}
+
+	/* Set Restart auto-neg to activate the bits */
+	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
+	    !hw->phy.ops.check_reset_block(hw))
+		oem_reg |= HV_OEM_BITS_RESTART_AN;
+
+	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
+
+release:
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+
+/**
+ *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
+ *  @hw:   pointer to the HW structure
+ **/
+STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
+
+	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data |= HV_KMRN_MDIO_SLOW;
+
+	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ *  done after every PHY reset.
+ **/
+STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
+
+	if (hw->mac.type != e1000_pchlan)
+		return E1000_SUCCESS;
+
+	/* Set MDIO slow mode before any other MDIO access */
+	if (hw->phy.type == e1000_phy_82577) {
+		ret_val = e1000_set_mdio_slow_mode_hv(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (((hw->phy.type == e1000_phy_82577) &&
+	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
+	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
+		/* Disable generation of early preamble */
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
+		if (ret_val)
+			return ret_val;
+
+		/* Preamble tuning for SSC */
+		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
+						0xA204);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->phy.type == e1000_phy_82578) {
+		/* Return registers to default by doing a soft reset then
+		 * writing 0x3140 to the control register.
+		 */
+		if (hw->phy.revision < 2) {
+			e1000_phy_sw_reset_generic(hw);
+			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
+							0x3140);
+		}
+	}
+
+	/* Select page 0 */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy.addr = 1;
+	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
+	hw->phy.ops.release(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure the K1 Si workaround during phy reset assuming there is
+	 * link so that it disables K1 if link is in 1Gbps.
+	 */
+	ret_val = e1000_k1_gig_workaround_hv(hw, true);
+	if (ret_val)
+		return ret_val;
+
+	/* Workaround for link disconnects on a busy hub in half duplex */
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
+	if (ret_val)
+		goto release;
+	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
+					       phy_data & 0x00FF);
+	if (ret_val)
+		goto release;
+
+	/* set MSE higher to enable link to stay up when noise is high */
+	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
+release:
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
+ *  @hw:   pointer to the HW structure
+ **/
+void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
+{
+	u32 mac_reg;
+	u16 i, phy_reg = 0;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return;
+	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+	if (ret_val)
+		goto release;
+
+	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
+	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
+		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
+		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
+					   (u16)(mac_reg & 0xFFFF));
+		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
+					   (u16)((mac_reg >> 16) & 0xFFFF));
+
+		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
+		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
+					   (u16)(mac_reg & 0xFFFF));
+		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
+					   (u16)((mac_reg & E1000_RAH_AV)
+						 >> 16));
+	}
+
+	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+release:
+	hw->phy.ops.release(hw);
+}
+
+#ifndef CRC32_OS_SUPPORT
+STATIC u32 e1000_calc_rx_da_crc(u8 mac[])
+{
+	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
+	u32 i, j, mask, crc;
+
+	DEBUGFUNC("e1000_calc_rx_da_crc");
+
+	crc = 0xffffffff;
+	for (i = 0; i < 6; i++) {
+		crc = crc ^ mac[i];
+		for (j = 8; j > 0; j--) {
+			mask = (crc & 1) * (-1);
+			crc = (crc >> 1) ^ (poly & mask);
+		}
+	}
+	return ~crc;
+}
+
+#endif /* CRC32_OS_SUPPORT */
+/**
+ *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
+ *  with 82579 PHY
+ *  @hw: pointer to the HW structure
+ *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
+ **/
+s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_reg, data;
+	u32 mac_reg;
+	u16 i;
+
+	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
+
+	if (hw->mac.type < e1000_pch2lan)
+		return E1000_SUCCESS;
+
+	/* disable Rx path while enabling/disabling workaround */
+	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
+	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
+					phy_reg | (1 << 14));
+	if (ret_val)
+		return ret_val;
+
+	if (enable) {
+		/* Write Rx addresses (rar_entry_count for RAL/H, and
+		 * SHRAL/H) and initial CRC values to the MAC
+		 */
+		for (i = 0; i < hw->mac.rar_entry_count; i++) {
+			u8 mac_addr[ETH_ADDR_LEN] = {0};
+			u32 addr_high, addr_low;
+
+			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
+			if (!(addr_high & E1000_RAH_AV))
+				continue;
+			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
+			mac_addr[0] = (addr_low & 0xFF);
+			mac_addr[1] = ((addr_low >> 8) & 0xFF);
+			mac_addr[2] = ((addr_low >> 16) & 0xFF);
+			mac_addr[3] = ((addr_low >> 24) & 0xFF);
+			mac_addr[4] = (addr_high & 0xFF);
+			mac_addr[5] = ((addr_high >> 8) & 0xFF);
+
+#ifndef CRC32_OS_SUPPORT
+			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
+					e1000_calc_rx_da_crc(mac_addr));
+#else /* CRC32_OS_SUPPORT */
+			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
+					E1000_CRC32(ETH_ADDR_LEN, mac_addr));
+#endif /* CRC32_OS_SUPPORT */
+		}
+
+		/* Write Rx addresses to the PHY */
+		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
+
+		/* Enable jumbo frame workaround in the MAC */
+		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
+		mac_reg &= ~(1 << 14);
+		mac_reg |= (7 << 15);
+		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
+
+		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
+		mac_reg |= E1000_RCTL_SECRC;
+		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
+
+		ret_val = e1000_read_kmrn_reg_generic(hw,
+						E1000_KMRNCTRLSTA_CTRL_OFFSET,
+						&data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_write_kmrn_reg_generic(hw,
+						E1000_KMRNCTRLSTA_CTRL_OFFSET,
+						data | (1 << 0));
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_kmrn_reg_generic(hw,
+						E1000_KMRNCTRLSTA_HD_CTRL,
+						&data);
+		if (ret_val)
+			return ret_val;
+		data &= ~(0xF << 8);
+		data |= (0xB << 8);
+		ret_val = e1000_write_kmrn_reg_generic(hw,
+						E1000_KMRNCTRLSTA_HD_CTRL,
+						data);
+		if (ret_val)
+			return ret_val;
+
+		/* Enable jumbo frame workaround in the PHY */
+		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
+		data &= ~(0x7F << 5);
+		data |= (0x37 << 5);
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
+		if (ret_val)
+			return ret_val;
+		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
+		data &= ~(1 << 13);
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
+		if (ret_val)
+			return ret_val;
+		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
+		data &= ~(0x3FF << 2);
+		data |= (0x1A << 2);
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
+		if (ret_val)
+			return ret_val;
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
+		if (ret_val)
+			return ret_val;
+		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
+		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
+						(1 << 10));
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* Write MAC register values back to h/w defaults */
+		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
+		mac_reg &= ~(0xF << 14);
+		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
+
+		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
+		mac_reg &= ~E1000_RCTL_SECRC;
+		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
+
+		ret_val = e1000_read_kmrn_reg_generic(hw,
+						E1000_KMRNCTRLSTA_CTRL_OFFSET,
+						&data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_write_kmrn_reg_generic(hw,
+						E1000_KMRNCTRLSTA_CTRL_OFFSET,
+						data & ~(1 << 0));
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_kmrn_reg_generic(hw,
+						E1000_KMRNCTRLSTA_HD_CTRL,
+						&data);
+		if (ret_val)
+			return ret_val;
+		data &= ~(0xF << 8);
+		data |= (0xB << 8);
+		ret_val = e1000_write_kmrn_reg_generic(hw,
+						E1000_KMRNCTRLSTA_HD_CTRL,
+						data);
+		if (ret_val)
+			return ret_val;
+
+		/* Write PHY register values back to h/w defaults */
+		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
+		data &= ~(0x7F << 5);
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
+		if (ret_val)
+			return ret_val;
+		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
+		data |= (1 << 13);
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
+		if (ret_val)
+			return ret_val;
+		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
+		data &= ~(0x3FF << 2);
+		data |= (0x8 << 2);
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
+		if (ret_val)
+			return ret_val;
+		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
+		if (ret_val)
+			return ret_val;
+		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
+		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
+						~(1 << 10));
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* re-enable Rx path after enabling/disabling workaround */
+	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
+				     ~(1 << 14));
+}
+
+/**
+ *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
+ *  done after every PHY reset.
+ **/
+STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
+
+	if (hw->mac.type != e1000_pch2lan)
+		return E1000_SUCCESS;
+
+	/* Set MDIO slow mode before any other MDIO access */
+	ret_val = e1000_set_mdio_slow_mode_hv(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+	/* set MSE higher to enable link to stay up when noise is high */
+	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
+	if (ret_val)
+		goto release;
+	/* drop link after 5 times MSE threshold was reached */
+	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
+release:
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_k1_gig_workaround_lv - K1 Si workaround
+ *  @hw:   pointer to the HW structure
+ *
+ *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
+ *  Disable K1 for 1000 and 100 speeds
+ **/
+STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 status_reg = 0;
+
+	DEBUGFUNC("e1000_k1_workaround_lv");
+
+	if (hw->mac.type != e1000_pch2lan)
+		return E1000_SUCCESS;
+
+	/* Set K1 beacon duration based on 10Mbs speed */
+	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
+	if (ret_val)
+		return ret_val;
+
+	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
+	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
+		if (status_reg &
+		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
+			u16 pm_phy_reg;
+
+			/* LV 1G/100 Packet drop issue wa  */
+			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
+						       &pm_phy_reg);
+			if (ret_val)
+				return ret_val;
+			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
+			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
+							pm_phy_reg);
+			if (ret_val)
+				return ret_val;
+		} else {
+			u32 mac_reg;
+			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
+			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
+			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
+			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
+ *  @hw:   pointer to the HW structure
+ *  @gate: boolean set to true to gate, false to ungate
+ *
+ *  Gate/ungate the automatic PHY configuration via hardware; perform
+ *  the configuration via software instead.
+ **/
+STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
+{
+	u32 extcnf_ctrl;
+
+	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
+
+	if (hw->mac.type < e1000_pch2lan)
+		return;
+
+	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
+
+	if (gate)
+		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
+	else
+		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
+
+	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
+}
+
+/**
+ *  e1000_lan_init_done_ich8lan - Check for PHY config completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check the appropriate indication the MAC has finished configuring the
+ *  PHY after a software reset.
+ **/
+STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
+{
+	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
+
+	DEBUGFUNC("e1000_lan_init_done_ich8lan");
+
+	/* Wait for basic configuration completes before proceeding */
+	do {
+		data = E1000_READ_REG(hw, E1000_STATUS);
+		data &= E1000_STATUS_LAN_INIT_DONE;
+		usec_delay(100);
+	} while ((!data) && --loop);
+
+	/* If basic configuration is incomplete before the above loop
+	 * count reaches 0, loading the configuration from NVM will
+	 * leave the PHY in a bad state possibly resulting in no link.
+	 */
+	if (loop == 0)
+		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
+
+	/* Clear the Init Done bit for the next init event */
+	data = E1000_READ_REG(hw, E1000_STATUS);
+	data &= ~E1000_STATUS_LAN_INIT_DONE;
+	E1000_WRITE_REG(hw, E1000_STATUS, data);
+}
+
+/**
+ *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 reg;
+
+	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
+
+	if (hw->phy.ops.check_reset_block(hw))
+		return E1000_SUCCESS;
+
+	/* Allow time for h/w to get to quiescent state after reset */
+	msec_delay(10);
+
+	/* Perform any necessary post-reset workarounds */
+	switch (hw->mac.type) {
+	case e1000_pchlan:
+		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_pch2lan:
+		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		break;
+	}
+
+	/* Clear the host wakeup bit after lcd reset */
+	if (hw->mac.type >= e1000_pchlan) {
+		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
+		reg &= ~BM_WUC_HOST_WU_BIT;
+		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
+	}
+
+	/* Configure the LCD with the extended configuration region in NVM */
+	ret_val = e1000_sw_lcd_config_ich8lan(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Configure the LCD with the OEM bits in NVM */
+	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
+
+	if (hw->mac.type == e1000_pch2lan) {
+		/* Ungate automatic PHY configuration on non-managed 82579 */
+		if (!(E1000_READ_REG(hw, E1000_FWSM) &
+		    E1000_ICH_FWSM_FW_VALID)) {
+			msec_delay(10);
+			e1000_gate_hw_phy_config_ich8lan(hw, false);
+		}
+
+		/* Set EEE LPI Update Timer to 200usec */
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_write_emi_reg_locked(hw,
+						     I82579_LPI_UPDATE_TIMER,
+						     0x1387);
+		hw->phy.ops.release(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Resets the PHY
+ *  This is a function pointer entry point called by drivers
+ *  or other shared routines.
+ **/
+STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
+
+	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
+	if ((hw->mac.type == e1000_pch2lan) &&
+	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
+		e1000_gate_hw_phy_config_ich8lan(hw, true);
+
+	ret_val = e1000_phy_hw_reset_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	return e1000_post_phy_reset_ich8lan(hw);
+}
+
+/**
+ *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
+ *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
+ *  the phy speed. This function will manually set the LPLU bit and restart
+ *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
+ *  since it configures the same bit.
+ **/
+STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
+{
+	s32 ret_val;
+	u16 oem_reg;
+
+	DEBUGFUNC("e1000_set_lplu_state_pchlan");
+
+	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
+	if (ret_val)
+		return ret_val;
+
+	if (active)
+		oem_reg |= HV_OEM_BITS_LPLU;
+	else
+		oem_reg &= ~HV_OEM_BITS_LPLU;
+
+	if (!hw->phy.ops.check_reset_block(hw))
+		oem_reg |= HV_OEM_BITS_RESTART_AN;
+
+	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
+}
+
+/**
+ *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D0 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
+
+	if (phy->type == e1000_phy_ife)
+		return E1000_SUCCESS;
+
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+	if (active) {
+		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return E1000_SUCCESS;
+
+		/* Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = phy->ops.read_reg(hw,
+					    IGP01E1000_PHY_PORT_CONFIG,
+					    &data);
+		if (ret_val)
+			return ret_val;
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = phy->ops.write_reg(hw,
+					     IGP01E1000_PHY_PORT_CONFIG,
+					     data);
+		if (ret_val)
+			return ret_val;
+	} else {
+		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return E1000_SUCCESS;
+
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
+ *  @hw: pointer to the HW structure
+ *  @active: true to enable LPLU, false to disable
+ *
+ *  Sets the LPLU D3 state according to the active flag.  When
+ *  activating LPLU this function also disables smart speed
+ *  and vice versa.  LPLU will not be activated unless the
+ *  device autonegotiation advertisement meets standards of
+ *  either 10 or 10/100 or 10/100/1000 at all duplexes.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 phy_ctrl;
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
+
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+
+	if (!active) {
+		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return E1000_SUCCESS;
+
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+		if (phy->type != e1000_phy_igp_3)
+			return E1000_SUCCESS;
+
+		/* Call gig speed drop workaround on LPLU before accessing
+		 * any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = phy->ops.read_reg(hw,
+					    IGP01E1000_PHY_PORT_CONFIG,
+					    &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = phy->ops.write_reg(hw,
+					     IGP01E1000_PHY_PORT_CONFIG,
+					     data);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
+ *  @hw: pointer to the HW structure
+ *  @bank:  pointer to the variable that returns the active bank
+ *
+ *  Reads signature byte from the NVM using the flash access registers.
+ *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
+ **/
+STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
+{
+	u32 eecd;
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
+	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
+	u8 sig_byte = 0;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
+
+	switch (hw->mac.type) {
+	case e1000_ich8lan:
+	case e1000_ich9lan:
+		eecd = E1000_READ_REG(hw, E1000_EECD);
+		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
+		    E1000_EECD_SEC1VAL_VALID_MASK) {
+			if (eecd & E1000_EECD_SEC1VAL)
+				*bank = 1;
+			else
+				*bank = 0;
+
+			return E1000_SUCCESS;
+		}
+		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
+		/* fall-thru */
+	default:
+		/* set bank to 0 in case flash read fails */
+		*bank = 0;
+
+		/* Check bank 0 */
+		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
+							&sig_byte);
+		if (ret_val)
+			return ret_val;
+		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+		    E1000_ICH_NVM_SIG_VALUE) {
+			*bank = 0;
+			return E1000_SUCCESS;
+		}
+
+		/* Check bank 1 */
+		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
+							bank1_offset,
+							&sig_byte);
+		if (ret_val)
+			return ret_val;
+		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
+		    E1000_ICH_NVM_SIG_VALUE) {
+			*bank = 1;
+			return E1000_SUCCESS;
+		}
+
+		DEBUGOUT("ERROR: No valid NVM bank present\n");
+		return -E1000_ERR_NVM;
+	}
+}
+
+/**
+ *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to read.
+ *  @words: Size of data to read in words
+ *  @data: Pointer to the word(s) to read at offset.
+ *
+ *  Reads a word(s) from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 act_offset;
+	s32 ret_val = E1000_SUCCESS;
+	u32 bank = 0;
+	u16 i, word;
+
+	DEBUGFUNC("e1000_read_nvm_ich8lan");
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		ret_val = -E1000_ERR_NVM;
+		goto out;
+	}
+
+	nvm->ops.acquire(hw);
+
+	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val != E1000_SUCCESS) {
+		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
+		bank = 0;
+	}
+
+	act_offset = (bank) ? nvm->flash_bank_size : 0;
+	act_offset += offset;
+
+	ret_val = E1000_SUCCESS;
+	for (i = 0; i < words; i++) {
+		if (dev_spec->shadow_ram[offset+i].modified) {
+			data[i] = dev_spec->shadow_ram[offset+i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw,
+								act_offset + i,
+								&word);
+			if (ret_val)
+				break;
+			data[i] = word;
+		}
+	}
+
+	nvm->ops.release(hw);
+
+out:
+	if (ret_val)
+		DEBUGOUT1("NVM read error: %d\n", ret_val);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_init_ich8lan - Initialize flash
+ *  @hw: pointer to the HW structure
+ *
+ *  This function does initial flash setup so that a new read/write/erase cycle
+ *  can be started.
+ **/
+STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
+{
+	union ich8_hws_flash_status hsfsts;
+	s32 ret_val = -E1000_ERR_NVM;
+
+	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
+
+	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+	/* Check if the flash descriptor is valid */
+	if (!hsfsts.hsf_status.fldesvalid) {
+		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
+		return -E1000_ERR_NVM;
+	}
+
+	/* Clear FCERR and DAEL in hw status by writing 1 */
+	hsfsts.hsf_status.flcerr = 1;
+	hsfsts.hsf_status.dael = 1;
+	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+
+	/* Either we should have a hardware SPI cycle in progress
+	 * bit to check against, in order to start a new cycle or
+	 * FDONE bit should be changed in the hardware so that it
+	 * is 1 after hardware reset, which can then be used as an
+	 * indication whether a cycle is in progress or has been
+	 * completed.
+	 */
+
+	if (!hsfsts.hsf_status.flcinprog) {
+		/* There is no cycle running at present,
+		 * so we can start a cycle.
+		 * Begin by setting Flash Cycle Done.
+		 */
+		hsfsts.hsf_status.flcdone = 1;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
+		ret_val = E1000_SUCCESS;
+	} else {
+		s32 i;
+
+		/* Otherwise poll for sometime so the current
+		 * cycle has a chance to end before giving up.
+		 */
+		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+							      ICH_FLASH_HSFSTS);
+			if (!hsfsts.hsf_status.flcinprog) {
+				ret_val = E1000_SUCCESS;
+				break;
+			}
+			usec_delay(1);
+		}
+		if (ret_val == E1000_SUCCESS) {
+			/* Successful in waiting for previous cycle to timeout,
+			 * now set the Flash Cycle Done.
+			 */
+			hsfsts.hsf_status.flcdone = 1;
+			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
+						hsfsts.regval);
+		} else {
+			DEBUGOUT("Flash controller busy, cannot get access\n");
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
+ *  @hw: pointer to the HW structure
+ *  @timeout: maximum time to wait for completion
+ *
+ *  This function starts a flash cycle and waits for its completion.
+ **/
+STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
+{
+	union ich8_hws_flash_ctrl hsflctl;
+	union ich8_hws_flash_status hsfsts;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_flash_cycle_ich8lan");
+
+	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
+	hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+	hsflctl.hsf_ctrl.flcgo = 1;
+
+	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+	/* wait till FDONE bit is set to 1 */
+	do {
+		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcdone)
+			break;
+		usec_delay(1);
+	} while (i++ < timeout);
+
+	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
+		return E1000_SUCCESS;
+
+	return -E1000_ERR_NVM;
+}
+
+/**
+ *  e1000_read_flash_word_ich8lan - Read word from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: offset to data location
+ *  @data: pointer to the location for storing the data
+ *
+ *  Reads the flash word at offset into data.  Offset is converted
+ *  to bytes before read.
+ **/
+STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u16 *data)
+{
+	DEBUGFUNC("e1000_read_flash_word_ich8lan");
+
+	if (!data)
+		return -E1000_ERR_NVM;
+
+	/* Must convert offset into bytes. */
+	offset <<= 1;
+
+	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
+}
+
+/**
+ *  e1000_read_flash_byte_ich8lan - Read byte from flash
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to read.
+ *  @data: Pointer to a byte to store the value read.
+ *
+ *  Reads a single byte from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 *data)
+{
+	s32 ret_val;
+	u16 word = 0;
+
+	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
+
+	if (ret_val)
+		return ret_val;
+
+	*data = (u8)word;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte or word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: Pointer to the word to store the value read.
+ *
+ *  Reads a byte or word from the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					 u8 size, u16 *data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val = -E1000_ERR_NVM;
+	u8 count = 0;
+
+	DEBUGFUNC("e1000_read_flash_data_ich8lan");
+
+	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		return -E1000_ERR_NVM;
+	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+			     hw->nvm.flash_base_addr);
+
+	do {
+		usec_delay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != E1000_SUCCESS)
+			break;
+		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size - 1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+		ret_val =
+		    e1000_flash_cycle_ich8lan(hw,
+					      ICH_FLASH_READ_COMMAND_TIMEOUT);
+
+		/* Check if FCERR is set to 1, if set to 1, clear it
+		 * and try the whole sequence a few more times, else
+		 * read in (shift in) the Flash Data0, the order is
+		 * least significant byte first msb to lsb
+		 */
+		if (ret_val == E1000_SUCCESS) {
+			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
+			if (size == 1)
+				*data = (u8)(flash_data & 0x000000FF);
+			else if (size == 2)
+				*data = (u16)(flash_data & 0x0000FFFF);
+			break;
+		} else {
+			/* If we've gotten here, then things are probably
+			 * completely hosed, but if the error condition is
+			 * detected, it won't hurt to give it another try...
+			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
+			 */
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+							      ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr) {
+				/* Repeat for some time before giving up. */
+				continue;
+			} else if (!hsfsts.hsf_status.flcdone) {
+				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
+				break;
+			}
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the word(s) to write.
+ *  @words: Size of data to write in words
+ *  @data: Pointer to the word(s) to write at offset.
+ *
+ *  Writes a byte or word to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
+				   u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u16 i;
+
+	DEBUGFUNC("e1000_write_nvm_ich8lan");
+
+	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	nvm->ops.acquire(hw);
+
+	for (i = 0; i < words; i++) {
+		dev_spec->shadow_ram[offset+i].modified = true;
+		dev_spec->shadow_ram[offset+i].value = data[i];
+	}
+
+	nvm->ops.release(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  The NVM checksum is updated by calling the generic update_nvm_checksum,
+ *  which writes the checksum to the shadow ram.  The changes in the shadow
+ *  ram are then committed to the EEPROM by processing each bank at a time
+ *  checking for the modified bit and writing only the pending changes.
+ *  After a successful commit, the shadow ram is cleared and is ready for
+ *  future writes.
+ **/
+STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
+
+	ret_val = e1000_update_nvm_checksum_generic(hw);
+	if (ret_val)
+		goto out;
+
+	if (nvm->type != e1000_nvm_flash_sw)
+		goto out;
+
+	nvm->ops.acquire(hw);
+
+	/* We're writing to the opposite bank so if we're on bank 1,
+	 * write to bank 0 etc.  We also need to erase the segment that
+	 * is going to be written
+	 */
+	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
+	if (ret_val != E1000_SUCCESS) {
+		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
+		bank = 0;
+	}
+
+	if (bank == 0) {
+		new_bank_offset = nvm->flash_bank_size;
+		old_bank_offset = 0;
+		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
+		if (ret_val)
+			goto release;
+	} else {
+		old_bank_offset = nvm->flash_bank_size;
+		new_bank_offset = 0;
+		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
+		if (ret_val)
+			goto release;
+	}
+
+	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+		/* Determine whether to write the value stored
+		 * in the other NVM bank or a modified value stored
+		 * in the shadow RAM
+		 */
+		if (dev_spec->shadow_ram[i].modified) {
+			data = dev_spec->shadow_ram[i].value;
+		} else {
+			ret_val = e1000_read_flash_word_ich8lan(hw, i +
+								old_bank_offset,
+								&data);
+			if (ret_val)
+				break;
+		}
+
+		/* If the word is 0x13, then make sure the signature bits
+		 * (15:14) are 11b until the commit has completed.
+		 * This will allow us to write 10b which indicates the
+		 * signature is valid.  We want to do this after the write
+		 * has completed so that we don't mark the segment valid
+		 * while the write is still in progress
+		 */
+		if (i == E1000_ICH_NVM_SIG_WORD)
+			data |= E1000_ICH_NVM_SIG_MASK;
+
+		/* Convert offset to bytes. */
+		act_offset = (i + new_bank_offset) << 1;
+
+		usec_delay(100);
+		/* Write the bytes to the new bank. */
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+							       act_offset,
+							       (u8)data);
+		if (ret_val)
+			break;
+
+		usec_delay(100);
+		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+							  act_offset + 1,
+							  (u8)(data >> 8));
+		if (ret_val)
+			break;
+	}
+
+	/* Don't bother writing the segment valid bits if sector
+	 * programming failed.
+	 */
+	if (ret_val) {
+		DEBUGOUT("Flash commit failed.\n");
+		goto release;
+	}
+
+	/* Finally validate the new segment by setting bit 15:14
+	 * to 10b in word 0x13 , this can be done without an
+	 * erase as well since these bits are 11 to start with
+	 * and we need to change bit 14 to 0b
+	 */
+	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
+	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
+	if (ret_val)
+		goto release;
+
+	data &= 0xBFFF;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
+						       act_offset * 2 + 1,
+						       (u8)(data >> 8));
+	if (ret_val)
+		goto release;
+
+	/* And invalidate the previously valid segment by setting
+	 * its signature word (0x13) high_byte to 0b. This can be
+	 * done without an erase because flash erase sets all bits
+	 * to 1's. We can write 1's to 0's without an erase
+	 */
+	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
+	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
+	if (ret_val)
+		goto release;
+
+	/* Great!  Everything worked, we can now clear the cached entries. */
+	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+		dev_spec->shadow_ram[i].modified = false;
+		dev_spec->shadow_ram[i].value = 0xFFFF;
+	}
+
+release:
+	nvm->ops.release(hw);
+
+	/* Reload the EEPROM, or else modifications will not appear
+	 * until after the next adapter reset.
+	 */
+	if (!ret_val) {
+		nvm->ops.reload(hw);
+		msec_delay(10);
+	}
+
+out:
+	if (ret_val)
+		DEBUGOUT1("NVM update error: %d\n", ret_val);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
+ *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
+ *  calculated, in which case we need to calculate the checksum and set bit 6.
+ **/
+STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 data;
+	u16 word;
+	u16 valid_csum_mask;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
+
+	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
+	 * the checksum needs to be fixed.  This bit is an indication that
+	 * the NVM was prepared by OEM software and did not calculate
+	 * the checksum...a likely scenario.
+	 */
+	switch (hw->mac.type) {
+	case e1000_pch_lpt:
+		word = NVM_COMPAT;
+		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
+		break;
+	default:
+		word = NVM_FUTURE_INIT_WORD1;
+		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
+		break;
+	}
+
+	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (!(data & valid_csum_mask)) {
+		data |= valid_csum_mask;
+		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
+		if (ret_val)
+			return ret_val;
+		ret_val = hw->nvm.ops.update(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000_validate_nvm_checksum_generic(hw);
+}
+
+/**
+ *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset (in bytes) of the byte/word to read.
+ *  @size: Size of data to read, 1=byte 2=word
+ *  @data: The byte(s) to write to the NVM.
+ *
+ *  Writes one/two bytes to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 size, u16 data)
+{
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	u32 flash_data = 0;
+	s32 ret_val;
+	u8 count = 0;
+
+	DEBUGFUNC("e1000_write_ich8_data");
+
+	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
+		return -E1000_ERR_NVM;
+
+	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
+			     hw->nvm.flash_base_addr);
+
+	do {
+		usec_delay(1);
+		/* Steps */
+		ret_val = e1000_flash_cycle_init_ich8lan(hw);
+		if (ret_val != E1000_SUCCESS)
+			break;
+		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+
+		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
+		hsflctl.hsf_ctrl.fldbcount = size - 1;
+		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
+
+		if (size == 1)
+			flash_data = (u32)data & 0x00FF;
+		else
+			flash_data = (u32)data;
+
+		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
+
+		/* check if FCERR is set to 1 , if set to 1, clear it
+		 * and try the whole sequence a few more times else done
+		 */
+		ret_val =
+		    e1000_flash_cycle_ich8lan(hw,
+					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
+		if (ret_val == E1000_SUCCESS)
+			break;
+
+		/* If we're here, then things are most likely
+		 * completely hosed, but if the error condition
+		 * is detected, it won't hurt to give it another
+		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
+		 */
+		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+		if (hsfsts.hsf_status.flcerr)
+			/* Repeat for some time before giving up. */
+			continue;
+		if (!hsfsts.hsf_status.flcdone) {
+			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
+			break;
+		}
+	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The index of the byte to read.
+ *  @data: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ **/
+STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
+					  u8 data)
+{
+	u16 word = (u16)data;
+
+	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
+
+	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
+}
+
+/**
+ *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
+ *  @hw: pointer to the HW structure
+ *  @offset: The offset of the byte to write.
+ *  @byte: The byte to write to the NVM.
+ *
+ *  Writes a single byte to the NVM using the flash access registers.
+ *  Goes through a retry algorithm before giving up.
+ **/
+STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
+						u32 offset, u8 byte)
+{
+	s32 ret_val;
+	u16 program_retries;
+
+	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
+
+	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+	if (!ret_val)
+		return ret_val;
+
+	for (program_retries = 0; program_retries < 100; program_retries++) {
+		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
+		usec_delay(100);
+		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
+		if (ret_val == E1000_SUCCESS)
+			break;
+	}
+	if (program_retries == 100)
+		return -E1000_ERR_NVM;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
+ *  @hw: pointer to the HW structure
+ *  @bank: 0 for first bank, 1 for second bank, etc.
+ *
+ *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
+ *  bank N is 4096 * N + flash_reg_addr.
+ **/
+STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	union ich8_hws_flash_status hsfsts;
+	union ich8_hws_flash_ctrl hsflctl;
+	u32 flash_linear_addr;
+	/* bank size is in 16bit words - adjust to bytes */
+	u32 flash_bank_size = nvm->flash_bank_size * 2;
+	s32 ret_val;
+	s32 count = 0;
+	s32 j, iteration, sector_size;
+
+	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
+
+	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
+
+	/* Determine HW Sector size: Read BERASE bits of hw flash status
+	 * register
+	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
+	 *     consecutive sectors.  The start index for the nth Hw sector
+	 *     can be calculated as = bank * 4096 + n * 256
+	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
+	 *     The start index for the nth Hw sector can be calculated
+	 *     as = bank * 4096
+	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
+	 *     (ich9 only, otherwise error condition)
+	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
+	 */
+	switch (hsfsts.hsf_status.berasesz) {
+	case 0:
+		/* Hw sector size 256 */
+		sector_size = ICH_FLASH_SEG_SIZE_256;
+		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
+		break;
+	case 1:
+		sector_size = ICH_FLASH_SEG_SIZE_4K;
+		iteration = 1;
+		break;
+	case 2:
+		sector_size = ICH_FLASH_SEG_SIZE_8K;
+		iteration = 1;
+		break;
+	case 3:
+		sector_size = ICH_FLASH_SEG_SIZE_64K;
+		iteration = 1;
+		break;
+	default:
+		return -E1000_ERR_NVM;
+	}
+
+	/* Start with the base address, then add the sector offset. */
+	flash_linear_addr = hw->nvm.flash_base_addr;
+	flash_linear_addr += (bank) ? flash_bank_size : 0;
+
+	for (j = 0; j < iteration; j++) {
+		do {
+			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
+
+			/* Steps */
+			ret_val = e1000_flash_cycle_init_ich8lan(hw);
+			if (ret_val)
+				return ret_val;
+
+			/* Write a value 11 (block Erase) in Flash
+			 * Cycle field in hw flash control
+			 */
+			hsflctl.regval =
+			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+
+			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
+						hsflctl.regval);
+
+			/* Write the last 24 bits of an index within the
+			 * block into Flash Linear address field in Flash
+			 * Address.
+			 */
+			flash_linear_addr += (j * sector_size);
+			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
+					      flash_linear_addr);
+
+			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
+			if (ret_val == E1000_SUCCESS)
+				break;
+
+			/* Check if FCERR is set to 1.  If 1,
+			 * clear it and try the whole sequence
+			 * a few more times else Done
+			 */
+			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
+						      ICH_FLASH_HSFSTS);
+			if (hsfsts.hsf_status.flcerr)
+				/* repeat for some time before giving up */
+				continue;
+			else if (!hsfsts.hsf_status.flcdone)
+				return ret_val;
+		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_valid_led_default_ich8lan - Set the default LED settings
+ *  @hw: pointer to the HW structure
+ *  @data: Pointer to the LED settings
+ *
+ *  Reads the LED default settings from the NVM to data.  If the NVM LED
+ *  settings is all 0's or F's, set the LED default to a valid LED default
+ *  setting.
+ **/
+STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_ich8lan");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT_ICH8LAN;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_id_led_init_pchlan - store LED configurations
+ *  @hw: pointer to the HW structure
+ *
+ *  PCH does not control LEDs via the LEDCTL register, rather it uses
+ *  the PHY LED configuration register.
+ *
+ *  PCH also does not have an "always on" or "always off" mode which
+ *  complicates the ID feature.  Instead of using the "on" mode to indicate
+ *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
+ *  use "link_up" mode.  The LEDs will still ID on request if there is no
+ *  link based on logic in e1000_led_[on|off]_pchlan().
+ **/
+STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
+	u16 data, i, temp, shift;
+
+	DEBUGFUNC("e1000_id_led_init_pchlan");
+
+	/* Get default ID LED modes */
+	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+	if (ret_val)
+		return ret_val;
+
+	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
+		shift = (i * 5);
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode1 |= (ledctl_on << shift);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode1 |= (ledctl_off << shift);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode2 |= (ledctl_on << shift);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
+			mac->ledctl_mode2 |= (ledctl_off << shift);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
+ *  @hw: pointer to the HW structure
+ *
+ *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
+ *  register, so the the bus width is hard coded.
+ **/
+STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_bus_info_ich8lan");
+
+	ret_val = e1000_get_bus_info_pcie_generic(hw);
+
+	/* ICH devices are "PCI Express"-ish.  They have
+	 * a configuration space, but do not contain
+	 * PCI Express Capability registers, so bus width
+	 * must be hardcoded.
+	 */
+	if (bus->width == e1000_bus_width_unknown)
+		bus->width = e1000_bus_width_pcie_x1;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reset_hw_ich8lan - Reset the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a full reset of the hardware which includes a reset of the PHY and
+ *  MAC.
+ **/
+STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u16 kum_cfg;
+	u32 ctrl, reg;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_reset_hw_ich8lan");
+
+	/* Prevent the PCI-E bus from sticking if there is no TLP connection
+	 * on the last TLP read/write transaction when MAC is reset.
+	 */
+	ret_val = e1000_disable_pcie_master_generic(hw);
+	if (ret_val)
+		DEBUGOUT("PCI-E Master disable polling has failed.\n");
+
+	DEBUGOUT("Masking off all interrupts\n");
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+	/* Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC
+	 * with the global reset.
+	 */
+	E1000_WRITE_REG(hw, E1000_RCTL, 0);
+	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH(hw);
+
+	msec_delay(10);
+
+	/* Workaround for ICH8 bit corruption issue in FIFO memory */
+	if (hw->mac.type == e1000_ich8lan) {
+		/* Set Tx and Rx buffer allocation to 8k apiece. */
+		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
+		/* Set Packet Buffer Size to 16k. */
+		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
+	}
+
+	if (hw->mac.type == e1000_pchlan) {
+		/* Save the NVM K1 bit setting*/
+		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
+		if (ret_val)
+			return ret_val;
+
+		if (kum_cfg & E1000_NVM_K1_ENABLE)
+			dev_spec->nvm_k1_enabled = true;
+		else
+			dev_spec->nvm_k1_enabled = false;
+	}
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	if (!hw->phy.ops.check_reset_block(hw)) {
+		/* Full-chip reset requires MAC and PHY reset at the same
+		 * time to make sure the interface between MAC and the
+		 * external PHY is reset.
+		 */
+		ctrl |= E1000_CTRL_PHY_RST;
+
+		/* Gate automatic PHY configuration by hardware on
+		 * non-managed 82579
+		 */
+		if ((hw->mac.type == e1000_pch2lan) &&
+		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
+			e1000_gate_hw_phy_config_ich8lan(hw, true);
+	}
+	ret_val = e1000_acquire_swflag_ich8lan(hw);
+	DEBUGOUT("Issuing a global reset to ich8lan\n");
+	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
+	/* cannot issue a flush here because it hangs the hardware */
+	msec_delay(20);
+
+	/* Set Phy Config Counter to 50msec */
+	if (hw->mac.type == e1000_pch2lan) {
+		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
+		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
+		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
+		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
+	}
+
+	if (!ret_val)
+		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
+
+	if (ctrl & E1000_CTRL_PHY_RST) {
+		ret_val = hw->phy.ops.get_cfg_done(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_post_phy_reset_ich8lan(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* For PCH, this write will make sure that any noise
+	 * will be detected as a CRC error and be dropped rather than show up
+	 * as a bad packet to the DMA engine.
+	 */
+	if (hw->mac.type == e1000_pchlan)
+		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
+
+	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+	E1000_READ_REG(hw, E1000_ICR);
+
+	reg = E1000_READ_REG(hw, E1000_KABGTXD);
+	reg |= E1000_KABGTXD_BGSQLBIAS;
+	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_hw_ich8lan - Initialize the hardware
+ *  @hw: pointer to the HW structure
+ *
+ *  Prepares the hardware for transmit and receive by doing the following:
+ *   - initialize hardware bits
+ *   - initialize LED identification
+ *   - setup receive address registers
+ *   - setup flow control
+ *   - setup transmit descriptors
+ *   - clear statistics
+ **/
+STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl_ext, txdctl, snoop;
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_init_hw_ich8lan");
+
+	e1000_initialize_hw_bits_ich8lan(hw);
+
+	/* Initialize identification LED */
+	ret_val = mac->ops.id_led_init(hw);
+	/* An error is not fatal and we should not stop init due to this */
+	if (ret_val)
+		DEBUGOUT("Error initializing identification LED\n");
+
+	/* Setup the receive address. */
+	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
+
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	for (i = 0; i < mac->mta_reg_count; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
+	 * the ME.  Disable wakeup by clearing the host wakeup bit.
+	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
+	 */
+	if (hw->phy.type == e1000_phy_82578) {
+		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
+		i &= ~BM_WUC_HOST_WU_BIT;
+		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
+		ret_val = e1000_phy_hw_reset_ich8lan(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Setup link and flow control */
+	ret_val = mac->ops.setup_link(hw);
+
+	/* Set the transmit descriptor write-back policy for both queues */
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
+		  E1000_TXDCTL_FULL_TX_DESC_WB);
+	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
+		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
+	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
+		  E1000_TXDCTL_FULL_TX_DESC_WB);
+	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
+		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
+
+	/* ICH8 has opposite polarity of no_snoop bits.
+	 * By default, we should use snoop behavior.
+	 */
+	if (mac->type == e1000_ich8lan)
+		snoop = PCIE_ICH8_SNOOP_ALL;
+	else
+		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
+	e1000_set_pcie_no_snoop_generic(hw, snoop);
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+	/* Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs_ich8lan(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets/Clears required hardware bits necessary for correctly setting up the
+ *  hardware for transmit and receive.
+ **/
+STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+
+	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
+
+	/* Extended Device Control */
+	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	reg |= (1 << 22);
+	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
+	if (hw->mac.type >= e1000_pchlan)
+		reg |= E1000_CTRL_EXT_PHYPDEN;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+	/* Transmit Descriptor Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
+
+	/* Transmit Descriptor Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
+	reg |= (1 << 22);
+	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
+
+	/* Transmit Arbitration Control 0 */
+	reg = E1000_READ_REG(hw, E1000_TARC(0));
+	if (hw->mac.type == e1000_ich8lan)
+		reg |= (1 << 28) | (1 << 29);
+	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
+	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
+
+	/* Transmit Arbitration Control 1 */
+	reg = E1000_READ_REG(hw, E1000_TARC(1));
+	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
+		reg &= ~(1 << 28);
+	else
+		reg |= (1 << 28);
+	reg |= (1 << 24) | (1 << 26) | (1 << 30);
+	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
+
+	/* Device Status */
+	if (hw->mac.type == e1000_ich8lan) {
+		reg = E1000_READ_REG(hw, E1000_STATUS);
+		reg &= ~(1 << 31);
+		E1000_WRITE_REG(hw, E1000_STATUS, reg);
+	}
+
+	/* work-around descriptor data corruption issue during nfs v2 udp
+	 * traffic, just disable the nfs filtering capability
+	 */
+	reg = E1000_READ_REG(hw, E1000_RFCTL);
+	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
+
+	/* Disable IPv6 extension header parsing because some malformed
+	 * IPv6 headers can hang the Rx.
+	 */
+	if (hw->mac.type == e1000_ich8lan)
+		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
+	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
+
+	/* Enable ECC on Lynxpoint */
+	if (hw->mac.type == e1000_pch_lpt) {
+		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
+		reg |= E1000_PBECCSTS_ECC_ENABLE;
+		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
+
+		reg = E1000_READ_REG(hw, E1000_CTRL);
+		reg |= E1000_CTRL_MEHE;
+		E1000_WRITE_REG(hw, E1000_CTRL, reg);
+	}
+
+	return;
+}
+
+/**
+ *  e1000_setup_link_ich8lan - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_link_ich8lan");
+
+	if (hw->phy.ops.check_reset_block(hw))
+		return E1000_SUCCESS;
+
+	/* ICH parts do not have a word in the NVM to determine
+	 * the default flow control setting, so we explicitly
+	 * set it to full.
+	 */
+	if (hw->fc.requested_mode == e1000_fc_default)
+		hw->fc.requested_mode = e1000_fc_full;
+
+	/* Save off the requested flow control mode for use later.  Depending
+	 * on the link partner's capabilities, we may or may not use this mode.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+		hw->fc.current_mode);
+
+	/* Continue to configure the copper link. */
+	ret_val = hw->mac.ops.setup_physical_interface(hw);
+	if (ret_val)
+		return ret_val;
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82579) ||
+	    (hw->phy.type == e1000_phy_i217) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
+
+		ret_val = hw->phy.ops.write_reg(hw,
+					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
+					     hw->fc.pause_time);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return e1000_set_fc_watermarks_generic(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the kumeran interface to the PHY to wait the appropriate time
+ *  when polling the PHY, then call the generic setup_copper_link to finish
+ *  configuring the copper link.
+ **/
+STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	/* Set the mac to wait the maximum time between each iteration
+	 * and increase the max iterations when polling the phy;
+	 * this fixes erroneous timeouts at 10Mbps.
+	 */
+	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
+					       0xFFFF);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_read_kmrn_reg_generic(hw,
+					      E1000_KMRNCTRLSTA_INBAND_PARAM,
+					      &reg_data);
+	if (ret_val)
+		return ret_val;
+	reg_data |= 0x3F;
+	ret_val = e1000_write_kmrn_reg_generic(hw,
+					       E1000_KMRNCTRLSTA_INBAND_PARAM,
+					       reg_data);
+	if (ret_val)
+		return ret_val;
+
+	switch (hw->phy.type) {
+	case e1000_phy_igp_3:
+		ret_val = e1000_copper_link_setup_igp(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_bm:
+	case e1000_phy_82578:
+		ret_val = e1000_copper_link_setup_m88(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_82577:
+	case e1000_phy_82579:
+		ret_val = e1000_copper_link_setup_82577(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	case e1000_phy_ife:
+		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
+					       &reg_data);
+		if (ret_val)
+			return ret_val;
+
+		reg_data &= ~IFE_PMC_AUTO_MDIX;
+
+		switch (hw->phy.mdix) {
+		case 1:
+			reg_data &= ~IFE_PMC_FORCE_MDIX;
+			break;
+		case 2:
+			reg_data |= IFE_PMC_FORCE_MDIX;
+			break;
+		case 0:
+		default:
+			reg_data |= IFE_PMC_AUTO_MDIX;
+			break;
+		}
+		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
+						reg_data);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		break;
+	}
+
+	return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY specific link setup function and then calls the
+ *  generic setup_copper_link to finish configuring the link for
+ *  Lynxpoint PCH devices
+ **/
+STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_SLU;
+	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	ret_val = e1000_copper_link_setup_82577(hw);
+	if (ret_val)
+		return ret_val;
+
+	return e1000_setup_copper_link_generic(hw);
+}
+
+/**
+ *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to store current link speed
+ *  @duplex: pointer to store the current link duplex
+ *
+ *  Calls the generic get_speed_and_duplex to retrieve the current link
+ *  information and then calls the Kumeran lock loss workaround for links at
+ *  gigabit speeds.
+ **/
+STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
+					  u16 *duplex)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
+
+	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac.type == e1000_ich8lan) &&
+	    (hw->phy.type == e1000_phy_igp_3) &&
+	    (*speed == SPEED_1000)) {
+		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  Work-around for 82566 Kumeran PCS lock loss:
+ *  On link status change (i.e. PCI reset, speed change) and link is up and
+ *  speed is gigabit-
+ *    0) if workaround is optionally disabled do nothing
+ *    1) wait 1ms for Kumeran link to come up
+ *    2) check Kumeran Diagnostic register PCS lock loss bit
+ *    3) if not set the link is locked (all is good), otherwise...
+ *    4) reset the PHY
+ *    5) repeat up to 10 times
+ *  Note: this is only called for IGP3 copper when speed is 1gb.
+ **/
+STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 phy_ctrl;
+	s32 ret_val;
+	u16 i, data;
+	bool link;
+
+	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
+
+	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
+		return E1000_SUCCESS;
+
+	/* Make sure link is up before proceeding.  If not just return.
+	 * Attempting this while link is negotiating fouled up link
+	 * stability
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (!link)
+		return E1000_SUCCESS;
+
+	for (i = 0; i < 10; i++) {
+		/* read once to clear */
+		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			return ret_val;
+		/* and again to get new status */
+		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
+		if (ret_val)
+			return ret_val;
+
+		/* check for PCS lock */
+		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
+			return E1000_SUCCESS;
+
+		/* Issue PHY reset */
+		hw->phy.ops.reset(hw);
+		msec_delay_irq(5);
+	}
+	/* Disable GigE link negotiation */
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
+		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+	/* Call gig speed drop workaround on Gig disable before accessing
+	 * any PHY registers
+	 */
+	e1000_gig_downshift_workaround_ich8lan(hw);
+
+	/* unable to acquire PCS lock */
+	return -E1000_ERR_PHY;
+}
+
+/**
+ *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
+ *  @hw: pointer to the HW structure
+ *  @state: boolean value used to set the current Kumeran workaround state
+ *
+ *  If ICH8, set the current Kumeran workaround state (enabled - true
+ *  /disabled - false).
+ **/
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+						 bool state)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+
+	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
+
+	if (hw->mac.type != e1000_ich8lan) {
+		DEBUGOUT("Workaround applies to ICH8 only.\n");
+		return;
+	}
+
+	dev_spec->kmrn_lock_loss_workaround_enabled = state;
+
+	return;
+}
+
+/**
+ *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
+ *  @hw: pointer to the HW structure
+ *
+ *  Workaround for 82566 power-down on D3 entry:
+ *    1) disable gigabit link
+ *    2) write VR power-down enable
+ *    3) read it back
+ *  Continue if successful, else issue LCD reset and repeat
+ **/
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
+{
+	u32 reg;
+	u16 data;
+	u8  retry = 0;
+
+	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
+
+	if (hw->phy.type != e1000_phy_igp_3)
+		return;
+
+	/* Try the workaround twice (if needed) */
+	do {
+		/* Disable link */
+		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
+		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
+			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
+
+		/* Call gig speed drop workaround on Gig disable before
+		 * accessing any PHY registers
+		 */
+		if (hw->mac.type == e1000_ich8lan)
+			e1000_gig_downshift_workaround_ich8lan(hw);
+
+		/* Write VR power-down enable */
+		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
+		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
+				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
+
+		/* Read it back and test */
+		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
+		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
+		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
+			break;
+
+		/* Issue PHY reset and repeat at most one more time */
+		reg = E1000_READ_REG(hw, E1000_CTRL);
+		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
+		retry++;
+	} while (retry);
+}
+
+/**
+ *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
+ *  @hw: pointer to the HW structure
+ *
+ *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
+ *  LPLU, Gig disable, MDIC PHY reset):
+ *    1) Set Kumeran Near-end loopback
+ *    2) Clear Kumeran Near-end loopback
+ *  Should only be called for ICH8[m] devices with any 1G Phy.
+ **/
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 reg_data;
+
+	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
+
+	if ((hw->mac.type != e1000_ich8lan) ||
+	    (hw->phy.type == e1000_phy_ife))
+		return;
+
+	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+					      &reg_data);
+	if (ret_val)
+		return;
+	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	ret_val = e1000_write_kmrn_reg_generic(hw,
+					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
+					       reg_data);
+	if (ret_val)
+		return;
+	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
+	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
+				     reg_data);
+}
+
+/**
+ *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
+ *  @hw: pointer to the HW structure
+ *
+ *  During S0 to Sx transition, it is possible the link remains at gig
+ *  instead of negotiating to a lower speed.  Before going to Sx, set
+ *  'Gig Disable' to force link speed negotiation to a lower speed based on
+ *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
+ *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
+ *  needs to be written.
+ *  Parts that support (and are linked to a partner which support) EEE in
+ *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
+ *  than 10Mbps w/o EEE.
+ **/
+void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
+{
+	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
+	u32 phy_ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
+
+	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
+	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
+
+	if (hw->phy.type == e1000_phy_i217) {
+		u16 phy_reg, device_id = hw->device_id;
+
+		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
+		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
+			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
+
+			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
+					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
+		}
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			goto out;
+
+		if (!dev_spec->eee_disable) {
+			u16 eee_advert;
+
+			ret_val =
+			    e1000_read_emi_reg_locked(hw,
+						      I217_EEE_ADVERTISEMENT,
+						      &eee_advert);
+			if (ret_val)
+				goto release;
+
+			/* Disable LPLU if both link partners support 100BaseT
+			 * EEE and 100Full is advertised on both ends of the
+			 * link, and enable Auto Enable LPI since there will
+			 * be no driver to enable LPI while in Sx.
+			 */
+			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
+			    (dev_spec->eee_lp_ability &
+			     I82579_EEE_100_SUPPORTED) &&
+			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
+				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
+					      E1000_PHY_CTRL_NOND0A_LPLU);
+
+				/* Set Auto Enable LPI after link up */
+				hw->phy.ops.read_reg_locked(hw,
+							    I217_LPI_GPIO_CTRL,
+							    &phy_reg);
+				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
+				hw->phy.ops.write_reg_locked(hw,
+							     I217_LPI_GPIO_CTRL,
+							     phy_reg);
+			}
+		}
+
+		/* For i217 Intel Rapid Start Technology support,
+		 * when the system is going into Sx and no manageability engine
+		 * is present, the driver must configure proxy to reset only on
+		 * power good.  LPI (Low Power Idle) state must also reset only
+		 * on power good, as well as the MTA (Multicast table array).
+		 * The SMBus release must also be disabled on LCD reset.
+		 */
+		if (!(E1000_READ_REG(hw, E1000_FWSM) &
+		      E1000_ICH_FWSM_FW_VALID)) {
+			/* Enable proxy to reset only on power good. */
+			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
+						    &phy_reg);
+			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
+			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
+						     phy_reg);
+
+			/* Set bit enable LPI (EEE) to reset only on
+			 * power good.
+			*/
+			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
+			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
+			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
+
+			/* Disable the SMB release on LCD reset. */
+			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
+			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
+			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
+		}
+
+		/* Enable MTA to reset for Intel Rapid Start Technology
+		 * Support
+		 */
+		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
+		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
+		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
+
+release:
+		hw->phy.ops.release(hw);
+	}
+out:
+	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
+
+	if (hw->mac.type == e1000_ich8lan)
+		e1000_gig_downshift_workaround_ich8lan(hw);
+
+	if (hw->mac.type >= e1000_pchlan) {
+		e1000_oem_bits_config_ich8lan(hw, false);
+
+		/* Reset PHY to activate OEM bits on 82577/8 */
+		if (hw->mac.type == e1000_pchlan)
+			e1000_phy_hw_reset_generic(hw);
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return;
+		e1000_write_smbus_addr(hw);
+		hw->phy.ops.release(hw);
+	}
+
+	return;
+}
+
+/**
+ *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
+ *  @hw: pointer to the HW structure
+ *
+ *  During Sx to S0 transitions on non-managed devices or managed devices
+ *  on which PHY resets are not blocked, if the PHY registers cannot be
+ *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
+ *  the PHY.
+ *  On i217, setup Intel Rapid Start Technology.
+ **/
+void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_resume_workarounds_pchlan");
+
+	if (hw->mac.type < e1000_pch2lan)
+		return;
+
+	ret_val = e1000_init_phy_workarounds_pchlan(hw);
+	if (ret_val) {
+		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
+		return;
+	}
+
+	/* For i217 Intel Rapid Start Technology support when the system
+	 * is transitioning from Sx and no manageability engine is present
+	 * configure SMBus to restore on reset, disable proxy, and enable
+	 * the reset on MTA (Multicast table array).
+	 */
+	if (hw->phy.type == e1000_phy_i217) {
+		u16 phy_reg;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val) {
+			DEBUGOUT("Failed to setup iRST\n");
+			return;
+		}
+
+		/* Clear Auto Enable LPI after link up */
+		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
+		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
+		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
+
+		if (!(E1000_READ_REG(hw, E1000_FWSM) &
+		    E1000_ICH_FWSM_FW_VALID)) {
+			/* Restore clear on SMB if no manageability engine
+			 * is present
+			 */
+			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
+							      &phy_reg);
+			if (ret_val)
+				goto release;
+			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
+			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
+
+			/* Disable Proxy */
+			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
+		}
+		/* Enable reset on MTA */
+		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
+						      &phy_reg);
+		if (ret_val)
+			goto release;
+		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
+		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
+release:
+		if (ret_val)
+			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
+		hw->phy.ops.release(hw);
+	}
+}
+
+/**
+ *  e1000_cleanup_led_ich8lan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_cleanup_led_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+					     0);
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_on_ich8lan - Turn LEDs on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LEDs.
+ **/
+STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_led_on_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_ich8lan - Turn LEDs off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LEDs.
+ **/
+STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_led_off_ich8lan");
+
+	if (hw->phy.type == e1000_phy_ife)
+		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
+			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_setup_led_pchlan - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use.
+ **/
+STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_setup_led_pchlan");
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+				     (u16)hw->mac.ledctl_mode1);
+}
+
+/**
+ *  e1000_cleanup_led_pchlan - Restore the default LED operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the LED back to the default configuration.
+ **/
+STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_cleanup_led_pchlan");
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
+				     (u16)hw->mac.ledctl_default);
+}
+
+/**
+ *  e1000_led_on_pchlan - Turn LEDs on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn on the LEDs.
+ **/
+STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw)
+{
+	u16 data = (u16)hw->mac.ledctl_mode2;
+	u32 i, led;
+
+	DEBUGFUNC("e1000_led_on_pchlan");
+
+	/* If no link, then turn LED on by setting the invert bit
+	 * for each LED that's mode is "link_up" in ledctl_mode2.
+	 */
+	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+		for (i = 0; i < 3; i++) {
+			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+			if ((led & E1000_PHY_LED0_MODE_MASK) !=
+			    E1000_LEDCTL_MODE_LINK_UP)
+				continue;
+			if (led & E1000_PHY_LED0_IVRT)
+				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+			else
+				data |= (E1000_PHY_LED0_IVRT << (i * 5));
+		}
+	}
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ *  e1000_led_off_pchlan - Turn LEDs off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn off the LEDs.
+ **/
+STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw)
+{
+	u16 data = (u16)hw->mac.ledctl_mode1;
+	u32 i, led;
+
+	DEBUGFUNC("e1000_led_off_pchlan");
+
+	/* If no link, then turn LED off by clearing the invert bit
+	 * for each LED that's mode is "link_up" in ledctl_mode1.
+	 */
+	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+		for (i = 0; i < 3; i++) {
+			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
+			if ((led & E1000_PHY_LED0_MODE_MASK) !=
+			    E1000_LEDCTL_MODE_LINK_UP)
+				continue;
+			if (led & E1000_PHY_LED0_IVRT)
+				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
+			else
+				data |= (E1000_PHY_LED0_IVRT << (i * 5));
+		}
+	}
+
+	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
+}
+
+/**
+ *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Read appropriate register for the config done bit for completion status
+ *  and configure the PHY through s/w for EEPROM-less parts.
+ *
+ *  NOTE: some silicon which is EEPROM-less will fail trying to read the
+ *  config done bit, so only an error is logged and continues.  If we were
+ *  to return with error, EEPROM-less silicon would not be able to be reset
+ *  or change link.
+ **/
+STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u32 bank = 0;
+	u32 status;
+
+	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
+
+	e1000_get_cfg_done_generic(hw);
+
+	/* Wait for indication from h/w that it has completed basic config */
+	if (hw->mac.type >= e1000_ich10lan) {
+		e1000_lan_init_done_ich8lan(hw);
+	} else {
+		ret_val = e1000_get_auto_rd_done_generic(hw);
+		if (ret_val) {
+			/* When auto config read does not complete, do not
+			 * return with an error. This can happen in situations
+			 * where there is no eeprom and prevents getting link.
+			 */
+			DEBUGOUT("Auto Read Done did not complete\n");
+			ret_val = E1000_SUCCESS;
+		}
+	}
+
+	/* Clear PHY Reset Asserted bit */
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	if (status & E1000_STATUS_PHYRA)
+		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
+	else
+		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
+
+	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
+	if (hw->mac.type <= e1000_ich9lan) {
+		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
+		    (hw->phy.type == e1000_phy_igp_3)) {
+			e1000_phy_init_script_igp3(hw);
+		}
+	} else {
+		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
+			/* Maybe we should do a basic PHY config */
+			DEBUGOUT("EEPROM not present\n");
+			ret_val = -E1000_ERR_CONFIG;
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ **/
+STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
+{
+	/* If the management interface is not enabled, then power down */
+	if (!(hw->mac.ops.check_mng_mode(hw) ||
+	      hw->phy.ops.check_reset_block(hw)))
+		e1000_power_down_phy_copper(hw);
+
+	return;
+}
+
+/**
+ *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears hardware counters specific to the silicon family and calls
+ *  clear_hw_cntrs_generic to clear all general purpose counters.
+ **/
+STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
+{
+	u16 phy_data;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	E1000_READ_REG(hw, E1000_ALGNERRC);
+	E1000_READ_REG(hw, E1000_RXERRC);
+	E1000_READ_REG(hw, E1000_TNCRS);
+	E1000_READ_REG(hw, E1000_CEXTERR);
+	E1000_READ_REG(hw, E1000_TSCTC);
+	E1000_READ_REG(hw, E1000_TSCTFC);
+
+	E1000_READ_REG(hw, E1000_MGTPRC);
+	E1000_READ_REG(hw, E1000_MGTPDC);
+	E1000_READ_REG(hw, E1000_MGTPTC);
+
+	E1000_READ_REG(hw, E1000_IAC);
+	E1000_READ_REG(hw, E1000_ICRXOC);
+
+	/* Clear PHY statistics registers */
+	if ((hw->phy.type == e1000_phy_82578) ||
+	    (hw->phy.type == e1000_phy_82579) ||
+	    (hw->phy.type == e1000_phy_i217) ||
+	    (hw->phy.type == e1000_phy_82577)) {
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return;
+		ret_val = hw->phy.ops.set_page(hw,
+					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
+		if (ret_val)
+			goto release;
+		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
+		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
+release:
+		hw->phy.ops.release(hw);
+	}
+}
+
diff --git a/drivers/net/e1000/base/e1000_ich8lan.h b/drivers/net/e1000/base/e1000_ich8lan.h
new file mode 100644
index 0000000..8c5e9c3
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_ich8lan.h
@@ -0,0 +1,313 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_ICH8LAN_H_
+#define _E1000_ICH8LAN_H_
+
+#define ICH_FLASH_GFPREG		0x0000
+#define ICH_FLASH_HSFSTS		0x0004
+#define ICH_FLASH_HSFCTL		0x0006
+#define ICH_FLASH_FADDR			0x0008
+#define ICH_FLASH_FDATA0		0x0010
+
+/* Requires up to 10 seconds when MNG might be accessing part. */
+#define ICH_FLASH_READ_COMMAND_TIMEOUT	10000000
+#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	10000000
+#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	10000000
+#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
+#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
+
+#define ICH_CYCLE_READ			0
+#define ICH_CYCLE_WRITE			2
+#define ICH_CYCLE_ERASE			3
+
+#define FLASH_GFPREG_BASE_MASK		0x1FFF
+#define FLASH_SECTOR_ADDR_SHIFT		12
+
+#define ICH_FLASH_SEG_SIZE_256		256
+#define ICH_FLASH_SEG_SIZE_4K		4096
+#define ICH_FLASH_SEG_SIZE_8K		8192
+#define ICH_FLASH_SEG_SIZE_64K		65536
+
+#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
+/* FW established a valid mode */
+#define E1000_ICH_FWSM_FW_VALID	0x00008000
+#define E1000_ICH_FWSM_PCIM2PCI	0x01000000 /* ME PCIm-to-PCI active */
+#define E1000_ICH_FWSM_PCIM2PCI_COUNT	2000
+
+#define E1000_ICH_MNG_IAMT_MODE		0x2
+
+#define E1000_FWSM_WLOCK_MAC_MASK	0x0380
+#define E1000_FWSM_WLOCK_MAC_SHIFT	7
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_FWSM_ULP_CFG_DONE		0x00000400  /* Low power cfg done */
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+
+/* Shared Receive Address Registers */
+#define E1000_SHRAL_PCH_LPT(_i)		(0x05408 + ((_i) * 8))
+#define E1000_SHRAH_PCH_LPT(_i)		(0x0540C + ((_i) * 8))
+
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_H2ME		0x05B50    /* Host to ME */
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_H2ME_ULP		0x00000800 /* ULP Indication Bit */
+#define E1000_H2ME_ENFORCE_SETTINGS	0x00001000 /* Enforce Settings */
+
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#define ID_LED_DEFAULT_ICH8LAN	((ID_LED_DEF1_DEF2 << 12) | \
+				 (ID_LED_OFF1_OFF2 <<  8) | \
+				 (ID_LED_OFF1_ON2  <<  4) | \
+				 (ID_LED_DEF1_DEF2))
+
+#define E1000_ICH_NVM_SIG_WORD		0x13
+#define E1000_ICH_NVM_SIG_MASK		0xC000
+#define E1000_ICH_NVM_VALID_SIG_MASK	0xC0
+#define E1000_ICH_NVM_SIG_VALUE		0x80
+
+#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
+
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+/* FEXT register bit definition */
+#define E1000_FEXT_PHY_CABLE_DISCONNECTED	0x00000004
+
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#define E1000_FEXTNVM_SW_CONFIG		1
+#define E1000_FEXTNVM_SW_CONFIG_ICH8M	(1 << 27) /* different on ICH8M */
+
+#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK	0x0C000000
+#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC	0x08000000
+
+#define E1000_FEXTNVM4_BEACON_DURATION_MASK	0x7
+#define E1000_FEXTNVM4_BEACON_DURATION_8USEC	0x7
+#define E1000_FEXTNVM4_BEACON_DURATION_16USEC	0x3
+
+#define E1000_FEXTNVM6_REQ_PLL_CLK	0x00000100
+#define E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION	0x00000200
+
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_FEXTNVM7_DISABLE_SMB_PERST	0x00000020
+
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#define PCIE_ICH8_SNOOP_ALL	PCIE_NO_SNOOP_ALL
+
+#define E1000_ICH_RAR_ENTRIES	7
+#define E1000_PCH2_RAR_ENTRIES	5 /* RAR[0], SHRA[0-3] */
+#define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
+
+#define PHY_PAGE_SHIFT		5
+#define PHY_REG(page, reg)	(((page) << PHY_PAGE_SHIFT) | \
+				 ((reg) & MAX_PHY_REG_ADDRESS))
+#define IGP3_KMRN_DIAG	PHY_REG(770, 19) /* KMRN Diagnostic */
+#define IGP3_VR_CTRL	PHY_REG(776, 18) /* Voltage Regulator Control */
+
+#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS		0x0002
+#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK	0x0300
+#define IGP3_VR_CTRL_MODE_SHUTDOWN		0x0200
+
+/* PHY Wakeup Registers and defines */
+#define BM_PORT_GEN_CFG		PHY_REG(BM_PORT_CTRL_PAGE, 17)
+#define BM_RCTL			PHY_REG(BM_WUC_PAGE, 0)
+#define BM_WUC			PHY_REG(BM_WUC_PAGE, 1)
+#define BM_WUFC			PHY_REG(BM_WUC_PAGE, 2)
+#define BM_WUS			PHY_REG(BM_WUC_PAGE, 3)
+#define BM_RAR_L(_i)		(BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
+#define BM_RAR_M(_i)		(BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
+#define BM_RAR_H(_i)		(BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
+#define BM_RAR_CTRL(_i)		(BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
+#define BM_MTA(_i)		(BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
+
+#define BM_RCTL_UPE		0x0001 /* Unicast Promiscuous Mode */
+#define BM_RCTL_MPE		0x0002 /* Multicast Promiscuous Mode */
+#define BM_RCTL_MO_SHIFT	3      /* Multicast Offset Shift */
+#define BM_RCTL_MO_MASK		(3 << 3) /* Multicast Offset Mask */
+#define BM_RCTL_BAM		0x0020 /* Broadcast Accept Mode */
+#define BM_RCTL_PMCF		0x0040 /* Pass MAC Control Frames */
+#define BM_RCTL_RFCE		0x0080 /* Rx Flow Control Enable */
+
+#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
+#define HV_MUX_DATA_CTRL	PHY_REG(776, 16)
+#define HV_MUX_DATA_CTRL_GEN_TO_MAC	0x0400
+#define HV_MUX_DATA_CTRL_FORCE_SPEED	0x0004
+#define HV_STATS_PAGE	778
+/* Half-duplex collision counts */
+#define HV_SCC_UPPER	PHY_REG(HV_STATS_PAGE, 16) /* Single Collision */
+#define HV_SCC_LOWER	PHY_REG(HV_STATS_PAGE, 17)
+#define HV_ECOL_UPPER	PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. */
+#define HV_ECOL_LOWER	PHY_REG(HV_STATS_PAGE, 19)
+#define HV_MCC_UPPER	PHY_REG(HV_STATS_PAGE, 20) /* Multiple Collision */
+#define HV_MCC_LOWER	PHY_REG(HV_STATS_PAGE, 21)
+#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision */
+#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
+#define HV_COLC_UPPER	PHY_REG(HV_STATS_PAGE, 25) /* Collision */
+#define HV_COLC_LOWER	PHY_REG(HV_STATS_PAGE, 26)
+#define HV_DC_UPPER	PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
+#define HV_DC_LOWER	PHY_REG(HV_STATS_PAGE, 28)
+#define HV_TNCRS_UPPER	PHY_REG(HV_STATS_PAGE, 29) /* Tx with no CRS */
+#define HV_TNCRS_LOWER	PHY_REG(HV_STATS_PAGE, 30)
+
+#define E1000_FCRTV_PCH	0x05F40 /* PCH Flow Control Refresh Timer Value */
+
+#define E1000_NVM_K1_CONFIG	0x1B /* NVM K1 Config Word */
+#define E1000_NVM_K1_ENABLE	0x1  /* NVM Enable K1 bit */
+
+/* SMBus Control Phy Register */
+#define CV_SMB_CTRL		PHY_REG(769, 23)
+#define CV_SMB_CTRL_FORCE_SMBUS	0x0001
+
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+/* I218 Ultra Low Power Configuration 1 Register */
+#define I218_ULP_CONFIG1		PHY_REG(779, 16)
+#define I218_ULP_CONFIG1_START		0x0001 /* Start auto ULP config */
+#define I218_ULP_CONFIG1_IND		0x0004 /* Pwr up from ULP indication */
+#define I218_ULP_CONFIG1_STICKY_ULP	0x0010 /* Set sticky ULP mode */
+#define I218_ULP_CONFIG1_INBAND_EXIT	0x0020 /* Inband on ULP exit */
+#define I218_ULP_CONFIG1_WOL_HOST	0x0040 /* WoL Host on ULP exit */
+#define I218_ULP_CONFIG1_RESET_TO_SMBUS	0x0100 /* Reset to SMBus mode */
+#define I218_ULP_CONFIG1_DISABLE_SMB_PERST	0x1000 /* Disable on PERST# */
+
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+/* SMBus Address Phy Register */
+#define HV_SMB_ADDR		PHY_REG(768, 26)
+#define HV_SMB_ADDR_MASK	0x007F
+#define HV_SMB_ADDR_PEC_EN	0x0200
+#define HV_SMB_ADDR_VALID	0x0080
+#define HV_SMB_ADDR_FREQ_MASK		0x1100
+#define HV_SMB_ADDR_FREQ_LOW_SHIFT	8
+#define HV_SMB_ADDR_FREQ_HIGH_SHIFT	12
+
+/* Strapping Option Register - RO */
+#define E1000_STRAP			0x0000C
+#define E1000_STRAP_SMBUS_ADDRESS_MASK	0x00FE0000
+#define E1000_STRAP_SMBUS_ADDRESS_SHIFT	17
+#define E1000_STRAP_SMT_FREQ_MASK	0x00003000
+#define E1000_STRAP_SMT_FREQ_SHIFT	12
+
+/* OEM Bits Phy Register */
+#define HV_OEM_BITS		PHY_REG(768, 25)
+#define HV_OEM_BITS_LPLU	0x0004 /* Low Power Link Up */
+#define HV_OEM_BITS_GBE_DIS	0x0040 /* Gigabit Disable */
+#define HV_OEM_BITS_RESTART_AN	0x0400 /* Restart Auto-negotiation */
+
+/* KMRN Mode Control */
+#define HV_KMRN_MODE_CTRL	PHY_REG(769, 16)
+#define HV_KMRN_MDIO_SLOW	0x0400
+
+/* KMRN FIFO Control and Status */
+#define HV_KMRN_FIFO_CTRLSTA			PHY_REG(770, 16)
+#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK	0x7000
+#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT	12
+
+/* PHY Power Management Control */
+#define HV_PM_CTRL		PHY_REG(770, 17)
+#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
+#define HV_PM_CTRL_K1_ENABLE		0x4000
+
+#define SW_FLAG_TIMEOUT		1000 /* SW Semaphore flag timeout in ms */
+
+/* Inband Control */
+#define I217_INBAND_CTRL				PHY_REG(770, 18)
+#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK	0x3F00
+#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT	8
+
+/* Low Power Idle GPIO Control */
+#define I217_LPI_GPIO_CTRL			PHY_REG(772, 18)
+#define I217_LPI_GPIO_CTRL_AUTO_EN_LPI		0x0800
+
+/* PHY Low Power Idle Control */
+#define I82579_LPI_CTRL				PHY_REG(772, 20)
+#define I82579_LPI_CTRL_100_ENABLE		0x2000
+#define I82579_LPI_CTRL_1000_ENABLE		0x4000
+#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
+
+/* 82579 DFT Control */
+#define I82579_DFT_CTRL			PHY_REG(769, 20)
+#define I82579_DFT_CTRL_GATE_PHY_RESET	0x0040 /* Gate PHY Reset on MAC Reset */
+
+/* Extended Management Interface (EMI) Registers */
+#define I82579_EMI_ADDR		0x10
+#define I82579_EMI_DATA		0x11
+#define I82579_LPI_UPDATE_TIMER	0x4805 /* in 40ns units + 40 ns base value */
+#define I82579_MSE_THRESHOLD	0x084F /* 82579 Mean Square Error Threshold */
+#define I82577_MSE_THRESHOLD	0x0887 /* 82577 Mean Square Error Threshold */
+#define I82579_MSE_LINK_DOWN	0x2411 /* MSE count before dropping link */
+#define I82579_RX_CONFIG		0x3412 /* Receive configuration */
+#define I82579_EEE_PCS_STATUS		0x182E	/* IEEE MMD Register 3.1 >> 8 */
+#define I82579_EEE_CAPABILITY		0x0410 /* IEEE MMD Register 3.20 */
+#define I82579_EEE_ADVERTISEMENT	0x040E /* IEEE MMD Register 7.60 */
+#define I82579_EEE_LP_ABILITY		0x040F /* IEEE MMD Register 7.61 */
+#define I82579_EEE_100_SUPPORTED	(1 << 1) /* 100BaseTx EEE */
+#define I82579_EEE_1000_SUPPORTED	(1 << 2) /* 1000BaseTx EEE */
+#define I217_EEE_PCS_STATUS	0x9401   /* IEEE MMD Register 3.1 */
+#define I217_EEE_CAPABILITY	0x8000   /* IEEE MMD Register 3.20 */
+#define I217_EEE_ADVERTISEMENT	0x8001   /* IEEE MMD Register 7.60 */
+#define I217_EEE_LP_ABILITY	0x8002   /* IEEE MMD Register 7.61 */
+#define I217_RX_CONFIG		0xB20C /* Receive configuration */
+
+#define E1000_EEE_RX_LPI_RCVD	0x0400	/* Tx LP idle received */
+#define E1000_EEE_TX_LPI_RCVD	0x0800	/* Rx LP idle received */
+
+/* Intel Rapid Start Technology Support */
+#define I217_PROXY_CTRL		BM_PHY_REG(BM_WUC_PAGE, 70)
+#define I217_PROXY_CTRL_AUTO_DISABLE	0x0080
+#define I217_SxCTRL			PHY_REG(BM_PORT_CTRL_PAGE, 28)
+#define I217_SxCTRL_ENABLE_LPI_RESET	0x1000
+#define I217_CGFREG			PHY_REG(772, 29)
+#define I217_CGFREG_ENABLE_MTA_RESET	0x0002
+#define I217_MEMPWR			PHY_REG(772, 26)
+#define I217_MEMPWR_DISABLE_SMB_RELEASE	0x0010
+
+/* Receive Address Initial CRC Calculation */
+#define E1000_PCH_RAICC(_n)	(0x05F50 + ((_n) * 4))
+
+#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
+#define E1000_PCI_REVISION_ID_REG	0x08
+#endif /* defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) */
+void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
+						 bool state);
+void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
+void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw);
+void e1000_resume_workarounds_pchlan(struct e1000_hw *hw);
+s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
+void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
+s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
+s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data);
+s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data);
+s32 e1000_set_eee_pchlan(struct e1000_hw *hw);
+#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
+s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx);
+s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
+#endif /* NAHUM6LP_HW && ULP_SUPPORT */
+#endif /* _E1000_ICH8LAN_H_ */
+void e1000_demote_ltr(struct e1000_hw *hw, bool demote, bool link);
diff --git a/drivers/net/e1000/base/e1000_mac.c b/drivers/net/e1000/base/e1000_mac.c
new file mode 100644
index 0000000..c8ec049
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_mac.c
@@ -0,0 +1,2247 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
+STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+
+/**
+ *  e1000_init_mac_ops_generic - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups up the function pointers to no-op functions
+ **/
+void e1000_init_mac_ops_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	DEBUGFUNC("e1000_init_mac_ops_generic");
+
+	/* General Setup */
+	mac->ops.init_params = e1000_null_ops_generic;
+	mac->ops.init_hw = e1000_null_ops_generic;
+	mac->ops.reset_hw = e1000_null_ops_generic;
+	mac->ops.setup_physical_interface = e1000_null_ops_generic;
+	mac->ops.get_bus_info = e1000_null_ops_generic;
+	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
+	mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
+	mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
+	mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
+	/* LED */
+	mac->ops.cleanup_led = e1000_null_ops_generic;
+	mac->ops.setup_led = e1000_null_ops_generic;
+	mac->ops.blink_led = e1000_null_ops_generic;
+	mac->ops.led_on = e1000_null_ops_generic;
+	mac->ops.led_off = e1000_null_ops_generic;
+	/* LINK */
+	mac->ops.setup_link = e1000_null_ops_generic;
+	mac->ops.get_link_up_info = e1000_null_link_info;
+	mac->ops.check_for_link = e1000_null_ops_generic;
+	/* Management */
+	mac->ops.check_mng_mode = e1000_null_mng_mode;
+	/* VLAN, MC, etc. */
+	mac->ops.update_mc_addr_list = e1000_null_update_mc;
+	mac->ops.clear_vfta = e1000_null_mac_generic;
+	mac->ops.write_vfta = e1000_null_write_vfta;
+	mac->ops.rar_set = e1000_rar_set_generic;
+	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+}
+
+/**
+ *  e1000_null_ops_generic - No-op function, returns 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	DEBUGFUNC("e1000_null_ops_generic");
+	UNREFERENCED_1PARAMETER(hw);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_mac_generic - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	DEBUGFUNC("e1000_null_mac_generic");
+	UNREFERENCED_1PARAMETER(hw);
+	return;
+}
+
+/**
+ *  e1000_null_link_info - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
+			 u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
+{
+	DEBUGFUNC("e1000_null_link_info");
+	UNREFERENCED_3PARAMETER(hw, s, d);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_mng_mode - No-op function, return false
+ *  @hw: pointer to the HW structure
+ **/
+bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	DEBUGFUNC("e1000_null_mng_mode");
+	UNREFERENCED_1PARAMETER(hw);
+	return false;
+}
+
+/**
+ *  e1000_null_update_mc - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
+			  u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
+{
+	DEBUGFUNC("e1000_null_update_mc");
+	UNREFERENCED_3PARAMETER(hw, h, a);
+	return;
+}
+
+/**
+ *  e1000_null_write_vfta - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
+			   u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
+{
+	DEBUGFUNC("e1000_null_write_vfta");
+	UNREFERENCED_3PARAMETER(hw, a, b);
+	return;
+}
+
+/**
+ *  e1000_null_rar_set - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
+			u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
+{
+	DEBUGFUNC("e1000_null_rar_set");
+	UNREFERENCED_3PARAMETER(hw, h, a);
+	return;
+}
+
+/**
+ *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ **/
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_bus_info *bus = &hw->bus;
+	u32 status = E1000_READ_REG(hw, E1000_STATUS);
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+	/* PCI or PCI-X? */
+	bus->type = (status & E1000_STATUS_PCIX_MODE)
+			? e1000_bus_type_pcix
+			: e1000_bus_type_pci;
+
+	/* Bus speed */
+	if (bus->type == e1000_bus_type_pci) {
+		bus->speed = (status & E1000_STATUS_PCI66)
+			     ? e1000_bus_speed_66
+			     : e1000_bus_speed_33;
+	} else {
+		switch (status & E1000_STATUS_PCIX_SPEED) {
+		case E1000_STATUS_PCIX_SPEED_66:
+			bus->speed = e1000_bus_speed_66;
+			break;
+		case E1000_STATUS_PCIX_SPEED_100:
+			bus->speed = e1000_bus_speed_100;
+			break;
+		case E1000_STATUS_PCIX_SPEED_133:
+			bus->speed = e1000_bus_speed_133;
+			break;
+		default:
+			bus->speed = e1000_bus_speed_reserved;
+			break;
+		}
+	}
+
+	/* Bus width */
+	bus->width = (status & E1000_STATUS_BUS64)
+		     ? e1000_bus_width_64
+		     : e1000_bus_width_32;
+
+	/* Which PCI(-X) function? */
+	mac->ops.set_lan_id(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	struct e1000_bus_info *bus = &hw->bus;
+	s32 ret_val;
+	u16 pcie_link_status;
+
+	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+	bus->type = e1000_bus_type_pci_express;
+
+	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
+					  &pcie_link_status);
+	if (ret_val) {
+		bus->width = e1000_bus_width_unknown;
+		bus->speed = e1000_bus_speed_unknown;
+	} else {
+		switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
+		case PCIE_LINK_SPEED_2500:
+			bus->speed = e1000_bus_speed_2500;
+			break;
+		case PCIE_LINK_SPEED_5000:
+			bus->speed = e1000_bus_speed_5000;
+			break;
+		default:
+			bus->speed = e1000_bus_speed_unknown;
+			break;
+		}
+
+		bus->width = (enum e1000_bus_width)((pcie_link_status &
+			      PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
+	}
+
+	mac->ops.set_lan_id(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
+ *
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines the LAN function id by reading memory-mapped registers
+ *  and swaps the port value if requested.
+ **/
+STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	u32 reg;
+
+	/* The status register reports the correct function number
+	 * for the device regardless of function swap state.
+	 */
+	reg = E1000_READ_REG(hw, E1000_STATUS);
+	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+}
+
+/**
+ *  e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines the LAN function id by reading PCI config space.
+ **/
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+	u16 pci_header_type;
+	u32 status;
+
+	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		bus->func = (status & E1000_STATUS_FUNC_MASK)
+			    >> E1000_STATUS_FUNC_SHIFT;
+	} else {
+		bus->func = 0;
+	}
+}
+
+/**
+ *  e1000_set_lan_id_single_port - Set LAN id for a single port device
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the LAN function id to zero for a single port device.
+ **/
+void e1000_set_lan_id_single_port(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+
+	bus->func = 0;
+}
+
+/**
+ *  e1000_clear_vfta_generic - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+	u32 offset;
+
+	DEBUGFUNC("e1000_clear_vfta_generic");
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+		E1000_WRITE_FLUSH(hw);
+	}
+}
+
+/**
+ *  e1000_write_vfta_generic - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+	DEBUGFUNC("e1000_write_vfta_generic");
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_init_rx_addrs_generic - Initialize receive address's
+ *  @hw: pointer to the HW structure
+ *  @rar_count: receive address registers
+ *
+ *  Setup the receive address registers by setting the base receive address
+ *  register to the devices MAC address and clearing all the other receive
+ *  address registers to 0.
+ **/
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+	u32 i;
+	u8 mac_addr[ETH_ADDR_LEN] = {0};
+
+	DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+	/* Setup the receive address */
+	DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
+
+	/* Zero out the other (rar_entry_count - 1) receive addresses */
+	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+	for (i = 1; i < rar_count; i++)
+		hw->mac.ops.rar_set(hw, mac_addr, i);
+}
+
+/**
+ *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the nvm for an alternate MAC address.  An alternate MAC address
+ *  can be setup by pre-boot software and must be treated like a permanent
+ *  address and must override the actual permanent MAC address. If an
+ *  alternate MAC address is found it is programmed into RAR0, replacing
+ *  the permanent address that was installed into RAR0 by the Si on reset.
+ *  This function will return SUCCESS unless it encounters an error while
+ *  reading the EEPROM.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+	u32 i;
+	s32 ret_val;
+	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+	u8 alt_mac_addr[ETH_ADDR_LEN];
+
+	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
+	if (ret_val)
+		return ret_val;
+
+	/* not supported on older hardware or 82573 */
+	if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
+		return E1000_SUCCESS;
+
+	/* Alternate MAC address is handled by the option ROM for 82580
+	 * and newer. SW support not required.
+	 */
+	if (hw->mac.type >= e1000_82580)
+		return E1000_SUCCESS;
+
+	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+				   &nvm_alt_mac_addr_offset);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
+	    (nvm_alt_mac_addr_offset == 0x0000))
+		/* There is no Alternate MAC Address */
+		return E1000_SUCCESS;
+
+	if (hw->bus.func == E1000_FUNC_1)
+		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+	if (hw->bus.func == E1000_FUNC_2)
+		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
+
+	if (hw->bus.func == E1000_FUNC_3)
+		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
+	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+		offset = nvm_alt_mac_addr_offset + (i >> 1);
+		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			return ret_val;
+		}
+
+		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+	}
+
+	/* if multicast bit is set, the alternate address will not be used */
+	if (alt_mac_addr[0] & 0x01) {
+		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
+		return E1000_SUCCESS;
+	}
+
+	/* We have a valid alternate MAC address, and we want to treat it the
+	 * same as the normal permanent MAC address stored by the HW into the
+	 * RAR. Do this by mapping this address into RAR0.
+	 */
+	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_rar_set_generic - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
+
+	DEBUGFUNC("e1000_rar_set_generic");
+
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* If MAC address zero, no need to set the AV bit */
+	if (rar_low || rar_high)
+		rar_high |= E1000_RAH_AV;
+
+	/* Some bridges will combine consecutive 32-bit writes into
+	 * a single burst write, which will malfunction on some parts.
+	 * The flushes avoid this.
+	 */
+	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+	E1000_WRITE_FLUSH(hw);
+	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_hash_mc_addr_generic - Generate a multicast hash value
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: pointer to a multicast address
+ *
+ *  Generates a multicast address hash value which is used to determine
+ *  the multicast filter table array address and new table value.
+ **/
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value, hash_mask;
+	u8 bit_shift = 0;
+
+	DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+	/* Register count multiplied by bits per register */
+	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
+	 * where 0xFF would still fall within the hash mask.
+	 */
+	while (hash_mask >> bit_shift != 0xFF)
+		bit_shift++;
+
+	/* The portion of the address that is used for the hash table
+	 * is determined by the mc_filter_type setting.
+	 * The algorithm is such that there is a total of 8 bits of shifting.
+	 * The bit_shift for a mc_filter_type of 0 represents the number of
+	 * left-shifts where the MSB of mc_addr[5] would still fall within
+	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
+	 * of 8 bits of shifting, then mc_addr[4] will shift right the
+	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
+	 * cases are a variation of this algorithm...essentially raising the
+	 * number of bits to shift mc_addr[5] left, while still keeping the
+	 * 8-bit shifting total.
+	 *
+	 * For example, given the following Destination MAC Address and an
+	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+	 * we can see that the bit_shift for case 0 is 4.  These are the hash
+	 * values resulting from each mc_filter_type...
+	 * [0] [1] [2] [3] [4] [5]
+	 * 01  AA  00  12  34  56
+	 * LSB		 MSB
+	 *
+	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+	 */
+	switch (hw->mac.mc_filter_type) {
+	default:
+	case 0:
+		break;
+	case 1:
+		bit_shift += 1;
+		break;
+	case 2:
+		bit_shift += 2;
+		break;
+	case 3:
+		bit_shift += 4;
+		break;
+	}
+
+	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+				  (((u16) mc_addr[5]) << bit_shift)));
+
+	return hash_value;
+}
+
+/**
+ *  e1000_update_mc_addr_list_generic - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates entire Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+				       u8 *mc_addr_list, u32 mc_addr_count)
+{
+	u32 hash_value, hash_bit, hash_reg;
+	int i;
+
+	DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+	/* clear mta_shadow */
+	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+	/* update mta_shadow from mc_addr_list */
+	for (i = 0; (u32) i < mc_addr_count; i++) {
+		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
+
+		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+		hash_bit = hash_value & 0x1F;
+
+		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+		mc_addr_list += (ETH_ADDR_LEN);
+	}
+
+	/* replace the entire MTA table */
+	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ *  @hw: pointer to the HW structure
+ *
+ *  In certain situations, a system BIOS may report that the PCIx maximum
+ *  memory read byte count (MMRBC) value is higher than than the actual
+ *  value. We check the PCIx command register with the current PCIx status
+ *  register.
+ **/
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+	u16 cmd_mmrbc;
+	u16 pcix_cmd;
+	u16 pcix_stat_hi_word;
+	u16 stat_mmrbc;
+
+	DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+	if (hw->bus.type != e1000_bus_type_pcix)
+		return;
+
+	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+		     PCIX_COMMAND_MMRBC_SHIFT;
+	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+		      PCIX_STATUS_HI_MMRBC_SHIFT;
+	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+	if (cmd_mmrbc > stat_mmrbc) {
+		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+	}
+}
+
+/**
+ *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+	E1000_READ_REG(hw, E1000_CRCERRS);
+	E1000_READ_REG(hw, E1000_SYMERRS);
+	E1000_READ_REG(hw, E1000_MPC);
+	E1000_READ_REG(hw, E1000_SCC);
+	E1000_READ_REG(hw, E1000_ECOL);
+	E1000_READ_REG(hw, E1000_MCC);
+	E1000_READ_REG(hw, E1000_LATECOL);
+	E1000_READ_REG(hw, E1000_COLC);
+	E1000_READ_REG(hw, E1000_DC);
+	E1000_READ_REG(hw, E1000_SEC);
+	E1000_READ_REG(hw, E1000_RLEC);
+	E1000_READ_REG(hw, E1000_XONRXC);
+	E1000_READ_REG(hw, E1000_XONTXC);
+	E1000_READ_REG(hw, E1000_XOFFRXC);
+	E1000_READ_REG(hw, E1000_XOFFTXC);
+	E1000_READ_REG(hw, E1000_FCRUC);
+	E1000_READ_REG(hw, E1000_GPRC);
+	E1000_READ_REG(hw, E1000_BPRC);
+	E1000_READ_REG(hw, E1000_MPRC);
+	E1000_READ_REG(hw, E1000_GPTC);
+	E1000_READ_REG(hw, E1000_GORCL);
+	E1000_READ_REG(hw, E1000_GORCH);
+	E1000_READ_REG(hw, E1000_GOTCL);
+	E1000_READ_REG(hw, E1000_GOTCH);
+	E1000_READ_REG(hw, E1000_RNBC);
+	E1000_READ_REG(hw, E1000_RUC);
+	E1000_READ_REG(hw, E1000_RFC);
+	E1000_READ_REG(hw, E1000_ROC);
+	E1000_READ_REG(hw, E1000_RJC);
+	E1000_READ_REG(hw, E1000_TORL);
+	E1000_READ_REG(hw, E1000_TORH);
+	E1000_READ_REG(hw, E1000_TOTL);
+	E1000_READ_REG(hw, E1000_TOTH);
+	E1000_READ_REG(hw, E1000_TPR);
+	E1000_READ_REG(hw, E1000_TPT);
+	E1000_READ_REG(hw, E1000_MPTC);
+	E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/**
+ *  e1000_check_for_copper_link_generic - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_check_for_copper_link");
+
+	/* We only want to go out to the PHY registers to see if Auto-Neg
+	 * has completed and/or if our link status has changed.  The
+	 * get_link_status flag is set upon receiving a Link Status
+	 * Change or Rx Sequence Error interrupt.
+	 */
+	if (!mac->get_link_status)
+		return E1000_SUCCESS;
+
+	/* First we want to see if the MII Status Register reports
+	 * link.  If so, then we want to get the current speed/duplex
+	 * of the PHY.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link)
+		return E1000_SUCCESS; /* No link detected */
+
+	mac->get_link_status = false;
+
+	/* Check if there was DownShift, must be checked
+	 * immediately after link-up
+	 */
+	e1000_check_downshift_generic(hw);
+
+	/* If we are forcing speed/duplex, then we simply return since
+	 * we have already determined whether we have link or not.
+	 */
+	if (!mac->autoneg)
+		return -E1000_ERR_CONFIG;
+
+	/* Auto-Neg is enabled.  Auto Speed Detection takes care
+	 * of MAC speed/duplex configuration.  So we only need to
+	 * configure Collision Distance in the MAC.
+	 */
+	mac->ops.config_collision_dist(hw);
+
+	/* Configure Flow Control now that Auto-Neg has completed.
+	 * First, we need to restore the desired flow control
+	 * settings because we may have had to re-autoneg with a
+	 * different link partner.
+	 */
+	ret_val = e1000_config_fc_after_link_up_generic(hw);
+	if (ret_val)
+		DEBUGOUT("Error configuring flow control\n");
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/* If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), the cable is plugged in (we have signal),
+	 * and our link partner is not trying to auto-negotiate with us (we
+	 * are receiving idles or data), we need to force link up. We also
+	 * need to give auto-negotiation time to complete, in case the cable
+	 * was just plugged in. The autoneg_failed flag does this.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
+	    !(rxcw & E1000_RXCW_C)) {
+		if (!mac->autoneg_failed) {
+			mac->autoneg_failed = true;
+			return E1000_SUCCESS;
+		}
+		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			return ret_val;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/* If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = true;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+	/* If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
+		if (!mac->autoneg_failed) {
+			mac->autoneg_failed = true;
+			return E1000_SUCCESS;
+		}
+		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
+
+		/* Disable auto-negotiation in the TXCW register */
+		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+		/* Force link-up and also force full-duplex. */
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			return ret_val;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/* If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
+		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		mac->serdes_has_link = true;
+	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+		/* If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		usec_delay(10);
+		rxcw = E1000_READ_REG(hw, E1000_RXCW);
+		if (rxcw & E1000_RXCW_SYNCH) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				mac->serdes_has_link = true;
+				DEBUGOUT("SERDES: Link up - forced.\n");
+			}
+		} else {
+			mac->serdes_has_link = false;
+			DEBUGOUT("SERDES: Link down - force failed.\n");
+		}
+	}
+
+	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		if (status & E1000_STATUS_LU) {
+			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
+			usec_delay(10);
+			rxcw = E1000_READ_REG(hw, E1000_RXCW);
+			if (rxcw & E1000_RXCW_SYNCH) {
+				if (!(rxcw & E1000_RXCW_IV)) {
+					mac->serdes_has_link = true;
+					DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
+				} else {
+					mac->serdes_has_link = false;
+					DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
+				}
+			} else {
+				mac->serdes_has_link = false;
+				DEBUGOUT("SERDES: Link down - no sync.\n");
+			}
+		} else {
+			mac->serdes_has_link = false;
+			DEBUGOUT("SERDES: Link down - autoneg failed\n");
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_default_fc_generic - Set flow control default values
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM for the default values for flow control and store the
+ *  values.
+ **/
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 nvm_data;
+	u16 nvm_offset = 0;
+
+	DEBUGFUNC("e1000_set_default_fc_generic");
+
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	if (hw->mac.type == e1000_i350) {
+		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
+		ret_val = hw->nvm.ops.read(hw,
+					   NVM_INIT_CONTROL2_REG +
+					   nvm_offset,
+					   1, &nvm_data);
+	} else {
+		ret_val = hw->nvm.ops.read(hw,
+					   NVM_INIT_CONTROL2_REG,
+					   1, &nvm_data);
+	}
+
+
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
+		hw->fc.requested_mode = e1000_fc_none;
+	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+		 NVM_WORD0F_ASM_DIR)
+		hw->fc.requested_mode = e1000_fc_tx_pause;
+	else
+		hw->fc.requested_mode = e1000_fc_full;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_setup_link_generic - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+s32 e1000_setup_link_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_link_generic");
+
+	/* In the case of the phy reset being blocked, we already have a link.
+	 * We do not need to set it up again.
+	 */
+	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
+		return E1000_SUCCESS;
+
+	/* If requested flow control is set to default, set flow control
+	 * based on the EEPROM flow control settings.
+	 */
+	if (hw->fc.requested_mode == e1000_fc_default) {
+		ret_val = e1000_set_default_fc_generic(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Save off the requested flow control mode for use later.  Depending
+	 * on the link partner's capabilities, we may or may not use this mode.
+	 */
+	hw->fc.current_mode = hw->fc.requested_mode;
+
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+		hw->fc.current_mode);
+
+	/* Call the necessary media_type subroutine to configure the link. */
+	ret_val = hw->mac.ops.setup_physical_interface(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+	return e1000_set_fc_watermarks_generic(hw);
+}
+
+/**
+ *  e1000_commit_fc_settings_generic - Configure flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  Write the flow control settings to the Transmit Config Word Register (TXCW)
+ *  base on the flow control settings in e1000_mac_info.
+ **/
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 txcw;
+
+	DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+	/* Check for a software override of the flow control settings, and
+	 * setup the device accordingly.  If auto-negotiation is enabled, then
+	 * software will have to set the "PAUSE" bits to the correct value in
+	 * the Transmit Config Word Register (TXCW) and re-start auto-
+	 * negotiation.  However, if auto-negotiation is disabled, then
+	 * software will have to manually configure the two flow control enable
+	 * bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames,
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we
+	 *          do not support receiving pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		/* Flow control completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case e1000_fc_rx_pause:
+		/* Rx Flow control is enabled and Tx Flow control is disabled
+		 * by a software over-ride. Since there really isn't a way to
+		 * advertise that we are capable of Rx Pause ONLY, we will
+		 * advertise that we support both symmetric and asymmetric Rx
+		 * PAUSE.  Later, we will disable the adapter's ability to send
+		 * PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case e1000_fc_tx_pause:
+		/* Tx Flow control is enabled, and Rx Flow control is disabled,
+		 * by a software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case e1000_fc_full:
+		/* Flow control (both Rx and Tx) is enabled by a software
+		 * over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+	mac->txcw = txcw;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_poll_fiber_serdes_link_generic - Poll for link up
+ *  @hw: pointer to the HW structure
+ *
+ *  Polls for link up by reading the status register, if link fails to come
+ *  up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 i, status;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+	/* If we have a signal (the cable is plugged in, or assumed true for
+	 * serdes media) then poll for a "Link-Up" indication in the Device
+	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
+	 * seconds (Auto-negotiation should complete in less than 500
+	 * milliseconds even if the other end is doing it in SW).
+	 */
+	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+		msec_delay(10);
+		status = E1000_READ_REG(hw, E1000_STATUS);
+		if (status & E1000_STATUS_LU)
+			break;
+	}
+	if (i == FIBER_LINK_UP_LIMIT) {
+		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+		mac->autoneg_failed = true;
+		/* AutoNeg failed to achieve a link, so we'll call
+		 * mac->check_for_link. This routine will force the
+		 * link up if we detect a signal. This will allow us to
+		 * communicate with non-autonegotiating link partners.
+		 */
+		ret_val = mac->ops.check_for_link(hw);
+		if (ret_val) {
+			DEBUGOUT("Error while checking for link\n");
+			return ret_val;
+		}
+		mac->autoneg_failed = false;
+	} else {
+		mac->autoneg_failed = false;
+		DEBUGOUT("Valid Link Found\n");
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes
+ *  links.  Upon successful setup, poll for link.
+ **/
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Take the link out of reset */
+	ctrl &= ~E1000_CTRL_LRST;
+
+	hw->mac.ops.config_collision_dist(hw);
+
+	ret_val = e1000_commit_fc_settings_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Since auto-negotiation is enabled, take the link out of reset (the
+	 * link will be in reset, because we previously reset the chip). This
+	 * will restart auto-negotiation.  If auto-negotiation is successful
+	 * then the link-up status bit will be set and the flow control enable
+	 * bits (RFCE and TFCE) will be set according to their negotiated value.
+	 */
+	DEBUGOUT("Auto-negotiation enabled\n");
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(1);
+
+	/* For these adapters, the SW definable pin 1 is set when the optics
+	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
+	 * indication.
+	 */
+	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+	} else {
+		DEBUGOUT("No signal detected\n");
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_config_collision_dist_generic - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup.
+ **/
+STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+	u32 tctl;
+
+	DEBUGFUNC("e1000_config_collision_dist_generic");
+
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the flow control high/low threshold (watermark) registers.  If
+ *  flow control XON frame transmission is enabled, then set XON frame
+ *  transmission as well.
+ **/
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+	u32 fcrtl = 0, fcrth = 0;
+
+	DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames is not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (hw->fc.current_mode & e1000_fc_tx_pause) {
+		/* We need to set up the Receive Threshold high and low water
+		 * marks as well as (optionally) enabling the transmission of
+		 * XON frames.
+		 */
+		fcrtl = hw->fc.low_water;
+		if (hw->fc.send_xon)
+			fcrtl |= E1000_FCRTL_XONE;
+
+		fcrth = hw->fc.high_water;
+	}
+	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+ *  device control register to reflect the adapter settings.  TFCE and RFCE
+ *  need to be explicitly set by software when a copper PHY is used because
+ *  autonegotiation is managed by the PHY rather than the MAC.  Software must
+ *  also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_force_mac_fc_generic");
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc.current_mode" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
+	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
+
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case e1000_fc_rx_pause:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case e1000_fc_tx_pause:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case e1000_fc_full:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_config_fc_after_link_up_generic - Configures flow control after link
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the status of auto-negotiation after link up to ensure that the
+ *  speed and duplex were not forced.  If the link needed to be forced, then
+ *  flow control needs to be forced also.  If auto-negotiation is enabled
+ *  and did not fail, then we configure flow control based on our link
+ *  partner.
+ **/
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
+	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+	u16 speed, duplex;
+
+	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+	/* Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (mac->autoneg_failed) {
+		if (hw->phy.media_type == e1000_media_type_fiber ||
+		    hw->phy.media_type == e1000_media_type_internal_serdes)
+			ret_val = e1000_force_mac_fc_generic(hw);
+	} else {
+		if (hw->phy.media_type == e1000_media_type_copper)
+			ret_val = e1000_force_mac_fc_generic(hw);
+	}
+
+	if (ret_val) {
+		DEBUGOUT("Error forcing flow control settings\n");
+		return ret_val;
+	}
+
+	/* Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+		/* Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
+			return ret_val;
+		}
+
+		/* The AutoNeg process has completed, so we now need to
+		 * read both the Auto Negotiation Advertisement
+		 * Register (Address 4) and the Auto_Negotiation Base
+		 * Page Ability Register (Address 5) to determine how
+		 * flow control was negotiated.
+		 */
+		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
+					       &mii_nway_adv_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
+					       &mii_nway_lp_ability_reg);
+		if (ret_val)
+			return ret_val;
+
+		/* Two bits in the Auto Negotiation Advertisement Register
+		 * (Address 4) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (Address 5) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 * Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
+		 *
+		 */
+		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+			/* Now we need to check if the user selected Rx ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise Rx
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF the TRANSMISSION of PAUSE frames.
+			 */
+			if (hw->fc.requested_mode == e1000_fc_full) {
+				hw->fc.current_mode = e1000_fc_full;
+				DEBUGOUT("Flow Control = FULL.\n");
+			} else {
+				hw->fc.current_mode = e1000_fc_rx_pause;
+				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+			}
+		}
+		/* For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 */
+		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_tx_pause;
+			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
+		}
+		/* For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 */
+		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_rx_pause;
+			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+		} else {
+			/* Per the IEEE spec, at this point flow control
+			 * should be disabled.
+			 */
+			hw->fc.current_mode = e1000_fc_none;
+			DEBUGOUT("Flow Control = NONE.\n");
+		}
+
+		/* Now we need to do one last check...  If we auto-
+		 * negotiated to HALF DUPLEX, flow control should not be
+		 * enabled per IEEE 802.3 spec.
+		 */
+		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			return ret_val;
+		}
+
+		if (duplex == HALF_DUPLEX)
+			hw->fc.current_mode = e1000_fc_none;
+
+		/* Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		ret_val = e1000_force_mac_fc_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+	/* Check for the case where we have SerDes media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
+	    mac->autoneg) {
+		/* Read the PCS_LSTS and check to see if AutoNeg
+		 * has completed.
+		 */
+		pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
+			DEBUGOUT("PCS Auto Neg has not completed.\n");
+			return ret_val;
+		}
+
+		/* The AutoNeg process has completed, so we now need to
+		 * read both the Auto Negotiation Advertisement
+		 * Register (PCS_ANADV) and the Auto_Negotiation Base
+		 * Page Ability Register (PCS_LPAB) to determine how
+		 * flow control was negotiated.
+		 */
+		pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
+		pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
+
+		/* Two bits in the Auto Negotiation Advertisement Register
+		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
+		 * Page Ability Register (PCS_LPAB) determine flow control
+		 * for both the PHY and the link partner.  The following
+		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+		 * 1999, describes these PAUSE resolution bits and how flow
+		 * control is determined based upon these settings.
+		 * NOTE:  DC = Don't Care
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
+		 *   0   |    1    |   0   |   DC    | e1000_fc_none
+		 *   0   |    1    |   1   |    0    | e1000_fc_none
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 *   1   |    0    |   0   |   DC    | e1000_fc_none
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *   1   |    1    |   0   |    0    | e1000_fc_none
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 *
+		 * Are both PAUSE bits set to 1?  If so, this implies
+		 * Symmetric Flow Control is enabled at both ends.  The
+		 * ASM_DIR bits are irrelevant per the spec.
+		 *
+		 * For Symmetric Flow Control:
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
+		 *
+		 */
+		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
+			/* Now we need to check if the user selected Rx ONLY
+			 * of pause frames.  In this case, we had to advertise
+			 * FULL flow control because we could not advertise Rx
+			 * ONLY. Hence, we must now check to see if we need to
+			 * turn OFF the TRANSMISSION of PAUSE frames.
+			 */
+			if (hw->fc.requested_mode == e1000_fc_full) {
+				hw->fc.current_mode = e1000_fc_full;
+				DEBUGOUT("Flow Control = FULL.\n");
+			} else {
+				hw->fc.current_mode = e1000_fc_rx_pause;
+				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+			}
+		}
+		/* For receiving PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+		 */
+		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
+			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_tx_pause;
+			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
+		}
+		/* For transmitting PAUSE frames ONLY.
+		 *
+		 *   LOCAL DEVICE  |   LINK PARTNER
+		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+		 *-------|---------|-------|---------|--------------------
+		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+		 */
+		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+			hw->fc.current_mode = e1000_fc_rx_pause;
+			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+		} else {
+			/* Per the IEEE spec, at this point flow control
+			 * should be disabled.
+			 */
+			hw->fc.current_mode = e1000_fc_none;
+			DEBUGOUT("Flow Control = NONE.\n");
+		}
+
+		/* Now we call a subroutine to actually force the MAC
+		 * controller to use the correct flow control settings.
+		 */
+		pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+		E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
+
+		ret_val = e1000_force_mac_fc_generic(hw);
+		if (ret_val) {
+			DEBUGOUT("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Read the status register for the current speed/duplex and store the current
+ *  speed and duplex for copper connections.
+ **/
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+					      u16 *duplex)
+{
+	u32 status;
+
+	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	if (status & E1000_STATUS_SPEED_1000) {
+		*speed = SPEED_1000;
+		DEBUGOUT("1000 Mbs, ");
+	} else if (status & E1000_STATUS_SPEED_100) {
+		*speed = SPEED_100;
+		DEBUGOUT("100 Mbs, ");
+	} else {
+		*speed = SPEED_10;
+		DEBUGOUT("10 Mbs, ");
+	}
+
+	if (status & E1000_STATUS_FD) {
+		*duplex = FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	} else {
+		*duplex = HALF_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Sets the speed and duplex to gigabit full duplex (the only possible option)
+ *  for fiber/serdes links.
+ **/
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
+						    u16 *speed, u16 *duplex)
+{
+	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+	UNREFERENCED_1PARAMETER(hw);
+
+	*speed = SPEED_1000;
+	*duplex = FULL_DUPLEX;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+	u32 swsm;
+	s32 timeout = hw->nvm.word_size + 1;
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+	/* Get the SW semaphore */
+	while (i < timeout) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		if (!(swsm & E1000_SWSM_SMBI))
+			break;
+
+		usec_delay(50);
+		i++;
+	}
+
+	if (i == timeout) {
+		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+		return -E1000_ERR_NVM;
+	}
+
+	/* Get the FW semaphore. */
+	for (i = 0; i < timeout; i++) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+		/* Semaphore acquired if bit latched */
+		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+			break;
+
+		usec_delay(50);
+	}
+
+	if (i == timeout) {
+		/* Release semaphores */
+		e1000_put_hw_semaphore_generic(hw);
+		DEBUGOUT("Driver can't access the NVM\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_put_hw_semaphore_generic - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+	u32 swsm;
+
+	DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+	swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ *  e1000_get_auto_rd_done_generic - Check for auto read completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+	s32 i = 0;
+
+	DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+	while (i < AUTO_READ_DONE_TIMEOUT) {
+		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+			break;
+		msec_delay(1);
+		i++;
+	}
+
+	if (i == AUTO_READ_DONE_TIMEOUT) {
+		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+		return -E1000_ERR_RESET;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_valid_led_default_generic - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_valid_led_default_generic");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+		*data = ID_LED_DEFAULT;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_id_led_init_generic -
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_id_led_init_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 data, i, temp;
+	const u16 led_mask = 0x0F;
+
+	DEBUGFUNC("e1000_id_led_init_generic");
+
+	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+	if (ret_val)
+		return ret_val;
+
+	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+	mac->ledctl_mode1 = mac->ledctl_default;
+	mac->ledctl_mode2 = mac->ledctl_default;
+
+	for (i = 0; i < 4; i++) {
+		temp = (data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			mac->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_setup_led_generic - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored.
+ **/
+s32 e1000_setup_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl;
+
+	DEBUGFUNC("e1000_setup_led_generic");
+
+	if (hw->mac.ops.setup_led != e1000_setup_led_generic)
+		return -E1000_ERR_CONFIG;
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+		hw->mac.ledctl_default = ledctl;
+		/* Turn off LED0 */
+		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
+			    E1000_LEDCTL_LED0_MODE_MASK);
+		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+			   E1000_LEDCTL_LED0_MODE_SHIFT);
+		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+	} else if (hw->phy.media_type == e1000_media_type_copper) {
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_cleanup_led_generic - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.
+ **/
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_cleanup_led_generic");
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_blink_led_generic - Blink LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Blink the LEDs which are set to be on.
+ **/
+s32 e1000_blink_led_generic(struct e1000_hw *hw)
+{
+	u32 ledctl_blink = 0;
+	u32 i;
+
+	DEBUGFUNC("e1000_blink_led_generic");
+
+	if (hw->phy.media_type == e1000_media_type_fiber) {
+		/* always blink LED0 for PCI-E fiber */
+		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+	} else {
+		/* Set the blink bit for each LED that's "on" (0x0E)
+		 * (or "off" if inverted) in ledctl_mode2.  The blink
+		 * logic in hardware only works when mode is set to "on"
+		 * so it must be changed accordingly when the mode is
+		 * "off" and inverted.
+		 */
+		ledctl_blink = hw->mac.ledctl_mode2;
+		for (i = 0; i < 32; i += 8) {
+			u32 mode = (hw->mac.ledctl_mode2 >> i) &
+			    E1000_LEDCTL_LED0_MODE_MASK;
+			u32 led_default = hw->mac.ledctl_default >> i;
+
+			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
+			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
+			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
+			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
+				ledctl_blink &=
+				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
+				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
+						 E1000_LEDCTL_MODE_LED_ON) << i;
+			}
+		}
+	}
+
+	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_on_generic - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+s32 e1000_led_on_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_led_on_generic");
+
+	switch (hw->phy.media_type) {
+	case e1000_media_type_fiber:
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+		break;
+	default:
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_generic - Turn LED off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED off.
+ **/
+s32 e1000_led_off_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_led_off_generic");
+
+	switch (hw->phy.media_type) {
+	case e1000_media_type_fiber:
+		ctrl = E1000_READ_REG(hw, E1000_CTRL);
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+		break;
+	case e1000_media_type_copper:
+		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+		break;
+	default:
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ *  @hw: pointer to the HW structure
+ *  @no_snoop: bitmap of snoop events
+ *
+ *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+	u32 gcr;
+
+	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		return;
+
+	if (no_snoop) {
+		gcr = E1000_READ_REG(hw, E1000_GCR);
+		gcr &= ~(PCIE_NO_SNOOP_ALL);
+		gcr |= no_snoop;
+		E1000_WRITE_REG(hw, E1000_GCR, gcr);
+	}
+}
+
+/**
+ *  e1000_disable_pcie_master_generic - Disables PCI-express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns E1000_SUCCESS if successful, else returns -10
+ *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
+ *  the master requests to be disabled.
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests.
+ **/
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	s32 timeout = MASTER_DISABLE_TIMEOUT;
+
+	DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+	if (hw->bus.type != e1000_bus_type_pci_express)
+		return E1000_SUCCESS;
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+	while (timeout) {
+		if (!(E1000_READ_REG(hw, E1000_STATUS) &
+		      E1000_STATUS_GIO_MASTER_ENABLE) ||
+				E1000_REMOVED(hw->hw_addr))
+			break;
+		usec_delay(100);
+		timeout--;
+	}
+
+	if (!timeout) {
+		DEBUGOUT("Master requests are pending.\n");
+		return -E1000_ERR_MASTER_REQUESTS_PENDING;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_reset_adaptive_generic");
+
+	if (!mac->adaptive_ifs) {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+		return;
+	}
+
+	mac->current_ifs_val = 0;
+	mac->ifs_min_val = IFS_MIN;
+	mac->ifs_max_val = IFS_MAX;
+	mac->ifs_step_size = IFS_STEP;
+	mac->ifs_ratio = IFS_RATIO;
+
+	mac->in_ifs_mode = false;
+	E1000_WRITE_REG(hw, E1000_AIT, 0);
+}
+
+/**
+ *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Update the Adaptive Interframe Spacing Throttle value based on the
+ *  time between transmitted packets and time between collisions.
+ **/
+void e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_update_adaptive_generic");
+
+	if (!mac->adaptive_ifs) {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+		return;
+	}
+
+	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+			mac->in_ifs_mode = true;
+			if (mac->current_ifs_val < mac->ifs_max_val) {
+				if (!mac->current_ifs_val)
+					mac->current_ifs_val = mac->ifs_min_val;
+				else
+					mac->current_ifs_val +=
+						mac->ifs_step_size;
+				E1000_WRITE_REG(hw, E1000_AIT,
+						mac->current_ifs_val);
+			}
+		}
+	} else {
+		if (mac->in_ifs_mode &&
+		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+			mac->current_ifs_val = 0;
+			mac->in_ifs_mode = false;
+			E1000_WRITE_REG(hw, E1000_AIT, 0);
+		}
+	}
+}
+
+/**
+ *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify that when not using auto-negotiation that MDI/MDIx is correctly
+ *  set, which is forced to MDI mode only.
+ **/
+STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+		DEBUGOUT("Invalid MDI setting detected\n");
+		hw->phy.mdix = 1;
+		return -E1000_ERR_CONFIG;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Validate the MDI/MDIx setting, allowing for auto-crossover during forced
+ *  operation.
+ **/
+s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
+	UNREFERENCED_1PARAMETER(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ *  @hw: pointer to the HW structure
+ *  @reg: 32bit register offset such as E1000_SCTL
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes an address/data control type register.  There are several of these
+ *  and they all have the format address << 8 | data and bit 31 is polled for
+ *  completion.
+ **/
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+				      u32 offset, u8 data)
+{
+	u32 i, regvalue = 0;
+
+	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+	/* Set up the address and data */
+	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+	E1000_WRITE_REG(hw, reg, regvalue);
+
+	/* Poll the ready bit to see if the MDI read completed */
+	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+		usec_delay(5);
+		regvalue = E1000_READ_REG(hw, reg);
+		if (regvalue & E1000_GEN_CTL_READY)
+			break;
+	}
+	if (!(regvalue & E1000_GEN_CTL_READY)) {
+		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+		return -E1000_ERR_PHY;
+	}
+
+	return E1000_SUCCESS;
+}
diff --git a/drivers/net/e1000/base/e1000_mac.h b/drivers/net/e1000/base/e1000_mac.h
new file mode 100644
index 0000000..5a7ce4a
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_mac.h
@@ -0,0 +1,95 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_MAC_H_
+#define _E1000_MAC_H_
+
+void e1000_init_mac_ops_generic(struct e1000_hw *hw);
+#ifndef E1000_REMOVED
+#define E1000_REMOVED(a) (0)
+#endif /* E1000_REMOVED */
+void e1000_null_mac_generic(struct e1000_hw *hw);
+s32  e1000_null_ops_generic(struct e1000_hw *hw);
+s32  e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d);
+bool e1000_null_mng_mode(struct e1000_hw *hw);
+void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a);
+void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b);
+void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a);
+s32  e1000_blink_led_generic(struct e1000_hw *hw);
+s32  e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32  e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32  e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32  e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+s32  e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32  e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32  e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32  e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32  e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32  e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+void e1000_set_lan_id_single_port(struct e1000_hw *hw);
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw);
+s32  e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32  e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+					       u16 *duplex);
+s32  e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+						     u16 *speed, u16 *duplex);
+s32  e1000_id_led_init_generic(struct e1000_hw *hw);
+s32  e1000_led_on_generic(struct e1000_hw *hw);
+s32  e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+				       u8 *mc_addr_list, u32 mc_addr_count);
+s32  e1000_set_default_fc_generic(struct e1000_hw *hw);
+s32  e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32  e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32  e1000_setup_led_generic(struct e1000_hw *hw);
+s32  e1000_setup_link_generic(struct e1000_hw *hw);
+s32  e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw);
+s32  e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+				       u32 offset, u8 data);
+
+u32  e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+s32  e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_manage.c b/drivers/net/e1000/base/e1000_manage.c
new file mode 100644
index 0000000..30db892
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_manage.c
@@ -0,0 +1,573 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+/**
+ *  e1000_calculate_checksum - Calculate checksum for buffer
+ *  @buffer: pointer to EEPROM
+ *  @length: size of EEPROM to calculate a checksum for
+ *
+ *  Calculates the checksum for some buffer on a specified length.  The
+ *  checksum calculated is returned.
+ **/
+u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+	u32 i;
+	u8 sum = 0;
+
+	DEBUGFUNC("e1000_calculate_checksum");
+
+	if (!buffer)
+		return 0;
+
+	for (i = 0; i < length; i++)
+		sum += buffer[i];
+
+	return (u8) (0 - sum);
+}
+
+/**
+ *  e1000_mng_enable_host_if_generic - Checks host interface is enabled
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ *  This function checks whether the HOST IF is enabled for command operation
+ *  and also checks whether the previous command is completed.  It busy waits
+ *  in case of previous command is not completed.
+ **/
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
+{
+	u32 hicr;
+	u8 i;
+
+	DEBUGFUNC("e1000_mng_enable_host_if_generic");
+
+	if (!hw->mac.arc_subsystem_valid) {
+		DEBUGOUT("ARC subsystem not valid.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	/* Check that the host interface is enabled. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	if (!(hicr & E1000_HICR_EN)) {
+		DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+	/* check the previous command is completed */
+	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+		hicr = E1000_READ_REG(hw, E1000_HICR);
+		if (!(hicr & E1000_HICR_C))
+			break;
+		msec_delay_irq(1);
+	}
+
+	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+		DEBUGOUT("Previous command timeout failed .\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_check_mng_mode_generic - Generic check management mode
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the firmware semaphore register and returns true (>0) if
+ *  manageability is enabled, else false (0).
+ **/
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
+{
+	u32 fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+	DEBUGFUNC("e1000_check_mng_mode_generic");
+
+
+	return (fwsm & E1000_FWSM_MODE_MASK) ==
+		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
+}
+
+/**
+ *  e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx
+ *  @hw: pointer to the HW structure
+ *
+ *  Enables packet filtering on transmit packets if manageability is enabled
+ *  and host interface is enabled.
+ **/
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
+{
+	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+	u32 *buffer = (u32 *)&hw->mng_cookie;
+	u32 offset;
+	s32 ret_val, hdr_csum, csum;
+	u8 i, len;
+
+	DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
+
+	hw->mac.tx_pkt_filtering = true;
+
+	/* No manageability, no filtering */
+	if (!hw->mac.ops.check_mng_mode(hw)) {
+		hw->mac.tx_pkt_filtering = false;
+		return hw->mac.tx_pkt_filtering;
+	}
+
+	/* If we can't read from the host interface for whatever
+	 * reason, disable filtering.
+	 */
+	ret_val = e1000_mng_enable_host_if_generic(hw);
+	if (ret_val != E1000_SUCCESS) {
+		hw->mac.tx_pkt_filtering = false;
+		return hw->mac.tx_pkt_filtering;
+	}
+
+	/* Read in the header.  Length and offset are in dwords. */
+	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+	for (i = 0; i < len; i++)
+		*(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+							   offset + i);
+	hdr_csum = hdr->checksum;
+	hdr->checksum = 0;
+	csum = e1000_calculate_checksum((u8 *)hdr,
+					E1000_MNG_DHCP_COOKIE_LENGTH);
+	/* If either the checksums or signature don't match, then
+	 * the cookie area isn't considered valid, in which case we
+	 * take the safe route of assuming Tx filtering is enabled.
+	 */
+	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
+		hw->mac.tx_pkt_filtering = true;
+		return hw->mac.tx_pkt_filtering;
+	}
+
+	/* Cookie area is valid, make the final check for filtering. */
+	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
+		hw->mac.tx_pkt_filtering = false;
+
+	return hw->mac.tx_pkt_filtering;
+}
+
+/**
+ *  e1000_mng_write_cmd_header_generic - Writes manageability command header
+ *  @hw: pointer to the HW structure
+ *  @hdr: pointer to the host interface command header
+ *
+ *  Writes the command header after does the checksum calculation.
+ **/
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+				      struct e1000_host_mng_command_header *hdr)
+{
+	u16 i, length = sizeof(struct e1000_host_mng_command_header);
+
+	DEBUGFUNC("e1000_mng_write_cmd_header_generic");
+
+	/* Write the whole command header structure with new checksum. */
+
+	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+	length >>= 2;
+	/* Write the relevant command block into the ram area. */
+	for (i = 0; i < length; i++) {
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+					    *((u32 *) hdr + i));
+		E1000_WRITE_FLUSH(hw);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_mng_host_if_write_generic - Write to the manageability host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface buffer
+ *  @length: size of the buffer
+ *  @offset: location in the buffer to write to
+ *  @sum: sum of the data (not checksum)
+ *
+ *  This function writes the buffer content at the offset given on the host if.
+ *  It also does alignment considerations to do the writes in most efficient
+ *  way.  Also fills up the sum of the buffer in *buffer parameter.
+ **/
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+				    u16 length, u16 offset, u8 *sum)
+{
+	u8 *tmp;
+	u8 *bufptr = buffer;
+	u32 data = 0;
+	u16 remaining, i, j, prev_bytes;
+
+	DEBUGFUNC("e1000_mng_host_if_write_generic");
+
+	/* sum = only sum of the data and it is not checksum */
+
+	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
+		return -E1000_ERR_PARAM;
+
+	tmp = (u8 *)&data;
+	prev_bytes = offset & 0x3;
+	offset >>= 2;
+
+	if (prev_bytes) {
+		data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
+		for (j = prev_bytes; j < sizeof(u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
+		length -= j - prev_bytes;
+		offset++;
+	}
+
+	remaining = length & 0x3;
+	length -= remaining;
+
+	/* Calculate length in DWORDs */
+	length >>= 2;
+
+	/* The device driver writes the relevant command block into the
+	 * ram area.
+	 */
+	for (i = 0; i < length; i++) {
+		for (j = 0; j < sizeof(u32); j++) {
+			*(tmp + j) = *bufptr++;
+			*sum += *(tmp + j);
+		}
+
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
+					    data);
+	}
+	if (remaining) {
+		for (j = 0; j < sizeof(u32); j++) {
+			if (j < remaining)
+				*(tmp + j) = *bufptr++;
+			else
+				*(tmp + j) = 0;
+
+			*sum += *(tmp + j);
+		}
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
+					    data);
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: pointer to the host interface
+ *  @length: size of the buffer
+ *
+ *  Writes the DHCP information to the host interface.
+ **/
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
+				      u16 length)
+{
+	struct e1000_host_mng_command_header hdr;
+	s32 ret_val;
+	u32 hicr;
+
+	DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+	hdr.command_length = length;
+	hdr.reserved1 = 0;
+	hdr.reserved2 = 0;
+	hdr.checksum = 0;
+
+	/* Enable the host interface */
+	ret_val = e1000_mng_enable_host_if_generic(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Populate the host interface with the contents of "buffer". */
+	ret_val = e1000_mng_host_if_write_generic(hw, buffer, length,
+						  sizeof(hdr), &(hdr.checksum));
+	if (ret_val)
+		return ret_val;
+
+	/* Write the manageability command header */
+	ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr);
+	if (ret_val)
+		return ret_val;
+
+	/* Tell the ARC a new command is pending. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_enable_mng_pass_thru - Check if management passthrough is needed
+ *  @hw: pointer to the HW structure
+ *
+ *  Verifies the hardware needs to leave interface enabled so that frames can
+ *  be directed to and from the management interface.
+ **/
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+	u32 manc;
+	u32 fwsm, factps;
+
+	DEBUGFUNC("e1000_enable_mng_pass_thru");
+
+	if (!hw->mac.asf_firmware_present)
+		return false;
+
+	manc = E1000_READ_REG(hw, E1000_MANC);
+
+	if (!(manc & E1000_MANC_RCV_TCO_EN))
+		return false;
+
+	if (hw->mac.has_fwsm) {
+		fwsm = E1000_READ_REG(hw, E1000_FWSM);
+		factps = E1000_READ_REG(hw, E1000_FACTPS);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((fwsm & E1000_FWSM_MODE_MASK) ==
+		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)))
+			return true;
+	} else if ((hw->mac.type == e1000_82574) ||
+		   (hw->mac.type == e1000_82583)) {
+		u16 data;
+
+		factps = E1000_READ_REG(hw, E1000_FACTPS);
+		e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
+
+		if (!(factps & E1000_FACTPS_MNGCG) &&
+		    ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
+		     (e1000_mng_mode_pt << 13)))
+			return true;
+	} else if ((manc & E1000_MANC_SMBUS_EN) &&
+		   !(manc & E1000_MANC_ASF_EN)) {
+		return true;
+	}
+
+	return false;
+}
+
+/**
+ *  e1000_host_interface_command - Writes buffer to host interface
+ *  @hw: pointer to the HW structure
+ *  @buffer: contains a command to write
+ *  @length: the byte length of the buffer, must be multiple of 4 bytes
+ *
+ *  Writes a buffer to the Host Interface.  Upon success, returns E1000_SUCCESS
+ *  else returns E1000_ERR_HOST_INTERFACE_COMMAND.
+ **/
+s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length)
+{
+	u32 hicr, i;
+
+	DEBUGFUNC("e1000_host_interface_command");
+
+	if (!(hw->mac.arc_subsystem_valid)) {
+		DEBUGOUT("Hardware doesn't support host interface command.\n");
+		return E1000_SUCCESS;
+	}
+
+	if (!hw->mac.asf_firmware_present) {
+		DEBUGOUT("Firmware is not present.\n");
+		return E1000_SUCCESS;
+	}
+
+	if (length == 0 || length & 0x3 ||
+	    length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) {
+		DEBUGOUT("Buffer length failure.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	/* Check that the host interface is enabled. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	if (!(hicr & E1000_HICR_EN)) {
+		DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	/* Calculate length in DWORDs */
+	length >>= 2;
+
+	/* The device driver writes the relevant command block
+	 * into the ram area.
+	 */
+	for (i = 0; i < length; i++)
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+					    *((u32 *)buffer + i));
+
+	/* Setting this bit tells the ARC that a new command is pending. */
+	E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+	for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+		hicr = E1000_READ_REG(hw, E1000_HICR);
+		if (!(hicr & E1000_HICR_C))
+			break;
+		msec_delay(1);
+	}
+
+	/* Check command successful completion. */
+	if (i == E1000_HI_COMMAND_TIMEOUT ||
+	    (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) {
+		DEBUGOUT("Command has failed with no status valid.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	for (i = 0; i < length; i++)
+		*((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
+								  E1000_HOST_IF,
+								  i);
+
+	return E1000_SUCCESS;
+}
+/**
+ *  e1000_load_firmware - Writes proxy FW code buffer to host interface
+ *                        and execute.
+ *  @hw: pointer to the HW structure
+ *  @buffer: contains a firmware to write
+ *  @length: the byte length of the buffer, must be multiple of 4 bytes
+ *
+ *  Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled
+ *  in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND.
+ **/
+s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length)
+{
+	u32 hicr, hibba, fwsm, icr, i;
+
+	DEBUGFUNC("e1000_load_firmware");
+
+	if (hw->mac.type < e1000_i210) {
+		DEBUGOUT("Hardware doesn't support loading FW by the driver\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	/* Check that the host interface is enabled. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	if (!(hicr & E1000_HICR_EN)) {
+		DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+		return -E1000_ERR_CONFIG;
+	}
+	if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) {
+		DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) {
+		DEBUGOUT("Buffer length failure.\n");
+		return -E1000_ERR_INVALID_ARGUMENT;
+	}
+
+	/* Clear notification from ROM-FW by reading ICR register */
+	icr = E1000_READ_REG(hw, E1000_ICR_V2);
+
+	/* Reset ROM-FW */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	hicr |= E1000_HICR_FW_RESET_ENABLE;
+	E1000_WRITE_REG(hw, E1000_HICR, hicr);
+	hicr |= E1000_HICR_FW_RESET;
+	E1000_WRITE_REG(hw, E1000_HICR, hicr);
+	E1000_WRITE_FLUSH(hw);
+
+	/* Wait till MAC notifies about its readiness after ROM-FW reset */
+	for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) {
+		icr = E1000_READ_REG(hw, E1000_ICR_V2);
+		if (icr & E1000_ICR_MNG)
+			break;
+		msec_delay(1);
+	}
+
+	/* Check for timeout */
+	if (i == E1000_HI_COMMAND_TIMEOUT) {
+		DEBUGOUT("FW reset failed.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	/* Wait till MAC is ready to accept new FW code */
+	for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+		fwsm = E1000_READ_REG(hw, E1000_FWSM);
+		if ((fwsm & E1000_FWSM_FW_VALID) &&
+		    ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT ==
+		    E1000_FWSM_HI_EN_ONLY_MODE))
+			break;
+		msec_delay(1);
+	}
+
+	/* Check for timeout */
+	if (i == E1000_HI_COMMAND_TIMEOUT) {
+		DEBUGOUT("FW reset failed.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	/* Calculate length in DWORDs */
+	length >>= 2;
+
+	/* The device driver writes the relevant FW code block
+	 * into the ram area in DWORDs via 1kB ram addressing window.
+	 */
+	for (i = 0; i < length; i++) {
+		if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) {
+			/* Point to correct 1kB ram window */
+			hibba = E1000_HI_FW_BASE_ADDRESS +
+				((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) *
+				(i / E1000_HI_FW_BLOCK_DWORD_LENGTH));
+
+			E1000_WRITE_REG(hw, E1000_HIBBA, hibba);
+		}
+
+		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+					    i % E1000_HI_FW_BLOCK_DWORD_LENGTH,
+					    *((u32 *)buffer + i));
+	}
+
+	/* Setting this bit tells the ARC that a new FW is ready to execute. */
+	hicr = E1000_READ_REG(hw, E1000_HICR);
+	E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+	for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
+		hicr = E1000_READ_REG(hw, E1000_HICR);
+		if (!(hicr & E1000_HICR_C))
+			break;
+		msec_delay(1);
+	}
+
+	/* Check for successful FW start. */
+	if (i == E1000_HI_COMMAND_TIMEOUT) {
+		DEBUGOUT("New FW did not start within timeout period.\n");
+		return -E1000_ERR_HOST_INTERFACE_COMMAND;
+	}
+
+	return E1000_SUCCESS;
+}
+
+
diff --git a/drivers/net/e1000/base/e1000_manage.h b/drivers/net/e1000/base/e1000_manage.h
new file mode 100644
index 0000000..e6f92c0
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_manage.h
@@ -0,0 +1,95 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_MANAGE_H_
+#define _E1000_MANAGE_H_
+
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
+s32  e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
+s32  e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+				     u16 length, u16 offset, u8 *sum);
+s32  e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+				     struct e1000_host_mng_command_header *hdr);
+s32  e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
+				       u8 *buffer, u16 length);
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length);
+s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length);
+
+enum e1000_mng_mode {
+	e1000_mng_mode_none = 0,
+	e1000_mng_mode_asf,
+	e1000_mng_mode_pt,
+	e1000_mng_mode_ipmi,
+	e1000_mng_mode_host_if_only
+};
+
+#define E1000_FACTPS_MNGCG			0x20000000
+
+#define E1000_FWSM_MODE_MASK			0xE
+#define E1000_FWSM_MODE_SHIFT			1
+#define E1000_FWSM_FW_VALID			0x00008000
+#define E1000_FWSM_HI_EN_ONLY_MODE		0x4
+
+#define E1000_MNG_IAMT_MODE			0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH		0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET		0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT		10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD		64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING	0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN	0x2
+
+#define E1000_VFTA_ENTRY_SHIFT			5
+#define E1000_VFTA_ENTRY_MASK			0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK		0x1F
+
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH		1792 /* Num of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH		448 /* Num of dwords in range */
+#define E1000_HI_COMMAND_TIMEOUT		500 /* Process HI cmd limit */
+#define E1000_HI_FW_BASE_ADDRESS		0x10000
+#define E1000_HI_FW_MAX_LENGTH			(64 * 1024) /* Num of bytes */
+#define E1000_HI_FW_BLOCK_DWORD_LENGTH		256 /* Num of DWORDs per page */
+#define E1000_HICR_MEMORY_BASE_EN		0x200 /* MB Enable bit - RO */
+#define E1000_HICR_EN			0x01  /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C			0x02
+#define E1000_HICR_SV			0x04  /* Status Validity */
+#define E1000_HICR_FW_RESET_ENABLE	0x40
+#define E1000_HICR_FW_RESET		0x80
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE		0x544D4149
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_mbx.c b/drivers/net/e1000/base/e1000_mbx.c
new file mode 100644
index 0000000..7ec4c56
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_mbx.c
@@ -0,0 +1,777 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_mbx.h"
+
+/**
+ *  e1000_null_mbx_check_for_flag - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_null_mbx_check_for_flag(struct e1000_hw E1000_UNUSEDARG *hw,
+					 u16 E1000_UNUSEDARG mbx_id)
+{
+	DEBUGFUNC("e1000_null_mbx_check_flag");
+	UNREFERENCED_2PARAMETER(hw, mbx_id);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_mbx_transact - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_null_mbx_transact(struct e1000_hw E1000_UNUSEDARG *hw,
+				   u32 E1000_UNUSEDARG *msg,
+				   u16 E1000_UNUSEDARG size,
+				   u16 E1000_UNUSEDARG mbx_id)
+{
+	DEBUGFUNC("e1000_null_mbx_rw_msg");
+	UNREFERENCED_4PARAMETER(hw, msg, size, mbx_id);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_mbx - Reads a message from the mailbox
+ *  @hw: pointer to the HW structure
+ *  @msg: The message buffer
+ *  @size: Length of buffer
+ *  @mbx_id: id of mailbox to read
+ *
+ *  returns SUCCESS if it successfully read message from buffer
+ **/
+s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_read_mbx");
+
+	/* limit read to size of mailbox */
+	if (size > mbx->size)
+		size = mbx->size;
+
+	if (mbx->ops.read)
+		ret_val = mbx->ops.read(hw, msg, size, mbx_id);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_mbx - Write a message to the mailbox
+ *  @hw: pointer to the HW structure
+ *  @msg: The message buffer
+ *  @size: Length of buffer
+ *  @mbx_id: id of mailbox to write
+ *
+ *  returns SUCCESS if it successfully copied message into the buffer
+ **/
+s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_mbx");
+
+	if (size > mbx->size)
+		ret_val = -E1000_ERR_MBX;
+
+	else if (mbx->ops.write)
+		ret_val = mbx->ops.write(hw, msg, size, mbx_id);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_msg - checks to see if someone sent us mail
+ *  @hw: pointer to the HW structure
+ *  @mbx_id: id of mailbox to check
+ *
+ *  returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_check_for_msg");
+
+	if (mbx->ops.check_for_msg)
+		ret_val = mbx->ops.check_for_msg(hw, mbx_id);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_ack - checks to see if someone sent us ACK
+ *  @hw: pointer to the HW structure
+ *  @mbx_id: id of mailbox to check
+ *
+ *  returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_check_for_ack");
+
+	if (mbx->ops.check_for_ack)
+		ret_val = mbx->ops.check_for_ack(hw, mbx_id);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_rst - checks to see if other side has reset
+ *  @hw: pointer to the HW structure
+ *  @mbx_id: id of mailbox to check
+ *
+ *  returns SUCCESS if the Status bit was found or else ERR_MBX
+ **/
+s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_check_for_rst");
+
+	if (mbx->ops.check_for_rst)
+		ret_val = mbx->ops.check_for_rst(hw, mbx_id);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_poll_for_msg - Wait for message notification
+ *  @hw: pointer to the HW structure
+ *  @mbx_id: id of mailbox to write
+ *
+ *  returns SUCCESS if it successfully received a message notification
+ **/
+STATIC s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	int countdown = mbx->timeout;
+
+	DEBUGFUNC("e1000_poll_for_msg");
+
+	if (!countdown || !mbx->ops.check_for_msg)
+		goto out;
+
+	while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) {
+		countdown--;
+		if (!countdown)
+			break;
+		usec_delay(mbx->usec_delay);
+	}
+
+	/* if we failed, all future posted messages fail until reset */
+	if (!countdown)
+		mbx->timeout = 0;
+out:
+	return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
+}
+
+/**
+ *  e1000_poll_for_ack - Wait for message acknowledgement
+ *  @hw: pointer to the HW structure
+ *  @mbx_id: id of mailbox to write
+ *
+ *  returns SUCCESS if it successfully received a message acknowledgement
+ **/
+STATIC s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	int countdown = mbx->timeout;
+
+	DEBUGFUNC("e1000_poll_for_ack");
+
+	if (!countdown || !mbx->ops.check_for_ack)
+		goto out;
+
+	while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) {
+		countdown--;
+		if (!countdown)
+			break;
+		usec_delay(mbx->usec_delay);
+	}
+
+	/* if we failed, all future posted messages fail until reset */
+	if (!countdown)
+		mbx->timeout = 0;
+out:
+	return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
+}
+
+/**
+ *  e1000_read_posted_mbx - Wait for message notification and receive message
+ *  @hw: pointer to the HW structure
+ *  @msg: The message buffer
+ *  @size: Length of buffer
+ *  @mbx_id: id of mailbox to write
+ *
+ *  returns SUCCESS if it successfully received a message notification and
+ *  copied it into the receive buffer.
+ **/
+s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_read_posted_mbx");
+
+	if (!mbx->ops.read)
+		goto out;
+
+	ret_val = e1000_poll_for_msg(hw, mbx_id);
+
+	/* if ack received read message, otherwise we timed out */
+	if (!ret_val)
+		ret_val = mbx->ops.read(hw, msg, size, mbx_id);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
+ *  @hw: pointer to the HW structure
+ *  @msg: The message buffer
+ *  @size: Length of buffer
+ *  @mbx_id: id of mailbox to write
+ *
+ *  returns SUCCESS if it successfully copied message into the buffer and
+ *  received an ack to that message within delay * timeout period
+ **/
+s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_write_posted_mbx");
+
+	/* exit if either we can't write or there isn't a defined timeout */
+	if (!mbx->ops.write || !mbx->timeout)
+		goto out;
+
+	/* send msg */
+	ret_val = mbx->ops.write(hw, msg, size, mbx_id);
+
+	/* if msg sent wait until we receive an ack */
+	if (!ret_val)
+		ret_val = e1000_poll_for_ack(hw, mbx_id);
+out:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_mbx_ops_generic - Initialize mbx function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the function pointers to no-op functions
+ **/
+void e1000_init_mbx_ops_generic(struct e1000_hw *hw)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	mbx->ops.init_params = e1000_null_ops_generic;
+	mbx->ops.read = e1000_null_mbx_transact;
+	mbx->ops.write = e1000_null_mbx_transact;
+	mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag;
+	mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag;
+	mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag;
+	mbx->ops.read_posted = e1000_read_posted_mbx;
+	mbx->ops.write_posted = e1000_write_posted_mbx;
+}
+
+/**
+ *  e1000_read_v2p_mailbox - read v2p mailbox
+ *  @hw: pointer to the HW structure
+ *
+ *  This function is used to read the v2p mailbox without losing the read to
+ *  clear status bits.
+ **/
+STATIC u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
+{
+	u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0));
+
+	v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
+	hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
+
+	return v2p_mailbox;
+}
+
+/**
+ *  e1000_check_for_bit_vf - Determine if a status bit was set
+ *  @hw: pointer to the HW structure
+ *  @mask: bitmask for bits to be tested and cleared
+ *
+ *  This function is used to check for the read to clear bits within
+ *  the V2P mailbox.
+ **/
+STATIC s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
+{
+	u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
+	s32 ret_val = -E1000_ERR_MBX;
+
+	if (v2p_mailbox & mask)
+		ret_val = E1000_SUCCESS;
+
+	hw->dev_spec.vf.v2p_mailbox &= ~mask;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_msg_vf - checks to see if the PF has sent mail
+ *  @hw: pointer to the HW structure
+ *  @mbx_id: id of mailbox to check
+ *
+ *  returns SUCCESS if the PF has set the Status bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_msg_vf(struct e1000_hw *hw,
+				  u16 E1000_UNUSEDARG mbx_id)
+{
+	s32 ret_val = -E1000_ERR_MBX;
+
+	UNREFERENCED_1PARAMETER(mbx_id);
+	DEBUGFUNC("e1000_check_for_msg_vf");
+
+	if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
+		ret_val = E1000_SUCCESS;
+		hw->mbx.stats.reqs++;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_ack_vf - checks to see if the PF has ACK'd
+ *  @hw: pointer to the HW structure
+ *  @mbx_id: id of mailbox to check
+ *
+ *  returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_ack_vf(struct e1000_hw *hw,
+				  u16 E1000_UNUSEDARG mbx_id)
+{
+	s32 ret_val = -E1000_ERR_MBX;
+
+	UNREFERENCED_1PARAMETER(mbx_id);
+	DEBUGFUNC("e1000_check_for_ack_vf");
+
+	if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
+		ret_val = E1000_SUCCESS;
+		hw->mbx.stats.acks++;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_rst_vf - checks to see if the PF has reset
+ *  @hw: pointer to the HW structure
+ *  @mbx_id: id of mailbox to check
+ *
+ *  returns true if the PF has set the reset done bit or else false
+ **/
+STATIC s32 e1000_check_for_rst_vf(struct e1000_hw *hw,
+				  u16 E1000_UNUSEDARG mbx_id)
+{
+	s32 ret_val = -E1000_ERR_MBX;
+
+	UNREFERENCED_1PARAMETER(mbx_id);
+	DEBUGFUNC("e1000_check_for_rst_vf");
+
+	if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
+					 E1000_V2PMAILBOX_RSTI))) {
+		ret_val = E1000_SUCCESS;
+		hw->mbx.stats.rsts++;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_obtain_mbx_lock_vf - obtain mailbox lock
+ *  @hw: pointer to the HW structure
+ *
+ *  return SUCCESS if we obtained the mailbox lock
+ **/
+STATIC s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
+{
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_obtain_mbx_lock_vf");
+
+	/* Take ownership of the buffer */
+	E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
+
+	/* reserve mailbox for vf use */
+	if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
+		ret_val = E1000_SUCCESS;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_mbx_vf - Write a message to the mailbox
+ *  @hw: pointer to the HW structure
+ *  @msg: The message buffer
+ *  @size: Length of buffer
+ *  @mbx_id: id of mailbox to write
+ *
+ *  returns SUCCESS if it successfully copied message into the buffer
+ **/
+STATIC s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
+			      u16 E1000_UNUSEDARG mbx_id)
+{
+	s32 ret_val;
+	u16 i;
+
+	UNREFERENCED_1PARAMETER(mbx_id);
+
+	DEBUGFUNC("e1000_write_mbx_vf");
+
+	/* lock the mailbox to prevent pf/vf race condition */
+	ret_val = e1000_obtain_mbx_lock_vf(hw);
+	if (ret_val)
+		goto out_no_write;
+
+	/* flush msg and acks as we are overwriting the message buffer */
+	e1000_check_for_msg_vf(hw, 0);
+	e1000_check_for_ack_vf(hw, 0);
+
+	/* copy the caller specified message to the mailbox memory buffer */
+	for (i = 0; i < size; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]);
+
+	/* update stats */
+	hw->mbx.stats.msgs_tx++;
+
+	/* Drop VFU and interrupt the PF to tell it a message has been sent */
+	E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
+
+out_no_write:
+	return ret_val;
+}
+
+/**
+ *  e1000_read_mbx_vf - Reads a message from the inbox intended for vf
+ *  @hw: pointer to the HW structure
+ *  @msg: The message buffer
+ *  @size: Length of buffer
+ *  @mbx_id: id of mailbox to read
+ *
+ *  returns SUCCESS if it successfully read message from buffer
+ **/
+STATIC s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
+			     u16 E1000_UNUSEDARG mbx_id)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 i;
+
+	DEBUGFUNC("e1000_read_mbx_vf");
+	UNREFERENCED_1PARAMETER(mbx_id);
+
+	/* lock the mailbox to prevent pf/vf race condition */
+	ret_val = e1000_obtain_mbx_lock_vf(hw);
+	if (ret_val)
+		goto out_no_read;
+
+	/* copy the message from the mailbox memory buffer */
+	for (i = 0; i < size; i++)
+		msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i);
+
+	/* Acknowledge receipt and release mailbox, then we're done */
+	E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
+
+	/* update stats */
+	hw->mbx.stats.msgs_rx++;
+
+out_no_read:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_mbx_params_vf - set initial values for vf mailbox
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes the hw->mbx struct to correct values for vf mailbox
+ */
+s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+
+	/* start mailbox as timed out and let the reset_hw call set the timeout
+	 * value to begin communications */
+	mbx->timeout = 0;
+	mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
+
+	mbx->size = E1000_VFMAILBOX_SIZE;
+
+	mbx->ops.read = e1000_read_mbx_vf;
+	mbx->ops.write = e1000_write_mbx_vf;
+	mbx->ops.read_posted = e1000_read_posted_mbx;
+	mbx->ops.write_posted = e1000_write_posted_mbx;
+	mbx->ops.check_for_msg = e1000_check_for_msg_vf;
+	mbx->ops.check_for_ack = e1000_check_for_ack_vf;
+	mbx->ops.check_for_rst = e1000_check_for_rst_vf;
+
+	mbx->stats.msgs_tx = 0;
+	mbx->stats.msgs_rx = 0;
+	mbx->stats.reqs = 0;
+	mbx->stats.acks = 0;
+	mbx->stats.rsts = 0;
+
+	return E1000_SUCCESS;
+}
+
+STATIC s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask)
+{
+	u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR);
+	s32 ret_val = -E1000_ERR_MBX;
+
+	if (mbvficr & mask) {
+		ret_val = E1000_SUCCESS;
+		E1000_WRITE_REG(hw, E1000_MBVFICR, mask);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_msg_pf - checks to see if the VF has sent mail
+ *  @hw: pointer to the HW structure
+ *  @vf_number: the VF index
+ *
+ *  returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number)
+{
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_check_for_msg_pf");
+
+	if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) {
+		ret_val = E1000_SUCCESS;
+		hw->mbx.stats.reqs++;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_ack_pf - checks to see if the VF has ACKed
+ *  @hw: pointer to the HW structure
+ *  @vf_number: the VF index
+ *
+ *  returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number)
+{
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_check_for_ack_pf");
+
+	if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) {
+		ret_val = E1000_SUCCESS;
+		hw->mbx.stats.acks++;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_for_rst_pf - checks to see if the VF has reset
+ *  @hw: pointer to the HW structure
+ *  @vf_number: the VF index
+ *
+ *  returns SUCCESS if the VF has set the Status bit or else ERR_MBX
+ **/
+STATIC s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number)
+{
+	u32 vflre = E1000_READ_REG(hw, E1000_VFLRE);
+	s32 ret_val = -E1000_ERR_MBX;
+
+	DEBUGFUNC("e1000_check_for_rst_pf");
+
+	if (vflre & (1 << vf_number)) {
+		ret_val = E1000_SUCCESS;
+		E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number));
+		hw->mbx.stats.rsts++;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_obtain_mbx_lock_pf - obtain mailbox lock
+ *  @hw: pointer to the HW structure
+ *  @vf_number: the VF index
+ *
+ *  return SUCCESS if we obtained the mailbox lock
+ **/
+STATIC s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number)
+{
+	s32 ret_val = -E1000_ERR_MBX;
+	u32 p2v_mailbox;
+
+	DEBUGFUNC("e1000_obtain_mbx_lock_pf");
+
+	/* Take ownership of the buffer */
+	E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU);
+
+	/* reserve mailbox for vf use */
+	p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number));
+	if (p2v_mailbox & E1000_P2VMAILBOX_PFU)
+		ret_val = E1000_SUCCESS;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_mbx_pf - Places a message in the mailbox
+ *  @hw: pointer to the HW structure
+ *  @msg: The message buffer
+ *  @size: Length of buffer
+ *  @vf_number: the VF index
+ *
+ *  returns SUCCESS if it successfully copied message into the buffer
+ **/
+STATIC s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
+			      u16 vf_number)
+{
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_write_mbx_pf");
+
+	/* lock the mailbox to prevent pf/vf race condition */
+	ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
+	if (ret_val)
+		goto out_no_write;
+
+	/* flush msg and acks as we are overwriting the message buffer */
+	e1000_check_for_msg_pf(hw, vf_number);
+	e1000_check_for_ack_pf(hw, vf_number);
+
+	/* copy the caller specified message to the mailbox memory buffer */
+	for (i = 0; i < size; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]);
+
+	/* Interrupt VF to tell it a message has been sent and release buffer*/
+	E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS);
+
+	/* update stats */
+	hw->mbx.stats.msgs_tx++;
+
+out_no_write:
+	return ret_val;
+
+}
+
+/**
+ *  e1000_read_mbx_pf - Read a message from the mailbox
+ *  @hw: pointer to the HW structure
+ *  @msg: The message buffer
+ *  @size: Length of buffer
+ *  @vf_number: the VF index
+ *
+ *  This function copies a message from the mailbox buffer to the caller's
+ *  memory buffer.  The presumption is that the caller knows that there was
+ *  a message due to a VF request so no polling for message is needed.
+ **/
+STATIC s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
+			     u16 vf_number)
+{
+	s32 ret_val;
+	u16 i;
+
+	DEBUGFUNC("e1000_read_mbx_pf");
+
+	/* lock the mailbox to prevent pf/vf race condition */
+	ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
+	if (ret_val)
+		goto out_no_read;
+
+	/* copy the message to the mailbox memory buffer */
+	for (i = 0; i < size; i++)
+		msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i);
+
+	/* Acknowledge the message and release buffer */
+	E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK);
+
+	/* update stats */
+	hw->mbx.stats.msgs_rx++;
+
+out_no_read:
+	return ret_val;
+}
+
+/**
+ *  e1000_init_mbx_params_pf - set initial values for pf mailbox
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes the hw->mbx struct to correct values for pf mailbox
+ */
+s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+
+	switch (hw->mac.type) {
+	case e1000_82576:
+	case e1000_i350:
+	case e1000_i354:
+		mbx->timeout = 0;
+		mbx->usec_delay = 0;
+
+		mbx->size = E1000_VFMAILBOX_SIZE;
+
+		mbx->ops.read = e1000_read_mbx_pf;
+		mbx->ops.write = e1000_write_mbx_pf;
+		mbx->ops.read_posted = e1000_read_posted_mbx;
+		mbx->ops.write_posted = e1000_write_posted_mbx;
+		mbx->ops.check_for_msg = e1000_check_for_msg_pf;
+		mbx->ops.check_for_ack = e1000_check_for_ack_pf;
+		mbx->ops.check_for_rst = e1000_check_for_rst_pf;
+
+		mbx->stats.msgs_tx = 0;
+		mbx->stats.msgs_rx = 0;
+		mbx->stats.reqs = 0;
+		mbx->stats.acks = 0;
+		mbx->stats.rsts = 0;
+	default:
+		return E1000_SUCCESS;
+	}
+}
+
diff --git a/drivers/net/e1000/base/e1000_mbx.h b/drivers/net/e1000/base/e1000_mbx.h
new file mode 100644
index 0000000..e9524fc
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_mbx.h
@@ -0,0 +1,105 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_MBX_H_
+#define _E1000_MBX_H_
+
+#include "e1000_api.h"
+
+/* Define mailbox register bits */
+#define E1000_V2PMAILBOX_REQ	0x00000001 /* Request for PF Ready bit */
+#define E1000_V2PMAILBOX_ACK	0x00000002 /* Ack PF message received */
+#define E1000_V2PMAILBOX_VFU	0x00000004 /* VF owns the mailbox buffer */
+#define E1000_V2PMAILBOX_PFU	0x00000008 /* PF owns the mailbox buffer */
+#define E1000_V2PMAILBOX_PFSTS	0x00000010 /* PF wrote a message in the MB */
+#define E1000_V2PMAILBOX_PFACK	0x00000020 /* PF ack the previous VF msg */
+#define E1000_V2PMAILBOX_RSTI	0x00000040 /* PF has reset indication */
+#define E1000_V2PMAILBOX_RSTD	0x00000080 /* PF has indicated reset done */
+#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
+
+#define E1000_P2VMAILBOX_STS	0x00000001 /* Initiate message send to VF */
+#define E1000_P2VMAILBOX_ACK	0x00000002 /* Ack message recv'd from VF */
+#define E1000_P2VMAILBOX_VFU	0x00000004 /* VF owns the mailbox buffer */
+#define E1000_P2VMAILBOX_PFU	0x00000008 /* PF owns the mailbox buffer */
+#define E1000_P2VMAILBOX_RVFU	0x00000010 /* Reset VFU - used when VF stuck */
+
+#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */
+#define E1000_MBVFICR_VFREQ_VF1	0x00000001 /* bit for VF 1 message */
+#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */
+#define E1000_MBVFICR_VFACK_VF1	0x00010000 /* bit for VF 1 ack */
+
+#define E1000_VFMAILBOX_SIZE	16 /* 16 32 bit words - 64 bytes */
+
+/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
+ * PF.  The reverse is true if it is E1000_PF_*.
+ * Message ACK's are the value or'd with 0xF0000000
+ */
+/* Msgs below or'd with this are the ACK */
+#define E1000_VT_MSGTYPE_ACK	0x80000000
+/* Msgs below or'd with this are the NACK */
+#define E1000_VT_MSGTYPE_NACK	0x40000000
+/* Indicates that VF is still clear to send requests */
+#define E1000_VT_MSGTYPE_CTS	0x20000000
+#define E1000_VT_MSGINFO_SHIFT	16
+/* bits 23:16 are used for extra info for certain messages */
+#define E1000_VT_MSGINFO_MASK	(0xFF << E1000_VT_MSGINFO_SHIFT)
+
+#define E1000_VF_RESET			0x01 /* VF requests reset */
+#define E1000_VF_SET_MAC_ADDR		0x02 /* VF requests to set MAC addr */
+#define E1000_VF_SET_MULTICAST		0x03 /* VF requests to set MC addr */
+#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_MULTICAST_OVERFLOW	(0x80 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_VLAN		0x04 /* VF requests to set VLAN */
+#define E1000_VF_SET_VLAN_ADD		(0x01 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_LPE		0x05 /* reqs to set VMOLR.LPE */
+#define E1000_VF_SET_PROMISC		0x06 /* reqs to clear VMOLR.ROPE/MPME*/
+#define E1000_VF_SET_PROMISC_UNICAST	(0x01 << E1000_VT_MSGINFO_SHIFT)
+#define E1000_VF_SET_PROMISC_MULTICAST	(0x02 << E1000_VT_MSGINFO_SHIFT)
+
+#define E1000_PF_CONTROL_MSG		0x0100 /* PF control message */
+
+#define E1000_VF_MBX_INIT_TIMEOUT	2000 /* number of retries on mailbox */
+#define E1000_VF_MBX_INIT_DELAY		500  /* microseconds between retries */
+
+s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
+s32 e1000_check_for_msg(struct e1000_hw *, u16);
+s32 e1000_check_for_ack(struct e1000_hw *, u16);
+s32 e1000_check_for_rst(struct e1000_hw *, u16);
+void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
+s32 e1000_init_mbx_params_vf(struct e1000_hw *);
+s32 e1000_init_mbx_params_pf(struct e1000_hw *);
+
+#endif /* _E1000_MBX_H_ */
diff --git a/drivers/net/e1000/base/e1000_nvm.c b/drivers/net/e1000/base/e1000_nvm.c
new file mode 100644
index 0000000..8be437a
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_nvm.c
@@ -0,0 +1,1377 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_nvm_ops_generic - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups up the function pointers to no-op functions
+ **/
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	DEBUGFUNC("e1000_init_nvm_ops_generic");
+
+	/* Initialize function pointers */
+	nvm->ops.init_params = e1000_null_ops_generic;
+	nvm->ops.acquire = e1000_null_ops_generic;
+	nvm->ops.read = e1000_null_read_nvm;
+	nvm->ops.release = e1000_null_nvm_generic;
+	nvm->ops.reload = e1000_reload_nvm_generic;
+	nvm->ops.update = e1000_null_ops_generic;
+	nvm->ops.valid_led_default = e1000_null_led_default;
+	nvm->ops.validate = e1000_null_ops_generic;
+	nvm->ops.write = e1000_null_write_nvm;
+}
+
+/**
+ *  e1000_null_nvm_read - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
+			u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
+			u16 E1000_UNUSEDARG *c)
+{
+	DEBUGFUNC("e1000_null_read_nvm");
+	UNREFERENCED_4PARAMETER(hw, a, b, c);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_nvm_generic - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	DEBUGFUNC("e1000_null_nvm_generic");
+	UNREFERENCED_1PARAMETER(hw);
+	return;
+}
+
+/**
+ *  e1000_null_led_default - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
+			   u16 E1000_UNUSEDARG *data)
+{
+	DEBUGFUNC("e1000_null_led_default");
+	UNREFERENCED_2PARAMETER(hw, data);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_write_nvm - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
+			 u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
+			 u16 E1000_UNUSEDARG *c)
+{
+	DEBUGFUNC("e1000_null_write_nvm");
+	UNREFERENCED_4PARAMETER(hw, a, b, c);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_raise_eec_clk - Raise EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Enable/Raise the EEPROM clock bit.
+ **/
+STATIC void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd | E1000_EECD_SK;
+	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_lower_eec_clk - Lower EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Clear/Lower the EEPROM clock bit.
+ **/
+STATIC void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+	*eecd = *eecd & ~E1000_EECD_SK;
+	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+	E1000_WRITE_FLUSH(hw);
+	usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @data: data to send to the EEPROM
+ *  @count: number of bits to shift out
+ *
+ *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
+ *  "data" parameter will be shifted out to the EEPROM one bit at a time.
+ *  In order to do this, "data" must be broken down into bits.
+ **/
+STATIC void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u32 mask;
+
+	DEBUGFUNC("e1000_shift_out_eec_bits");
+
+	mask = 0x01 << (count - 1);
+	if (nvm->type == e1000_nvm_eeprom_microwire)
+		eecd &= ~E1000_EECD_DO;
+	else
+	if (nvm->type == e1000_nvm_eeprom_spi)
+		eecd |= E1000_EECD_DO;
+
+	do {
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+
+		usec_delay(nvm->delay_usec);
+
+		e1000_raise_eec_clk(hw, &eecd);
+		e1000_lower_eec_clk(hw, &eecd);
+
+		mask >>= 1;
+	} while (mask);
+
+	eecd &= ~E1000_EECD_DI;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @count: number of bits to shift in
+ *
+ *  In order to read a register from the EEPROM, we need to shift 'count' bits
+ *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
+ *  the EEPROM (setting the SK bit), and then reading the value of the data out
+ *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
+ *  always be clear.
+ **/
+STATIC u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	DEBUGFUNC("e1000_shift_in_eec_bits");
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
+
+	for (i = 0; i < count; i++) {
+		data <<= 1;
+		e1000_raise_eec_clk(hw, &eecd);
+
+		eecd = E1000_READ_REG(hw, E1000_EECD);
+
+		eecd &= ~E1000_EECD_DI;
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+
+	return data;
+}
+
+/**
+ *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ *  @hw: pointer to the HW structure
+ *  @ee_reg: EEPROM flag for polling
+ *
+ *  Polls the EEPROM status bit for either read or write completion based
+ *  upon the value of 'ee_reg'.
+ **/
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+	u32 attempts = 100000;
+	u32 i, reg = 0;
+
+	DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+	for (i = 0; i < attempts; i++) {
+		if (ee_reg == E1000_NVM_POLL_READ)
+			reg = E1000_READ_REG(hw, E1000_EERD);
+		else
+			reg = E1000_READ_REG(hw, E1000_EEWR);
+
+		if (reg & E1000_NVM_RW_REG_DONE)
+			return E1000_SUCCESS;
+
+		usec_delay(5);
+	}
+
+	return -E1000_ERR_NVM;
+}
+
+/**
+ *  e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+
+	DEBUGFUNC("e1000_acquire_nvm_generic");
+
+	E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	while (timeout) {
+		if (eecd & E1000_EECD_GNT)
+			break;
+		usec_delay(5);
+		eecd = E1000_READ_REG(hw, E1000_EECD);
+		timeout--;
+	}
+
+	if (!timeout) {
+		eecd &= ~E1000_EECD_REQ;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		DEBUGOUT("Could not acquire NVM grant\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_standby_nvm - Return EEPROM to standby state
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the EEPROM to a standby state.
+ **/
+STATIC void e1000_standby_nvm(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+	DEBUGFUNC("e1000_standby_nvm");
+
+	if (nvm->type == e1000_nvm_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+
+		e1000_raise_eec_clk(hw, &eecd);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+
+		e1000_lower_eec_clk(hw, &eecd);
+	} else if (nvm->type == e1000_nvm_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(nvm->delay_usec);
+	}
+}
+
+/**
+ *  e1000_stop_nvm - Terminate EEPROM command
+ *  @hw: pointer to the HW structure
+ *
+ *  Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+void e1000_stop_nvm(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	DEBUGFUNC("e1000_stop_nvm");
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+		/* Pull CS high */
+		eecd |= E1000_EECD_CS;
+		e1000_lower_eec_clk(hw, &eecd);
+	} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+		/* CS on Microwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		e1000_raise_eec_clk(hw, &eecd);
+		e1000_lower_eec_clk(hw, &eecd);
+	}
+}
+
+/**
+ *  e1000_release_nvm_generic - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+	u32 eecd;
+
+	DEBUGFUNC("e1000_release_nvm_generic");
+
+	e1000_stop_nvm(hw);
+
+	eecd = E1000_READ_REG(hw, E1000_EECD);
+	eecd &= ~E1000_EECD_REQ;
+	E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups the EEPROM for reading and writing.
+ **/
+STATIC s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+	u8 spi_stat_reg;
+
+	DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+	if (nvm->type == e1000_nvm_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+	} else if (nvm->type == e1000_nvm_eeprom_spi) {
+		u16 timeout = NVM_MAX_RETRY_SPI;
+
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		E1000_WRITE_REG(hw, E1000_EECD, eecd);
+		E1000_WRITE_FLUSH(hw);
+		usec_delay(1);
+
+		/* Read "Status Register" repeatedly until the LSB is cleared.
+		 * The EEPROM will signal that the command has been completed
+		 * by clearing bit 0 of the internal status register.  If it's
+		 * not cleared within 'timeout', then error out.
+		 */
+		while (timeout) {
+			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+						 hw->nvm.opcode_bits);
+			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+				break;
+
+			usec_delay(5);
+			e1000_standby_nvm(hw);
+			timeout--;
+		}
+
+		if (!timeout) {
+			DEBUGOUT("SPI NVM Status error\n");
+			return -E1000_ERR_NVM;
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_nvm_spi - Read EEPROM's using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i = 0;
+	s32 ret_val;
+	u16 word_in;
+	u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+	DEBUGFUNC("e1000_read_nvm_spi");
+
+	/* A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	ret_val = nvm->ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	e1000_standby_nvm(hw);
+
+	if ((nvm->address_bits == 8) && (offset >= 128))
+		read_opcode |= NVM_A8_OPCODE_SPI;
+
+	/* Send the READ command (opcode + addr) */
+	e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+	e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+	/* Read the data.  SPI NVMs increment the address with each byte
+	 * read and will roll over if reading beyond the end.  This allows
+	 * us to read the whole NVM from any offset
+	 */
+	for (i = 0; i < words; i++) {
+		word_in = e1000_shift_in_eec_bits(hw, 16);
+		data[i] = (word_in >> 8) | (word_in << 8);
+	}
+
+release:
+	nvm->ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+			     u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i = 0;
+	s32 ret_val;
+	u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+	DEBUGFUNC("e1000_read_nvm_microwire");
+
+	/* A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	ret_val = nvm->ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	for (i = 0; i < words; i++) {
+		/* Send the READ command (opcode + addr) */
+		e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+		e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+					nvm->address_bits);
+
+		/* Read the data.  For microwire, each word requires the
+		 * overhead of setup and tear-down.
+		 */
+		data[i] = e1000_shift_in_eec_bits(hw, 16);
+		e1000_standby_nvm(hw);
+	}
+
+release:
+	nvm->ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	u32 i, eerd = 0;
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_read_nvm_eerd");
+
+	/* A check for invalid values:  offset too large, too many words,
+	 * too many words for the offset, and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	for (i = 0; i < words; i++) {
+		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+		       E1000_NVM_RW_REG_START;
+
+		E1000_WRITE_REG(hw, E1000_EERD, eerd);
+		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+		if (ret_val)
+			break;
+
+		data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+			   E1000_NVM_RW_REG_DATA);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_spi - Write to EEPROM using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  Writes data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function , the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32 ret_val = -E1000_ERR_NVM;
+	u16 widx = 0;
+
+	DEBUGFUNC("e1000_write_nvm_spi");
+
+	/* A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	while (widx < words) {
+		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+		ret_val = nvm->ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_ready_nvm_eeprom(hw);
+		if (ret_val) {
+			nvm->ops.release(hw);
+			return ret_val;
+		}
+
+		e1000_standby_nvm(hw);
+
+		/* Send the WRITE ENABLE command (8 bit opcode) */
+		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+					 nvm->opcode_bits);
+
+		e1000_standby_nvm(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the
+		 * opcode
+		 */
+		if ((nvm->address_bits == 8) && (offset >= 128))
+			write_opcode |= NVM_A8_OPCODE_SPI;
+
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+					 nvm->address_bits);
+
+		/* Loop to allow for up to whole page write of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_eec_bits(hw, word_out, 16);
+			widx++;
+
+			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+				e1000_standby_nvm(hw);
+				break;
+			}
+		}
+		msec_delay(10);
+		nvm->ops.release(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_microwire - Writes EEPROM using microwire
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  Writes data to EEPROM at offset using microwire interface.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function , the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+			      u16 *data)
+{
+	struct e1000_nvm_info *nvm = &hw->nvm;
+	s32  ret_val;
+	u32 eecd;
+	u16 words_written = 0;
+	u16 widx = 0;
+
+	DEBUGFUNC("e1000_write_nvm_microwire");
+
+	/* A check for invalid values:  offset too large, too many words,
+	 * and not enough words.
+	 */
+	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+	    (words == 0)) {
+		DEBUGOUT("nvm parameter(s) out of bounds\n");
+		return -E1000_ERR_NVM;
+	}
+
+	ret_val = nvm->ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_ready_nvm_eeprom(hw);
+	if (ret_val)
+		goto release;
+
+	e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+				 (u16)(nvm->opcode_bits + 2));
+
+	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+	e1000_standby_nvm(hw);
+
+	while (words_written < words) {
+		e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+					 nvm->opcode_bits);
+
+		e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+					 nvm->address_bits);
+
+		e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+		e1000_standby_nvm(hw);
+
+		for (widx = 0; widx < 200; widx++) {
+			eecd = E1000_READ_REG(hw, E1000_EECD);
+			if (eecd & E1000_EECD_DO)
+				break;
+			usec_delay(50);
+		}
+
+		if (widx == 200) {
+			DEBUGOUT("NVM Write did not complete\n");
+			ret_val = -E1000_ERR_NVM;
+			goto release;
+		}
+
+		e1000_standby_nvm(hw);
+
+		words_written++;
+	}
+
+	e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+				 (u16)(nvm->opcode_bits + 2));
+
+	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+	nvm->ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_pba_string_generic - Read device part number
+ *  @hw: pointer to the HW structure
+ *  @pba_num: pointer to device part number
+ *  @pba_num_size: size of part number buffer
+ *
+ *  Reads the product board assembly (PBA) number from the EEPROM and stores
+ *  the value in pba_num.
+ **/
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+				  u32 pba_num_size)
+{
+	s32 ret_val;
+	u16 nvm_data;
+	u16 pba_ptr;
+	u16 offset;
+	u16 length;
+
+	DEBUGFUNC("e1000_read_pba_string_generic");
+
+	if ((hw->mac.type >= e1000_i210) &&
+	    !e1000_get_flash_presence_i210(hw)) {
+		DEBUGOUT("Flashless no PBA string\n");
+		return -E1000_ERR_NVM_PBA_SECTION;
+	}
+
+	if (pba_num == NULL) {
+		DEBUGOUT("PBA string buffer was null\n");
+		return -E1000_ERR_INVALID_ARGUMENT;
+	}
+
+	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	/* if nvm_data is not ptr guard the PBA must be in legacy format which
+	 * means pba_ptr is actually our second data word for the PBA number
+	 * and we can decode it into an ascii string
+	 */
+	if (nvm_data != NVM_PBA_PTR_GUARD) {
+		DEBUGOUT("NVM PBA number is not stored as string\n");
+
+		/* make sure callers buffer is big enough to store the PBA */
+		if (pba_num_size < E1000_PBANUM_LENGTH) {
+			DEBUGOUT("PBA string buffer too small\n");
+			return E1000_ERR_NO_SPACE;
+		}
+
+		/* extract hex string from data and pba_ptr */
+		pba_num[0] = (nvm_data >> 12) & 0xF;
+		pba_num[1] = (nvm_data >> 8) & 0xF;
+		pba_num[2] = (nvm_data >> 4) & 0xF;
+		pba_num[3] = nvm_data & 0xF;
+		pba_num[4] = (pba_ptr >> 12) & 0xF;
+		pba_num[5] = (pba_ptr >> 8) & 0xF;
+		pba_num[6] = '-';
+		pba_num[7] = 0;
+		pba_num[8] = (pba_ptr >> 4) & 0xF;
+		pba_num[9] = pba_ptr & 0xF;
+
+		/* put a null character on the end of our string */
+		pba_num[10] = '\0';
+
+		/* switch all the data but the '-' to hex char */
+		for (offset = 0; offset < 10; offset++) {
+			if (pba_num[offset] < 0xA)
+				pba_num[offset] += '0';
+			else if (pba_num[offset] < 0x10)
+				pba_num[offset] += 'A' - 0xA;
+		}
+
+		return E1000_SUCCESS;
+	}
+
+	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (length == 0xFFFF || length == 0) {
+		DEBUGOUT("NVM PBA number section invalid length\n");
+		return -E1000_ERR_NVM_PBA_SECTION;
+	}
+	/* check if pba_num buffer is big enough */
+	if (pba_num_size < (((u32)length * 2) - 1)) {
+		DEBUGOUT("PBA string buffer too small\n");
+		return -E1000_ERR_NO_SPACE;
+	}
+
+	/* trim pba length from start of string */
+	pba_ptr++;
+	length--;
+
+	for (offset = 0; offset < length; offset++) {
+		ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			return ret_val;
+		}
+		pba_num[offset * 2] = (u8)(nvm_data >> 8);
+		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
+	}
+	pba_num[offset * 2] = '\0';
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_pba_length_generic - Read device part number length
+ *  @hw: pointer to the HW structure
+ *  @pba_num_size: size of part number buffer
+ *
+ *  Reads the product board assembly (PBA) number length from the EEPROM and
+ *  stores the value in pba_num_size.
+ **/
+s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
+{
+	s32 ret_val;
+	u16 nvm_data;
+	u16 pba_ptr;
+	u16 length;
+
+	DEBUGFUNC("e1000_read_pba_length_generic");
+
+	if (pba_num_size == NULL) {
+		DEBUGOUT("PBA buffer size was null\n");
+		return -E1000_ERR_INVALID_ARGUMENT;
+	}
+
+	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	 /* if data is not ptr guard the PBA must be in legacy format */
+	if (nvm_data != NVM_PBA_PTR_GUARD) {
+		*pba_num_size = E1000_PBANUM_LENGTH;
+		return E1000_SUCCESS;
+	}
+
+	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+
+	if (length == 0xFFFF || length == 0) {
+		DEBUGOUT("NVM PBA number section invalid length\n");
+		return -E1000_ERR_NVM_PBA_SECTION;
+	}
+
+	/* Convert from length in u16 values to u8 chars, add 1 for NULL,
+	 * and subtract 2 because length field is included in length.
+	 */
+	*pba_num_size = ((u32)length * 2) - 1;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_pba_num_generic - Read device part number
+ *  @hw: pointer to the HW structure
+ *  @pba_num: pointer to device part number
+ *
+ *  Reads the product board assembly (PBA) number from the EEPROM and stores
+ *  the value in pba_num.
+ **/
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
+{
+	s32 ret_val;
+	u16 nvm_data;
+
+	DEBUGFUNC("e1000_read_pba_num_generic");
+
+	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	} else if (nvm_data == NVM_PBA_PTR_GUARD) {
+		DEBUGOUT("NVM Not Supported\n");
+		return -E1000_NOT_IMPLEMENTED;
+	}
+	*pba_num = (u32)(nvm_data << 16);
+
+	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+	if (ret_val) {
+		DEBUGOUT("NVM Read Error\n");
+		return ret_val;
+	}
+	*pba_num |= nvm_data;
+
+	return E1000_SUCCESS;
+}
+
+
+/**
+ *  e1000_read_pba_raw
+ *  @hw: pointer to the HW structure
+ *  @eeprom_buf: optional pointer to EEPROM image
+ *  @eeprom_buf_size: size of EEPROM image in words
+ *  @max_pba_block_size: PBA block size limit
+ *  @pba: pointer to output PBA structure
+ *
+ *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
+ *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
+ *
+ **/
+s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+		       u32 eeprom_buf_size, u16 max_pba_block_size,
+		       struct e1000_pba *pba)
+{
+	s32 ret_val;
+	u16 pba_block_size;
+
+	if (pba == NULL)
+		return -E1000_ERR_PARAM;
+
+	if (eeprom_buf == NULL) {
+		ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
+					 &pba->word[0]);
+		if (ret_val)
+			return ret_val;
+	} else {
+		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+			pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
+			pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
+		} else {
+			return -E1000_ERR_PARAM;
+		}
+	}
+
+	if (pba->word[0] == NVM_PBA_PTR_GUARD) {
+		if (pba->pba_block == NULL)
+			return -E1000_ERR_PARAM;
+
+		ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
+						   eeprom_buf_size,
+						   &pba_block_size);
+		if (ret_val)
+			return ret_val;
+
+		if (pba_block_size > max_pba_block_size)
+			return -E1000_ERR_PARAM;
+
+		if (eeprom_buf == NULL) {
+			ret_val = e1000_read_nvm(hw, pba->word[1],
+						 pba_block_size,
+						 pba->pba_block);
+			if (ret_val)
+				return ret_val;
+		} else {
+			if (eeprom_buf_size > (u32)(pba->word[1] +
+					      pba_block_size)) {
+				memcpy(pba->pba_block,
+				       &eeprom_buf[pba->word[1]],
+				       pba_block_size * sizeof(u16));
+			} else {
+				return -E1000_ERR_PARAM;
+			}
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_pba_raw
+ *  @hw: pointer to the HW structure
+ *  @eeprom_buf: optional pointer to EEPROM image
+ *  @eeprom_buf_size: size of EEPROM image in words
+ *  @pba: pointer to PBA structure
+ *
+ *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
+ *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
+ *
+ **/
+s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+			u32 eeprom_buf_size, struct e1000_pba *pba)
+{
+	s32 ret_val;
+
+	if (pba == NULL)
+		return -E1000_ERR_PARAM;
+
+	if (eeprom_buf == NULL) {
+		ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
+					  &pba->word[0]);
+		if (ret_val)
+			return ret_val;
+	} else {
+		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+			eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
+			eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
+		} else {
+			return -E1000_ERR_PARAM;
+		}
+	}
+
+	if (pba->word[0] == NVM_PBA_PTR_GUARD) {
+		if (pba->pba_block == NULL)
+			return -E1000_ERR_PARAM;
+
+		if (eeprom_buf == NULL) {
+			ret_val = e1000_write_nvm(hw, pba->word[1],
+						  pba->pba_block[0],
+						  pba->pba_block);
+			if (ret_val)
+				return ret_val;
+		} else {
+			if (eeprom_buf_size > (u32)(pba->word[1] +
+					      pba->pba_block[0])) {
+				memcpy(&eeprom_buf[pba->word[1]],
+				       pba->pba_block,
+				       pba->pba_block[0] * sizeof(u16));
+			} else {
+				return -E1000_ERR_PARAM;
+			}
+		}
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_pba_block_size
+ *  @hw: pointer to the HW structure
+ *  @eeprom_buf: optional pointer to EEPROM image
+ *  @eeprom_buf_size: size of EEPROM image in words
+ *  @pba_data_size: pointer to output variable
+ *
+ *  Returns the size of the PBA block in words. Function operates on EEPROM
+ *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
+ *  EEPROM device.
+ *
+ **/
+s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
+			     u32 eeprom_buf_size, u16 *pba_block_size)
+{
+	s32 ret_val;
+	u16 pba_word[2];
+	u16 length;
+
+	DEBUGFUNC("e1000_get_pba_block_size");
+
+	if (eeprom_buf == NULL) {
+		ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
+		if (ret_val)
+			return ret_val;
+	} else {
+		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
+			pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
+			pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
+		} else {
+			return -E1000_ERR_PARAM;
+		}
+	}
+
+	if (pba_word[0] == NVM_PBA_PTR_GUARD) {
+		if (eeprom_buf == NULL) {
+			ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
+						 &length);
+			if (ret_val)
+				return ret_val;
+		} else {
+			if (eeprom_buf_size > pba_word[1])
+				length = eeprom_buf[pba_word[1] + 0];
+			else
+				return -E1000_ERR_PARAM;
+		}
+
+		if (length == 0xFFFF || length == 0)
+			return -E1000_ERR_NVM_PBA_SECTION;
+	} else {
+		/* PBA number in legacy format, there is no PBA Block. */
+		length = 0;
+	}
+
+	if (pba_block_size != NULL)
+		*pba_block_size = length;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_mac_addr_generic - Read device MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the device MAC address from the EEPROM and stores the value.
+ *  Since devices with two ports use the same EEPROM, we increment the
+ *  last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+	u32 rar_high;
+	u32 rar_low;
+	u16 i;
+
+	rar_high = E1000_READ_REG(hw, E1000_RAH(0));
+	rar_low = E1000_READ_REG(hw, E1000_RAL(0));
+
+	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
+
+	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
+
+	for (i = 0; i < ETH_ADDR_LEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error\n");
+			return ret_val;
+		}
+		checksum += nvm_data;
+	}
+
+	if (checksum != (u16) NVM_SUM) {
+		DEBUGOUT("NVM Checksum Invalid\n");
+		return -E1000_ERR_NVM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 checksum = 0;
+	u16 i, nvm_data;
+
+	DEBUGFUNC("e1000_update_nvm_checksum");
+
+	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+		if (ret_val) {
+			DEBUGOUT("NVM Read Error while updating checksum.\n");
+			return ret_val;
+		}
+		checksum += nvm_data;
+	}
+	checksum = (u16) NVM_SUM - checksum;
+	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
+	if (ret_val)
+		DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+	return ret_val;
+}
+
+/**
+ *  e1000_reload_nvm_generic - Reloads EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ *  extended control register.
+ **/
+STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+	u32 ctrl_ext;
+
+	DEBUGFUNC("e1000_reload_nvm_generic");
+
+	usec_delay(10);
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_get_fw_version - Get firmware version information
+ *  @hw: pointer to the HW structure
+ *  @fw_vers: pointer to output version structure
+ *
+ *  unsupported/not present features return 0 in version structure
+ **/
+void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
+{
+	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
+	u8 q, hval, rem, result;
+	u16 comb_verh, comb_verl, comb_offset;
+
+	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
+
+	/* basic eeprom version numbers, bits used vary by part and by tool
+	 * used to create the nvm images */
+	/* Check which data format we have */
+	switch (hw->mac.type) {
+	case e1000_i211:
+		e1000_read_invm_version(hw, fw_vers);
+		return;
+	case e1000_82575:
+	case e1000_82576:
+	case e1000_82580:
+		hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
+		/* Use this format, unless EETRACK ID exists,
+		 * then use alternate format
+		 */
+		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
+			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
+			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
+					      >> NVM_MAJOR_SHIFT;
+			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
+					      >> NVM_MINOR_SHIFT;
+			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
+			goto etrack_id;
+		}
+		break;
+	case e1000_i210:
+		if (!(e1000_get_flash_presence_i210(hw))) {
+			e1000_read_invm_version(hw, fw_vers);
+			return;
+		}
+		/* fall through */
+	case e1000_i350:
+		hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
+		/* find combo image version */
+		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
+		if ((comb_offset != 0x0) &&
+		    (comb_offset != NVM_VER_INVALID)) {
+
+			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
+					 + 1), 1, &comb_verh);
+			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
+					 1, &comb_verl);
+
+			/* get Option Rom version if it exists and is valid */
+			if ((comb_verh && comb_verl) &&
+			    ((comb_verh != NVM_VER_INVALID) &&
+			     (comb_verl != NVM_VER_INVALID))) {
+
+				fw_vers->or_valid = true;
+				fw_vers->or_major =
+					comb_verl >> NVM_COMB_VER_SHFT;
+				fw_vers->or_build =
+					(comb_verl << NVM_COMB_VER_SHFT)
+					| (comb_verh >> NVM_COMB_VER_SHFT);
+				fw_vers->or_patch =
+					comb_verh & NVM_COMB_VER_MASK;
+			}
+		}
+		break;
+	default:
+		hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
+		return;
+	}
+	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
+	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
+			      >> NVM_MAJOR_SHIFT;
+
+	/* check for old style version format in newer images*/
+	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
+		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
+	} else {
+		eeprom_verl = (fw_version & NVM_MINOR_MASK)
+				>> NVM_MINOR_SHIFT;
+	}
+	/* Convert minor value to hex before assigning to output struct
+	 * Val to be converted will not be higher than 99, per tool output
+	 */
+	q = eeprom_verl / NVM_HEX_CONV;
+	hval = q * NVM_HEX_TENS;
+	rem = eeprom_verl % NVM_HEX_CONV;
+	result = hval + rem;
+	fw_vers->eep_minor = result;
+
+etrack_id:
+	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
+		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
+		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
+		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
+			| eeprom_verl;
+	}
+	return;
+}
+
+
diff --git a/drivers/net/e1000/base/e1000_nvm.h b/drivers/net/e1000/base/e1000_nvm.h
new file mode 100644
index 0000000..dee1f62
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_nvm.h
@@ -0,0 +1,98 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_NVM_H_
+#define _E1000_NVM_H_
+
+struct e1000_pba {
+	u16 word[2];
+	u16 *pba_block;
+};
+
+struct e1000_fw_version {
+	u32 etrack_id;
+	u16 eep_major;
+	u16 eep_minor;
+	u16 eep_build;
+
+	u8 invm_major;
+	u8 invm_minor;
+	u8 invm_img_type;
+
+	bool or_valid;
+	u16 or_major;
+	u16 or_build;
+	u16 or_patch;
+};
+
+
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw);
+s32  e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
+void e1000_null_nvm_generic(struct e1000_hw *hw);
+s32  e1000_null_led_default(struct e1000_hw *hw, u16 *data);
+s32  e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
+s32  e1000_acquire_nvm_generic(struct e1000_hw *hw);
+
+s32  e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+s32  e1000_read_mac_addr_generic(struct e1000_hw *hw);
+s32  e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
+s32  e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+				   u32 pba_num_size);
+s32  e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size);
+s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+		       u32 eeprom_buf_size, u16 max_pba_block_size,
+		       struct e1000_pba *pba);
+s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
+			u32 eeprom_buf_size, struct e1000_pba *pba);
+s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
+			     u32 eeprom_buf_size, u16 *pba_block_size);
+s32  e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32  e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
+			      u16 words, u16 *data);
+s32  e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
+			 u16 *data);
+s32  e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
+s32  e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+s32  e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
+			       u16 words, u16 *data);
+s32  e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
+			 u16 *data);
+s32  e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+void e1000_stop_nvm(struct e1000_hw *hw);
+void e1000_release_nvm_generic(struct e1000_hw *hw);
+void e1000_get_fw_version(struct e1000_hw *hw,
+			  struct e1000_fw_version *fw_vers);
+
+#define E1000_STM_OPCODE	0xDB00
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_osdep.c b/drivers/net/e1000/base/e1000_osdep.c
new file mode 100644
index 0000000..7270edf
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_osdep.c
@@ -0,0 +1,83 @@
+/******************************************************************************
+
+  Copyright (c) 2001-2014, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#include "e1000_api.h"
+
+/*
+ * NOTE: the following routines using the e1000 
+ * 	naming style are provided to the shared
+ *	code but are OS specific
+ */
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+	return;
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+	*value = 0;
+	return;
+}
+
+void
+e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+}
+
+void
+e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+}
+
+
+/*
+ * Read the PCI Express capabilities
+ */
+int32_t
+e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+	return E1000_NOT_IMPLEMENTED;
+}
+
+/*
+ * Write the PCI Express capabilities
+ */
+int32_t
+e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
+{
+	return E1000_NOT_IMPLEMENTED;
+}
diff --git a/drivers/net/e1000/base/e1000_osdep.h b/drivers/net/e1000/base/e1000_osdep.h
new file mode 100644
index 0000000..d04ec73
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_osdep.h
@@ -0,0 +1,183 @@
+/******************************************************************************
+
+  Copyright (c) 2001-2014, Intel Corporation 
+  All rights reserved.
+  
+  Redistribution and use in source and binary forms, with or without 
+  modification, are permitted provided that the following conditions are met:
+  
+   1. Redistributions of source code must retain the above copyright notice, 
+      this list of conditions and the following disclaimer.
+  
+   2. Redistributions in binary form must reproduce the above copyright 
+      notice, this list of conditions and the following disclaimer in the 
+      documentation and/or other materials provided with the distribution.
+  
+   3. Neither the name of the Intel Corporation nor the names of its 
+      contributors may be used to endorse or promote products derived from 
+      this software without specific prior written permission.
+  
+  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
+  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
+  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
+  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
+  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
+  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
+  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
+  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
+  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+  POSSIBILITY OF SUCH DAMAGE.
+
+******************************************************************************/
+/*$FreeBSD$*/
+
+#ifndef _E1000_OSDEP_H_
+#define _E1000_OSDEP_H_
+
+#include <stdint.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <rte_common.h>
+#include <rte_cycles.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_byteorder.h>
+
+#include "../e1000_logs.h"
+
+#define DELAY(x) rte_delay_us(x)
+#define usec_delay(x) DELAY(x)
+#define usec_delay_irq(x) DELAY(x)
+#define msec_delay(x) DELAY(1000*(x))
+#define msec_delay_irq(x) DELAY(1000*(x))
+
+#define DEBUGFUNC(F)            DEBUGOUT(F "\n");
+#define DEBUGOUT(S, args...)    PMD_DRV_LOG_RAW(DEBUG, S, ##args)
+#define DEBUGOUT1(S, args...)   DEBUGOUT(S, ##args)
+#define DEBUGOUT2(S, args...)   DEBUGOUT(S, ##args)
+#define DEBUGOUT3(S, args...)   DEBUGOUT(S, ##args)
+#define DEBUGOUT6(S, args...)   DEBUGOUT(S, ##args)
+#define DEBUGOUT7(S, args...)   DEBUGOUT(S, ##args)
+
+#define UNREFERENCED_PARAMETER(_p)
+#define UNREFERENCED_1PARAMETER(_p)
+#define UNREFERENCED_2PARAMETER(_p, _q)
+#define UNREFERENCED_3PARAMETER(_p, _q, _r)
+#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s)
+
+#define FALSE			0
+#define TRUE			1
+
+#define	CMD_MEM_WRT_INVALIDATE	0x0010  /* BIT_4 */
+
+/* Mutex used in the shared code */
+#define E1000_MUTEX                     uintptr_t
+#define E1000_MUTEX_INIT(mutex)         (*(mutex) = 0)
+#define E1000_MUTEX_LOCK(mutex)         (*(mutex) = 1)
+#define E1000_MUTEX_UNLOCK(mutex)       (*(mutex) = 0)
+
+typedef uint64_t	u64;
+typedef uint32_t	u32;
+typedef uint16_t	u16;
+typedef uint8_t		u8;
+typedef int64_t		s64;
+typedef int32_t		s32;
+typedef int16_t		s16;
+typedef int8_t		s8;
+typedef int		bool;
+
+#define __le16		u16
+#define __le32		u32
+#define __le64		u64
+
+#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
+
+#define E1000_PCI_REG(reg) (*((volatile uint32_t *)(reg)))
+
+#define E1000_PCI_REG_WRITE(reg, value) do { \
+	E1000_PCI_REG((reg)) = (rte_cpu_to_le_32(value)); \
+} while (0)
+
+#define E1000_PCI_REG_ADDR(hw, reg) \
+	((volatile uint32_t *)((char *)(hw)->hw_addr + (reg)))
+
+#define E1000_PCI_REG_ARRAY_ADDR(hw, reg, index) \
+	E1000_PCI_REG_ADDR((hw), (reg) + ((index) << 2))
+
+static inline uint32_t e1000_read_addr(volatile void* addr)
+{
+	return rte_le_to_cpu_32(E1000_PCI_REG(addr));
+}
+
+/* Necessary defines */
+#define E1000_MRQC_ENABLE_MASK                  0x00000007
+#define E1000_MRQC_RSS_FIELD_IPV6_EX		0x00080000
+#define E1000_ALL_FULL_DUPLEX   ( \
+        ADVERTISE_10_FULL | ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
+
+#define M88E1543_E_PHY_ID    0x01410EA0
+#define NAHUM6LP_HW 
+#define ULP_SUPPORT
+
+#define E1000_RCTL_DTYP_MASK	0x00000C00 /* Descriptor type mask */
+#define E1000_MRQC_RSS_FIELD_IPV6_EX            0x00080000
+
+/* Register READ/WRITE macros */
+
+#define E1000_READ_REG(hw, reg) \
+	e1000_read_addr(E1000_PCI_REG_ADDR((hw), (reg)))
+
+#define E1000_WRITE_REG(hw, reg, value) \
+	E1000_PCI_REG_WRITE(E1000_PCI_REG_ADDR((hw), (reg)), (value))
+
+#define E1000_READ_REG_ARRAY(hw, reg, index) \
+	E1000_PCI_REG(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)))
+
+#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
+	E1000_PCI_REG_WRITE(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)), (value))
+
+#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
+#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
+
+#define	E1000_ACCESS_PANIC(x, hw, reg, value) \
+	rte_panic("%s:%u\t" RTE_STR(x) "(%p, 0x%x, 0x%x)", \
+		__FILE__, __LINE__, (hw), (reg), (unsigned int)(value))
+
+/*
+ * To be able to do IO write, we need to map IO BAR
+ * (bar 2/4 depending on device).
+ * Right now mapping multiple BARs is not supported by DPDK.
+ * Fortunatelly we need it only for legacy hw support.
+ */
+
+#define E1000_WRITE_REG_IO(hw, reg, value) \
+	E1000_WRITE_REG(hw, reg, value)
+
+/*
+ * Not implemented.
+ */
+
+#define E1000_READ_FLASH_REG(hw, reg) \
+	(E1000_ACCESS_PANIC(E1000_READ_FLASH_REG, hw, reg, 0), 0)
+
+#define E1000_READ_FLASH_REG16(hw, reg)  \
+	(E1000_ACCESS_PANIC(E1000_READ_FLASH_REG16, hw, reg, 0), 0)
+
+#define E1000_WRITE_FLASH_REG(hw, reg, value)  \
+	E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG, hw, reg, value)
+
+#define E1000_WRITE_FLASH_REG16(hw, reg, value) \
+	E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG16, hw, reg, value)
+
+#define STATIC static
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN                  6
+#endif
+
+#define false                         FALSE
+#define true                          TRUE
+
+#endif /* _E1000_OSDEP_H_ */
diff --git a/drivers/net/e1000/base/e1000_phy.c b/drivers/net/e1000/base/e1000_phy.c
new file mode 100644
index 0000000..e214f17
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_phy.c
@@ -0,0 +1,4273 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw);
+STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+					  u16 *data, bool read, bool page_set);
+STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page);
+STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+					  u16 *data, bool read);
+
+/* Cable length tables */
+STATIC const u16 e1000_m88_cable_length_table[] = {
+	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+		(sizeof(e1000_m88_cable_length_table) / \
+		 sizeof(e1000_m88_cable_length_table[0]))
+
+STATIC const u16 e1000_igp_2_cable_length_table[] = {
+	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
+	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
+	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
+	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
+	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
+	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
+	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
+	124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+		(sizeof(e1000_igp_2_cable_length_table) / \
+		 sizeof(e1000_igp_2_cable_length_table[0]))
+
+/**
+ *  e1000_init_phy_ops_generic - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups up the function pointers to no-op functions
+ **/
+void e1000_init_phy_ops_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	DEBUGFUNC("e1000_init_phy_ops_generic");
+
+	/* Initialize function pointers */
+	phy->ops.init_params = e1000_null_ops_generic;
+	phy->ops.acquire = e1000_null_ops_generic;
+	phy->ops.check_polarity = e1000_null_ops_generic;
+	phy->ops.check_reset_block = e1000_null_ops_generic;
+	phy->ops.commit = e1000_null_ops_generic;
+	phy->ops.force_speed_duplex = e1000_null_ops_generic;
+	phy->ops.get_cfg_done = e1000_null_ops_generic;
+	phy->ops.get_cable_length = e1000_null_ops_generic;
+	phy->ops.get_info = e1000_null_ops_generic;
+	phy->ops.set_page = e1000_null_set_page;
+	phy->ops.read_reg = e1000_null_read_reg;
+	phy->ops.read_reg_locked = e1000_null_read_reg;
+	phy->ops.read_reg_page = e1000_null_read_reg;
+	phy->ops.release = e1000_null_phy_generic;
+	phy->ops.reset = e1000_null_ops_generic;
+	phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
+	phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
+	phy->ops.write_reg = e1000_null_write_reg;
+	phy->ops.write_reg_locked = e1000_null_write_reg;
+	phy->ops.write_reg_page = e1000_null_write_reg;
+	phy->ops.power_up = e1000_null_phy_generic;
+	phy->ops.power_down = e1000_null_phy_generic;
+	phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
+	phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
+	phy->ops.cfg_on_link_up = e1000_null_ops_generic;
+}
+
+/**
+ *  e1000_null_set_page - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
+			u16 E1000_UNUSEDARG data)
+{
+	DEBUGFUNC("e1000_null_set_page");
+	UNREFERENCED_2PARAMETER(hw, data);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_read_reg - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
+			u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
+{
+	DEBUGFUNC("e1000_null_read_reg");
+	UNREFERENCED_3PARAMETER(hw, offset, data);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_phy_generic - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	DEBUGFUNC("e1000_null_phy_generic");
+	UNREFERENCED_1PARAMETER(hw);
+	return;
+}
+
+/**
+ *  e1000_null_lplu_state - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
+			  bool E1000_UNUSEDARG active)
+{
+	DEBUGFUNC("e1000_null_lplu_state");
+	UNREFERENCED_2PARAMETER(hw, active);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_write_reg - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
+			 u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
+{
+	DEBUGFUNC("e1000_null_write_reg");
+	UNREFERENCED_3PARAMETER(hw, offset, data);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_i2c_byte_null - No-op function, return 0
+ *  @hw: pointer to hardware structure
+ *  @byte_offset: byte offset to write
+ *  @dev_addr: device address
+ *  @data: data value read
+ *
+ **/
+s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
+			     u8 E1000_UNUSEDARG byte_offset,
+			     u8 E1000_UNUSEDARG dev_addr,
+			     u8 E1000_UNUSEDARG *data)
+{
+	DEBUGFUNC("e1000_read_i2c_byte_null");
+	UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_i2c_byte_null - No-op function, return 0
+ *  @hw: pointer to hardware structure
+ *  @byte_offset: byte offset to write
+ *  @dev_addr: device address
+ *  @data: data value to write
+ *
+ **/
+s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
+			      u8 E1000_UNUSEDARG byte_offset,
+			      u8 E1000_UNUSEDARG dev_addr,
+			      u8 E1000_UNUSEDARG data)
+{
+	DEBUGFUNC("e1000_write_i2c_byte_null");
+	UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_check_reset_block_generic - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the PHY management control register and check whether a PHY reset
+ *  is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
+ *  return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+	u32 manc;
+
+	DEBUGFUNC("e1000_check_reset_block");
+
+	manc = E1000_READ_REG(hw, E1000_MANC);
+
+	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+	       E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_id - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+s32 e1000_get_phy_id(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val = E1000_SUCCESS;
+	u16 phy_id;
+	u16 retry_count = 0;
+
+	DEBUGFUNC("e1000_get_phy_id");
+
+	if (!phy->ops.read_reg)
+		return E1000_SUCCESS;
+
+	while (retry_count < 2) {
+		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
+		if (ret_val)
+			return ret_val;
+
+		phy->id = (u32)(phy_id << 16);
+		usec_delay(20);
+		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
+		if (ret_val)
+			return ret_val;
+
+		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
+			return E1000_SUCCESS;
+
+		retry_count++;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_reset_dsp_generic - Reset PHY DSP
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the digital signal processor.
+ **/
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+	if (!hw->phy.ops.write_reg)
+		return E1000_SUCCESS;
+
+	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+	if (ret_val)
+		return ret_val;
+
+	return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+}
+
+/**
+ *  e1000_read_phy_reg_mdic - Read MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the MDI control register in the PHY at offset and stores the
+ *  information read to data.
+ **/
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+
+	DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		return -E1000_ERR_PARAM;
+	}
+
+	/* Set up Op-code, Phy Address, and register offset in the MDI
+	 * Control register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+		(phy->addr << E1000_MDIC_PHY_SHIFT) |
+		(E1000_MDIC_OP_READ));
+
+	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+	/* Poll the ready bit to see if the MDI read completed
+	 * Increasing the time out as testing showed failures with
+	 * the lower time out
+	 */
+	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+		usec_delay_irq(50);
+		mdic = E1000_READ_REG(hw, E1000_MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		DEBUGOUT("MDI Read did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		DEBUGOUT("MDI Error\n");
+		return -E1000_ERR_PHY;
+	}
+	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+		DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
+			  offset,
+			  (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+		return -E1000_ERR_PHY;
+	}
+	*data = (u16) mdic;
+
+	/* Allow some time after each MDIC transaction to avoid
+	 * reading duplicate data in the next MDIC transaction.
+	 */
+	if (hw->mac.type == e1000_pch2lan)
+		usec_delay_irq(100);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_mdic - Write MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write to register at offset
+ *
+ *  Writes data to MDI control register in the PHY at offset.
+ **/
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, mdic = 0;
+
+	DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+	if (offset > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", offset);
+		return -E1000_ERR_PARAM;
+	}
+
+	/* Set up Op-code, Phy Address, and register offset in the MDI
+	 * Control register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	mdic = (((u32)data) |
+		(offset << E1000_MDIC_REG_SHIFT) |
+		(phy->addr << E1000_MDIC_PHY_SHIFT) |
+		(E1000_MDIC_OP_WRITE));
+
+	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+	/* Poll the ready bit to see if the MDI read completed
+	 * Increasing the time out as testing showed failures with
+	 * the lower time out
+	 */
+	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+		usec_delay_irq(50);
+		mdic = E1000_READ_REG(hw, E1000_MDIC);
+		if (mdic & E1000_MDIC_READY)
+			break;
+	}
+	if (!(mdic & E1000_MDIC_READY)) {
+		DEBUGOUT("MDI Write did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (mdic & E1000_MDIC_ERROR) {
+		DEBUGOUT("MDI Error\n");
+		return -E1000_ERR_PHY;
+	}
+	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+		DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
+			  offset,
+			  (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+		return -E1000_ERR_PHY;
+	}
+
+	/* Allow some time after each MDIC transaction to avoid
+	 * reading duplicate data in the next MDIC transaction.
+	 */
+	if (hw->mac.type == e1000_pch2lan)
+		usec_delay_irq(100);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_phy_reg_i2c - Read PHY register using i2c
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset using the i2c interface and stores the
+ *  retrieved information in data.
+ **/
+s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, i2ccmd = 0;
+
+	DEBUGFUNC("e1000_read_phy_reg_i2c");
+
+	/* Set up Op-code, Phy Address, and register address in the I2CCMD
+	 * register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+		  (E1000_I2CCMD_OPCODE_READ));
+
+	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+	/* Poll the ready bit to see if the I2C read completed */
+	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+		usec_delay(50);
+		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+		if (i2ccmd & E1000_I2CCMD_READY)
+			break;
+	}
+	if (!(i2ccmd & E1000_I2CCMD_READY)) {
+		DEBUGOUT("I2CCMD Read did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (i2ccmd & E1000_I2CCMD_ERROR) {
+		DEBUGOUT("I2CCMD Error bit set\n");
+		return -E1000_ERR_PHY;
+	}
+
+	/* Need to byte-swap the 16-bit value. */
+	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_i2c - Write PHY register using i2c
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset using the i2c interface.
+ **/
+s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	u32 i, i2ccmd = 0;
+	u16 phy_data_swapped;
+
+	DEBUGFUNC("e1000_write_phy_reg_i2c");
+
+	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
+	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
+		DEBUGOUT1("PHY I2C Address %d is out of range.\n",
+			  hw->phy.addr);
+		return -E1000_ERR_CONFIG;
+	}
+
+	/* Swap the data bytes for the I2C interface */
+	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
+
+	/* Set up Op-code, Phy Address, and register address in the I2CCMD
+	 * register.  The MAC will take care of interfacing with the
+	 * PHY to retrieve the desired data.
+	 */
+	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+		  E1000_I2CCMD_OPCODE_WRITE |
+		  phy_data_swapped);
+
+	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+	/* Poll the ready bit to see if the I2C read completed */
+	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+		usec_delay(50);
+		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+		if (i2ccmd & E1000_I2CCMD_READY)
+			break;
+	}
+	if (!(i2ccmd & E1000_I2CCMD_READY)) {
+		DEBUGOUT("I2CCMD Write did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (i2ccmd & E1000_I2CCMD_ERROR) {
+		DEBUGOUT("I2CCMD Error bit set\n");
+		return -E1000_ERR_PHY;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_sfp_data_byte - Reads SFP module data.
+ *  @hw: pointer to the HW structure
+ *  @offset: byte location offset to be read
+ *  @data: read data buffer pointer
+ *
+ *  Reads one byte from SFP module data stored
+ *  in SFP resided EEPROM memory or SFP diagnostic area.
+ *  Function should be called with
+ *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
+ *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
+ *  access
+ **/
+s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
+{
+	u32 i = 0;
+	u32 i2ccmd = 0;
+	u32 data_local = 0;
+
+	DEBUGFUNC("e1000_read_sfp_data_byte");
+
+	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
+		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
+		return -E1000_ERR_PHY;
+	}
+
+	/* Set up Op-code, EEPROM Address,in the I2CCMD
+	 * register. The MAC will take care of interfacing with the
+	 * EEPROM to retrieve the desired data.
+	 */
+	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+		  E1000_I2CCMD_OPCODE_READ);
+
+	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+	/* Poll the ready bit to see if the I2C read completed */
+	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+		usec_delay(50);
+		data_local = E1000_READ_REG(hw, E1000_I2CCMD);
+		if (data_local & E1000_I2CCMD_READY)
+			break;
+	}
+	if (!(data_local & E1000_I2CCMD_READY)) {
+		DEBUGOUT("I2CCMD Read did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (data_local & E1000_I2CCMD_ERROR) {
+		DEBUGOUT("I2CCMD Error bit set\n");
+		return -E1000_ERR_PHY;
+	}
+	*data = (u8) data_local & 0xFF;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_sfp_data_byte - Writes SFP module data.
+ *  @hw: pointer to the HW structure
+ *  @offset: byte location offset to write to
+ *  @data: data to write
+ *
+ *  Writes one byte to SFP module data stored
+ *  in SFP resided EEPROM memory or SFP diagnostic area.
+ *  Function should be called with
+ *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
+ *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
+ *  access
+ **/
+s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
+{
+	u32 i = 0;
+	u32 i2ccmd = 0;
+	u32 data_local = 0;
+
+	DEBUGFUNC("e1000_write_sfp_data_byte");
+
+	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
+		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
+		return -E1000_ERR_PHY;
+	}
+	/* The programming interface is 16 bits wide
+	 * so we need to read the whole word first
+	 * then update appropriate byte lane and write
+	 * the updated word back.
+	 */
+	/* Set up Op-code, EEPROM Address,in the I2CCMD
+	 * register. The MAC will take care of interfacing
+	 * with an EEPROM to write the data given.
+	 */
+	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+		  E1000_I2CCMD_OPCODE_READ);
+	/* Set a command to read single word */
+	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+		usec_delay(50);
+		/* Poll the ready bit to see if lastly
+		 * launched I2C operation completed
+		 */
+		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+		if (i2ccmd & E1000_I2CCMD_READY) {
+			/* Check if this is READ or WRITE phase */
+			if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
+			    E1000_I2CCMD_OPCODE_READ) {
+				/* Write the selected byte
+				 * lane and update whole word
+				 */
+				data_local = i2ccmd & 0xFF00;
+				data_local |= data;
+				i2ccmd = ((offset <<
+					E1000_I2CCMD_REG_ADDR_SHIFT) |
+					E1000_I2CCMD_OPCODE_WRITE | data_local);
+				E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+			} else {
+				break;
+			}
+		}
+	}
+	if (!(i2ccmd & E1000_I2CCMD_READY)) {
+		DEBUGOUT("I2CCMD Write did not complete\n");
+		return -E1000_ERR_PHY;
+	}
+	if (i2ccmd & E1000_I2CCMD_ERROR) {
+		DEBUGOUT("I2CCMD Error bit set\n");
+		return -E1000_ERR_PHY;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_phy_reg_m88 - Read m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg_m88");
+
+	if (!hw->phy.ops.acquire)
+		return E1000_SUCCESS;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					  data);
+
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_m88 - Write m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg_m88");
+
+	if (!hw->phy.ops.acquire)
+		return E1000_SUCCESS;
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					   data);
+
+	hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
+ *  @hw: pointer to the HW structure
+ *  @page: page to set (shifted left when necessary)
+ *
+ *  Sets PHY page required for PHY register access.  Assumes semaphore is
+ *  already acquired.  Note, this function sets phy.addr to 1 so the caller
+ *  must set it appropriately (if necessary) after this function returns.
+ **/
+s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
+{
+	DEBUGFUNC("e1000_set_page_igp");
+
+	DEBUGOUT1("Setting page 0x%x\n", page);
+
+	hw->phy.addr = 1;
+
+	return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
+}
+
+/**
+ *  __e1000_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and stores the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
+				    bool locked)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("__e1000_read_phy_reg_igp");
+
+	if (!locked) {
+		if (!hw->phy.ops.acquire)
+			return E1000_SUCCESS;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG)
+		ret_val = e1000_write_phy_reg_mdic(hw,
+						   IGP01E1000_PHY_PAGE_SELECT,
+						   (u16)offset);
+	if (!ret_val)
+		ret_val = e1000_read_phy_reg_mdic(hw,
+						  MAX_PHY_REG_ADDRESS & offset,
+						  data);
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset and stores the
+ *  retrieved information in data.
+ *  Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ *  e1000_read_phy_reg_igp_locked - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ *  e1000_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
+				     bool locked)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_write_phy_reg_igp");
+
+	if (!locked) {
+		if (!hw->phy.ops.acquire)
+			return E1000_SUCCESS;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG)
+		ret_val = e1000_write_phy_reg_mdic(hw,
+						   IGP01E1000_PHY_PAGE_SELECT,
+						   (u16)offset);
+	if (!ret_val)
+		ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
+						       offset,
+						   data);
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ *  e1000_write_phy_reg_igp_locked - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_read_kmrn_reg - Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
+ *  using the kumeran interface.  The information retrieved is stored in data.
+ *  Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
+				 bool locked)
+{
+	u32 kmrnctrlsta;
+
+	DEBUGFUNC("__e1000_read_kmrn_reg");
+
+	if (!locked) {
+		s32 ret_val = E1000_SUCCESS;
+
+		if (!hw->phy.ops.acquire)
+			return E1000_SUCCESS;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(2);
+
+	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+	*data = (u16)kmrnctrlsta;
+
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_kmrn_reg_generic -  Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset using the
+ *  kumeran interface.  The information retrieved is stored in data.
+ *  Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ *  e1000_read_kmrn_reg_locked -  Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset using the kumeran interface.  The
+ *  information retrieved is stored in data.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_write_kmrn_reg - Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary.  Then write the data to PHY register
+ *  at the offset using the kumeran interface.  Release any acquired semaphores
+ *  before exiting.
+ **/
+STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
+				  bool locked)
+{
+	u32 kmrnctrlsta;
+
+	DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+	if (!locked) {
+		s32 ret_val = E1000_SUCCESS;
+
+		if (!hw->phy.ops.acquire)
+			return E1000_SUCCESS;
+
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+		       E1000_KMRNCTRLSTA_OFFSET) | data;
+	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(2);
+
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_kmrn_reg_generic -  Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to the PHY register at the offset
+ *  using the kumeran interface.  Release the acquired semaphore before exiting.
+ **/
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ *  e1000_write_kmrn_reg_locked -  Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Write the data to PHY register at the offset using the kumeran interface.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up Master/slave mode
+ **/
+STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	/* Resolve Master/Slave mode */
+	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* load defaults for future use */
+	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
+				   ((phy_data & CR_1000T_MS_VALUE) ?
+				    e1000_ms_force_master :
+				    e1000_ms_force_slave) : e1000_ms_auto;
+
+	switch (hw->phy.ms_type) {
+	case e1000_ms_force_master:
+		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+		break;
+	case e1000_ms_force_slave:
+		phy_data |= CR_1000T_MS_ENABLE;
+		phy_data &= ~(CR_1000T_MS_VALUE);
+		break;
+	case e1000_ms_auto:
+		phy_data &= ~CR_1000T_MS_ENABLE;
+		/* fall-through */
+	default:
+		break;
+	}
+
+	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
+}
+
+/**
+ *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up Carrier-sense on Transmit and downshift values.
+ **/
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_setup_82577");
+
+	if (hw->phy.type == e1000_phy_82580) {
+		ret_val = hw->phy.ops.reset(hw);
+		if (ret_val) {
+			DEBUGOUT("Error resetting the PHY.\n");
+			return ret_val;
+		}
+	}
+
+	/* Enable CRS on Tx. This must be set for half-duplex operation. */
+	ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+
+	/* Enable downshift */
+	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
+
+	ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Set MDI/MDIX mode */
+	ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
+	if (ret_val)
+		return ret_val;
+	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
+	/* Options:
+	 *   0 - Auto (default)
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 */
+	switch (hw->phy.mdix) {
+	case 1:
+		break;
+	case 2:
+		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
+		break;
+	case 0:
+	default:
+		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
+		break;
+	}
+	ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	return e1000_set_master_slave_mode(hw);
+}
+
+/**
+ *  e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
+ *  and downshift values are set also.
+ **/
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_setup_m88");
+
+
+	/* Enable CRS on Tx. This must be set for half-duplex operation. */
+	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* For BM PHY this bit is downshift enable */
+	if (phy->type != e1000_phy_bm)
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (phy->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (phy->disable_polarity_correction)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+	/* Enable downshift on BM (disabled by default) */
+	if (phy->type == e1000_phy_bm) {
+		/* For 82574/82583, first disable then enable downshift */
+		if (phy->id == BME1000_E_PHY_ID_R2) {
+			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
+			ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+						     phy_data);
+			if (ret_val)
+				return ret_val;
+			/* Commit the changes. */
+			ret_val = phy->ops.commit(hw);
+			if (ret_val) {
+				DEBUGOUT("Error committing the PHY changes\n");
+				return ret_val;
+			}
+		}
+
+		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+	}
+
+	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((phy->type == e1000_phy_m88) &&
+	    (phy->revision < E1000_REVISION_4) &&
+	    (phy->id != BME1000_E_PHY_ID_R2)) {
+		/* Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					    &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((phy->revision == E1000_REVISION_2) &&
+		    (phy->id == M88E1111_I_PHY_ID)) {
+			/* 82573L PHY - set the downshift counter to 5x. */
+			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+		}
+		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					     phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
+		/* Set PHY page 0, register 29 to 0x0003 */
+		ret_val = phy->ops.write_reg(hw, 29, 0x0003);
+		if (ret_val)
+			return ret_val;
+
+		/* Set PHY page 0, register 30 to 0x0000 */
+		ret_val = phy->ops.write_reg(hw, 30, 0x0000);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Commit the changes. */
+	ret_val = phy->ops.commit(hw);
+	if (ret_val) {
+		DEBUGOUT("Error committing the PHY changes\n");
+		return ret_val;
+	}
+
+	if (phy->type == e1000_phy_82578) {
+		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					    &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* 82578 PHY - set the downshift count to 1x. */
+		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
+		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
+		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					     phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
+ *  Also enables and sets the downshift parameters.
+ **/
+s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
+
+
+	/* Enable CRS on Tx. This must be set for half-duplex operation. */
+	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+	switch (phy->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		/* M88E1112 does not support this mode) */
+		if (phy->id != M88E1112_E_PHY_ID) {
+			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+			break;
+		}
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
+
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (phy->disable_polarity_correction)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+	/* Enable downshift and setting it to X6 */
+	if (phy->id == M88E1543_E_PHY_ID) {
+		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
+		ret_val =
+		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = phy->ops.commit(hw);
+		if (ret_val) {
+			DEBUGOUT("Error committing the PHY changes\n");
+			return ret_val;
+		}
+	}
+
+	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
+	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
+	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
+
+	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Commit the changes. */
+	ret_val = phy->ops.commit(hw);
+	if (ret_val) {
+		DEBUGOUT("Error committing the PHY changes\n");
+		return ret_val;
+	}
+
+	ret_val = e1000_set_master_slave_mode(hw);
+	if (ret_val)
+		return ret_val;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ *  igp PHY's.
+ **/
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_copper_link_setup_igp");
+
+
+	ret_val = hw->phy.ops.reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error resetting the PHY.\n");
+		return ret_val;
+	}
+
+	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+	 * timeout issues when LFS is enabled.
+	 */
+	msec_delay(100);
+
+	/* The NVM settings will configure LPLU in D3 for
+	 * non-IGP1 PHYs.
+	 */
+	if (phy->type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
+		if (ret_val) {
+			DEBUGOUT("Error Disabling LPLU D3\n");
+			return ret_val;
+		}
+	}
+
+	/* disable lplu d0 during driver init */
+	if (hw->phy.ops.set_d0_lplu_state) {
+		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
+		if (ret_val) {
+			DEBUGOUT("Error Disabling LPLU D0\n");
+			return ret_val;
+		}
+	}
+	/* Configure mdi-mdix settings */
+	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+	switch (phy->mdix) {
+	case 1:
+		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 2:
+		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+		break;
+	case 0:
+	default:
+		data |= IGP01E1000_PSCR_AUTO_MDIX;
+		break;
+	}
+	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	if (hw->mac.autoneg) {
+		/* when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default.
+		 */
+		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+
+			/* Set auto Master/Slave resolution process */
+			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~CR_1000T_MS_ENABLE;
+			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
+			if (ret_val)
+				return ret_val;
+		}
+
+		ret_val = e1000_set_master_slave_mode(hw);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the MII auto-neg advertisement register and/or the 1000T control
+ *  register and if the PHY is already setup for auto-negotiation, then
+ *  return successful.  Otherwise, setup advertisement and flow control to
+ *  the appropriate values for the wanted auto-negotiation.
+ **/
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg = 0;
+
+	DEBUGFUNC("e1000_phy_setup_autoneg");
+
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+		/* Read the MII 1000Base-T Control Register (Address 9). */
+		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
+					    &mii_1000t_ctrl_reg);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
+
+	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+				 NWAY_AR_100TX_HD_CAPS |
+				 NWAY_AR_10T_FD_CAPS   |
+				 NWAY_AR_10T_HD_CAPS);
+	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+		DEBUGOUT("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
+
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+		DEBUGOUT("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+		DEBUGOUT("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
+
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+		DEBUGOUT("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
+
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
+		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+		DEBUGOUT("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
+
+	/* Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+	 * negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          but we do not support receiving pause frames).
+	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *          in the EEPROM is used.
+	 */
+	switch (hw->fc.current_mode) {
+	case e1000_fc_none:
+		/* Flow control (Rx & Tx) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_rx_pause:
+		/* Rx Flow control is enabled, and Tx Flow control is
+		 * disabled, by a software over-ride.
+		 *
+		 * Since there really isn't a way to advertise that we are
+		 * capable of Rx Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric Rx PAUSE.  Later
+		 * (in e1000_config_fc_after_link_up) we will disable the
+		 * hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case e1000_fc_tx_pause:
+		/* Tx Flow control is enabled, and Rx Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case e1000_fc_full:
+		/* Flow control (both Rx and Tx) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
+
+	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
+		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
+					     mii_1000t_ctrl_reg);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs initial bounds checking on autoneg advertisement parameter, then
+ *  configure to advertise the full capability.  Setup the PHY to autoneg
+ *  and restart the negotiation process between the link partner.  If
+ *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	DEBUGFUNC("e1000_copper_link_autoneg");
+
+	/* Perform some bounds checking on the autoneg advertisement
+	 * parameter.
+	 */
+	phy->autoneg_advertised &= phy->autoneg_mask;
+
+	/* If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (!phy->autoneg_advertised)
+		phy->autoneg_advertised = phy->autoneg_mask;
+
+	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	DEBUGOUT("Restarting Auto-Neg\n");
+
+	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	/* Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (phy->autoneg_wait_to_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			DEBUGOUT("Error while waiting for autoneg to complete\n");
+			return ret_val;
+		}
+	}
+
+	hw->mac.get_link_status = true;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_generic - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	bool link;
+
+	DEBUGFUNC("e1000_setup_copper_link_generic");
+
+	if (hw->mac.autoneg) {
+		/* Setup autoneg and flow control advertisement and perform
+		 * autonegotiation.
+		 */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* PHY will be set to 10H, 10F, 100H or 100F
+		 * depending on user settings.
+		 */
+		DEBUGOUT("Forcing Speed and Duplex\n");
+		ret_val = hw->phy.ops.force_speed_duplex(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			return ret_val;
+		}
+	}
+
+	/* Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
+					     &link);
+	if (ret_val)
+		return ret_val;
+
+	if (link) {
+		DEBUGOUT("Valid link established!!!\n");
+		hw->mac.ops.config_collision_dist(hw);
+		ret_val = e1000_config_fc_after_link_up_generic(hw);
+	} else {
+		DEBUGOUT("Unable to establish link!!!\n");
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Waits for link and returns
+ *  successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+	 * forced whenever speed and duplex are forced.
+	 */
+	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+	usec_delay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link)
+			DEBUGOUT("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Resets the PHY to commit the
+ *  changes.  If time expires while waiting for link up, we reset the DSP.
+ *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
+ *  successful completion, else return corresponding error code.
+ **/
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+	/* I210 and I211 devices support Auto-Crossover in forced operation. */
+	if (phy->type != e1000_phy_i210) {
+		/* Clear Auto-Crossover to force MDI manually.  M88E1000
+		 * requires MDI forced whenever speed and duplex are forced.
+		 */
+		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
+					    &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+					     phy_data);
+		if (ret_val)
+			return ret_val;
+	}
+
+	DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+
+	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Reset the phy to commit changes. */
+	ret_val = hw->phy.ops.commit(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (phy->autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link) {
+			bool reset_dsp = true;
+
+			switch (hw->phy.id) {
+			case I347AT4_E_PHY_ID:
+			case M88E1340M_E_PHY_ID:
+			case M88E1112_E_PHY_ID:
+			case M88E1543_E_PHY_ID:
+			case M88E1512_E_PHY_ID:
+			case I210_I_PHY_ID:
+				reset_dsp = false;
+				break;
+			default:
+				if (hw->phy.type != e1000_phy_m88)
+					reset_dsp = false;
+				break;
+			}
+
+			if (!reset_dsp) {
+				DEBUGOUT("Link taking longer than expected.\n");
+			} else {
+				/* We didn't get link.
+				 * Reset the DSP and cross our fingers.
+				 */
+				ret_val = phy->ops.write_reg(hw,
+						M88E1000_PHY_PAGE_SELECT,
+						0x001d);
+				if (ret_val)
+					return ret_val;
+				ret_val = e1000_phy_reset_dsp_generic(hw);
+				if (ret_val)
+					return ret_val;
+			}
+		}
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	if (hw->phy.type != e1000_phy_m88)
+		return E1000_SUCCESS;
+
+	if (hw->phy.id == I347AT4_E_PHY_ID ||
+		hw->phy.id == M88E1340M_E_PHY_ID ||
+		hw->phy.id == M88E1112_E_PHY_ID)
+		return E1000_SUCCESS;
+	if (hw->phy.id == I210_I_PHY_ID)
+		return E1000_SUCCESS;
+	if ((hw->phy.id == M88E1543_E_PHY_ID) ||
+	    (hw->phy.id == M88E1512_E_PHY_ID))
+		return E1000_SUCCESS;
+	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Resetting the phy means we need to re-force TX_CLK in the
+	 * Extended PHY Specific Control Register to 25MHz clock from
+	 * the reset value of 2.5MHz.
+	 */
+	phy_data |= M88E1000_EPSCR_TX_CLK_25;
+	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* In addition, we must re-enable CRS on Tx for both half and full
+	 * duplex.
+	 */
+	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Forces the speed and duplex settings of the PHY.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
+
+	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
+	if (ret_val)
+		return ret_val;
+
+	e1000_phy_force_speed_duplex_setup(hw, &data);
+
+	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
+	if (ret_val)
+		return ret_val;
+
+	/* Disable MDI-X support for 10/100 */
+	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= ~IFE_PMC_AUTO_MDIX;
+	data &= ~IFE_PMC_FORCE_MDIX;
+
+	ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
+	if (ret_val)
+		return ret_val;
+
+	DEBUGOUT1("IFE PMC: %X\n", data);
+
+	usec_delay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
+
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link)
+			DEBUGOUT("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ *  Forces speed and duplex on the PHY by doing the following: disable flow
+ *  control, force speed/duplex on the MAC, disable auto speed detection,
+ *  disable auto-negotiation, configure duplex, configure speed, configure
+ *  the collision distance, write configuration to CTRL register.  The
+ *  caller must write to the PHY_CONTROL register for these settings to
+ *  take affect.
+ **/
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+	/* Turn off flow control when forcing speed/duplex */
+	hw->fc.current_mode = e1000_fc_none;
+
+	/* Force speed/duplex on the mac */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~E1000_CTRL_SPD_SEL;
+
+	/* Disable Auto Speed Detection */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Disable autoneg on the phy */
+	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Forcing Full or Half Duplex? */
+	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+		ctrl &= ~E1000_CTRL_FD;
+		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	} else {
+		ctrl |= E1000_CTRL_FD;
+		*phy_ctrl |= MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	}
+
+	/* Forcing 10mb or 100mb? */
+	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+		ctrl |= E1000_CTRL_SPD_100;
+		*phy_ctrl |= MII_CR_SPEED_100;
+		*phy_ctrl &= ~MII_CR_SPEED_1000;
+		DEBUGOUT("Forcing 100mb\n");
+	} else {
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		DEBUGOUT("Forcing 10mb\n");
+	}
+
+	hw->mac.ops.config_collision_dist(hw);
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/**
+ *  e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.
+ **/
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+	if (!hw->phy.ops.read_reg)
+		return E1000_SUCCESS;
+
+	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+	if (ret_val)
+		return ret_val;
+
+	if (!active) {
+		data &= ~IGP02E1000_PM_D3_LPLU;
+		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+					     data);
+		if (ret_val)
+			return ret_val;
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+		 * during Dx states where the power conservation is most
+		 * important.  During driver activity we should enable
+		 * SmartSpeed, so performance is maintained.
+		 */
+		if (phy->smart_speed == e1000_smart_speed_on) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+		} else if (phy->smart_speed == e1000_smart_speed_off) {
+			ret_val = phy->ops.read_reg(hw,
+						    IGP01E1000_PHY_PORT_CONFIG,
+						    &data);
+			if (ret_val)
+				return ret_val;
+
+			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val = phy->ops.write_reg(hw,
+						     IGP01E1000_PHY_PORT_CONFIG,
+						     data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+		data |= IGP02E1000_PM_D3_LPLU;
+		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+					     data);
+		if (ret_val)
+			return ret_val;
+
+		/* When LPLU is enabled, we should disable SmartSpeed */
+		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					    &data);
+		if (ret_val)
+			return ret_val;
+
+		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					     data);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_downshift_generic - Checks whether a downshift in speed occurred
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	DEBUGFUNC("e1000_check_downshift_generic");
+
+	switch (phy->type) {
+	case e1000_phy_i210:
+	case e1000_phy_m88:
+	case e1000_phy_gg82563:
+	case e1000_phy_bm:
+	case e1000_phy_82578:
+		offset = M88E1000_PHY_SPEC_STATUS;
+		mask = M88E1000_PSSR_DOWNSHIFT;
+		break;
+	case e1000_phy_igp:
+	case e1000_phy_igp_2:
+	case e1000_phy_igp_3:
+		offset = IGP01E1000_PHY_LINK_HEALTH;
+		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+		break;
+	default:
+		/* speed downshift not supported */
+		phy->speed_downgraded = false;
+		return E1000_SUCCESS;
+	}
+
+	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->speed_downgraded = !!(phy_data & mask);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_m88 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_check_polarity_m88");
+
+	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
+				       ? e1000_rev_polarity_reversed
+				       : e1000_rev_polarity_normal);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_igp - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY port status register, and the
+ *  current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data, offset, mask;
+
+	DEBUGFUNC("e1000_check_polarity_igp");
+
+	/* Polarity is determined based on the speed of
+	 * our connection.
+	 */
+	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		offset = IGP01E1000_PHY_PCS_INIT_REG;
+		mask = IGP01E1000_PHY_POLARITY_MASK;
+	} else {
+		/* This really only applies to 10Mbps since
+		 * there is no polarity for 100Mbps (always 0).
+		 */
+		offset = IGP01E1000_PHY_PORT_STATUS;
+		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+	}
+
+	ret_val = phy->ops.read_reg(hw, offset, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = ((data & mask)
+				       ? e1000_rev_polarity_reversed
+				       : e1000_rev_polarity_normal);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Polarity is determined on the polarity reversal feature being enabled.
+ **/
+s32 e1000_check_polarity_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, offset, mask;
+
+	DEBUGFUNC("e1000_check_polarity_ife");
+
+	/* Polarity is determined based on the reversal feature being enabled.
+	 */
+	if (phy->polarity_correction) {
+		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+		mask = IFE_PESC_POLARITY_REVERSED;
+	} else {
+		offset = IFE_PHY_SPECIAL_CONTROL;
+		mask = IFE_PSC_FORCE_POLARITY;
+	}
+
+	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+	if (!ret_val)
+		phy->cable_polarity = ((phy_data & mask)
+				       ? e1000_rev_polarity_reversed
+				       : e1000_rev_polarity_normal);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_wait_autoneg - Wait for auto-neg completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Waits for auto-negotiation to complete or for the auto-negotiation time
+ *  limit to expire, which ever happens first.
+ **/
+STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, phy_status;
+
+	DEBUGFUNC("e1000_wait_autoneg");
+
+	if (!hw->phy.ops.read_reg)
+		return E1000_SUCCESS;
+
+	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_AUTONEG_COMPLETE)
+			break;
+		msec_delay(100);
+	}
+
+	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+	 * has completed.
+	 */
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_has_link_generic - Polls PHY for link
+ *  @hw: pointer to the HW structure
+ *  @iterations: number of times to poll for link
+ *  @usec_interval: delay between polling attempts
+ *  @success: pointer to whether polling was successful or not
+ *
+ *  Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+			       u32 usec_interval, bool *success)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 i, phy_status;
+
+	DEBUGFUNC("e1000_phy_has_link_generic");
+
+	if (!hw->phy.ops.read_reg)
+		return E1000_SUCCESS;
+
+	for (i = 0; i < iterations; i++) {
+		/* Some PHYs require the PHY_STATUS register to be read
+		 * twice due to the link bit being sticky.  No harm doing
+		 * it across the board.
+		 */
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val) {
+			/* If the first read fails, another entity may have
+			 * ownership of the resources, wait and try again to
+			 * see if they have relinquished the resources yet.
+			 */
+			if (usec_interval >= 1000)
+				msec_delay(usec_interval/1000);
+			else
+				usec_delay(usec_interval);
+		}
+		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+		if (ret_val)
+			break;
+		if (phy_status & MII_SR_LINK_STATUS)
+			break;
+		if (usec_interval >= 1000)
+			msec_delay(usec_interval/1000);
+		else
+			usec_delay(usec_interval);
+	}
+
+	*success = (i < iterations);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY specific status register to retrieve the cable length
+ *  information.  The cable length is determined by averaging the minimum and
+ *  maximum values to get the "average" cable length.  The m88 PHY has four
+ *  possible cable length values, which are:
+ *	Register Value		Cable Length
+ *	0			< 50 meters
+ *	1			50 - 80 meters
+ *	2			80 - 110 meters
+ *	3			110 - 140 meters
+ *	4			> 140 meters
+ **/
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, index;
+
+	DEBUGFUNC("e1000_get_cable_length_m88");
+
+	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+		return -E1000_ERR_PHY;
+
+	phy->min_cable_length = e1000_m88_cable_length_table[index];
+	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+	return E1000_SUCCESS;
+}
+
+s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, phy_data2, is_cm;
+	u16 index, default_page;
+
+	DEBUGFUNC("e1000_get_cable_length_m88_gen2");
+
+	switch (hw->phy.id) {
+	case I210_I_PHY_ID:
+		/* Get cable length from PHY Cable Diagnostics Control Reg */
+		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
+					    (I347AT4_PCDL + phy->addr),
+					    &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* Check if the unit of cable length is meters or cm */
+		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
+					    I347AT4_PCDC, &phy_data2);
+		if (ret_val)
+			return ret_val;
+
+		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+		/* Populate the phy structure with cable length in meters */
+		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+		phy->cable_length = phy_data / (is_cm ? 100 : 1);
+		break;
+	case M88E1543_E_PHY_ID:
+	case M88E1512_E_PHY_ID:
+	case M88E1340M_E_PHY_ID:
+	case I347AT4_E_PHY_ID:
+		/* Remember the original page select and set it to 7 */
+		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+					    &default_page);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
+		if (ret_val)
+			return ret_val;
+
+		/* Get cable length from PHY Cable Diagnostics Control Reg */
+		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
+					    &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* Check if the unit of cable length is meters or cm */
+		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
+		if (ret_val)
+			return ret_val;
+
+		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+		/* Populate the phy structure with cable length in meters */
+		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+		phy->cable_length = phy_data / (is_cm ? 100 : 1);
+
+		/* Reset the page select to its original value */
+		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+					     default_page);
+		if (ret_val)
+			return ret_val;
+		break;
+
+	case M88E1112_E_PHY_ID:
+		/* Remember the original page select and set it to 5 */
+		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+					    &default_page);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
+					    &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+			return -E1000_ERR_PHY;
+
+		phy->min_cable_length = e1000_m88_cable_length_table[index];
+		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+		phy->cable_length = (phy->min_cable_length +
+				     phy->max_cable_length) / 2;
+
+		/* Reset the page select to its original value */
+		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+					     default_page);
+		if (ret_val)
+			return ret_val;
+
+		break;
+	default:
+		return -E1000_ERR_PHY;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  The automatic gain control (agc) normalizes the amplitude of the
+ *  received signal, adjusting for the attenuation produced by the
+ *  cable.  By reading the AGC registers, which represent the
+ *  combination of coarse and fine gain value, the value can be put
+ *  into a lookup table to obtain the approximate cable length
+ *  for each channel.
+ **/
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, i, agc_value = 0;
+	u16 cur_agc_index, max_agc_index = 0;
+	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
+		IGP02E1000_PHY_AGC_A,
+		IGP02E1000_PHY_AGC_B,
+		IGP02E1000_PHY_AGC_C,
+		IGP02E1000_PHY_AGC_D
+	};
+
+	DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+	/* Read the AGC registers for all channels */
+	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* Getting bits 15:9, which represent the combination of
+		 * coarse and fine gain values.  The result is a number
+		 * that can be put into the lookup table to obtain the
+		 * approximate cable length.
+		 */
+		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+				 IGP02E1000_AGC_LENGTH_MASK);
+
+		/* Array index bound check. */
+		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+		    (cur_agc_index == 0))
+			return -E1000_ERR_PHY;
+
+		/* Remove min & max AGC values from calculation. */
+		if (e1000_igp_2_cable_length_table[min_agc_index] >
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			min_agc_index = cur_agc_index;
+		if (e1000_igp_2_cable_length_table[max_agc_index] <
+		    e1000_igp_2_cable_length_table[cur_agc_index])
+			max_agc_index = cur_agc_index;
+
+		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+	}
+
+	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+		      e1000_igp_2_cable_length_table[max_agc_index]);
+	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+	/* Calculate cable length with the error range of +/- 10 meters. */
+	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
+	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_info_m88 - Retrieve PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Valid for only copper links.  Read the PHY status register (sticky read)
+ *  to verify that link is up.  Read the PHY special control register to
+ *  determine the polarity and 10base-T extended distance.  Read the PHY
+ *  special status register to determine MDI/MDIx and current speed.  If
+ *  speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32  ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_get_phy_info_m88");
+
+	if (phy->media_type != e1000_media_type_copper) {
+		DEBUGOUT("Phy info is only valid for copper media\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy->polarity_correction = !!(phy_data &
+				      M88E1000_PSCR_POLARITY_REVERSAL);
+
+	ret_val = e1000_check_polarity_m88(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		ret_val = hw->phy.ops.get_cable_length(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+				? e1000_1000t_rx_status_ok
+				: e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+				 ? e1000_1000t_rx_status_ok
+				 : e1000_1000t_rx_status_not_ok;
+	} else {
+		/* Set values to "undefined" */
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_igp - Retrieve igp PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	DEBUGFUNC("e1000_get_phy_info_igp");
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	phy->polarity_correction = true;
+
+	ret_val = e1000_check_polarity_igp(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
+
+	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		ret_val = phy->ops.get_cable_length(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+		if (ret_val)
+			return ret_val;
+
+		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+				? e1000_1000t_rx_status_ok
+				: e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+				 ? e1000_1000t_rx_status_ok
+				 : e1000_1000t_rx_status_not_ok;
+	} else {
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
+ *  @hw: pointer to the HW structure
+ *
+ *  Populates "phy" structure with various feature states.
+ **/
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	DEBUGFUNC("e1000_get_phy_info_ife");
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+	if (ret_val)
+		return ret_val;
+	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
+
+	if (phy->polarity_correction) {
+		ret_val = e1000_check_polarity_ife(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* Polarity is forced */
+		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
+				       ? e1000_rev_polarity_reversed
+				       : e1000_rev_polarity_normal);
+	}
+
+	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+	if (ret_val)
+		return ret_val;
+
+	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
+
+	/* The following parameters are undefined for 10/100 operation. */
+	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+	phy->local_rx = e1000_1000t_rx_status_undefined;
+	phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_sw_reset_generic - PHY software reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a software reset of the PHY by reading the PHY control register and
+ *  setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 phy_ctrl;
+
+	DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+	if (!hw->phy.ops.read_reg)
+		return E1000_SUCCESS;
+
+	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	phy_ctrl |= MII_CR_RESET;
+	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+	if (ret_val)
+		return ret_val;
+
+	usec_delay(1);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_generic - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify the reset block is not blocking us from resetting.  Acquire
+ *  semaphore (if necessary) and read/set/write the device control reset
+ *  bit in the PHY.  Wait the appropriate delay time for the device to
+ *  reset and release the semaphore (if necessary).
+ **/
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+	if (phy->ops.check_reset_block) {
+		ret_val = phy->ops.check_reset_block(hw);
+		if (ret_val)
+			return E1000_SUCCESS;
+	}
+
+	ret_val = phy->ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(phy->reset_delay_us);
+
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+	E1000_WRITE_FLUSH(hw);
+
+	usec_delay(150);
+
+	phy->ops.release(hw);
+
+	return phy->ops.get_cfg_done(hw);
+}
+
+/**
+ *  e1000_get_cfg_done_generic - Generic configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Generic function to wait 10 milli-seconds for configuration to complete
+ *  and return success.
+ **/
+s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	DEBUGFUNC("e1000_get_cfg_done_generic");
+	UNREFERENCED_1PARAMETER(hw);
+
+	msec_delay_irq(10);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+	DEBUGOUT("Running IGP 3 PHY init script\n");
+
+	/* PHY init IGP 3 */
+	/* Enable rise/fall, 10-mode work in class-A */
+	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
+	/* Remove all caps from Replica path filter */
+	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
+	/* Bias trimming for ADC, AFE and Driver (Default) */
+	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
+	/* Increase Hybrid poly bias */
+	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
+	/* Add 4% to Tx amplitude in Gig mode */
+	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
+	/* Disable trimming (TTT) */
+	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
+	/* Poly DC correction to 94.6% + 2% for all channels */
+	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
+	/* ABS DC correction to 95.9% */
+	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
+	/* BG temp curve trim */
+	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
+	/* Increasing ADC OPAMP stage 1 currents to max */
+	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
+	/* Force 1000 ( required for enabling PHY regs configuration) */
+	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
+	/* Set upd_freq to 6 */
+	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
+	/* Disable NPDFE */
+	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
+	/* Disable adaptive fixed FFE (Default) */
+	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
+	/* Enable FFE hysteresis */
+	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
+	/* Fixed FFE for short cable lengths */
+	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
+	/* Fixed FFE for medium cable lengths */
+	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
+	/* Fixed FFE for long cable lengths */
+	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
+	/* Enable Adaptive Clip Threshold */
+	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
+	/* AHT reset limit to 1 */
+	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
+	/* Set AHT master delay to 127 msec */
+	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
+	/* Set scan bits for AHT */
+	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
+	/* Set AHT Preset bits */
+	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
+	/* Change integ_factor of channel A to 3 */
+	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
+	/* Change prop_factor of channels BCD to 8 */
+	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
+	/* Change cg_icount + enable integbp for channels BCD */
+	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
+	/* Change cg_icount + enable integbp + change prop_factor_master
+	 * to 8 for channel A
+	 */
+	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
+	/* Disable AHT in Slave mode on channel A */
+	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
+	/* Enable LPLU and disable AN to 1000 in non-D0a states,
+	 * Enable SPD+B2B
+	 */
+	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
+	/* Enable restart AN on an1000_dis change */
+	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
+	/* Enable wh_fifo read clock in 10/100 modes */
+	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
+	/* Restart AN, Speed selection is 1000 */
+	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_type_from_id - Get PHY type from id
+ *  @phy_id: phy_id read from the phy
+ *
+ *  Returns the phy type from the id.
+ **/
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
+{
+	enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+	switch (phy_id) {
+	case M88E1000_I_PHY_ID:
+	case M88E1000_E_PHY_ID:
+	case M88E1111_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+	case M88E1543_E_PHY_ID:
+	case M88E1512_E_PHY_ID:
+	case I347AT4_E_PHY_ID:
+	case M88E1112_E_PHY_ID:
+	case M88E1340M_E_PHY_ID:
+		phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+		phy_type = e1000_phy_igp_2;
+		break;
+	case GG82563_E_PHY_ID:
+		phy_type = e1000_phy_gg82563;
+		break;
+	case IGP03E1000_E_PHY_ID:
+		phy_type = e1000_phy_igp_3;
+		break;
+	case IFE_E_PHY_ID:
+	case IFE_PLUS_E_PHY_ID:
+	case IFE_C_E_PHY_ID:
+		phy_type = e1000_phy_ife;
+		break;
+	case BME1000_E_PHY_ID:
+	case BME1000_E_PHY_ID_R2:
+		phy_type = e1000_phy_bm;
+		break;
+	case I82578_E_PHY_ID:
+		phy_type = e1000_phy_82578;
+		break;
+	case I82577_E_PHY_ID:
+		phy_type = e1000_phy_82577;
+		break;
+	case I82579_E_PHY_ID:
+		phy_type = e1000_phy_82579;
+		break;
+	case I217_E_PHY_ID:
+		phy_type = e1000_phy_i217;
+		break;
+	case I82580_I_PHY_ID:
+		phy_type = e1000_phy_82580;
+		break;
+	case I210_I_PHY_ID:
+		phy_type = e1000_phy_i210;
+		break;
+	default:
+		phy_type = e1000_phy_unknown;
+		break;
+	}
+	return phy_type;
+}
+
+/**
+ *  e1000_determine_phy_address - Determines PHY address.
+ *  @hw: pointer to the HW structure
+ *
+ *  This uses a trial and error method to loop through possible PHY
+ *  addresses. It tests each by reading the PHY ID registers and
+ *  checking for a match.
+ **/
+s32 e1000_determine_phy_address(struct e1000_hw *hw)
+{
+	u32 phy_addr = 0;
+	u32 i;
+	enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+	hw->phy.id = phy_type;
+
+	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+		hw->phy.addr = phy_addr;
+		i = 0;
+
+		do {
+			e1000_get_phy_id(hw);
+			phy_type = e1000_get_phy_type_from_id(hw->phy.id);
+
+			/* If phy_type is valid, break - we found our
+			 * PHY address
+			 */
+			if (phy_type != e1000_phy_unknown)
+				return E1000_SUCCESS;
+
+			msec_delay(1);
+			i++;
+		} while (i < 10);
+	}
+
+	return -E1000_ERR_PHY_TYPE;
+}
+
+/**
+ *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ *  @page: page to access
+ *
+ *  Returns the phy address for the page requested.
+ **/
+STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+	u32 phy_addr = 2;
+
+	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+		phy_addr = 1;
+
+	return phy_addr;
+}
+
+/**
+ *  e1000_write_phy_reg_bm - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+	u32 page = offset >> IGP_PAGE_SHIFT;
+
+	DEBUGFUNC("e1000_write_phy_reg_bm");
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+							 false, false);
+		goto release;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		u32 page_shift, page_select;
+
+		/* Page select is register 31 for phy address 1 and 22 for
+		 * phy address 2 and 3. Page select is shifted only for
+		 * phy address 1.
+		 */
+		if (hw->phy.addr == 1) {
+			page_shift = IGP_PAGE_SHIFT;
+			page_select = IGP01E1000_PHY_PAGE_SELECT;
+		} else {
+			page_shift = 0;
+			page_select = BM_PHY_PAGE_SELECT;
+		}
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+						   (page << page_shift));
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					   data);
+
+release:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_bm - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u32 page = offset >> IGP_PAGE_SHIFT;
+
+	DEBUGFUNC("e1000_read_phy_reg_bm");
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+							 true, false);
+		goto release;
+	}
+
+	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		u32 page_shift, page_select;
+
+		/* Page select is register 31 for phy address 1 and 22 for
+		 * phy address 2 and 3. Page select is shifted only for
+		 * phy address 1.
+		 */
+		if (hw->phy.addr == 1) {
+			page_shift = IGP_PAGE_SHIFT;
+			page_select = IGP01E1000_PHY_PAGE_SELECT;
+		} else {
+			page_shift = 0;
+			page_select = BM_PHY_PAGE_SELECT;
+		}
+
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+						   (page << page_shift));
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					  data);
+release:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_bm2 - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+	DEBUGFUNC("e1000_read_phy_reg_bm2");
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+							 true, false);
+		goto release;
+	}
+
+	hw->phy.addr = 1;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+						   page);
+
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					  data);
+release:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_bm2 - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+	DEBUGFUNC("e1000_write_phy_reg_bm2");
+
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+							 false, false);
+		goto release;
+	}
+
+	hw->phy.addr = 1;
+
+	if (offset > MAX_PHY_MULTI_PAGE_REG) {
+		/* Page is shifted left, PHY expects (page x 32) */
+		ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+						   page);
+
+		if (ret_val)
+			goto release;
+	}
+
+	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+					   data);
+
+release:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
+ *  @hw: pointer to the HW structure
+ *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
+ *
+ *  Assumes semaphore already acquired and phy_reg points to a valid memory
+ *  address to store contents of the BM_WUC_ENABLE_REG register.
+ **/
+s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+	s32 ret_val;
+	u16 temp;
+
+	DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
+
+	if (!phy_reg)
+		return -E1000_ERR_PARAM;
+
+	/* All page select, port ctrl and wakeup registers use phy address 1 */
+	hw->phy.addr = 1;
+
+	/* Select Port Control Registers page */
+	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+	if (ret_val) {
+		DEBUGOUT("Could not set Port Control page\n");
+		return ret_val;
+	}
+
+	ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+	if (ret_val) {
+		DEBUGOUT2("Could not read PHY register %d.%d\n",
+			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+		return ret_val;
+	}
+
+	/* Enable both PHY wakeup mode and Wakeup register page writes.
+	 * Prevent a power state change by disabling ME and Host PHY wakeup.
+	 */
+	temp = *phy_reg;
+	temp |= BM_WUC_ENABLE_BIT;
+	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
+
+	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
+	if (ret_val) {
+		DEBUGOUT2("Could not write PHY register %d.%d\n",
+			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+		return ret_val;
+	}
+
+	/* Select Host Wakeup Registers page - caller now able to write
+	 * registers on the Wakeup registers page
+	 */
+	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+}
+
+/**
+ *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
+ *  @hw: pointer to the HW structure
+ *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
+ *
+ *  Restore BM_WUC_ENABLE_REG to its original value.
+ *
+ *  Assumes semaphore already acquired and *phy_reg is the contents of the
+ *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
+ *  caller.
+ **/
+s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
+
+	if (!phy_reg)
+		return -E1000_ERR_PARAM;
+
+	/* Select Port Control Registers page */
+	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+	if (ret_val) {
+		DEBUGOUT("Could not set Port Control page\n");
+		return ret_val;
+	}
+
+	/* Restore 769.17 to its original value */
+	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
+	if (ret_val)
+		DEBUGOUT2("Could not restore PHY register %d.%d\n",
+			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to read or write
+ *  @read: determines if operation is read or write
+ *  @page_set: BM_WUC_PAGE already set and access enabled
+ *
+ *  Read the PHY register at offset and store the retrieved information in
+ *  data, or write data to PHY register at offset.  Note the procedure to
+ *  access the PHY wakeup registers is different than reading the other PHY
+ *  registers. It works as such:
+ *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
+ *  2) Set page to 800 for host (801 if we were manageability)
+ *  3) Write the address using the address opcode (0x11)
+ *  4) Read or write the data using the data opcode (0x12)
+ *  5) Restore 769.17.2 to its original value
+ *
+ *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
+ *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
+ *
+ *  Assumes semaphore is already acquired.  When page_set==true, assumes
+ *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
+ *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
+ **/
+STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+					  u16 *data, bool read, bool page_set)
+{
+	s32 ret_val;
+	u16 reg = BM_PHY_REG_NUM(offset);
+	u16 page = BM_PHY_REG_PAGE(offset);
+	u16 phy_reg = 0;
+
+	DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
+
+	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
+	if ((hw->mac.type == e1000_pchlan) &&
+	   (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
+		DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
+			  page);
+
+	if (!page_set) {
+		/* Enable access to PHY wakeup registers */
+		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+		if (ret_val) {
+			DEBUGOUT("Could not enable PHY wakeup reg access\n");
+			return ret_val;
+		}
+	}
+
+	DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
+
+	/* Write the Wakeup register page offset value using opcode 0x11 */
+	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+	if (ret_val) {
+		DEBUGOUT1("Could not write address opcode to page %d\n", page);
+		return ret_val;
+	}
+
+	if (read) {
+		/* Read the Wakeup register page value using opcode 0x12 */
+		ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+						  data);
+	} else {
+		/* Write the Wakeup register page value using opcode 0x12 */
+		ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+						   *data);
+	}
+
+	if (ret_val) {
+		DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
+		return ret_val;
+	}
+
+	if (!page_set)
+		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+	return ret_val;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+	u16 mii_reg = 0;
+	u16 power_reg = 0;
+
+	/* The PHY will retain its settings across a power down/up cycle */
+	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+	mii_reg &= ~MII_CR_POWER_DOWN;
+	if (hw->phy.type == e1000_phy_i210) {
+		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
+		power_reg &= ~GS40G_CS_POWER_DOWN;
+		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
+	}
+	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+	u16 mii_reg = 0;
+	u16 power_reg = 0;
+
+	/* The PHY will retain its settings across a power down/up cycle */
+	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+	mii_reg |= MII_CR_POWER_DOWN;
+	/* i210 Phy requires an additional bit for power up/down */
+	if (hw->phy.type == e1000_phy_i210) {
+		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
+		power_reg |= GS40G_CS_POWER_DOWN;
+		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
+	}
+	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+	msec_delay(1);
+}
+
+/**
+ *  __e1000_read_phy_reg_hv -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and stores the retrieved information in data.  Release any acquired
+ *  semaphore before exiting.
+ **/
+STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
+				   bool locked, bool page_set)
+{
+	s32 ret_val;
+	u16 page = BM_PHY_REG_PAGE(offset);
+	u16 reg = BM_PHY_REG_NUM(offset);
+	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+	DEBUGFUNC("__e1000_read_phy_reg_hv");
+
+	if (!locked) {
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+							 true, page_set);
+		goto out;
+	}
+
+	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+							 data, true);
+		goto out;
+	}
+
+	if (!page_set) {
+		if (page == HV_INTC_FC_PAGE_START)
+			page = 0;
+
+		if (reg > MAX_PHY_MULTI_PAGE_REG) {
+			/* Page is shifted left, PHY expects (page x 32) */
+			ret_val = e1000_set_page_igp(hw,
+						     (page << IGP_PAGE_SHIFT));
+
+			hw->phy.addr = phy_addr;
+
+			if (ret_val)
+				goto out;
+		}
+	}
+
+	DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+		  page << IGP_PAGE_SHIFT, reg);
+
+	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+					  data);
+out:
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_hv -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset and stores
+ *  the retrieved information in data.  Release the acquired semaphore
+ *  before exiting.
+ **/
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
+}
+
+/**
+ *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
+}
+
+/**
+ *  e1000_read_phy_reg_page_hv - Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired and page already set.
+ **/
+s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
+}
+
+/**
+ *  __e1000_write_phy_reg_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
+				    bool locked, bool page_set)
+{
+	s32 ret_val;
+	u16 page = BM_PHY_REG_PAGE(offset);
+	u16 reg = BM_PHY_REG_NUM(offset);
+	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+	DEBUGFUNC("__e1000_write_phy_reg_hv");
+
+	if (!locked) {
+		ret_val = hw->phy.ops.acquire(hw);
+		if (ret_val)
+			return ret_val;
+	}
+
+	/* Page 800 works differently than the rest so it has its own func */
+	if (page == BM_WUC_PAGE) {
+		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+							 false, page_set);
+		goto out;
+	}
+
+	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+							 &data, false);
+		goto out;
+	}
+
+	if (!page_set) {
+		if (page == HV_INTC_FC_PAGE_START)
+			page = 0;
+
+		/* Workaround MDIO accesses being disabled after entering IEEE
+		 * Power Down (when bit 11 of the PHY Control register is set)
+		 */
+		if ((hw->phy.type == e1000_phy_82578) &&
+		    (hw->phy.revision >= 1) &&
+		    (hw->phy.addr == 2) &&
+		    !(MAX_PHY_REG_ADDRESS & reg) &&
+		    (data & (1 << 11))) {
+			u16 data2 = 0x7EFF;
+			ret_val = e1000_access_phy_debug_regs_hv(hw,
+								 (1 << 6) | 0x3,
+								 &data2, false);
+			if (ret_val)
+				goto out;
+		}
+
+		if (reg > MAX_PHY_MULTI_PAGE_REG) {
+			/* Page is shifted left, PHY expects (page x 32) */
+			ret_val = e1000_set_page_igp(hw,
+						     (page << IGP_PAGE_SHIFT));
+
+			hw->phy.addr = phy_addr;
+
+			if (ret_val)
+				goto out;
+		}
+	}
+
+	DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+		  page << IGP_PAGE_SHIFT, reg);
+
+	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+					   data);
+
+out:
+	if (!locked)
+		hw->phy.ops.release(hw);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to PHY register at the offset.
+ *  Release the acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
+}
+
+/**
+ *  e1000_write_phy_reg_hv_locked - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.  Assumes semaphore
+ *  already acquired.
+ **/
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
+}
+
+/**
+ *  e1000_write_phy_reg_page_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.  Assumes semaphore
+ *  already acquired and page already set.
+ **/
+s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
+}
+
+/**
+ *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
+ *  @page: page to be accessed
+ **/
+STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page)
+{
+	u32 phy_addr = 2;
+
+	if (page >= HV_INTC_FC_PAGE_START)
+		phy_addr = 1;
+
+	return phy_addr;
+}
+
+/**
+ *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to be read or written
+ *  @read: determines if operation is read or write
+ *
+ *  Reads the PHY register at offset and stores the retreived information
+ *  in data.  Assumes semaphore already acquired.  Note that the procedure
+ *  to access these regs uses the address port and data port to read/write.
+ *  These accesses done with PHY address 2 and without using pages.
+ **/
+STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+					  u16 *data, bool read)
+{
+	s32 ret_val;
+	u32 addr_reg;
+	u32 data_reg;
+
+	DEBUGFUNC("e1000_access_phy_debug_regs_hv");
+
+	/* This takes care of the difference with desktop vs mobile phy */
+	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
+		    I82578_ADDR_REG : I82577_ADDR_REG);
+	data_reg = addr_reg + 1;
+
+	/* All operations in this function are phy address 2 */
+	hw->phy.addr = 2;
+
+	/* masking with 0x3F to remove the page from offset */
+	ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
+	if (ret_val) {
+		DEBUGOUT("Could not write the Address Offset port register\n");
+		return ret_val;
+	}
+
+	/* Read or write the data value next */
+	if (read)
+		ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
+	else
+		ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
+
+	if (ret_val)
+		DEBUGOUT("Could not access the Data port register\n");
+
+	return ret_val;
+}
+
+/**
+ *  e1000_link_stall_workaround_hv - Si workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  This function works around a Si bug where the link partner can get
+ *  a link up indication before the PHY does.  If small packets are sent
+ *  by the link partner they can be placed in the packet buffer without
+ *  being properly accounted for by the PHY and will stall preventing
+ *  further packets from being received.  The workaround is to clear the
+ *  packet buffer after the PHY detects link up.
+ **/
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+	u16 data;
+
+	DEBUGFUNC("e1000_link_stall_workaround_hv");
+
+	if (hw->phy.type != e1000_phy_82578)
+		return E1000_SUCCESS;
+
+	/* Do not apply workaround if in PHY loopback bit 14 set */
+	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
+	if (data & PHY_CONTROL_LB)
+		return E1000_SUCCESS;
+
+	/* check if link is up and at 1Gbps */
+	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
+	if (ret_val)
+		return ret_val;
+
+	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+		 BM_CS_STATUS_SPEED_MASK);
+
+	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+		     BM_CS_STATUS_SPEED_1000))
+		return E1000_SUCCESS;
+
+	msec_delay(200);
+
+	/* flush the packets in the fifo buffer */
+	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+					(HV_MUX_DATA_CTRL_GEN_TO_MAC |
+					 HV_MUX_DATA_CTRL_FORCE_SPEED));
+	if (ret_val)
+		return ret_val;
+
+	return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+				     HV_MUX_DATA_CTRL_GEN_TO_MAC);
+}
+
+/**
+ *  e1000_check_polarity_82577 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+
+	DEBUGFUNC("e1000_check_polarity_82577");
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+
+	if (!ret_val)
+		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
+				       ? e1000_rev_polarity_reversed
+				       : e1000_rev_polarity_normal);
+
+	return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.
+ **/
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data;
+	bool link;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
+
+	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	usec_delay(1);
+
+	if (phy->autoneg_wait_to_complete) {
+		DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
+
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+		if (ret_val)
+			return ret_val;
+
+		if (!link)
+			DEBUGOUT("Link taking longer than expected.\n");
+
+		/* Try once more */
+		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+						     100000, &link);
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 data;
+	bool link;
+
+	DEBUGFUNC("e1000_get_phy_info_82577");
+
+	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+	if (ret_val)
+		return ret_val;
+
+	if (!link) {
+		DEBUGOUT("Phy info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	phy->polarity_correction = true;
+
+	ret_val = e1000_check_polarity_82577(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+	if (ret_val)
+		return ret_val;
+
+	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
+
+	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
+	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
+		ret_val = hw->phy.ops.get_cable_length(hw);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+		if (ret_val)
+			return ret_val;
+
+		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+				? e1000_1000t_rx_status_ok
+				: e1000_1000t_rx_status_not_ok;
+
+		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+				 ? e1000_1000t_rx_status_ok
+				 : e1000_1000t_rx_status_not_ok;
+	} else {
+		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+		phy->local_rx = e1000_1000t_rx_status_undefined;
+		phy->remote_rx = e1000_1000t_rx_status_undefined;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
+ *  @hw: pointer to the HW structure
+ *
+ * Reads the diagnostic status register and verifies result is valid before
+ * placing it in the phy_cable_length field.
+ **/
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
+{
+	struct e1000_phy_info *phy = &hw->phy;
+	s32 ret_val;
+	u16 phy_data, length;
+
+	DEBUGFUNC("e1000_get_cable_length_82577");
+
+	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
+
+	if (length == E1000_CABLE_LENGTH_UNDEFINED)
+		return -E1000_ERR_PHY;
+
+	phy->cable_length = length;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_gs40g - Write GS40G  PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
+{
+	s32 ret_val;
+	u16 page = offset >> GS40G_PAGE_SHIFT;
+
+	DEBUGFUNC("e1000_write_phy_reg_gs40g");
+
+	offset = offset & GS40G_OFFSET_MASK;
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
+	if (ret_val)
+		goto release;
+	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
+
+release:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_gs40g - Read GS40G  PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: lower half is register offset to read to
+ *     upper half is page to use.
+ *  @data: data to read at register offset
+ *
+ *  Acquires semaphore, if necessary, then reads the data in the PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+	s32 ret_val;
+	u16 page = offset >> GS40G_PAGE_SHIFT;
+
+	DEBUGFUNC("e1000_read_phy_reg_gs40g");
+
+	offset = offset & GS40G_OFFSET_MASK;
+	ret_val = hw->phy.ops.acquire(hw);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
+	if (ret_val)
+		goto release;
+	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
+
+release:
+	hw->phy.ops.release(hw);
+	return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_mphy - Read mPHY control register
+ *  @hw: pointer to the HW structure
+ *  @address: address to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the mPHY control register in the PHY at offset and stores the
+ *  information read to data.
+ **/
+s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
+{
+	u32 mphy_ctrl = 0;
+	bool locked = false;
+	bool ready;
+
+	DEBUGFUNC("e1000_read_phy_reg_mphy");
+
+	/* Check if mPHY is ready to read/write operations */
+	ready = e1000_is_mphy_ready(hw);
+	if (!ready)
+		return -E1000_ERR_PHY;
+
+	/* Check if mPHY access is disabled and enable it if so */
+	mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+	if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
+		locked = true;
+		ready = e1000_is_mphy_ready(hw);
+		if (!ready)
+			return -E1000_ERR_PHY;
+		mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
+		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+	}
+
+	/* Set the address that we want to read */
+	ready = e1000_is_mphy_ready(hw);
+	if (!ready)
+		return -E1000_ERR_PHY;
+
+	/* We mask address, because we want to use only current lane */
+	mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
+		~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
+		(address & E1000_MPHY_ADDRESS_MASK);
+	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+
+	/* Read data from the address */
+	ready = e1000_is_mphy_ready(hw);
+	if (!ready)
+		return -E1000_ERR_PHY;
+	*data = E1000_READ_REG(hw, E1000_MPHY_DATA);
+
+	/* Disable access to mPHY if it was originally disabled */
+	if (locked)
+		ready = e1000_is_mphy_ready(hw);
+		if (!ready)
+			return -E1000_ERR_PHY;
+		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
+				E1000_MPHY_DIS_ACCESS);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_mphy - Write mPHY control register
+ *  @hw: pointer to the HW structure
+ *  @address: address to write to
+ *  @data: data to write to register at offset
+ *  @line_override: used when we want to use different line than default one
+ *
+ *  Writes data to mPHY control register.
+ **/
+s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
+			     bool line_override)
+{
+	u32 mphy_ctrl = 0;
+	bool locked = false;
+	bool ready;
+
+	DEBUGFUNC("e1000_write_phy_reg_mphy");
+
+	/* Check if mPHY is ready to read/write operations */
+	ready = e1000_is_mphy_ready(hw);
+	if (!ready)
+		return -E1000_ERR_PHY;
+
+	/* Check if mPHY access is disabled and enable it if so */
+	mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+	if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
+		locked = true;
+		ready = e1000_is_mphy_ready(hw);
+		if (!ready)
+			return -E1000_ERR_PHY;
+		mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
+		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+	}
+
+	/* Set the address that we want to read */
+	ready = e1000_is_mphy_ready(hw);
+	if (!ready)
+		return -E1000_ERR_PHY;
+
+	/* We mask address, because we want to use only current lane */
+	if (line_override)
+		mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
+	else
+		mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
+	mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
+		(address & E1000_MPHY_ADDRESS_MASK);
+	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+
+	/* Read data from the address */
+	ready = e1000_is_mphy_ready(hw);
+	if (!ready)
+		return -E1000_ERR_PHY;
+	E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
+
+	/* Disable access to mPHY if it was originally disabled */
+	if (locked)
+		ready = e1000_is_mphy_ready(hw);
+		if (!ready)
+			return -E1000_ERR_PHY;
+		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
+				E1000_MPHY_DIS_ACCESS);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_is_mphy_ready - Check if mPHY control register is not busy
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns mPHY control register status.
+ **/
+bool e1000_is_mphy_ready(struct e1000_hw *hw)
+{
+	u16 retry_count = 0;
+	u32 mphy_ctrl = 0;
+	bool ready = false;
+
+	while (retry_count < 2) {
+		mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+		if (mphy_ctrl & E1000_MPHY_BUSY) {
+			usec_delay(20);
+			retry_count++;
+			continue;
+		}
+		ready = true;
+		break;
+	}
+
+	if (!ready)
+		DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
+
+	return ready;
+}
diff --git a/drivers/net/e1000/base/e1000_phy.h b/drivers/net/e1000/base/e1000_phy.h
new file mode 100644
index 0000000..73a9b1f
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_phy.h
@@ -0,0 +1,327 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_PHY_H_
+#define _E1000_PHY_H_
+
+void e1000_init_phy_ops_generic(struct e1000_hw *hw);
+s32  e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+void e1000_null_phy_generic(struct e1000_hw *hw);
+s32  e1000_null_lplu_state(struct e1000_hw *hw, bool active);
+s32  e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_null_set_page(struct e1000_hw *hw, u16 data);
+s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
+			     u8 dev_addr, u8 *data);
+s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
+			      u8 dev_addr, u8 data);
+s32  e1000_check_downshift_generic(struct e1000_hw *hw);
+s32  e1000_check_polarity_m88(struct e1000_hw *hw);
+s32  e1000_check_polarity_igp(struct e1000_hw *hw);
+s32  e1000_check_polarity_ife(struct e1000_hw *hw);
+s32  e1000_check_reset_block_generic(struct e1000_hw *hw);
+s32  e1000_phy_setup_autoneg(struct e1000_hw *hw);
+s32  e1000_copper_link_autoneg(struct e1000_hw *hw);
+s32  e1000_copper_link_setup_igp(struct e1000_hw *hw);
+s32  e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32  e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw);
+s32  e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+s32  e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+s32  e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
+s32  e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32  e1000_get_cable_length_m88_gen2(struct e1000_hw *hw);
+s32  e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+s32  e1000_get_cfg_done_generic(struct e1000_hw *hw);
+s32  e1000_get_phy_id(struct e1000_hw *hw);
+s32  e1000_get_phy_info_igp(struct e1000_hw *hw);
+s32  e1000_get_phy_info_m88(struct e1000_hw *hw);
+s32  e1000_get_phy_info_ife(struct e1000_hw *hw);
+s32  e1000_phy_sw_reset_generic(struct e1000_hw *hw);
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+s32  e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+s32  e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
+s32  e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_set_page_igp(struct e1000_hw *hw, u16 page);
+s32  e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
+s32  e1000_setup_copper_link_generic(struct e1000_hw *hw);
+s32  e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+				u32 usec_interval, bool *success);
+s32  e1000_phy_init_script_igp3(struct e1000_hw *hw);
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+s32  e1000_determine_phy_address(struct e1000_hw *hw);
+s32  e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
+s32  e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
+s32  e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
+void e1000_power_up_phy_copper(struct e1000_hw *hw);
+void e1000_power_down_phy_copper(struct e1000_hw *hw);
+s32  e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data);
+s32  e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data);
+s32  e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data);
+s32  e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_link_stall_workaround_hv(struct e1000_hw *hw);
+s32  e1000_copper_link_setup_82577(struct e1000_hw *hw);
+s32  e1000_check_polarity_82577(struct e1000_hw *hw);
+s32  e1000_get_phy_info_82577(struct e1000_hw *hw);
+s32  e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
+s32  e1000_get_cable_length_82577(struct e1000_hw *hw);
+s32  e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data);
+s32  e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data);
+s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
+			     bool line_override);
+bool e1000_is_mphy_ready(struct e1000_hw *hw);
+
+#define E1000_MAX_PHY_ADDR		8
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG	0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS	0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL	0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH	0x13 /* PHY Link Health */
+#define IGP01E1000_GMII_FIFO		0x14 /* GMII FIFO */
+#define IGP02E1000_PHY_POWER_MGMT	0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT	0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT		22   /* Page Select for BM */
+#define IGP_PAGE_SHIFT			5
+#define PHY_REG_MASK			0x1F
+
+/* GS40G - I210 PHY defines */
+#define GS40G_PAGE_SELECT		0x16
+#define GS40G_PAGE_SHIFT		16
+#define GS40G_OFFSET_MASK		0xFFFF
+#define GS40G_PAGE_2			0x20000
+#define GS40G_MAC_REG2			0x15
+#define GS40G_MAC_LB			0x4140
+#define GS40G_MAC_SPEED_1G		0X0006
+#define GS40G_COPPER_SPEC		0x0010
+#define GS40G_CS_POWER_DOWN		0x0002
+
+/* BM/HV Specific Registers */
+#define BM_PORT_CTRL_PAGE		769
+#define BM_WUC_PAGE			800
+#define BM_WUC_ADDRESS_OPCODE		0x11
+#define BM_WUC_DATA_OPCODE		0x12
+#define BM_WUC_ENABLE_PAGE		BM_PORT_CTRL_PAGE
+#define BM_WUC_ENABLE_REG		17
+#define BM_WUC_ENABLE_BIT		(1 << 2)
+#define BM_WUC_HOST_WU_BIT		(1 << 4)
+#define BM_WUC_ME_WU_BIT		(1 << 5)
+
+#define PHY_UPPER_SHIFT			21
+#define BM_PHY_REG(page, reg) \
+	(((reg) & MAX_PHY_REG_ADDRESS) |\
+	 (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
+	 (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
+#define BM_PHY_REG_PAGE(offset) \
+	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
+#define BM_PHY_REG_NUM(offset) \
+	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
+	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
+		~MAX_PHY_REG_ADDRESS)))
+
+#define HV_INTC_FC_PAGE_START		768
+#define I82578_ADDR_REG			29
+#define I82577_ADDR_REG			16
+#define I82577_CFG_REG			22
+#define I82577_CFG_ASSERT_CRS_ON_TX	(1 << 15)
+#define I82577_CFG_ENABLE_DOWNSHIFT	(3 << 10) /* auto downshift */
+#define I82577_CTRL_REG			23
+
+/* 82577 specific PHY registers */
+#define I82577_PHY_CTRL_2		18
+#define I82577_PHY_LBK_CTRL		19
+#define I82577_PHY_STATUS_2		26
+#define I82577_PHY_DIAG_STATUS		31
+
+/* I82577 PHY Status 2 */
+#define I82577_PHY_STATUS2_REV_POLARITY		0x0400
+#define I82577_PHY_STATUS2_MDIX			0x0800
+#define I82577_PHY_STATUS2_SPEED_MASK		0x0300
+#define I82577_PHY_STATUS2_SPEED_1000MBPS	0x0200
+
+/* I82577 PHY Control 2 */
+#define I82577_PHY_CTRL2_MANUAL_MDIX		0x0200
+#define I82577_PHY_CTRL2_AUTO_MDI_MDIX		0x0400
+#define I82577_PHY_CTRL2_MDIX_CFG_MASK		0x0600
+
+/* I82577 PHY Diagnostics Status */
+#define I82577_DSTATUS_CABLE_LENGTH		0x03FC
+#define I82577_DSTATUS_CABLE_LENGTH_SHIFT	2
+
+/* 82580 PHY Power Management */
+#define E1000_82580_PHY_POWER_MGMT	0xE14
+#define E1000_82580_PM_SPD		0x0001 /* Smart Power Down */
+#define E1000_82580_PM_D0_LPLU		0x0002 /* For D0a states */
+#define E1000_82580_PM_D3_LPLU		0x0004 /* For all other states */
+#define E1000_82580_PM_GO_LINKD		0x0020 /* Go Link Disconnect */
+
+#define E1000_MPHY_DIS_ACCESS		0x80000000 /* disable_access bit */
+#define E1000_MPHY_ENA_ACCESS		0x40000000 /* enable_access bit */
+#define E1000_MPHY_BUSY			0x00010000 /* busy bit */
+#define E1000_MPHY_ADDRESS_FNC_OVERRIDE	0x20000000 /* fnc_override bit */
+#define E1000_MPHY_ADDRESS_MASK		0x0000FFFF /* address mask */
+
+/* BM PHY Copper Specific Control 1 */
+#define BM_CS_CTRL1			16
+
+/* BM PHY Copper Specific Status */
+#define BM_CS_STATUS			17
+#define BM_CS_STATUS_LINK_UP		0x0400
+#define BM_CS_STATUS_RESOLVED		0x0800
+#define BM_CS_STATUS_SPEED_MASK		0xC000
+#define BM_CS_STATUS_SPEED_1000		0x8000
+
+/* 82577 Mobile Phy Status Register */
+#define HV_M_STATUS			26
+#define HV_M_STATUS_AUTONEG_COMPLETE	0x1000
+#define HV_M_STATUS_SPEED_MASK		0x0300
+#define HV_M_STATUS_SPEED_1000		0x0200
+#define HV_M_STATUS_SPEED_100		0x0100
+#define HV_M_STATUS_LINK_UP		0x0040
+
+#define IGP01E1000_PHY_PCS_INIT_REG	0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK	0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX	0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX	0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED	0x0080
+
+/* Enable flexible speed on link-up */
+#define IGP01E1000_GMII_FLEX_SPD	0x0010
+#define IGP01E1000_GMII_SPD		0x0020 /* Enable SPD */
+
+#define IGP02E1000_PM_SPD		0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU		0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU		0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE	0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED	0x0002
+#define IGP01E1000_PSSR_MDIX		0x0800
+#define IGP01E1000_PSSR_SPEED_MASK	0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS	0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM	4
+#define IGP02E1000_PHY_AGC_A		0x11B1
+#define IGP02E1000_PHY_AGC_B		0x12B1
+#define IGP02E1000_PHY_AGC_C		0x14B1
+#define IGP02E1000_PHY_AGC_D		0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT	9   /* Course=15:13, Fine=12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK	0x7F
+#define IGP02E1000_AGC_RANGE		15
+
+#define E1000_CABLE_LENGTH_UNDEFINED	0xFF
+
+#define E1000_KMRNCTRLSTA_OFFSET	0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT	16
+#define E1000_KMRNCTRLSTA_REN		0x00200000
+#define E1000_KMRNCTRLSTA_CTRL_OFFSET	0x1    /* Kumeran Control */
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET	0x3    /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_TIMEOUTS	0x4    /* Kumeran Timeouts */
+#define E1000_KMRNCTRLSTA_INBAND_PARAM	0x9    /* Kumeran InBand Parameters */
+#define E1000_KMRNCTRLSTA_IBIST_DISABLE	0x0200 /* Kumeran IBIST Disable */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK	0x1000 /* Nearend Loopback mode */
+#define E1000_KMRNCTRLSTA_K1_CONFIG	0x7
+#define E1000_KMRNCTRLSTA_K1_ENABLE	0x0002 /* enable K1 */
+#define E1000_KMRNCTRLSTA_HD_CTRL	0x10   /* Kumeran HD Control */
+#define E1000_KMRNCTRLSTA_OP_MODES	0x1F   /* Kumeran Modes of Operation */
+#define E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC	0x0002 /* change LSC to CSC */
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL	0x10
+#define IFE_PHY_SPECIAL_CONTROL		0x11 /* 100BaseTx PHY Special Ctrl */
+#define IFE_PHY_SPECIAL_CONTROL_LED	0x1B /* PHY Special and LED Ctrl */
+#define IFE_PHY_MDIX_CONTROL		0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED	0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE	0x0010
+#define IFE_PSC_FORCE_POLARITY		0x0020
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE		0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF		0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON		0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS		0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX		0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX		0x0080 /* 1=enable auto, 0=disable */
+
+/* SFP modules ID memory locations */
+#define E1000_SFF_IDENTIFIER_OFFSET	0x00
+#define E1000_SFF_IDENTIFIER_SFF	0x02
+#define E1000_SFF_IDENTIFIER_SFP	0x03
+
+#define E1000_SFF_ETH_FLAGS_OFFSET	0x06
+/* Flags for SFP modules compatible with ETH up to 1Gb */
+struct sfp_e1000_flags {
+	u8 e1000_base_sx:1;
+	u8 e1000_base_lx:1;
+	u8 e1000_base_cx:1;
+	u8 e1000_base_t:1;
+	u8 e100_base_lx:1;
+	u8 e100_base_fx:1;
+	u8 e10_base_bx10:1;
+	u8 e10_base_px:1;
+};
+
+/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */
+#define E1000_SFF_VENDOR_OUI_TYCO	0x00407600
+#define E1000_SFF_VENDOR_OUI_FTL	0x00906500
+#define E1000_SFF_VENDOR_OUI_AVAGO	0x00176A00
+#define E1000_SFF_VENDOR_OUI_INTEL	0x001B2100
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_regs.h b/drivers/net/e1000/base/e1000_regs.h
new file mode 100644
index 0000000..bde2a08
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_regs.h
@@ -0,0 +1,685 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_REGS_H_
+#define _E1000_REGS_H_
+
+#define E1000_CTRL	0x00000  /* Device Control - RW */
+#define E1000_CTRL_DUP	0x00004  /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS	0x00008  /* Device Status - RO */
+#define E1000_EECD	0x00010  /* EEPROM/Flash Control - RW */
+#define E1000_EERD	0x00014  /* EEPROM Read - RW */
+#define E1000_CTRL_EXT	0x00018  /* Extended Device Control - RW */
+#define E1000_FLA	0x0001C  /* Flash Access - RW */
+#define E1000_MDIC	0x00020  /* MDI Control - RW */
+#define E1000_MDICNFG	0x00E04  /* MDI Config - RW */
+#define E1000_REGISTER_SET_SIZE		0x20000 /* CSR Size */
+#define E1000_EEPROM_INIT_CTRL_WORD_2	0x0F /* EEPROM Init Ctrl Word 2 */
+#define E1000_EEPROM_PCIE_CTRL_WORD_2	0x28 /* EEPROM PCIe Ctrl Word 2 */
+#define E1000_BARCTRL			0x5BBC /* BAR ctrl reg */
+#define E1000_BARCTRL_FLSIZE		0x0700 /* BAR ctrl Flsize */
+#define E1000_BARCTRL_CSRSIZE		0x2000 /* BAR ctrl CSR size */
+#define E1000_MPHY_ADDR_CTRL	0x0024 /* GbE MPHY Address Control */
+#define E1000_MPHY_DATA		0x0E10 /* GBE MPHY Data */
+#define E1000_MPHY_STAT		0x0E0C /* GBE MPHY Statistics */
+#define E1000_PPHY_CTRL		0x5b48 /* PCIe PHY Control */
+#define E1000_I350_BARCTRL		0x5BFC /* BAR ctrl reg */
+#define E1000_I350_DTXMXPKTSZ		0x355C /* Maximum sent packet size reg*/
+#define E1000_SCTL	0x00024  /* SerDes Control - RW */
+#define E1000_FCAL	0x00028  /* Flow Control Address Low - RW */
+#define E1000_FCAH	0x0002C  /* Flow Control Address High -RW */
+#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
+#define E1000_FEXT	0x0002C  /* Future Extended - RW */
+#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
+#define E1000_FEXTNVM	0x00028  /* Future Extended NVM - RW */
+#define E1000_FEXTNVM3	0x0003C  /* Future Extended NVM 3 - RW */
+#define E1000_FEXTNVM4	0x00024  /* Future Extended NVM 4 - RW */
+#define E1000_FEXTNVM6	0x00010  /* Future Extended NVM 6 - RW */
+#define E1000_FEXTNVM7	0x000E4  /* Future Extended NVM 7 - RW */
+#define E1000_FCT	0x00030  /* Flow Control Type - RW */
+#define E1000_CONNSW	0x00034  /* Copper/Fiber switch control - RW */
+#define E1000_VET	0x00038  /* VLAN Ether Type - RW */
+#define E1000_ICR	0x000C0  /* Interrupt Cause Read - R/clr */
+#define E1000_ITR	0x000C4  /* Interrupt Throttling Rate - RW */
+#define E1000_ICS	0x000C8  /* Interrupt Cause Set - WO */
+#define E1000_IMS	0x000D0  /* Interrupt Mask Set - RW */
+#define E1000_IMC	0x000D8  /* Interrupt Mask Clear - WO */
+#define E1000_IAM	0x000E0  /* Interrupt Acknowledge Auto Mask */
+#define E1000_IVAR	0x000E4  /* Interrupt Vector Allocation Register - RW */
+#define E1000_SVCR	0x000F0
+#define E1000_SVT	0x000F4
+#define E1000_LPIC	0x000FC  /* Low Power IDLE control */
+#define E1000_RCTL	0x00100  /* Rx Control - RW */
+#define E1000_FCTTV	0x00170  /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW	0x00178  /* Tx Configuration Word - RW */
+#define E1000_RXCW	0x00180  /* Rx Configuration Word - RO */
+#define E1000_PBA_ECC	0x01100  /* PBA ECC Register */
+#define E1000_EICR	0x01580  /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n)	(0x01680 + (0x4 * (_n)))
+#define E1000_EICS	0x01520  /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS	0x01524  /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC	0x01528  /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC	0x0152C  /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM	0x01530  /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_GPIE	0x01514  /* General Purpose Interrupt Enable - RW */
+#define E1000_IVAR0	0x01700  /* Interrupt Vector Allocation (array) - RW */
+#define E1000_IVAR_MISC	0x01740 /* IVAR for "other" causes - RW */
+#define E1000_TCTL	0x00400  /* Tx Control - RW */
+#define E1000_TCTL_EXT	0x00404  /* Extended Tx Control - RW */
+#define E1000_TIPG	0x00410  /* Tx Inter-packet gap -RW */
+#define E1000_TBT	0x00448  /* Tx Burst Timer - RW */
+#define E1000_AIT	0x00458  /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL	0x00E00  /* LED Control - RW */
+#define E1000_LEDMUX	0x08130  /* LED MUX Control */
+#define E1000_EXTCNF_CTRL	0x00F00  /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE	0x00F08  /* Extended Configuration Size */
+#define E1000_PHY_CTRL	0x00F10  /* PHY Control Register in CSR */
+#define E1000_POEMB	E1000_PHY_CTRL /* PHY OEM Bits */
+#define E1000_PBA	0x01000  /* Packet Buffer Allocation - RW */
+#define E1000_PBS	0x01008  /* Packet Buffer Size */
+#define E1000_PBECCSTS	0x0100C  /* Packet Buffer ECC Status - RW */
+#define E1000_EEMNGCTL	0x01010  /* MNG EEprom Control */
+#define E1000_EEARBC	0x01024  /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT	0x01028  /* FLASH Timer Register */
+#define E1000_EEWR	0x0102C  /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL	0x01030  /* FLASH control register */
+#define E1000_FLSWDATA	0x01034  /* FLASH data register */
+#define E1000_FLSWCNT	0x01038  /* FLASH Access Counter */
+#define E1000_FLOP	0x0103C  /* FLASH Opcode Register */
+#define E1000_I2CCMD	0x01028  /* SFPI2C Command Register - RW */
+#define E1000_I2CPARAMS	0x0102C /* SFPI2C Parameters Register - RW */
+#define E1000_I2CBB_EN	0x00000100  /* I2C - Bit Bang Enable */
+#define E1000_I2C_CLK_OUT	0x00000200  /* I2C- Clock */
+#define E1000_I2C_DATA_OUT	0x00000400  /* I2C- Data Out */
+#define E1000_I2C_DATA_OE_N	0x00000800  /* I2C- Data Output Enable */
+#define E1000_I2C_DATA_IN	0x00001000  /* I2C- Data In */
+#define E1000_I2C_CLK_OE_N	0x00002000  /* I2C- Clock Output Enable */
+#define E1000_I2C_CLK_IN	0x00004000  /* I2C- Clock In */
+#define E1000_I2C_CLK_STRETCH_DIS	0x00008000 /* I2C- Dis Clk Stretching */
+#define E1000_WDSTP	0x01040  /* Watchdog Setup - RW */
+#define E1000_SWDSTS	0x01044  /* SW Device Status - RW */
+#define E1000_FRTIMER	0x01048  /* Free Running Timer - RW */
+#define E1000_TCPTIMER	0x0104C  /* TCP Timer - RW */
+#define E1000_VPDDIAG	0x01060  /* VPD Diagnostic - RO */
+#define E1000_ICR_V2	0x01500  /* Intr Cause - new location - RC */
+#define E1000_ICS_V2	0x01504  /* Intr Cause Set - new location - WO */
+#define E1000_IMS_V2	0x01508  /* Intr Mask Set/Read - new location - RW */
+#define E1000_IMC_V2	0x0150C  /* Intr Mask Clear - new location - WO */
+#define E1000_IAM_V2	0x01510  /* Intr Ack Auto Mask - new location - RW */
+#define E1000_ERT	0x02008  /* Early Rx Threshold - RW */
+#define E1000_FCRTL	0x02160  /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH	0x02168  /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL	0x02170  /* Packet Split Receive Control - RW */
+#define E1000_RDFH	0x02410  /* Rx Data FIFO Head - RW */
+#define E1000_RDFT	0x02418  /* Rx Data FIFO Tail - RW */
+#define E1000_RDFHS	0x02420  /* Rx Data FIFO Head Saved - RW */
+#define E1000_RDFTS	0x02428  /* Rx Data FIFO Tail Saved - RW */
+#define E1000_RDFPC	0x02430  /* Rx Data FIFO Packet Count - RW */
+#define E1000_PBRTH	0x02458  /* PB Rx Arbitration Threshold - RW */
+#define E1000_FCRTV	0x02460  /* Flow Control Refresh Timer Value - RW */
+/* Split and Replication Rx Control - RW */
+#define E1000_RDPUMB	0x025CC  /* DMA Rx Descriptor uC Mailbox - RW */
+#define E1000_RDPUAD	0x025D0  /* DMA Rx Descriptor uC Addr Command - RW */
+#define E1000_RDPUWD	0x025D4  /* DMA Rx Descriptor uC Data Write - RW */
+#define E1000_RDPURD	0x025D8  /* DMA Rx Descriptor uC Data Read - RW */
+#define E1000_RDPUCTL	0x025DC  /* DMA Rx Descriptor uC Control - RW */
+#define E1000_PBDIAG	0x02458  /* Packet Buffer Diagnostic - RW */
+#define E1000_RXPBS	0x02404  /* Rx Packet Buffer Size - RW */
+#define E1000_IRPBS	0x02404 /* Same as RXPBS, renamed for newer Si - RW */
+#define E1000_PBRWAC	0x024E8 /* Rx packet buffer wrap around counter - RO */
+#define E1000_RDTR	0x02820  /* Rx Delay Timer - RW */
+#define E1000_RADV	0x0282C  /* Rx Interrupt Absolute Delay Timer - RW */
+#define E1000_EMIADD	0x10     /* Extended Memory Indirect Address */
+#define E1000_EMIDATA	0x11     /* Extended Memory Indirect Data */
+#define E1000_SRWR		0x12018  /* Shadow Ram Write Register - RW */
+#define E1000_I210_FLMNGCTL	0x12038
+#define E1000_I210_FLMNGDATA	0x1203C
+#define E1000_I210_FLMNGCNT	0x12040
+
+#define E1000_I210_FLSWCTL	0x12048
+#define E1000_I210_FLSWDATA	0x1204C
+#define E1000_I210_FLSWCNT	0x12050
+
+#define E1000_I210_FLA		0x1201C
+
+#define E1000_INVM_DATA_REG(_n)	(0x12120 + 4*(_n))
+#define E1000_INVM_SIZE		64 /* Number of INVM Data Registers */
+
+/* QAV Tx mode control register */
+#define E1000_I210_TQAVCTRL	0x3570
+
+/* QAV Tx mode control register bitfields masks */
+/* QAV enable */
+#define E1000_TQAVCTRL_MODE			(1 << 0)
+/* Fetching arbitration type */
+#define E1000_TQAVCTRL_FETCH_ARB		(1 << 4)
+/* Fetching timer enable */
+#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE	(1 << 5)
+/* Launch arbitration type */
+#define E1000_TQAVCTRL_LAUNCH_ARB		(1 << 8)
+/* Launch timer enable */
+#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE	(1 << 9)
+/* SP waits for SR enable */
+#define E1000_TQAVCTRL_SP_WAIT_SR		(1 << 10)
+/* Fetching timer correction */
+#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET	16
+#define E1000_TQAVCTRL_FETCH_TIMER_DELTA	\
+			(0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET)
+
+/* High credit registers where _n can be 0 or 1. */
+#define E1000_I210_TQAVHC(_n)			(0x300C + 0x40 * (_n))
+
+/* Queues fetch arbitration priority control register */
+#define E1000_I210_TQAVARBCTRL			0x3574
+/* Queues priority masks where _n and _p can be 0-3. */
+#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p)	((_p) << (2 * _n))
+/* QAV Tx mode control registers where _n can be 0 or 1. */
+#define E1000_I210_TQAVCC(_n)			(0x3004 + 0x40 * (_n))
+
+/* QAV Tx mode control register bitfields masks */
+#define E1000_TQAVCC_IDLE_SLOPE		0xFFFF /* Idle slope */
+#define E1000_TQAVCC_KEEP_CREDITS	(1 << 30) /* Keep credits opt enable */
+#define E1000_TQAVCC_QUEUE_MODE		(1 << 31) /* SP vs. SR Tx mode */
+
+/* Good transmitted packets counter registers */
+#define E1000_PQGPTC(_n)		(0x010014 + (0x100 * (_n)))
+
+/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */
+#define E1000_I210_TXPBS_SIZE(_n, _s)	((_s) << (6 * _n))
+
+#define E1000_MMDAC			13 /* MMD Access Control */
+#define E1000_MMDAAD			14 /* MMD Access Address/Data */
+
+/* Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ */
+#define E1000_RDBAL(_n)	((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
+			 (0x0C000 + ((_n) * 0x40)))
+#define E1000_RDBAH(_n)	((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
+			 (0x0C004 + ((_n) * 0x40)))
+#define E1000_RDLEN(_n)	((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
+			 (0x0C008 + ((_n) * 0x40)))
+#define E1000_SRRCTL(_n)	((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
+				 (0x0C00C + ((_n) * 0x40)))
+#define E1000_RDH(_n)	((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
+			 (0x0C010 + ((_n) * 0x40)))
+#define E1000_RXCTL(_n)	((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
+			 (0x0C014 + ((_n) * 0x40)))
+#define E1000_DCA_RXCTRL(_n)	E1000_RXCTL(_n)
+#define E1000_RDT(_n)	((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
+			 (0x0C018 + ((_n) * 0x40)))
+#define E1000_RXDCTL(_n)	((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
+				 (0x0C028 + ((_n) * 0x40)))
+#define E1000_RQDPC(_n)	((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
+			 (0x0C030 + ((_n) * 0x40)))
+#define E1000_TDBAL(_n)	((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
+			 (0x0E000 + ((_n) * 0x40)))
+#define E1000_TDBAH(_n)	((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
+			 (0x0E004 + ((_n) * 0x40)))
+#define E1000_TDLEN(_n)	((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
+			 (0x0E008 + ((_n) * 0x40)))
+#define E1000_TDH(_n)	((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
+			 (0x0E010 + ((_n) * 0x40)))
+#define E1000_TXCTL(_n)	((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
+			 (0x0E014 + ((_n) * 0x40)))
+#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n)
+#define E1000_TDT(_n)	((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
+			 (0x0E018 + ((_n) * 0x40)))
+#define E1000_TXDCTL(_n)	((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
+				 (0x0E028 + ((_n) * 0x40)))
+#define E1000_TDWBAL(_n)	((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
+				 (0x0E038 + ((_n) * 0x40)))
+#define E1000_TDWBAH(_n)	((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
+				 (0x0E03C + ((_n) * 0x40)))
+#define E1000_TARC(_n)		(0x03840 + ((_n) * 0x100))
+#define E1000_RSRPD		0x02C00  /* Rx Small Packet Detect - RW */
+#define E1000_RAID		0x02C08  /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC		0x03000  /* Tx DMA Control - RW */
+#define E1000_KABGTXD		0x03004  /* AFE Band Gap Transmit Ref Data */
+#define E1000_PSRTYPE(_i)	(0x05480 + ((_i) * 4))
+#define E1000_RAL(_i)		(((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
+				 (0x054E0 + ((_i - 16) * 8)))
+#define E1000_RAH(_i)		(((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
+				 (0x054E4 + ((_i - 16) * 8)))
+#define E1000_SHRAL(_i)		(0x05438 + ((_i) * 8))
+#define E1000_SHRAH(_i)		(0x0543C + ((_i) * 8))
+#define E1000_IP4AT_REG(_i)	(0x05840 + ((_i) * 8))
+#define E1000_IP6AT_REG(_i)	(0x05880 + ((_i) * 4))
+#define E1000_WUPM_REG(_i)	(0x05A00 + ((_i) * 4))
+#define E1000_FFMT_REG(_i)	(0x09000 + ((_i) * 8))
+#define E1000_FFVT_REG(_i)	(0x09800 + ((_i) * 8))
+#define E1000_FFLT_REG(_i)	(0x05F00 + ((_i) * 8))
+#define E1000_PBSLAC		0x03100  /* Pkt Buffer Slave Access Control */
+#define E1000_PBSLAD(_n)	(0x03110 + (0x4 * (_n)))  /* Pkt Buffer DWORD */
+#define E1000_TXPBS		0x03404  /* Tx Packet Buffer Size - RW */
+/* Same as TXPBS, renamed for newer Si - RW */
+#define E1000_ITPBS		0x03404
+#define E1000_TDFH		0x03410  /* Tx Data FIFO Head - RW */
+#define E1000_TDFT		0x03418  /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS		0x03420  /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS		0x03428  /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC		0x03430  /* Tx Data FIFO Packet Count - RW */
+#define E1000_TDPUMB		0x0357C  /* DMA Tx Desc uC Mail Box - RW */
+#define E1000_TDPUAD		0x03580  /* DMA Tx Desc uC Addr Command - RW */
+#define E1000_TDPUWD		0x03584  /* DMA Tx Desc uC Data Write - RW */
+#define E1000_TDPURD		0x03588  /* DMA Tx Desc uC Data  Read  - RW */
+#define E1000_TDPUCTL		0x0358C  /* DMA Tx Desc uC Control - RW */
+#define E1000_DTXCTL		0x03590  /* DMA Tx Control - RW */
+#define E1000_DTXTCPFLGL	0x0359C /* DMA Tx Control flag low - RW */
+#define E1000_DTXTCPFLGH	0x035A0 /* DMA Tx Control flag high - RW */
+/* DMA Tx Max Total Allow Size Reqs - RW */
+#define E1000_DTXMXSZRQ		0x03540
+#define E1000_TIDV	0x03820  /* Tx Interrupt Delay Value - RW */
+#define E1000_TADV	0x0382C  /* Tx Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT	0x03830  /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS	0x04000  /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC	0x04004  /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS	0x04008  /* Symbol Error Count - R/clr */
+#define E1000_RXERRC	0x0400C  /* Receive Error Count - R/clr */
+#define E1000_MPC	0x04010  /* Missed Packet Count - R/clr */
+#define E1000_SCC	0x04014  /* Single Collision Count - R/clr */
+#define E1000_ECOL	0x04018  /* Excessive Collision Count - R/clr */
+#define E1000_MCC	0x0401C  /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL	0x04020  /* Late Collision Count - R/clr */
+#define E1000_COLC	0x04028  /* Collision Count - R/clr */
+#define E1000_DC	0x04030  /* Defer Count - R/clr */
+#define E1000_TNCRS	0x04034  /* Tx-No CRS - R/clr */
+#define E1000_SEC	0x04038  /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR	0x0403C  /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC	0x04040  /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC	0x04048  /* XON Rx Count - R/clr */
+#define E1000_XONTXC	0x0404C  /* XON Tx Count - R/clr */
+#define E1000_XOFFRXC	0x04050  /* XOFF Rx Count - R/clr */
+#define E1000_XOFFTXC	0x04054  /* XOFF Tx Count - R/clr */
+#define E1000_FCRUC	0x04058  /* Flow Control Rx Unsupported Count- R/clr */
+#define E1000_PRC64	0x0405C  /* Packets Rx (64 bytes) - R/clr */
+#define E1000_PRC127	0x04060  /* Packets Rx (65-127 bytes) - R/clr */
+#define E1000_PRC255	0x04064  /* Packets Rx (128-255 bytes) - R/clr */
+#define E1000_PRC511	0x04068  /* Packets Rx (255-511 bytes) - R/clr */
+#define E1000_PRC1023	0x0406C  /* Packets Rx (512-1023 bytes) - R/clr */
+#define E1000_PRC1522	0x04070  /* Packets Rx (1024-1522 bytes) - R/clr */
+#define E1000_GPRC	0x04074  /* Good Packets Rx Count - R/clr */
+#define E1000_BPRC	0x04078  /* Broadcast Packets Rx Count - R/clr */
+#define E1000_MPRC	0x0407C  /* Multicast Packets Rx Count - R/clr */
+#define E1000_GPTC	0x04080  /* Good Packets Tx Count - R/clr */
+#define E1000_GORCL	0x04088  /* Good Octets Rx Count Low - R/clr */
+#define E1000_GORCH	0x0408C  /* Good Octets Rx Count High - R/clr */
+#define E1000_GOTCL	0x04090  /* Good Octets Tx Count Low - R/clr */
+#define E1000_GOTCH	0x04094  /* Good Octets Tx Count High - R/clr */
+#define E1000_RNBC	0x040A0  /* Rx No Buffers Count - R/clr */
+#define E1000_RUC	0x040A4  /* Rx Undersize Count - R/clr */
+#define E1000_RFC	0x040A8  /* Rx Fragment Count - R/clr */
+#define E1000_ROC	0x040AC  /* Rx Oversize Count - R/clr */
+#define E1000_RJC	0x040B0  /* Rx Jabber Count - R/clr */
+#define E1000_MGTPRC	0x040B4  /* Management Packets Rx Count - R/clr */
+#define E1000_MGTPDC	0x040B8  /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC	0x040BC  /* Management Packets Tx Count - R/clr */
+#define E1000_TORL	0x040C0  /* Total Octets Rx Low - R/clr */
+#define E1000_TORH	0x040C4  /* Total Octets Rx High - R/clr */
+#define E1000_TOTL	0x040C8  /* Total Octets Tx Low - R/clr */
+#define E1000_TOTH	0x040CC  /* Total Octets Tx High - R/clr */
+#define E1000_TPR	0x040D0  /* Total Packets Rx - R/clr */
+#define E1000_TPT	0x040D4  /* Total Packets Tx - R/clr */
+#define E1000_PTC64	0x040D8  /* Packets Tx (64 bytes) - R/clr */
+#define E1000_PTC127	0x040DC  /* Packets Tx (65-127 bytes) - R/clr */
+#define E1000_PTC255	0x040E0  /* Packets Tx (128-255 bytes) - R/clr */
+#define E1000_PTC511	0x040E4  /* Packets Tx (256-511 bytes) - R/clr */
+#define E1000_PTC1023	0x040E8  /* Packets Tx (512-1023 bytes) - R/clr */
+#define E1000_PTC1522	0x040EC  /* Packets Tx (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC	0x040F0  /* Multicast Packets Tx Count - R/clr */
+#define E1000_BPTC	0x040F4  /* Broadcast Packets Tx Count - R/clr */
+#define E1000_TSCTC	0x040F8  /* TCP Segmentation Context Tx - R/clr */
+#define E1000_TSCTFC	0x040FC  /* TCP Segmentation Context Tx Fail - R/clr */
+#define E1000_IAC	0x04100  /* Interrupt Assertion Count */
+#define E1000_ICRXPTC	0x04104  /* Interrupt Cause Rx Pkt Timer Expire Count */
+#define E1000_ICRXATC	0x04108  /* Interrupt Cause Rx Abs Timer Expire Count */
+#define E1000_ICTXPTC	0x0410C  /* Interrupt Cause Tx Pkt Timer Expire Count */
+#define E1000_ICTXATC	0x04110  /* Interrupt Cause Tx Abs Timer Expire Count */
+#define E1000_ICTXQEC	0x04118  /* Interrupt Cause Tx Queue Empty Count */
+#define E1000_ICTXQMTC	0x0411C  /* Interrupt Cause Tx Queue Min Thresh Count */
+#define E1000_ICRXDMTC	0x04120  /* Interrupt Cause Rx Desc Min Thresh Count */
+#define E1000_ICRXOC	0x04124  /* Interrupt Cause Receiver Overrun Count */
+#define E1000_CRC_OFFSET	0x05F50  /* CRC Offset register */
+
+#define E1000_VFGPRC	0x00F10
+#define E1000_VFGORC	0x00F18
+#define E1000_VFMPRC	0x00F3C
+#define E1000_VFGPTC	0x00F14
+#define E1000_VFGOTC	0x00F34
+#define E1000_VFGOTLBC	0x00F50
+#define E1000_VFGPTLBC	0x00F44
+#define E1000_VFGORLBC	0x00F48
+#define E1000_VFGPRLBC	0x00F40
+/* Virtualization statistical counters */
+#define E1000_PFVFGPRC(_n)	(0x010010 + (0x100 * (_n)))
+#define E1000_PFVFGPTC(_n)	(0x010014 + (0x100 * (_n)))
+#define E1000_PFVFGORC(_n)	(0x010018 + (0x100 * (_n)))
+#define E1000_PFVFGOTC(_n)	(0x010034 + (0x100 * (_n)))
+#define E1000_PFVFMPRC(_n)	(0x010038 + (0x100 * (_n)))
+#define E1000_PFVFGPRLBC(_n)	(0x010040 + (0x100 * (_n)))
+#define E1000_PFVFGPTLBC(_n)	(0x010044 + (0x100 * (_n)))
+#define E1000_PFVFGORLBC(_n)	(0x010048 + (0x100 * (_n)))
+#define E1000_PFVFGOTLBC(_n)	(0x010050 + (0x100 * (_n)))
+
+/* LinkSec */
+#define E1000_LSECTXUT		0x04300  /* Tx Untagged Pkt Cnt */
+#define E1000_LSECTXPKTE	0x04304  /* Encrypted Tx Pkts Cnt */
+#define E1000_LSECTXPKTP	0x04308  /* Protected Tx Pkt Cnt */
+#define E1000_LSECTXOCTE	0x0430C  /* Encrypted Tx Octets Cnt */
+#define E1000_LSECTXOCTP	0x04310  /* Protected Tx Octets Cnt */
+#define E1000_LSECRXUT		0x04314  /* Untagged non-Strict Rx Pkt Cnt */
+#define E1000_LSECRXOCTD	0x0431C  /* Rx Octets Decrypted Count */
+#define E1000_LSECRXOCTV	0x04320  /* Rx Octets Validated */
+#define E1000_LSECRXBAD		0x04324  /* Rx Bad Tag */
+#define E1000_LSECRXNOSCI	0x04328  /* Rx Packet No SCI Count */
+#define E1000_LSECRXUNSCI	0x0432C  /* Rx Packet Unknown SCI Count */
+#define E1000_LSECRXUNCH	0x04330  /* Rx Unchecked Packets Count */
+#define E1000_LSECRXDELAY	0x04340  /* Rx Delayed Packet Count */
+#define E1000_LSECRXLATE	0x04350  /* Rx Late Packets Count */
+#define E1000_LSECRXOK(_n)	(0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */
+#define E1000_LSECRXINV(_n)	(0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */
+#define E1000_LSECRXNV(_n)	(0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */
+#define E1000_LSECRXUNSA	0x043C0  /* Rx Unused SA Count */
+#define E1000_LSECRXNUSA	0x043D0  /* Rx Not Using SA Count */
+#define E1000_LSECTXCAP		0x0B000  /* Tx Capabilities Register - RO */
+#define E1000_LSECRXCAP		0x0B300  /* Rx Capabilities Register - RO */
+#define E1000_LSECTXCTRL	0x0B004  /* Tx Control - RW */
+#define E1000_LSECRXCTRL	0x0B304  /* Rx Control - RW */
+#define E1000_LSECTXSCL		0x0B008  /* Tx SCI Low - RW */
+#define E1000_LSECTXSCH		0x0B00C  /* Tx SCI High - RW */
+#define E1000_LSECTXSA		0x0B010  /* Tx SA0 - RW */
+#define E1000_LSECTXPN0		0x0B018  /* Tx SA PN 0 - RW */
+#define E1000_LSECTXPN1		0x0B01C  /* Tx SA PN 1 - RW */
+#define E1000_LSECRXSCL		0x0B3D0  /* Rx SCI Low - RW */
+#define E1000_LSECRXSCH		0x0B3E0  /* Rx SCI High - RW */
+/* LinkSec Tx 128-bit Key 0 - WO */
+#define E1000_LSECTXKEY0(_n)	(0x0B020 + (0x04 * (_n)))
+/* LinkSec Tx 128-bit Key 1 - WO */
+#define E1000_LSECTXKEY1(_n)	(0x0B030 + (0x04 * (_n)))
+#define E1000_LSECRXSA(_n)	(0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */
+#define E1000_LSECRXPN(_n)	(0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */
+/* LinkSec Rx Keys  - where _n is the SA no. and _m the 4 dwords of the 128 bit
+ * key - RW.
+ */
+#define E1000_LSECRXKEY(_n, _m)	(0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
+
+#define E1000_SSVPC		0x041A0 /* Switch Security Violation Pkt Cnt */
+#define E1000_IPSCTRL		0xB430  /* IpSec Control Register */
+#define E1000_IPSRXCMD		0x0B408 /* IPSec Rx Command Register - RW */
+#define E1000_IPSRXIDX		0x0B400 /* IPSec Rx Index - RW */
+/* IPSec Rx IPv4/v6 Address - RW */
+#define E1000_IPSRXIPADDR(_n)	(0x0B420 + (0x04 * (_n)))
+/* IPSec Rx 128-bit Key - RW */
+#define E1000_IPSRXKEY(_n)	(0x0B410 + (0x04 * (_n)))
+#define E1000_IPSRXSALT		0x0B404  /* IPSec Rx Salt - RW */
+#define E1000_IPSRXSPI		0x0B40C  /* IPSec Rx SPI - RW */
+/* IPSec Tx 128-bit Key - RW */
+#define E1000_IPSTXKEY(_n)	(0x0B460 + (0x04 * (_n)))
+#define E1000_IPSTXSALT		0x0B454  /* IPSec Tx Salt - RW */
+#define E1000_IPSTXIDX		0x0B450  /* IPSec Tx SA IDX - RW */
+#define E1000_PCS_CFG0	0x04200  /* PCS Configuration 0 - RW */
+#define E1000_PCS_LCTL	0x04208  /* PCS Link Control - RW */
+#define E1000_PCS_LSTAT	0x0420C  /* PCS Link Status - RO */
+#define E1000_CBTMPC	0x0402C  /* Circuit Breaker Tx Packet Count */
+#define E1000_HTDPMC	0x0403C  /* Host Transmit Discarded Packets */
+#define E1000_CBRDPC	0x04044  /* Circuit Breaker Rx Dropped Count */
+#define E1000_CBRMPC	0x040FC  /* Circuit Breaker Rx Packet Count */
+#define E1000_RPTHC	0x04104  /* Rx Packets To Host */
+#define E1000_HGPTC	0x04118  /* Host Good Packets Tx Count */
+#define E1000_HTCBDPC	0x04124  /* Host Tx Circuit Breaker Dropped Count */
+#define E1000_HGORCL	0x04128  /* Host Good Octets Received Count Low */
+#define E1000_HGORCH	0x0412C  /* Host Good Octets Received Count High */
+#define E1000_HGOTCL	0x04130  /* Host Good Octets Transmit Count Low */
+#define E1000_HGOTCH	0x04134  /* Host Good Octets Transmit Count High */
+#define E1000_LENERRS	0x04138  /* Length Errors Count */
+#define E1000_SCVPC	0x04228  /* SerDes/SGMII Code Violation Pkt Count */
+#define E1000_HRMPC	0x0A018  /* Header Redirection Missed Packet Count */
+#define E1000_PCS_ANADV	0x04218  /* AN advertisement - RW */
+#define E1000_PCS_LPAB	0x0421C  /* Link Partner Ability - RW */
+#define E1000_PCS_NPTX	0x04220  /* AN Next Page Transmit - RW */
+#define E1000_PCS_LPABNP	0x04224 /* Link Partner Ability Next Pg - RW */
+#define E1000_RXCSUM	0x05000  /* Rx Checksum Control - RW */
+#define E1000_RLPML	0x05004  /* Rx Long Packet Max Length */
+#define E1000_RFCTL	0x05008  /* Receive Filter Control*/
+#define E1000_MTA	0x05200  /* Multicast Table Array - RW Array */
+#define E1000_RA	0x05400  /* Receive Address - RW Array */
+#define E1000_RA2	0x054E0  /* 2nd half of Rx address array - RW Array */
+#define E1000_VFTA	0x05600  /* VLAN Filter Table Array - RW Array */
+#define E1000_VT_CTL	0x0581C  /* VMDq Control - RW */
+#define E1000_CIAA	0x05B88  /* Config Indirect Access Address - RW */
+#define E1000_CIAD	0x05B8C  /* Config Indirect Access Data - RW */
+#define E1000_VFQA0	0x0B000  /* VLAN Filter Queue Array 0 - RW Array */
+#define E1000_VFQA1	0x0B200  /* VLAN Filter Queue Array 1 - RW Array */
+#define E1000_WUC	0x05800  /* Wakeup Control - RW */
+#define E1000_WUFC	0x05808  /* Wakeup Filter Control - RW */
+#define E1000_WUS	0x05810  /* Wakeup Status - RO */
+#define E1000_MANC	0x05820  /* Management Control - RW */
+#define E1000_IPAV	0x05838  /* IP Address Valid - RW */
+#define E1000_IP4AT	0x05840  /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT	0x05880  /* IPv6 Address Table - RW Array */
+#define E1000_WUPL	0x05900  /* Wakeup Packet Length - RW */
+#define E1000_WUPM	0x05A00  /* Wakeup Packet Memory - RO A */
+#define E1000_PBACL	0x05B68  /* MSIx PBA Clear - Read/Write 1's to clear */
+#define E1000_FFLT	0x05F00  /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF	0x08800  /* Host Interface */
+#define E1000_HIBBA	0x8F40   /* Host Interface Buffer Base Address */
+/* Flexible Host Filter Table */
+#define E1000_FHFT(_n)	(0x09000 + ((_n) * 0x100))
+/* Ext Flexible Host Filter Table */
+#define E1000_FHFT_EXT(_n)	(0x09A00 + ((_n) * 0x100))
+
+
+#define E1000_KMRNCTRLSTA	0x00034 /* MAC-PHY interface - RW */
+#define E1000_MANC2H		0x05860 /* Management Control To Host - RW */
+/* Management Decision Filters */
+#define E1000_MDEF(_n)		(0x05890 + (4 * (_n)))
+#define E1000_SW_FW_SYNC	0x05B5C /* SW-FW Synchronization - RW */
+#define E1000_CCMCTL	0x05B48 /* CCM Control Register */
+#define E1000_GIOCTL	0x05B44 /* GIO Analog Control Register */
+#define E1000_SCCTL	0x05B4C /* PCIc PLL Configuration Register */
+#define E1000_GCR	0x05B00 /* PCI-Ex Control */
+#define E1000_GCR2	0x05B64 /* PCI-Ex Control #2 */
+#define E1000_GSCL_1	0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2	0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3	0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4	0x05B1C /* PCI-Ex Statistic Control #4 */
+#define E1000_FACTPS	0x05B30 /* Function Active and Power State to MNG */
+#define E1000_SWSM	0x05B50 /* SW Semaphore */
+#define E1000_FWSM	0x05B54 /* FW Semaphore */
+/* Driver-only SW semaphore (not used by BOOT agents) */
+#define E1000_SWSM2	0x05B58
+#define E1000_DCA_ID	0x05B70 /* DCA Requester ID Information - RO */
+#define E1000_DCA_CTRL	0x05B74 /* DCA Control - RW */
+#define E1000_UFUSE	0x05B78 /* UFUSE - RO */
+#define E1000_FFLT_DBG	0x05F04 /* Debug Register */
+#define E1000_HICR	0x08F00 /* Host Interface Control */
+#define E1000_FWSTS	0x08F0C /* FW Status */
+
+/* RSS registers */
+#define E1000_CPUVEC	0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC	0x05818 /* Multiple Receive Control - RW */
+#define E1000_IMIR(_i)	(0x05A80 + ((_i) * 4))  /* Immediate Interrupt */
+#define E1000_IMIREXT(_i)	(0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/
+#define E1000_IMIRVP		0x05AC0 /* Immediate INT Rx VLAN Priority -RW */
+#define E1000_MSIXBM(_i)	(0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */
+#define E1000_RETA(_i)	(0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
+#define E1000_RSSRK(_i)	(0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
+#define E1000_RSSIM	0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR	0x05868 /* RSS Interrupt Request */
+/* VT Registers */
+#define E1000_SWPBS	0x03004 /* Switch Packet Buffer Size - RW */
+#define E1000_MBVFICR	0x00C80 /* Mailbox VF Cause - RWC */
+#define E1000_MBVFIMR	0x00C84 /* Mailbox VF int Mask - RW */
+#define E1000_VFLRE	0x00C88 /* VF Register Events - RWC */
+#define E1000_VFRE	0x00C8C /* VF Receive Enables */
+#define E1000_VFTE	0x00C90 /* VF Transmit Enables */
+#define E1000_QDE	0x02408 /* Queue Drop Enable - RW */
+#define E1000_DTXSWC	0x03500 /* DMA Tx Switch Control - RW */
+#define E1000_WVBR	0x03554 /* VM Wrong Behavior - RWS */
+#define E1000_RPLOLR	0x05AF0 /* Replication Offload - RW */
+#define E1000_UTA	0x0A000 /* Unicast Table Array - RW */
+#define E1000_IOVTCL	0x05BBC /* IOV Control Register */
+#define E1000_VMRCTL	0X05D80 /* Virtual Mirror Rule Control */
+#define E1000_VMRVLAN	0x05D90 /* Virtual Mirror Rule VLAN */
+#define E1000_VMRVM	0x05DA0 /* Virtual Mirror Rule VM */
+#define E1000_MDFB	0x03558 /* Malicious Driver free block */
+#define E1000_LVMMC	0x03548 /* Last VM Misbehavior cause */
+#define E1000_TXSWC	0x05ACC /* Tx Switch Control */
+#define E1000_SCCRL	0x05DB0 /* Storm Control Control */
+#define E1000_BSCTRH	0x05DB8 /* Broadcast Storm Control Threshold */
+#define E1000_MSCTRH	0x05DBC /* Multicast Storm Control Threshold */
+/* These act per VF so an array friendly macro is used */
+#define E1000_V2PMAILBOX(_n)	(0x00C40 + (4 * (_n)))
+#define E1000_P2VMAILBOX(_n)	(0x00C00 + (4 * (_n)))
+#define E1000_VMBMEM(_n)	(0x00800 + (64 * (_n)))
+#define E1000_VFVMBMEM(_n)	(0x00800 + (_n))
+#define E1000_VMOLR(_n)		(0x05AD0 + (4 * (_n)))
+/* VLAN Virtual Machine Filter - RW */
+#define E1000_VLVF(_n)		(0x05D00 + (4 * (_n)))
+#define E1000_VMVIR(_n)		(0x03700 + (4 * (_n)))
+#define E1000_DVMOLR(_n)	(0x0C038 + (0x40 * (_n))) /* DMA VM offload */
+#define E1000_VTCTRL(_n)	(0x10000 + (0x100 * (_n))) /* VT Control */
+#define E1000_TSYNCRXCTL	0x0B620 /* Rx Time Sync Control register - RW */
+#define E1000_TSYNCTXCTL	0x0B614 /* Tx Time Sync Control register - RW */
+#define E1000_TSYNCRXCFG	0x05F50 /* Time Sync Rx Configuration - RW */
+#define E1000_RXSTMPL	0x0B624 /* Rx timestamp Low - RO */
+#define E1000_RXSTMPH	0x0B628 /* Rx timestamp High - RO */
+#define E1000_RXSATRL	0x0B62C /* Rx timestamp attribute low - RO */
+#define E1000_RXSATRH	0x0B630 /* Rx timestamp attribute high - RO */
+#define E1000_TXSTMPL	0x0B618 /* Tx timestamp value Low - RO */
+#define E1000_TXSTMPH	0x0B61C /* Tx timestamp value High - RO */
+#define E1000_SYSTIML	0x0B600 /* System time register Low - RO */
+#define E1000_SYSTIMH	0x0B604 /* System time register High - RO */
+#define E1000_TIMINCA	0x0B608 /* Increment attributes register - RW */
+#define E1000_TIMADJL	0x0B60C /* Time sync time adjustment offset Low - RW */
+#define E1000_TIMADJH	0x0B610 /* Time sync time adjustment offset High - RW */
+#define E1000_TSAUXC	0x0B640 /* Timesync Auxiliary Control register */
+#define E1000_SYSTIMR	0x0B6F8 /* System time register Residue */
+#define E1000_TSICR	0x0B66C /* Interrupt Cause Register */
+#define E1000_TSIM	0x0B674 /* Interrupt Mask Register */
+#define E1000_RXMTRL	0x0B634 /* Time sync Rx EtherType and Msg Type - RW */
+#define E1000_RXUDP	0x0B638 /* Time Sync Rx UDP Port - RW */
+
+/* Filtering Registers */
+#define E1000_SAQF(_n)	(0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
+#define E1000_DAQF(_n)	(0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
+#define E1000_SPQF(_n)	(0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
+#define E1000_FTQF(_n)	(0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
+#define E1000_TTQF(_n)	(0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
+#define E1000_SYNQF(_n)	(0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
+#define E1000_ETQF(_n)	(0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
+
+#define E1000_RTTDCS	0x3600 /* Reedtown Tx Desc plane control and status */
+#define E1000_RTTPCS	0x3474 /* Reedtown Tx Packet Plane control and status */
+#define E1000_RTRPCS	0x2474 /* Rx packet plane control and status */
+#define E1000_RTRUP2TC	0x05AC4 /* Rx User Priority to Traffic Class */
+#define E1000_RTTUP2TC	0x0418 /* Transmit User Priority to Traffic Class */
+/* Tx Desc plane TC Rate-scheduler config */
+#define E1000_RTTDTCRC(_n)	(0x3610 + ((_n) * 4))
+/* Tx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTTPTCRC(_n)	(0x3480 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler Config */
+#define E1000_RTRPTCRC(_n)	(0x2480 + ((_n) * 4))
+/* Tx Desc Plane TC Rate-Scheduler Status */
+#define E1000_RTTDTCRS(_n)	(0x3630 + ((_n) * 4))
+/* Tx Desc Plane TC Rate-Scheduler MMW */
+#define E1000_RTTDTCRM(_n)	(0x3650 + ((_n) * 4))
+/* Tx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTTPTCRS(_n)	(0x34A0 + ((_n) * 4))
+/* Tx Packet plane TC Rate-scheduler MMW */
+#define E1000_RTTPTCRM(_n)	(0x34C0 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler Status */
+#define E1000_RTRPTCRS(_n)	(0x24A0 + ((_n) * 4))
+/* Rx Packet plane TC Rate-Scheduler MMW */
+#define E1000_RTRPTCRM(_n)	(0x24C0 + ((_n) * 4))
+/* Tx Desc plane VM Rate-Scheduler MMW*/
+#define E1000_RTTDVMRM(_n)	(0x3670 + ((_n) * 4))
+/* Tx BCN Rate-Scheduler MMW */
+#define E1000_RTTBCNRM(_n)	(0x3690 + ((_n) * 4))
+#define E1000_RTTDQSEL	0x3604  /* Tx Desc Plane Queue Select */
+#define E1000_RTTDVMRC	0x3608  /* Tx Desc Plane VM Rate-Scheduler Config */
+#define E1000_RTTDVMRS	0x360C  /* Tx Desc Plane VM Rate-Scheduler Status */
+#define E1000_RTTBCNRC	0x36B0  /* Tx BCN Rate-Scheduler Config */
+#define E1000_RTTBCNRS	0x36B4  /* Tx BCN Rate-Scheduler Status */
+#define E1000_RTTBCNCR	0xB200  /* Tx BCN Control Register */
+#define E1000_RTTBCNTG	0x35A4  /* Tx BCN Tagging */
+#define E1000_RTTBCNCP	0xB208  /* Tx BCN Congestion point */
+#define E1000_RTRBCNCR	0xB20C  /* Rx BCN Control Register */
+#define E1000_RTTBCNRD	0x36B8  /* Tx BCN Rate Drift */
+#define E1000_PFCTOP	0x1080  /* Priority Flow Control Type and Opcode */
+#define E1000_RTTBCNIDX	0xB204  /* Tx BCN Congestion Point */
+#define E1000_RTTBCNACH	0x0B214 /* Tx BCN Control High */
+#define E1000_RTTBCNACL	0x0B210 /* Tx BCN Control Low */
+
+/* DMA Coalescing registers */
+#define E1000_DMACR	0x02508 /* Control Register */
+#define E1000_DMCTXTH	0x03550 /* Transmit Threshold */
+#define E1000_DMCTLX	0x02514 /* Time to Lx Request */
+#define E1000_DMCRTRH	0x05DD0 /* Receive Packet Rate Threshold */
+#define E1000_DMCCNT	0x05DD4 /* Current Rx Count */
+#define E1000_FCRTC	0x02170 /* Flow Control Rx high watermark */
+#define E1000_PCIEMISC	0x05BB8 /* PCIE misc config register */
+
+/* PCIe Parity Status Register */
+#define E1000_PCIEERRSTS	0x05BA8
+
+#define E1000_PROXYS	0x5F64 /* Proxying Status */
+#define E1000_PROXYFC	0x5F60 /* Proxying Filter Control */
+/* Thermal sensor configuration and status registers */
+#define E1000_THMJT	0x08100 /* Junction Temperature */
+#define E1000_THLOWTC	0x08104 /* Low Threshold Control */
+#define E1000_THMIDTC	0x08108 /* Mid Threshold Control */
+#define E1000_THHIGHTC	0x0810C /* High Threshold Control */
+#define E1000_THSTAT	0x08110 /* Thermal Sensor Status */
+
+/* Energy Efficient Ethernet "EEE" registers */
+#define E1000_IPCNFG	0x0E38 /* Internal PHY Configuration */
+#define E1000_LTRC	0x01A0 /* Latency Tolerance Reporting Control */
+#define E1000_EEER	0x0E30 /* Energy Efficient Ethernet "EEE"*/
+#define E1000_EEE_SU	0x0E34 /* EEE Setup */
+#define E1000_TLPIC	0x4148 /* EEE Tx LPI Count - TLPIC */
+#define E1000_RLPIC	0x414C /* EEE Rx LPI Count - RLPIC */
+
+/* OS2BMC Registers */
+#define E1000_B2OSPC	0x08FE0 /* BMC2OS packets sent by BMC */
+#define E1000_B2OGPRC	0x04158 /* BMC2OS packets received by host */
+#define E1000_O2BGPTC	0x08FE4 /* OS2BMC packets received by BMC */
+#define E1000_O2BSPC	0x0415C /* OS2BMC packets transmitted by host */
+
+
+
+#endif
diff --git a/drivers/net/e1000/base/e1000_vf.c b/drivers/net/e1000/base/e1000_vf.c
new file mode 100644
index 0000000..778561e
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_vf.c
@@ -0,0 +1,586 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+
+#include "e1000_api.h"
+
+
+STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
+STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
+STATIC void e1000_release_vf(struct e1000_hw *hw);
+STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
+STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
+STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
+STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
+STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
+STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+				     u16 *duplex);
+STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
+STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
+STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
+STATIC void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
+STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);
+
+/**
+ *  e1000_init_phy_params_vf - Inits PHY params
+ *  @hw: pointer to the HW structure
+ *
+ *  Doesn't do much - there's no PHY available to the VF.
+ **/
+STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_phy_params_vf");
+	hw->phy.type = e1000_phy_vf;
+	hw->phy.ops.acquire = e1000_acquire_vf;
+	hw->phy.ops.release = e1000_release_vf;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_nvm_params_vf - Inits NVM params
+ *  @hw: pointer to the HW structure
+ *
+ *  Doesn't do much - there's no NVM available to the VF.
+ **/
+STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_nvm_params_vf");
+	hw->nvm.type = e1000_nvm_none;
+	hw->nvm.ops.acquire = e1000_acquire_vf;
+	hw->nvm.ops.release = e1000_release_vf;
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_mac_params_vf - Inits MAC params
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
+{
+	struct e1000_mac_info *mac = &hw->mac;
+
+	DEBUGFUNC("e1000_init_mac_params_vf");
+
+	/* Set media type */
+	/*
+	 * Virtual functions don't care what they're media type is as they
+	 * have no direct access to the PHY, or the media.  That is handled
+	 * by the physical function driver.
+	 */
+	hw->phy.media_type = e1000_media_type_unknown;
+
+	/* No ASF features for the VF driver */
+	mac->asf_firmware_present = false;
+	/* ARC subsystem not supported */
+	mac->arc_subsystem_valid = false;
+	/* Disable adaptive IFS mode so the generic funcs don't do anything */
+	mac->adaptive_ifs = false;
+	/* VF's have no MTA Registers - PF feature only */
+	mac->mta_reg_count = 128;
+	/* VF's have no access to RAR entries  */
+	mac->rar_entry_count = 1;
+
+	/* Function pointers */
+	/* link setup */
+	mac->ops.setup_link = e1000_setup_link_vf;
+	/* bus type/speed/width */
+	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
+	/* reset */
+	mac->ops.reset_hw = e1000_reset_hw_vf;
+	/* hw initialization */
+	mac->ops.init_hw = e1000_init_hw_vf;
+	/* check for link */
+	mac->ops.check_for_link = e1000_check_for_link_vf;
+	/* link info */
+	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
+	/* multicast address update */
+	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
+	/* set mac address */
+	mac->ops.rar_set = e1000_rar_set_vf;
+	/* read mac address */
+	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
+
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_init_function_pointers_vf - Inits function pointers
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_init_function_pointers_vf(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_function_pointers_vf");
+
+	hw->mac.ops.init_params = e1000_init_mac_params_vf;
+	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
+	hw->phy.ops.init_params = e1000_init_phy_params_vf;
+	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
+}
+
+/**
+ *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
+ *  @hw: pointer to the HW structure
+ *
+ *  There is no PHY or NVM so we want all attempts to acquire these to fail.
+ *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
+ *  even want any SW to attempt to use them.
+ **/
+STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	UNREFERENCED_1PARAMETER(hw);
+	return -E1000_ERR_PHY;
+}
+
+/**
+ *  e1000_release_vf - Release PHY or NVM
+ *  @hw: pointer to the HW structure
+ *
+ *  There is no PHY or NVM so we want all attempts to acquire these to fail.
+ *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
+ *  even want any SW to attempt to use them.
+ **/
+STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	UNREFERENCED_1PARAMETER(hw);
+	return;
+}
+
+/**
+ *  e1000_setup_link_vf - Sets up link.
+ *  @hw: pointer to the HW structure
+ *
+ *  Virtual functions cannot change link.
+ **/
+STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+	DEBUGFUNC("e1000_setup_link_vf");
+	UNREFERENCED_1PARAMETER(hw);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_bus_info_pcie_vf - Gets the bus info.
+ *  @hw: pointer to the HW structure
+ *
+ *  Virtual functions are not really on their own bus.
+ **/
+STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
+{
+	struct e1000_bus_info *bus = &hw->bus;
+
+	DEBUGFUNC("e1000_get_bus_info_pcie_vf");
+
+	/* Do not set type PCI-E because we don't want disable master to run */
+	bus->type = e1000_bus_type_reserved;
+	bus->speed = e1000_bus_speed_2500;
+
+	return 0;
+}
+
+/**
+ *  e1000_get_link_up_info_vf - Gets link info.
+ *  @hw: pointer to the HW structure
+ *  @speed: pointer to 16 bit value to store link speed.
+ *  @duplex: pointer to 16 bit value to store duplex.
+ *
+ *  Since we cannot read the PHY and get accurate link info, we must rely upon
+ *  the status register's data which is often stale and inaccurate.
+ **/
+STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
+				     u16 *duplex)
+{
+	s32 status;
+
+	DEBUGFUNC("e1000_get_link_up_info_vf");
+
+	status = E1000_READ_REG(hw, E1000_STATUS);
+	if (status & E1000_STATUS_SPEED_1000) {
+		*speed = SPEED_1000;
+		DEBUGOUT("1000 Mbs, ");
+	} else if (status & E1000_STATUS_SPEED_100) {
+		*speed = SPEED_100;
+		DEBUGOUT("100 Mbs, ");
+	} else {
+		*speed = SPEED_10;
+		DEBUGOUT("10 Mbs, ");
+	}
+
+	if (status & E1000_STATUS_FD) {
+		*duplex = FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	} else {
+		*duplex = HALF_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_reset_hw_vf - Resets the HW
+ *  @hw: pointer to the HW structure
+ *
+ *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
+ *  This is all the reset we can perform on a VF.
+ **/
+STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	u32 timeout = E1000_VF_INIT_TIMEOUT;
+	s32 ret_val = -E1000_ERR_MAC_INIT;
+	u32 ctrl, msgbuf[3];
+	u8 *addr = (u8 *)(&msgbuf[1]);
+
+	DEBUGFUNC("e1000_reset_hw_vf");
+
+	DEBUGOUT("Issuing a function level reset to MAC\n");
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+	/* we cannot reset while the RSTI / RSTD bits are asserted */
+	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
+		timeout--;
+		usec_delay(5);
+	}
+
+	if (timeout) {
+		/* mailbox timeout can now become active */
+		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
+
+		msgbuf[0] = E1000_VF_RESET;
+		mbx->ops.write_posted(hw, msgbuf, 1, 0);
+
+		msec_delay(10);
+
+		/* set our "perm_addr" based on info provided by PF */
+		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
+		if (!ret_val) {
+			if (msgbuf[0] == (E1000_VF_RESET |
+			    E1000_VT_MSGTYPE_ACK))
+				memcpy(hw->mac.perm_addr, addr, 6);
+			else
+				ret_val = -E1000_ERR_MAC_INIT;
+		}
+	}
+
+	return ret_val;
+}
+
+/**
+ *  e1000_init_hw_vf - Inits the HW
+ *  @hw: pointer to the HW structure
+ *
+ *  Not much to do here except clear the PF Reset indication if there is one.
+ **/
+STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_init_hw_vf");
+
+	/* attempt to set and restore our mac address */
+	e1000_rar_set_vf(hw, hw->mac.addr, 0);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_rar_set_vf - set device MAC address
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index receive address array register
+ **/
+STATIC void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
+			     u32 E1000_UNUSEDARG index)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	u32 msgbuf[3];
+	u8 *msg_addr = (u8 *)(&msgbuf[1]);
+	s32 ret_val;
+
+	UNREFERENCED_1PARAMETER(index);
+	memset(msgbuf, 0, 12);
+	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
+	memcpy(msg_addr, addr, 6);
+	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
+
+	if (!ret_val)
+		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
+
+	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
+
+	/* if nacked the address was rejected, use "perm_addr" */
+	if (!ret_val &&
+	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
+		e1000_read_mac_addr_vf(hw);
+}
+
+/**
+ *  e1000_hash_mc_addr_vf - Generate a multicast hash value
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: pointer to a multicast address
+ *
+ *  Generates a multicast address hash value which is used to determine
+ *  the multicast filter table array address and new table value.
+ **/
+STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
+{
+	u32 hash_value, hash_mask;
+	u8 bit_shift = 0;
+
+	DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+	/* Register count multiplied by bits per register */
+	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+	/*
+	 * The bit_shift is the number of left-shifts
+	 * where 0xFF would still fall within the hash mask.
+	 */
+	while (hash_mask >> bit_shift != 0xFF)
+		bit_shift++;
+
+	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+				  (((u16) mc_addr[5]) << bit_shift)));
+
+	return hash_value;
+}
+
+STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
+				     u32 *msg, u16 size)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	u32 retmsg[E1000_VFMAILBOX_SIZE];
+	s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
+
+	if (!retval)
+		mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
+}
+
+/**
+ *  e1000_update_mc_addr_list_vf - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates the Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
+				  u8 *mc_addr_list, u32 mc_addr_count)
+{
+	u32 msgbuf[E1000_VFMAILBOX_SIZE];
+	u16 *hash_list = (u16 *)&msgbuf[1];
+	u32 hash_value;
+	u32 i;
+
+	DEBUGFUNC("e1000_update_mc_addr_list_vf");
+
+	/* Each entry in the list uses 1 16 bit word.  We have 30
+	 * 16 bit words available in our HW msg buffer (minus 1 for the
+	 * msg type).  That's 30 hash values if we pack 'em right.  If
+	 * there are more than 30 MC addresses to add then punt the
+	 * extras for now and then add code to handle more than 30 later.
+	 * It would be unusual for a server to request that many multi-cast
+	 * addresses except for in large enterprise network environments.
+	 */
+
+	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
+
+	if (mc_addr_count > 30) {
+		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
+		mc_addr_count = 30;
+	}
+
+	msgbuf[0] = E1000_VF_SET_MULTICAST;
+	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
+
+	for (i = 0; i < mc_addr_count; i++) {
+		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
+		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+		hash_list[i] = hash_value & 0x0FFF;
+		mc_addr_list += ETH_ADDR_LEN;
+	}
+
+	e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
+}
+
+/**
+ *  e1000_vfta_set_vf - Set/Unset vlan filter table address
+ *  @hw: pointer to the HW structure
+ *  @vid: determines the vfta register and bit to set/unset
+ *  @set: if true then set bit, else clear bit
+ **/
+void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
+{
+	u32 msgbuf[2];
+
+	msgbuf[0] = E1000_VF_SET_VLAN;
+	msgbuf[1] = vid;
+	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
+	if (set)
+		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
+
+	e1000_write_msg_read_ack(hw, msgbuf, 2);
+}
+
+/** e1000_rlpml_set_vf - Set the maximum receive packet length
+ *  @hw: pointer to the HW structure
+ *  @max_size: value to assign to max frame size
+ **/
+void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
+{
+	u32 msgbuf[2];
+
+	msgbuf[0] = E1000_VF_SET_LPE;
+	msgbuf[1] = max_size;
+
+	e1000_write_msg_read_ack(hw, msgbuf, 2);
+}
+
+/**
+ *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
+ *  @hw: pointer to the HW structure
+ *  @uni: boolean indicating unicast promisc status
+ *  @multi: boolean indicating multicast promisc status
+ **/
+s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	u32 msgbuf = E1000_VF_SET_PROMISC;
+	s32 ret_val;
+
+	switch (type) {
+	case e1000_promisc_multicast:
+		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
+		break;
+	case e1000_promisc_enabled:
+		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
+	case e1000_promisc_unicast:
+		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
+	case e1000_promisc_disabled:
+		break;
+	default:
+		return -E1000_ERR_MAC_INIT;
+	}
+
+	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
+
+	if (!ret_val)
+		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
+
+	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
+		ret_val = -E1000_ERR_MAC_INIT;
+
+	return ret_val;
+}
+
+/**
+ *  e1000_read_mac_addr_vf - Read device MAC address
+ *  @hw: pointer to the HW structure
+ **/
+STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
+{
+	int i;
+
+	for (i = 0; i < ETH_ADDR_LEN; i++)
+		hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+	return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_check_for_link_vf - Check for link for a virtual interface
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see if the underlying PF is still talking to the VF and
+ *  if it is then it reports the link state to the hardware, otherwise
+ *  it reports link down and returns an error.
+ **/
+STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	struct e1000_mac_info *mac = &hw->mac;
+	s32 ret_val = E1000_SUCCESS;
+	u32 in_msg = 0;
+
+	DEBUGFUNC("e1000_check_for_link_vf");
+
+	/*
+	 * We only want to run this if there has been a rst asserted.
+	 * in this case that could mean a link change, device reset,
+	 * or a virtual function reset
+	 */
+
+	/* If we were hit with a reset or timeout drop the link */
+	if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
+		mac->get_link_status = true;
+
+	if (!mac->get_link_status)
+		goto out;
+
+	/* if link status is down no point in checking to see if pf is up */
+	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
+		goto out;
+
+	/* if the read failed it could just be a mailbox collision, best wait
+	 * until we are called again and don't report an error */
+	if (mbx->ops.read(hw, &in_msg, 1, 0))
+		goto out;
+
+	/* if incoming message isn't clear to send we are waiting on response */
+	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
+		/* message is not CTS and is NACK we have lost CTS status */
+		if (in_msg & E1000_VT_MSGTYPE_NACK)
+			ret_val = -E1000_ERR_MAC_INIT;
+		goto out;
+	}
+
+	/* at this point we know the PF is talking to us, check and see if
+	 * we are still accepting timeout or if we had a timeout failure.
+	 * if we failed then we will need to reinit */
+	if (!mbx->timeout) {
+		ret_val = -E1000_ERR_MAC_INIT;
+		goto out;
+	}
+
+	/* if we passed all the tests above then the link is up and we no
+	 * longer need to check for link */
+	mac->get_link_status = false;
+
+out:
+	return ret_val;
+}
+
diff --git a/drivers/net/e1000/base/e1000_vf.h b/drivers/net/e1000/base/e1000_vf.h
new file mode 100644
index 0000000..6d5bd99
--- /dev/null
+++ b/drivers/net/e1000/base/e1000_vf.h
@@ -0,0 +1,295 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2014, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#ifndef _E1000_VF_H_
+#define _E1000_VF_H_
+
+#include "e1000_osdep.h"
+#include "e1000_regs.h"
+#include "e1000_defines.h"
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82576_VF		0x10CA
+#define E1000_DEV_ID_I350_VF		0x1520
+
+#define E1000_VF_INIT_TIMEOUT		200 /* Num of retries to clear RSTI */
+
+/* Additional Descriptor Control definitions */
+#define E1000_TXDCTL_QUEUE_ENABLE	0x02000000 /* Ena specific Tx Queue */
+#define E1000_RXDCTL_QUEUE_ENABLE	0x02000000 /* Ena specific Rx Queue */
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL(_n)	((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
+				 (0x0C00C + ((_n) * 0x40)))
+#define E1000_SRRCTL_BSIZEPKT_SHIFT		10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK		0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT		2  /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY		0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF	0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT		0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS	0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION	0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK		0x0E000000
+#define E1000_SRRCTL_DROP_EN			0x80000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK	0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK	0x00003F00
+
+/* Interrupt Defines */
+#define E1000_EICR		0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n)		(0x01680 + ((_n) << 2))
+#define E1000_EICS		0x01520 /* Ext. Intr Cause Set -W0 */
+#define E1000_EIMS		0x01524 /* Ext. Intr Mask Set/Read -RW */
+#define E1000_EIMC		0x01528 /* Ext. Intr Mask Clear -WO */
+#define E1000_EIAC		0x0152C /* Ext. Intr Auto Clear -RW */
+#define E1000_EIAM		0x01530 /* Ext. Intr Ack Auto Clear Mask -RW */
+#define E1000_IVAR0		0x01700 /* Intr Vector Alloc (array) -RW */
+#define E1000_IVAR_MISC		0x01740 /* IVAR for "other" causes -RW */
+#define E1000_IVAR_VALID	0x80
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+	struct {
+		u64 pkt_addr; /* Packet buffer address */
+		u64 hdr_addr; /* Header buffer address */
+	} read;
+	struct {
+		struct {
+			union {
+				u32 data;
+				struct {
+					/* RSS type, Packet type */
+					u16 pkt_info;
+					/* Split Header, header buffer len */
+					u16 hdr_info;
+				} hs_rss;
+			} lo_dword;
+			union {
+				u32 rss; /* RSS Hash */
+				struct {
+					u16 ip_id; /* IP id */
+					u16 csum; /* Packet Checksum */
+				} csum_ip;
+			} hi_dword;
+		} lower;
+		struct {
+			u32 status_error; /* ext status/error */
+			u16 length; /* Packet length */
+			u16 vlan; /* VLAN tag */
+		} upper;
+	} wb;  /* writeback */
+};
+
+#define E1000_RXDADV_HDRBUFLEN_MASK	0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT	5
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+	struct {
+		u64 buffer_addr;    /* Address of descriptor's data buf */
+		u32 cmd_type_len;
+		u32 olinfo_status;
+	} read;
+	struct {
+		u64 rsvd;       /* Reserved */
+		u32 nxtseq_seed;
+		u32 status;
+	} wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT	0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA	0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP	0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS	0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RS	0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DEXT	0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE	0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE	0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_PAYLEN_SHIFT	14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+	u32 vlan_macip_lens;
+	u32 seqnum_seed;
+	u32 type_tucmd_mlhl;
+	u32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT	9  /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_TUCMD_IPV4		0x00000400  /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_L4T_TCP	0x00000800  /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_L4LEN_SHIFT	8  /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT		16  /* Adv ctxt MSS shift */
+
+enum e1000_mac_type {
+	e1000_undefined = 0,
+	e1000_vfadapt,
+	e1000_vfadapt_i350,
+	e1000_num_macs  /* List is 1-based, so subtract 1 for true count. */
+};
+
+struct e1000_vf_stats {
+	u64 base_gprc;
+	u64 base_gptc;
+	u64 base_gorc;
+	u64 base_gotc;
+	u64 base_mprc;
+	u64 base_gotlbc;
+	u64 base_gptlbc;
+	u64 base_gorlbc;
+	u64 base_gprlbc;
+
+	u32 last_gprc;
+	u32 last_gptc;
+	u32 last_gorc;
+	u32 last_gotc;
+	u32 last_mprc;
+	u32 last_gotlbc;
+	u32 last_gptlbc;
+	u32 last_gorlbc;
+	u32 last_gprlbc;
+
+	u64 gprc;
+	u64 gptc;
+	u64 gorc;
+	u64 gotc;
+	u64 mprc;
+	u64 gotlbc;
+	u64 gptlbc;
+	u64 gorlbc;
+	u64 gprlbc;
+};
+
+#include "e1000_mbx.h"
+
+struct e1000_mac_operations {
+	/* Function pointers for the MAC. */
+	s32  (*init_params)(struct e1000_hw *);
+	s32  (*check_for_link)(struct e1000_hw *);
+	void (*clear_vfta)(struct e1000_hw *);
+	s32  (*get_bus_info)(struct e1000_hw *);
+	s32  (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+	void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
+	s32  (*reset_hw)(struct e1000_hw *);
+	s32  (*init_hw)(struct e1000_hw *);
+	s32  (*setup_link)(struct e1000_hw *);
+	void (*write_vfta)(struct e1000_hw *, u32, u32);
+	void (*rar_set)(struct e1000_hw *, u8*, u32);
+	s32  (*read_mac_addr)(struct e1000_hw *);
+};
+
+struct e1000_mac_info {
+	struct e1000_mac_operations ops;
+	u8 addr[6];
+	u8 perm_addr[6];
+
+	enum e1000_mac_type type;
+
+	u16 mta_reg_count;
+	u16 rar_entry_count;
+
+	bool get_link_status;
+};
+
+struct e1000_mbx_operations {
+	s32 (*init_params)(struct e1000_hw *hw);
+	s32 (*read)(struct e1000_hw *, u32 *, u16,  u16);
+	s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
+	s32 (*read_posted)(struct e1000_hw *, u32 *, u16,  u16);
+	s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
+	s32 (*check_for_msg)(struct e1000_hw *, u16);
+	s32 (*check_for_ack)(struct e1000_hw *, u16);
+	s32 (*check_for_rst)(struct e1000_hw *, u16);
+};
+
+struct e1000_mbx_stats {
+	u32 msgs_tx;
+	u32 msgs_rx;
+
+	u32 acks;
+	u32 reqs;
+	u32 rsts;
+};
+
+struct e1000_mbx_info {
+	struct e1000_mbx_operations ops;
+	struct e1000_mbx_stats stats;
+	u32 timeout;
+	u32 usec_delay;
+	u16 size;
+};
+
+struct e1000_dev_spec_vf {
+	u32 vf_number;
+	u32 v2p_mailbox;
+};
+
+struct e1000_hw {
+	void *back;
+
+	u8 *hw_addr;
+	u8 *flash_address;
+	unsigned long io_base;
+
+	struct e1000_mac_info  mac;
+	struct e1000_mbx_info mbx;
+
+	union {
+		struct e1000_dev_spec_vf vf;
+	} dev_spec;
+
+	u16 device_id;
+	u16 subsystem_vendor_id;
+	u16 subsystem_device_id;
+	u16 vendor_id;
+
+	u8  revision_id;
+};
+
+enum e1000_promisc_type {
+	e1000_promisc_disabled = 0,   /* all promisc modes disabled */
+	e1000_promisc_unicast = 1,    /* unicast promiscuous enabled */
+	e1000_promisc_multicast = 2,  /* multicast promiscuous enabled */
+	e1000_promisc_enabled = 3,    /* both uni and multicast promisc */
+	e1000_num_promisc_types
+};
+
+/* These functions must be implemented by drivers */
+s32  e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
+void e1000_rlpml_set_vf(struct e1000_hw *, u16);
+s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type);
+#endif /* _E1000_VF_H_ */
diff --git a/drivers/net/e1000/e1000_ethdev.h b/drivers/net/e1000/e1000_ethdev.h
new file mode 100644
index 0000000..c451faa
--- /dev/null
+++ b/drivers/net/e1000/e1000_ethdev.h
@@ -0,0 +1,340 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _E1000_ETHDEV_H_
+#define _E1000_ETHDEV_H_
+
+/* need update link, bit flag */
+#define E1000_FLAG_NEED_LINK_UPDATE (uint32_t)(1 << 0)
+#define E1000_FLAG_MAILBOX          (uint32_t)(1 << 1)
+
+/*
+ * Defines that were not part of e1000_hw.h as they are not used by the FreeBSD
+ * driver.
+ */
+#define E1000_ADVTXD_POPTS_TXSM     0x00000200 /* L4 Checksum offload request */
+#define E1000_ADVTXD_POPTS_IXSM     0x00000100 /* IP Checksum offload request */
+#define E1000_ADVTXD_TUCMD_L4T_RSV  0x00001800 /* L4 Packet TYPE of Reserved */
+#define E1000_RXD_STAT_TMST         0x10000    /* Timestamped Packet indication */
+#define E1000_RXD_ERR_CKSUM_BIT     29
+#define E1000_RXD_ERR_CKSUM_MSK     3
+#define E1000_ADVTXD_MACLEN_SHIFT   9          /* Bit shift for l2_len */
+#define E1000_CTRL_EXT_EXTEND_VLAN  (1<<26)    /* EXTENDED VLAN */
+#define IGB_VFTA_SIZE 128
+
+#define IGB_MAX_RX_QUEUE_NUM           8
+#define IGB_MAX_RX_QUEUE_NUM_82576     16
+
+#define E1000_SYN_FILTER_ENABLE        0x00000001 /* syn filter enable field */
+#define E1000_SYN_FILTER_QUEUE         0x0000000E /* syn filter queue field */
+#define E1000_SYN_FILTER_QUEUE_SHIFT   1          /* syn filter queue field */
+#define E1000_RFCTL_SYNQFP             0x00080000 /* SYNQFP in RFCTL register */
+
+#define E1000_ETQF_ETHERTYPE           0x0000FFFF
+#define E1000_ETQF_QUEUE               0x00070000
+#define E1000_ETQF_QUEUE_SHIFT         16
+#define E1000_MAX_ETQF_FILTERS         8
+
+#define E1000_IMIR_DSTPORT             0x0000FFFF
+#define E1000_IMIR_PRIORITY            0xE0000000
+#define E1000_MAX_TTQF_FILTERS         8
+#define E1000_2TUPLE_MAX_PRI           7
+
+#define E1000_MAX_FLEX_FILTERS           8
+#define E1000_MAX_FHFT                   4
+#define E1000_MAX_FHFT_EXT               4
+#define E1000_FHFT_SIZE_IN_DWD           64
+#define E1000_MAX_FLEX_FILTER_PRI        7
+#define E1000_MAX_FLEX_FILTER_LEN        128
+#define E1000_MAX_FLEX_FILTER_DWDS \
+	(E1000_MAX_FLEX_FILTER_LEN / sizeof(uint32_t))
+#define E1000_FLEX_FILTERS_MASK_SIZE \
+	(E1000_MAX_FLEX_FILTER_DWDS / 4)
+#define E1000_FHFT_QUEUEING_LEN          0x0000007F
+#define E1000_FHFT_QUEUEING_QUEUE        0x00000700
+#define E1000_FHFT_QUEUEING_PRIO         0x00070000
+#define E1000_FHFT_QUEUEING_OFFSET       0xFC
+#define E1000_FHFT_QUEUEING_QUEUE_SHIFT  8
+#define E1000_FHFT_QUEUEING_PRIO_SHIFT   16
+#define E1000_WUFC_FLEX_HQ               0x00004000
+
+#define E1000_SPQF_SRCPORT               0x0000FFFF
+
+#define E1000_MAX_FTQF_FILTERS           8
+#define E1000_FTQF_PROTOCOL_MASK         0x000000FF
+#define E1000_FTQF_5TUPLE_MASK_SHIFT     28
+#define E1000_FTQF_QUEUE_MASK            0x03ff0000
+#define E1000_FTQF_QUEUE_SHIFT           16
+#define E1000_FTQF_QUEUE_ENABLE          0x00000100
+
+#define IGB_RSS_OFFLOAD_ALL ( \
+	ETH_RSS_IPV4 | \
+	ETH_RSS_NONFRAG_IPV4_TCP | \
+	ETH_RSS_NONFRAG_IPV4_UDP | \
+	ETH_RSS_IPV6 | \
+	ETH_RSS_NONFRAG_IPV6_TCP | \
+	ETH_RSS_NONFRAG_IPV6_UDP | \
+	ETH_RSS_IPV6_EX | \
+	ETH_RSS_IPV6_TCP_EX | \
+	ETH_RSS_IPV6_UDP_EX)
+
+/* structure for interrupt relative data */
+struct e1000_interrupt {
+	uint32_t flags;
+	uint32_t mask;
+};
+
+/* local vfta copy */
+struct e1000_vfta {
+	uint32_t vfta[IGB_VFTA_SIZE];
+};
+
+/*
+ * VF data which used by PF host only
+ */
+#define E1000_MAX_VF_MC_ENTRIES         30
+struct e1000_vf_info {
+	uint8_t vf_mac_addresses[ETHER_ADDR_LEN];
+	uint16_t vf_mc_hashes[E1000_MAX_VF_MC_ENTRIES];
+	uint16_t num_vf_mc_hashes;
+	uint16_t default_vf_vlan_id;
+	uint16_t vlans_enabled;
+	uint16_t pf_qos;
+	uint16_t vlan_count;
+	uint16_t tx_rate;
+};
+
+TAILQ_HEAD(e1000_flex_filter_list, e1000_flex_filter);
+
+struct e1000_flex_filter_info {
+	uint16_t len;
+	uint32_t dwords[E1000_MAX_FLEX_FILTER_DWDS]; /* flex bytes in dword. */
+	/* if mask bit is 1b, do not compare corresponding byte in dwords. */
+	uint8_t mask[E1000_FLEX_FILTERS_MASK_SIZE];
+	uint8_t priority;
+};
+
+/* Flex filter structure */
+struct e1000_flex_filter {
+	TAILQ_ENTRY(e1000_flex_filter) entries;
+	uint16_t index; /* index of flex filter */
+	struct e1000_flex_filter_info filter_info;
+	uint16_t queue; /* rx queue assigned to */
+};
+
+TAILQ_HEAD(e1000_5tuple_filter_list, e1000_5tuple_filter);
+TAILQ_HEAD(e1000_2tuple_filter_list, e1000_2tuple_filter);
+
+struct e1000_5tuple_filter_info {
+	uint32_t dst_ip;
+	uint32_t src_ip;
+	uint16_t dst_port;
+	uint16_t src_port;
+	uint8_t proto;           /* l4 protocol. */
+	/* the packet matched above 5tuple and contain any set bit will hit this filter. */
+	uint8_t tcp_flags;
+	uint8_t priority;        /* seven levels (001b-111b), 111b is highest,
+				      used when more than one filter matches. */
+	uint8_t dst_ip_mask:1,   /* if mask is 1b, do not compare dst ip. */
+		src_ip_mask:1,   /* if mask is 1b, do not compare src ip. */
+		dst_port_mask:1, /* if mask is 1b, do not compare dst port. */
+		src_port_mask:1, /* if mask is 1b, do not compare src port. */
+		proto_mask:1;    /* if mask is 1b, do not compare protocol. */
+};
+
+struct e1000_2tuple_filter_info {
+	uint16_t dst_port;
+	uint8_t proto;           /* l4 protocol. */
+	/* the packet matched above 2tuple and contain any set bit will hit this filter. */
+	uint8_t tcp_flags;
+	uint8_t priority;        /* seven levels (001b-111b), 111b is highest,
+				      used when more than one filter matches. */
+	uint8_t dst_ip_mask:1,   /* if mask is 1b, do not compare dst ip. */
+		src_ip_mask:1,   /* if mask is 1b, do not compare src ip. */
+		dst_port_mask:1, /* if mask is 1b, do not compare dst port. */
+		src_port_mask:1, /* if mask is 1b, do not compare src port. */
+		proto_mask:1;    /* if mask is 1b, do not compare protocol. */
+};
+
+/* 5tuple filter structure */
+struct e1000_5tuple_filter {
+	TAILQ_ENTRY(e1000_5tuple_filter) entries;
+	uint16_t index;       /* the index of 5tuple filter */
+	struct e1000_5tuple_filter_info filter_info;
+	uint16_t queue;       /* rx queue assigned to */
+};
+
+/* 2tuple filter structure */
+struct e1000_2tuple_filter {
+	TAILQ_ENTRY(e1000_2tuple_filter) entries;
+	uint16_t index;         /* the index of 2tuple filter */
+	struct e1000_2tuple_filter_info filter_info;
+	uint16_t queue;       /* rx queue assigned to */
+};
+
+/*
+ * Structure to store filters' info.
+ */
+struct e1000_filter_info {
+	uint8_t ethertype_mask; /* Bit mask for every used ethertype filter */
+	/* store used ethertype filters*/
+	uint16_t ethertype_filters[E1000_MAX_ETQF_FILTERS];
+	uint8_t flex_mask;	/* Bit mask for every used flex filter */
+	struct e1000_flex_filter_list flex_list;
+	/* Bit mask for every used 5tuple filter */
+	uint8_t fivetuple_mask;
+	struct e1000_5tuple_filter_list fivetuple_list;
+	/* Bit mask for every used 2tuple filter */
+	uint8_t twotuple_mask;
+	struct e1000_2tuple_filter_list twotuple_list;
+};
+
+/*
+ * Structure to store private data for each driver instance (for each port).
+ */
+struct e1000_adapter {
+	struct e1000_hw         hw;
+	struct e1000_hw_stats   stats;
+	struct e1000_interrupt  intr;
+	struct e1000_vfta       shadow_vfta;
+	struct e1000_vf_info    *vfdata;
+	struct e1000_filter_info filter;
+};
+
+#define E1000_DEV_PRIVATE_TO_HW(adapter) \
+	(&((struct e1000_adapter *)adapter)->hw)
+
+#define E1000_DEV_PRIVATE_TO_STATS(adapter) \
+	(&((struct e1000_adapter *)adapter)->stats)
+
+#define E1000_DEV_PRIVATE_TO_INTR(adapter) \
+	(&((struct e1000_adapter *)adapter)->intr)
+
+#define E1000_DEV_PRIVATE_TO_VFTA(adapter) \
+	(&((struct e1000_adapter *)adapter)->shadow_vfta)
+
+#define E1000_DEV_PRIVATE_TO_P_VFDATA(adapter) \
+        (&((struct e1000_adapter *)adapter)->vfdata)
+
+#define E1000_DEV_PRIVATE_TO_FILTER_INFO(adapter) \
+	(&((struct e1000_adapter *)adapter)->filter)
+
+/*
+ * RX/TX IGB function prototypes
+ */
+void eth_igb_tx_queue_release(void *txq);
+void eth_igb_rx_queue_release(void *rxq);
+void igb_dev_clear_queues(struct rte_eth_dev *dev);
+
+int eth_igb_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
+		uint16_t nb_rx_desc, unsigned int socket_id,
+		const struct rte_eth_rxconf *rx_conf,
+		struct rte_mempool *mb_pool);
+
+uint32_t eth_igb_rx_queue_count(struct rte_eth_dev *dev,
+		uint16_t rx_queue_id);
+
+int eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset);
+
+int eth_igb_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
+		uint16_t nb_tx_desc, unsigned int socket_id,
+		const struct rte_eth_txconf *tx_conf);
+
+int eth_igb_rx_init(struct rte_eth_dev *dev);
+
+void eth_igb_tx_init(struct rte_eth_dev *dev);
+
+uint16_t eth_igb_xmit_pkts(void *txq, struct rte_mbuf **tx_pkts,
+		uint16_t nb_pkts);
+
+uint16_t eth_igb_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts,
+		uint16_t nb_pkts);
+
+uint16_t eth_igb_recv_scattered_pkts(void *rxq,
+		struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
+
+int eth_igb_rss_hash_update(struct rte_eth_dev *dev,
+			    struct rte_eth_rss_conf *rss_conf);
+
+int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
+			      struct rte_eth_rss_conf *rss_conf);
+
+int eth_igbvf_rx_init(struct rte_eth_dev *dev);
+
+void eth_igbvf_tx_init(struct rte_eth_dev *dev);
+
+/*
+ * misc function prototypes
+ */
+void igb_pf_host_init(struct rte_eth_dev *eth_dev);
+
+void igb_pf_mbx_process(struct rte_eth_dev *eth_dev);
+
+int igb_pf_host_configure(struct rte_eth_dev *eth_dev);
+
+/*
+ * RX/TX EM function prototypes
+ */
+void eth_em_tx_queue_release(void *txq);
+void eth_em_rx_queue_release(void *rxq);
+
+void em_dev_clear_queues(struct rte_eth_dev *dev);
+
+int eth_em_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
+		uint16_t nb_rx_desc, unsigned int socket_id,
+		const struct rte_eth_rxconf *rx_conf,
+		struct rte_mempool *mb_pool);
+
+uint32_t eth_em_rx_queue_count(struct rte_eth_dev *dev,
+		uint16_t rx_queue_id);
+
+int eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset);
+
+int eth_em_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
+		uint16_t nb_tx_desc, unsigned int socket_id,
+		const struct rte_eth_txconf *tx_conf);
+
+int eth_em_rx_init(struct rte_eth_dev *dev);
+
+void eth_em_tx_init(struct rte_eth_dev *dev);
+
+uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+		uint16_t nb_pkts);
+
+uint16_t eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+		uint16_t nb_pkts);
+
+uint16_t eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+		uint16_t nb_pkts);
+
+#endif /* _E1000_ETHDEV_H_ */
diff --git a/drivers/net/e1000/e1000_logs.h b/drivers/net/e1000/e1000_logs.h
new file mode 100644
index 0000000..4a92804
--- /dev/null
+++ b/drivers/net/e1000/e1000_logs.h
@@ -0,0 +1,78 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _E1000_LOGS_H_
+#define _E1000_LOGS_H_
+
+#define PMD_INIT_LOG(level, fmt, args...) \
+	rte_log(RTE_LOG_ ## level, RTE_LOGTYPE_PMD, \
+		"PMD: %s(): " fmt "\n", __func__, ##args)
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_INIT
+#define PMD_INIT_FUNC_TRACE() PMD_INIT_LOG(DEBUG, " >>")
+#else
+#define PMD_INIT_FUNC_TRACE() do { } while (0)
+#endif
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_RX
+#define PMD_RX_LOG(level, fmt, args...) \
+	RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_RX_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_TX
+#define PMD_TX_LOG(level, fmt, args...) \
+	RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_TX_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_TX_FREE
+#define PMD_TX_FREE_LOG(level, fmt, args...) \
+	RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
+#else
+#define PMD_TX_FREE_LOG(level, fmt, args...) do { } while(0)
+#endif
+
+#ifdef RTE_LIBRTE_E1000_DEBUG_DRIVER
+#define PMD_DRV_LOG_RAW(level, fmt, args...) \
+	RTE_LOG(level, PMD, "%s(): " fmt, __func__, ## args)
+#else
+#define PMD_DRV_LOG_RAW(level, fmt, args...) do { } while (0)
+#endif
+
+#define PMD_DRV_LOG(level, fmt, args...) \
+	PMD_DRV_LOG_RAW(level, fmt "\n", ## args)
+
+#endif /* _E1000_LOGS_H_ */
diff --git a/drivers/net/e1000/em_ethdev.c b/drivers/net/e1000/em_ethdev.c
new file mode 100644
index 0000000..d28030e
--- /dev/null
+++ b/drivers/net/e1000/em_ethdev.c
@@ -0,0 +1,1530 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+#include <stdio.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+
+#include <rte_common.h>
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_eal.h>
+#include <rte_atomic.h>
+#include <rte_malloc.h>
+#include <rte_dev.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+
+#define EM_EIAC			0x000DC
+
+#define PMD_ROUNDUP(x,y)	(((x) + (y) - 1)/(y) * (y))
+
+
+static int eth_em_configure(struct rte_eth_dev *dev);
+static int eth_em_start(struct rte_eth_dev *dev);
+static void eth_em_stop(struct rte_eth_dev *dev);
+static void eth_em_close(struct rte_eth_dev *dev);
+static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
+static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
+static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
+static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
+static int eth_em_link_update(struct rte_eth_dev *dev,
+				int wait_to_complete);
+static void eth_em_stats_get(struct rte_eth_dev *dev,
+				struct rte_eth_stats *rte_stats);
+static void eth_em_stats_reset(struct rte_eth_dev *dev);
+static void eth_em_infos_get(struct rte_eth_dev *dev,
+				struct rte_eth_dev_info *dev_info);
+static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
+				struct rte_eth_fc_conf *fc_conf);
+static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
+				struct rte_eth_fc_conf *fc_conf);
+static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
+static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
+static int eth_em_interrupt_action(struct rte_eth_dev *dev);
+static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
+							void *param);
+
+static int em_hw_init(struct e1000_hw *hw);
+static int em_hardware_init(struct e1000_hw *hw);
+static void em_hw_control_acquire(struct e1000_hw *hw);
+static void em_hw_control_release(struct e1000_hw *hw);
+static void em_init_manageability(struct e1000_hw *hw);
+static void em_release_manageability(struct e1000_hw *hw);
+
+static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
+
+static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
+		uint16_t vlan_id, int on);
+static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
+static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
+static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
+static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
+static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
+
+/*
+static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
+					uint16_t vlan_id, int on);
+*/
+static int eth_em_led_on(struct rte_eth_dev *dev);
+static int eth_em_led_off(struct rte_eth_dev *dev);
+
+static void em_intr_disable(struct e1000_hw *hw);
+static int em_get_rx_buffer_size(struct e1000_hw *hw);
+static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+		uint32_t index, uint32_t pool);
+static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
+
+#define EM_FC_PAUSE_TIME 0x0680
+#define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
+#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
+
+static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
+
+/*
+ * The set of PCI devices this driver supports
+ */
+static const struct rte_pci_id pci_id_em_map[] = {
+
+#define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
+#include "rte_pci_dev_ids.h"
+
+{0},
+};
+
+static const struct eth_dev_ops eth_em_ops = {
+	.dev_configure        = eth_em_configure,
+	.dev_start            = eth_em_start,
+	.dev_stop             = eth_em_stop,
+	.dev_close            = eth_em_close,
+	.promiscuous_enable   = eth_em_promiscuous_enable,
+	.promiscuous_disable  = eth_em_promiscuous_disable,
+	.allmulticast_enable  = eth_em_allmulticast_enable,
+	.allmulticast_disable = eth_em_allmulticast_disable,
+	.link_update          = eth_em_link_update,
+	.stats_get            = eth_em_stats_get,
+	.stats_reset          = eth_em_stats_reset,
+	.dev_infos_get        = eth_em_infos_get,
+	.mtu_set              = eth_em_mtu_set,
+	.vlan_filter_set      = eth_em_vlan_filter_set,
+	.vlan_offload_set     = eth_em_vlan_offload_set,
+	.rx_queue_setup       = eth_em_rx_queue_setup,
+	.rx_queue_release     = eth_em_rx_queue_release,
+	.rx_queue_count       = eth_em_rx_queue_count,
+	.rx_descriptor_done   = eth_em_rx_descriptor_done,
+	.tx_queue_setup       = eth_em_tx_queue_setup,
+	.tx_queue_release     = eth_em_tx_queue_release,
+	.dev_led_on           = eth_em_led_on,
+	.dev_led_off          = eth_em_led_off,
+	.flow_ctrl_get        = eth_em_flow_ctrl_get,
+	.flow_ctrl_set        = eth_em_flow_ctrl_set,
+	.mac_addr_add         = eth_em_rar_set,
+	.mac_addr_remove      = eth_em_rar_clear,
+};
+
+/**
+ * Atomically reads the link status information from global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ *   - Pointer to the structure rte_eth_dev to read from.
+ *   - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ *   - On success, zero.
+ *   - On failure, negative value.
+ */
+static inline int
+rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
+				struct rte_eth_link *link)
+{
+	struct rte_eth_link *dst = link;
+	struct rte_eth_link *src = &(dev->data->dev_link);
+
+	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+					*(uint64_t *)src) == 0)
+		return -1;
+
+	return 0;
+}
+
+/**
+ * Atomically writes the link status information into global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ *   - Pointer to the structure rte_eth_dev to read from.
+ *   - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ *   - On success, zero.
+ *   - On failure, negative value.
+ */
+static inline int
+rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
+				struct rte_eth_link *link)
+{
+	struct rte_eth_link *dst = &(dev->data->dev_link);
+	struct rte_eth_link *src = link;
+
+	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+					*(uint64_t *)src) == 0)
+		return -1;
+
+	return 0;
+}
+
+static int
+eth_em_dev_init(struct rte_eth_dev *eth_dev)
+{
+	struct rte_pci_device *pci_dev;
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+	struct e1000_vfta * shadow_vfta =
+		E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
+
+	pci_dev = eth_dev->pci_dev;
+	eth_dev->dev_ops = &eth_em_ops;
+	eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
+	eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
+
+	/* for secondary processes, we don't initialise any further as primary
+	 * has already done this work. Only check we don't need a different
+	 * RX function */
+	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
+		if (eth_dev->data->scattered_rx)
+			eth_dev->rx_pkt_burst =
+				(eth_rx_burst_t)&eth_em_recv_scattered_pkts;
+		return 0;
+	}
+
+	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
+	hw->device_id = pci_dev->id.device_id;
+
+	/* For ICH8 support we'll need to map the flash memory BAR */
+
+	if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
+			em_hw_init(hw) != 0) {
+		PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
+			"failed to init HW",
+			eth_dev->data->port_id, pci_dev->id.vendor_id,
+			pci_dev->id.device_id);
+		return -(ENODEV);
+	}
+
+	/* Allocate memory for storing MAC addresses */
+	eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
+			hw->mac.rar_entry_count, 0);
+	if (eth_dev->data->mac_addrs == NULL) {
+		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
+			"store MAC addresses",
+			ETHER_ADDR_LEN * hw->mac.rar_entry_count);
+		return -(ENOMEM);
+	}
+
+	/* Copy the permanent MAC address */
+	ether_addr_copy((struct ether_addr *) hw->mac.addr,
+		eth_dev->data->mac_addrs);
+
+	/* initialize the vfta */
+	memset(shadow_vfta, 0, sizeof(*shadow_vfta));
+
+	PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
+		     eth_dev->data->port_id, pci_dev->id.vendor_id,
+		     pci_dev->id.device_id);
+
+	rte_intr_callback_register(&(pci_dev->intr_handle),
+		eth_em_interrupt_handler, (void *)eth_dev);
+
+	return (0);
+}
+
+static struct eth_driver rte_em_pmd = {
+	{
+		.name = "rte_em_pmd",
+		.id_table = pci_id_em_map,
+		.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
+	},
+	.eth_dev_init = eth_em_dev_init,
+	.dev_private_size = sizeof(struct e1000_adapter),
+};
+
+static int
+rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
+{
+	rte_eth_driver_register(&rte_em_pmd);
+	return 0;
+}
+
+static int
+em_hw_init(struct e1000_hw *hw)
+{
+	int diag;
+
+	diag = hw->mac.ops.init_params(hw);
+	if (diag != 0) {
+		PMD_INIT_LOG(ERR, "MAC Initialization Error");
+		return diag;
+	}
+	diag = hw->nvm.ops.init_params(hw);
+	if (diag != 0) {
+		PMD_INIT_LOG(ERR, "NVM Initialization Error");
+		return diag;
+	}
+	diag = hw->phy.ops.init_params(hw);
+	if (diag != 0) {
+		PMD_INIT_LOG(ERR, "PHY Initialization Error");
+		return diag;
+	}
+	(void) e1000_get_bus_info(hw);
+
+	hw->mac.autoneg = 1;
+	hw->phy.autoneg_wait_to_complete = 0;
+	hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+
+	e1000_init_script_state_82541(hw, TRUE);
+	e1000_set_tbi_compatibility_82543(hw, TRUE);
+
+	/* Copper options */
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		hw->phy.mdix = 0; /* AUTO_ALL_MODES */
+		hw->phy.disable_polarity_correction = 0;
+		hw->phy.ms_type = e1000_ms_hw_default;
+	}
+
+	/*
+	 * Start from a known state, this is important in reading the nvm
+	 * and mac from that.
+	 */
+	e1000_reset_hw(hw);
+
+	/* Make sure we have a good EEPROM before we read from it */
+	if (e1000_validate_nvm_checksum(hw) < 0) {
+		/*
+		 * Some PCI-E parts fail the first check due to
+		 * the link being in sleep state, call it again,
+		 * if it fails a second time its a real issue.
+		 */
+		diag = e1000_validate_nvm_checksum(hw);
+		if (diag < 0) {
+			PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
+			goto error;
+		}
+	}
+
+	/* Read the permanent MAC address out of the EEPROM */
+	diag = e1000_read_mac_addr(hw);
+	if (diag != 0) {
+		PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
+		goto error;
+	}
+
+	/* Now initialize the hardware */
+	diag = em_hardware_init(hw);
+	if (diag != 0) {
+		PMD_INIT_LOG(ERR, "Hardware initialization failed");
+		goto error;
+	}
+
+	hw->mac.get_link_status = 1;
+
+	/* Indicate SOL/IDER usage */
+	diag = e1000_check_reset_block(hw);
+	if (diag < 0) {
+		PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
+			"SOL/IDER session");
+	}
+	return (0);
+
+error:
+	em_hw_control_release(hw);
+	return (diag);
+}
+
+static int
+eth_em_configure(struct rte_eth_dev *dev)
+{
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+	PMD_INIT_FUNC_TRACE();
+	intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+	PMD_INIT_FUNC_TRACE();
+
+	return (0);
+}
+
+static void
+em_set_pba(struct e1000_hw *hw)
+{
+	uint32_t pba;
+
+	/*
+	 * Packet Buffer Allocation (PBA)
+	 * Writing PBA sets the receive portion of the buffer
+	 * the remainder is used for the transmit buffer.
+	 * Devices before the 82547 had a Packet Buffer of 64K.
+	 * After the 82547 the buffer was reduced to 40K.
+	 */
+	switch (hw->mac.type) {
+		case e1000_82547:
+		case e1000_82547_rev_2:
+		/* 82547: Total Packet Buffer is 40K */
+			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
+			break;
+		case e1000_82571:
+		case e1000_82572:
+		case e1000_80003es2lan:
+			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+			break;
+		case e1000_82573: /* 82573: Total Packet Buffer is 32K */
+			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
+			break;
+		case e1000_82574:
+		case e1000_82583:
+			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
+			break;
+		case e1000_ich8lan:
+			pba = E1000_PBA_8K;
+			break;
+		case e1000_ich9lan:
+		case e1000_ich10lan:
+			pba = E1000_PBA_10K;
+			break;
+		case e1000_pchlan:
+		case e1000_pch2lan:
+			pba = E1000_PBA_26K;
+			break;
+		default:
+			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
+	}
+
+	E1000_WRITE_REG(hw, E1000_PBA, pba);
+}
+
+static int
+eth_em_start(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	int ret, mask;
+
+	PMD_INIT_FUNC_TRACE();
+
+	eth_em_stop(dev);
+
+	e1000_power_up_phy(hw);
+
+	/* Set default PBA value */
+	em_set_pba(hw);
+
+	/* Put the address into the Receive Address Array */
+	e1000_rar_set(hw, hw->mac.addr, 0);
+
+	/*
+	 * With the 82571 adapter, RAR[0] may be overwritten
+	 * when the other port is reset, we make a duplicate
+	 * in RAR[14] for that eventuality, this assures
+	 * the interface continues to function.
+	 */
+	if (hw->mac.type == e1000_82571) {
+		e1000_set_laa_state_82571(hw, TRUE);
+		e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
+	}
+
+	/* Initialize the hardware */
+	if (em_hardware_init(hw)) {
+		PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
+		return (-EIO);
+	}
+
+	E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
+
+	/* Configure for OS presence */
+	em_init_manageability(hw);
+
+	eth_em_tx_init(dev);
+
+	ret = eth_em_rx_init(dev);
+	if (ret) {
+		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
+		em_dev_clear_queues(dev);
+		return ret;
+	}
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
+			ETH_VLAN_EXTEND_MASK;
+	eth_em_vlan_offload_set(dev, mask);
+
+	/* Set Interrupt Throttling Rate to maximum allowed value. */
+	E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
+
+	/* Setup link speed and duplex */
+	switch (dev->data->dev_conf.link_speed) {
+	case ETH_LINK_SPEED_AUTONEG:
+		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+		else if (dev->data->dev_conf.link_duplex ==
+					ETH_LINK_HALF_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
+		else if (dev->data->dev_conf.link_duplex ==
+					ETH_LINK_FULL_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
+		else
+			goto error_invalid_config;
+		break;
+	case ETH_LINK_SPEED_10:
+		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
+		else if (dev->data->dev_conf.link_duplex ==
+					ETH_LINK_HALF_DUPLEX)
+			hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
+		else if (dev->data->dev_conf.link_duplex ==
+					ETH_LINK_FULL_DUPLEX)
+			hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
+		else
+			goto error_invalid_config;
+		break;
+	case ETH_LINK_SPEED_100:
+		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
+		else if (dev->data->dev_conf.link_duplex ==
+					ETH_LINK_HALF_DUPLEX)
+			hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
+		else if (dev->data->dev_conf.link_duplex ==
+					ETH_LINK_FULL_DUPLEX)
+			hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
+		else
+			goto error_invalid_config;
+		break;
+	case ETH_LINK_SPEED_1000:
+		if ((dev->data->dev_conf.link_duplex ==
+				ETH_LINK_AUTONEG_DUPLEX) ||
+			(dev->data->dev_conf.link_duplex ==
+					ETH_LINK_FULL_DUPLEX))
+			hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
+		else
+			goto error_invalid_config;
+		break;
+	case ETH_LINK_SPEED_10000:
+	default:
+		goto error_invalid_config;
+	}
+	e1000_setup_link(hw);
+
+	/* check if lsc interrupt feature is enabled */
+	if (dev->data->dev_conf.intr_conf.lsc != 0) {
+		ret = eth_em_interrupt_setup(dev);
+		if (ret) {
+			PMD_INIT_LOG(ERR, "Unable to setup interrupts");
+			em_dev_clear_queues(dev);
+			return ret;
+		}
+	}
+
+	PMD_INIT_LOG(DEBUG, "<<");
+
+	return (0);
+
+error_invalid_config:
+	PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
+		     dev->data->dev_conf.link_speed,
+		     dev->data->dev_conf.link_duplex, dev->data->port_id);
+	em_dev_clear_queues(dev);
+	return (-EINVAL);
+}
+
+/*********************************************************************
+ *
+ *  This routine disables all traffic on the adapter by issuing a
+ *  global reset on the MAC.
+ *
+ **********************************************************************/
+static void
+eth_em_stop(struct rte_eth_dev *dev)
+{
+	struct rte_eth_link link;
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	em_intr_disable(hw);
+	e1000_reset_hw(hw);
+	if (hw->mac.type >= e1000_82544)
+		E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+	/* Power down the phy. Needed to make the link go down */
+	e1000_power_down_phy(hw);
+
+	em_dev_clear_queues(dev);
+
+	/* clear the recorded link status */
+	memset(&link, 0, sizeof(link));
+	rte_em_dev_atomic_write_link_status(dev, &link);
+}
+
+static void
+eth_em_close(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	eth_em_stop(dev);
+	e1000_phy_hw_reset(hw);
+	em_release_manageability(hw);
+	em_hw_control_release(hw);
+}
+
+static int
+em_get_rx_buffer_size(struct e1000_hw *hw)
+{
+	uint32_t rx_buf_size;
+
+	rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
+	return rx_buf_size;
+}
+
+/*********************************************************************
+ *
+ *  Initialize the hardware
+ *
+ **********************************************************************/
+static int
+em_hardware_init(struct e1000_hw *hw)
+{
+	uint32_t rx_buf_size;
+	int diag;
+
+	/* Issue a global reset */
+	e1000_reset_hw(hw);
+
+	/* Let the firmware know the OS is in control */
+	em_hw_control_acquire(hw);
+
+	/*
+	 * These parameters control the automatic generation (Tx) and
+	 * response (Rx) to Ethernet PAUSE frames.
+	 * - High water mark should allow for at least two standard size (1518)
+	 *   frames to be received after sending an XOFF.
+	 * - Low water mark works best when it is very near the high water mark.
+	 *   This allows the receiver to restart by sending XON when it has
+	 *   drained a bit. Here we use an arbitrary value of 1500 which will
+	 *   restart after one full frame is pulled from the buffer. There
+	 *   could be several smaller frames in the buffer and if so they will
+	 *   not trigger the XON until their total number reduces the buffer
+	 *   by 1500.
+	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
+	 */
+	rx_buf_size = em_get_rx_buffer_size(hw);
+
+	hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
+	hw->fc.low_water = hw->fc.high_water - 1500;
+
+	if (hw->mac.type == e1000_80003es2lan)
+		hw->fc.pause_time = UINT16_MAX;
+	else
+		hw->fc.pause_time = EM_FC_PAUSE_TIME;
+
+	hw->fc.send_xon = 1;
+
+	/* Set Flow control, use the tunable location if sane */
+	if (em_fc_setting <= e1000_fc_full)
+		hw->fc.requested_mode = em_fc_setting;
+	else
+		hw->fc.requested_mode = e1000_fc_none;
+
+	/* Workaround: no TX flow ctrl for PCH */
+	if (hw->mac.type == e1000_pchlan)
+		hw->fc.requested_mode = e1000_fc_rx_pause;
+
+	/* Override - settings for PCH2LAN, ya its magic :) */
+	if (hw->mac.type == e1000_pch2lan) {
+		hw->fc.high_water = 0x5C20;
+		hw->fc.low_water = 0x5048;
+		hw->fc.pause_time = 0x0650;
+		hw->fc.refresh_time = 0x0400;
+	}
+
+	diag = e1000_init_hw(hw);
+	if (diag < 0)
+		return (diag);
+	e1000_check_for_link(hw);
+	return (0);
+}
+
+/* This function is based on em_update_stats_counters() in e1000/if_em.c */
+static void
+eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_hw_stats *stats =
+			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+	int pause_frames;
+
+	if(hw->phy.media_type == e1000_media_type_copper ||
+			(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+		stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
+		stats->sec += E1000_READ_REG(hw, E1000_SEC);
+	}
+
+	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
+	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
+	stats->scc += E1000_READ_REG(hw, E1000_SCC);
+	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
+
+	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
+	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
+	stats->colc += E1000_READ_REG(hw, E1000_COLC);
+	stats->dc += E1000_READ_REG(hw, E1000_DC);
+	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
+	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
+	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
+
+	/*
+	 * For watchdog management we need to know if we have been
+	 * paused during the last interval, so capture that here.
+	 */
+	pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
+	stats->xoffrxc += pause_frames;
+	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
+	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
+	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
+	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
+	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
+	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
+	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
+	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
+	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
+	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
+	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
+	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
+
+	/*
+	 * For the 64-bit byte counters the low dword must be read first.
+	 * Both registers clear on the read of the high dword.
+	 */
+
+	stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
+	stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
+	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
+	stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
+
+	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
+	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
+	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
+	stats->roc += E1000_READ_REG(hw, E1000_ROC);
+	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
+
+	stats->tor += E1000_READ_REG(hw, E1000_TORH);
+	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
+
+	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
+	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
+	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
+	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
+	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
+	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
+	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
+	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
+	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
+	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
+
+	/* Interrupt Counts */
+
+	if (hw->mac.type >= e1000_82571) {
+		stats->iac += E1000_READ_REG(hw, E1000_IAC);
+		stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
+		stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
+		stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
+		stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
+		stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
+		stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
+		stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
+		stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
+	}
+
+	if (hw->mac.type >= e1000_82543) {
+		stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
+		stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
+		stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
+		stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
+		stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
+		stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
+	}
+
+	if (rte_stats == NULL)
+		return;
+
+	/* Rx Errors */
+	rte_stats->ibadcrc = stats->crcerrs;
+	rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
+	rte_stats->imissed = stats->mpc;
+	rte_stats->ierrors = rte_stats->ibadcrc +
+	                     rte_stats->ibadlen +
+	                     rte_stats->imissed +
+	                     stats->rxerrc + stats->algnerrc + stats->cexterr;
+
+	/* Tx Errors */
+	rte_stats->oerrors = stats->ecol + stats->latecol;
+
+	rte_stats->ipackets = stats->gprc;
+	rte_stats->opackets = stats->gptc;
+	rte_stats->ibytes   = stats->gorc;
+	rte_stats->obytes   = stats->gotc;
+
+	/* XON/XOFF pause frames stats registers */
+	rte_stats->tx_pause_xon  = stats->xontxc;
+	rte_stats->rx_pause_xon  = stats->xonrxc;
+	rte_stats->tx_pause_xoff = stats->xofftxc;
+	rte_stats->rx_pause_xoff = stats->xoffrxc;
+}
+
+static void
+eth_em_stats_reset(struct rte_eth_dev *dev)
+{
+	struct e1000_hw_stats *hw_stats =
+			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+	/* HW registers are cleared on read */
+	eth_em_stats_get(dev, NULL);
+
+	/* Reset software totals */
+	memset(hw_stats, 0, sizeof(*hw_stats));
+}
+
+static uint32_t
+em_get_max_pktlen(const struct e1000_hw *hw)
+{
+	switch (hw->mac.type) {
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_ich9lan:
+	case e1000_ich10lan:
+	case e1000_pch2lan:
+	case e1000_82574:
+	case e1000_80003es2lan: /* 9K Jumbo Frame size */
+		return (0x2412);
+	case e1000_pchlan:
+		return (0x1000);
+	/* Adapters that do not support jumbo frames */
+	case e1000_82583:
+	case e1000_ich8lan:
+		return (ETHER_MAX_LEN);
+	default:
+		return (MAX_JUMBO_FRAME_SIZE);
+	}
+}
+
+static void
+eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
+	dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
+	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
+
+	/*
+	 * Starting with 631xESB hw supports 2 TX/RX queues per port.
+	 * Unfortunatelly, all these nics have just one TX context.
+	 * So we have few choises for TX:
+	 * - Use just one TX queue.
+	 * - Allow cksum offload only for one TX queue.
+	 * - Don't allow TX cksum offload at all.
+	 * For now, option #1 was chosen.
+	 * To use second RX queue we have to use extended RX descriptor
+	 * (Multiple Receive Queues are mutually exclusive with UDP
+	 * fragmentation and are not supported when a legacy receive
+	 * descriptor format is used).
+	 * Which means separate RX routinies - as legacy nics (82540, 82545)
+	 * don't support extended RXD.
+	 * To avoid it we support just one RX queue for now (no RSS).
+	 */
+
+	dev_info->max_rx_queues = 1;
+	dev_info->max_tx_queues = 1;
+}
+
+/* return 0 means link status changed, -1 means not changed */
+static int
+eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct rte_eth_link link, old;
+	int link_check, count;
+
+	link_check = 0;
+	hw->mac.get_link_status = 1;
+
+	/* possible wait-to-complete in up to 9 seconds */
+	for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
+		/* Read the real link status */
+		switch (hw->phy.media_type) {
+		case e1000_media_type_copper:
+			/* Do the work to read phy */
+			e1000_check_for_link(hw);
+			link_check = !hw->mac.get_link_status;
+			break;
+
+		case e1000_media_type_fiber:
+			e1000_check_for_link(hw);
+			link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+					E1000_STATUS_LU);
+			break;
+
+		case e1000_media_type_internal_serdes:
+			e1000_check_for_link(hw);
+			link_check = hw->mac.serdes_has_link;
+			break;
+
+		default:
+			break;
+		}
+		if (link_check || wait_to_complete == 0)
+			break;
+		rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
+	}
+	memset(&link, 0, sizeof(link));
+	rte_em_dev_atomic_read_link_status(dev, &link);
+	old = link;
+
+	/* Now we check if a transition has happened */
+	if (link_check && (link.link_status == 0)) {
+		hw->mac.ops.get_link_up_info(hw, &link.link_speed,
+			&link.link_duplex);
+		link.link_status = 1;
+	} else if (!link_check && (link.link_status == 1)) {
+		link.link_speed = 0;
+		link.link_duplex = 0;
+		link.link_status = 0;
+	}
+	rte_em_dev_atomic_write_link_status(dev, &link);
+
+	/* not changed */
+	if (old.link_status == link.link_status)
+		return -1;
+
+	/* changed */
+	return 0;
+}
+
+/*
+ * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means
+ * that the driver is loaded. For AMT version type f/w
+ * this means that the network i/f is open.
+ */
+static void
+em_hw_control_acquire(struct e1000_hw *hw)
+{
+	uint32_t ctrl_ext, swsm;
+
+	/* Let firmware know the driver has taken over */
+	if (hw->mac.type == e1000_82573) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
+
+	} else {
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+	}
+}
+
+/*
+ * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded. For AMT versions of the
+ * f/w this means that the network i/f is closed.
+ */
+static void
+em_hw_control_release(struct e1000_hw *hw)
+{
+	uint32_t ctrl_ext, swsm;
+
+	/* Let firmware taken over control of h/w */
+	if (hw->mac.type == e1000_82573) {
+		swsm = E1000_READ_REG(hw, E1000_SWSM);
+		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
+	} else {
+		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+	}
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features.
+ */
+static void
+em_init_manageability(struct e1000_hw *hw)
+{
+	if (e1000_enable_mng_pass_thru(hw)) {
+		uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
+		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+		/* disable hardware interception of ARP */
+		manc &= ~(E1000_MANC_ARP_EN);
+
+		/* enable receiving management packets to the host */
+		manc |= E1000_MANC_EN_MNG2HOST;
+		manc2h |= 1 << 5;  /* Mng Port 623 */
+		manc2h |= 1 << 6;  /* Mng Port 664 */
+		E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
+		E1000_WRITE_REG(hw, E1000_MANC, manc);
+	}
+}
+
+/*
+ * Give control back to hardware management
+ * controller if there is one.
+ */
+static void
+em_release_manageability(struct e1000_hw *hw)
+{
+	uint32_t manc;
+
+	if (e1000_enable_mng_pass_thru(hw)) {
+		manc = E1000_READ_REG(hw, E1000_MANC);
+
+		/* re-enable hardware interception of ARP */
+		manc |= E1000_MANC_ARP_EN;
+		manc &= ~E1000_MANC_EN_MNG2HOST;
+
+		E1000_WRITE_REG(hw, E1000_MANC, manc);
+	}
+}
+
+static void
+eth_em_promiscuous_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rctl;
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_promiscuous_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rctl;
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
+	if (dev->data->all_multicast == 1)
+		rctl |= E1000_RCTL_MPE;
+	else
+		rctl &= (~E1000_RCTL_MPE);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_allmulticast_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rctl;
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl |= E1000_RCTL_MPE;
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_em_allmulticast_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rctl;
+
+	if (dev->data->promiscuous == 1)
+		return; /* must remain in all_multicast mode */
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl &= (~E1000_RCTL_MPE);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static int
+eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vfta * shadow_vfta =
+		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+	uint32_t vfta;
+	uint32_t vid_idx;
+	uint32_t vid_bit;
+
+	vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
+			      E1000_VFTA_ENTRY_MASK);
+	vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
+	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
+	if (on)
+		vfta |= vid_bit;
+	else
+		vfta &= ~vid_bit;
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
+
+	/* update local VFTA copy */
+	shadow_vfta->vfta[vid_idx] = vfta;
+
+	return 0;
+}
+
+static void
+em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* Filter Table Disable */
+	reg = E1000_READ_REG(hw, E1000_RCTL);
+	reg &= ~E1000_RCTL_CFIEN;
+	reg &= ~E1000_RCTL_VFE;
+	E1000_WRITE_REG(hw, E1000_RCTL, reg);
+}
+
+static void
+em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vfta * shadow_vfta =
+		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+	uint32_t reg;
+	int i;
+
+	/* Filter Table Enable, CFI not used for packet acceptance */
+	reg = E1000_READ_REG(hw, E1000_RCTL);
+	reg &= ~E1000_RCTL_CFIEN;
+	reg |= E1000_RCTL_VFE;
+	E1000_WRITE_REG(hw, E1000_RCTL, reg);
+
+	/* restore vfta from local copy */
+	for (i = 0; i < IGB_VFTA_SIZE; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
+}
+
+static void
+em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* VLAN Mode Disable */
+	reg = E1000_READ_REG(hw, E1000_CTRL);
+	reg &= ~E1000_CTRL_VME;
+	E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+}
+
+static void
+em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* VLAN Mode Enable */
+	reg = E1000_READ_REG(hw, E1000_CTRL);
+	reg |= E1000_CTRL_VME;
+	E1000_WRITE_REG(hw, E1000_CTRL, reg);
+}
+
+static void
+eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
+{
+	if(mask & ETH_VLAN_STRIP_MASK){
+		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
+			em_vlan_hw_strip_enable(dev);
+		else
+			em_vlan_hw_strip_disable(dev);
+	}
+
+	if(mask & ETH_VLAN_FILTER_MASK){
+		if (dev->data->dev_conf.rxmode.hw_vlan_filter)
+			em_vlan_hw_filter_enable(dev);
+		else
+			em_vlan_hw_filter_disable(dev);
+	}
+}
+
+static void
+em_intr_disable(struct e1000_hw *hw)
+{
+	E1000_WRITE_REG(hw, E1000_IMC, ~0);
+}
+
+/**
+ * It enables the interrupt mask and then enable the interrupt.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_setup(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
+	rte_intr_enable(&(dev->pci_dev->intr_handle));
+	return (0);
+}
+
+/*
+ * It reads ICR and gets interrupt causes, check it and set a bit flag
+ * to update link status.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_get_status(struct rte_eth_dev *dev)
+{
+	uint32_t icr;
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+	/* read-on-clear nic registers here */
+	icr = E1000_READ_REG(hw, E1000_ICR);
+	if (icr & E1000_ICR_LSC) {
+		intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+	}
+
+	return 0;
+}
+
+/*
+ * It executes link_update after knowing an interrupt is prsent.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_em_interrupt_action(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+	uint32_t tctl, rctl;
+	struct rte_eth_link link;
+	int ret;
+
+	if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
+		return -1;
+
+	intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
+	rte_intr_enable(&(dev->pci_dev->intr_handle));
+
+	/* set get_link_status to check register later */
+	hw->mac.get_link_status = 1;
+	ret = eth_em_link_update(dev, 0);
+
+	/* check if link has changed */
+	if (ret < 0)
+		return 0;
+
+	memset(&link, 0, sizeof(link));
+	rte_em_dev_atomic_read_link_status(dev, &link);
+	if (link.link_status) {
+		PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
+			     dev->data->port_id, (unsigned)link.link_speed,
+			     link.link_duplex == ETH_LINK_FULL_DUPLEX ?
+			     "full-duplex" : "half-duplex");
+	} else {
+		PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
+	}
+	PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
+		     dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
+		     dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	if (link.link_status) {
+		/* enable Tx/Rx */
+		tctl |= E1000_TCTL_EN;
+		rctl |= E1000_RCTL_EN;
+	} else {
+		/* disable Tx/Rx */
+		tctl &= ~E1000_TCTL_EN;
+		rctl &= ~E1000_RCTL_EN;
+	}
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+	E1000_WRITE_FLUSH(hw);
+
+	return 0;
+}
+
+/**
+ * Interrupt handler which shall be registered at first.
+ *
+ * @param handle
+ *  Pointer to interrupt handle.
+ * @param param
+ *  The address of parameter (struct rte_eth_dev *) regsitered before.
+ *
+ * @return
+ *  void
+ */
+static void
+eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
+							void *param)
+{
+	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
+
+	eth_em_interrupt_get_status(dev);
+	eth_em_interrupt_action(dev);
+	_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
+}
+
+static int
+eth_em_led_on(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_em_led_off(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+	struct e1000_hw *hw;
+	uint32_t ctrl;
+	int tx_pause;
+	int rx_pause;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	fc_conf->pause_time = hw->fc.pause_time;
+	fc_conf->high_water = hw->fc.high_water;
+	fc_conf->low_water = hw->fc.low_water;
+	fc_conf->send_xon = hw->fc.send_xon;
+	fc_conf->autoneg = hw->mac.autoneg;
+
+	/*
+	 * Return rx_pause and tx_pause status according to actual setting of
+	 * the TFCE and RFCE bits in the CTRL register.
+	 */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	if (ctrl & E1000_CTRL_TFCE)
+		tx_pause = 1;
+	else
+		tx_pause = 0;
+
+	if (ctrl & E1000_CTRL_RFCE)
+		rx_pause = 1;
+	else
+		rx_pause = 0;
+
+	if (rx_pause && tx_pause)
+		fc_conf->mode = RTE_FC_FULL;
+	else if (rx_pause)
+		fc_conf->mode = RTE_FC_RX_PAUSE;
+	else if (tx_pause)
+		fc_conf->mode = RTE_FC_TX_PAUSE;
+	else
+		fc_conf->mode = RTE_FC_NONE;
+
+	return 0;
+}
+
+static int
+eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+	struct e1000_hw *hw;
+	int err;
+	enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
+		e1000_fc_none,
+		e1000_fc_rx_pause,
+		e1000_fc_tx_pause,
+		e1000_fc_full
+	};
+	uint32_t rx_buf_size;
+	uint32_t max_high_water;
+	uint32_t rctl;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	if (fc_conf->autoneg != hw->mac.autoneg)
+		return -ENOTSUP;
+	rx_buf_size = em_get_rx_buffer_size(hw);
+	PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
+
+	/* At least reserve one Ethernet frame for watermark */
+	max_high_water = rx_buf_size - ETHER_MAX_LEN;
+	if ((fc_conf->high_water > max_high_water) ||
+	    (fc_conf->high_water < fc_conf->low_water)) {
+		PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
+		PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
+		return (-EINVAL);
+	}
+
+	hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
+	hw->fc.pause_time     = fc_conf->pause_time;
+	hw->fc.high_water     = fc_conf->high_water;
+	hw->fc.low_water      = fc_conf->low_water;
+	hw->fc.send_xon	      = fc_conf->send_xon;
+
+	err = e1000_setup_link_generic(hw);
+	if (err == E1000_SUCCESS) {
+
+		/* check if we want to forward MAC frames - driver doesn't have native
+		 * capability to do that, so we'll write the registers ourselves */
+
+		rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+		/* set or clear MFLCN.PMCF bit depending on configuration */
+		if (fc_conf->mac_ctrl_frame_fwd != 0)
+			rctl |= E1000_RCTL_PMCF;
+		else
+			rctl &= ~E1000_RCTL_PMCF;
+
+		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+		E1000_WRITE_FLUSH(hw);
+
+		return 0;
+	}
+
+	PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
+	return (-EIO);
+}
+
+static void
+eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+		uint32_t index, __rte_unused uint32_t pool)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	e1000_rar_set(hw, mac_addr->addr_bytes, index);
+}
+
+static void
+eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
+{
+	uint8_t addr[ETHER_ADDR_LEN];
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	memset(addr, 0, sizeof(addr));
+
+	e1000_rar_set(hw, addr, index);
+}
+
+static int
+eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
+{
+	struct rte_eth_dev_info dev_info;
+	struct e1000_hw *hw;
+	uint32_t frame_size;
+	uint32_t rctl;
+
+	eth_em_infos_get(dev, &dev_info);
+	frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
+
+	/* check that mtu is within the allowed range */
+	if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
+		return -EINVAL;
+
+	/* refuse mtu that requires the support of scattered packets when this
+	 * feature has not been enabled before. */
+	if (!dev->data->scattered_rx &&
+	    frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
+		return -EINVAL;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+	/* switch to jumbo mode if needed */
+	if (frame_size > ETHER_MAX_LEN) {
+		dev->data->dev_conf.rxmode.jumbo_frame = 1;
+		rctl |= E1000_RCTL_LPE;
+	} else {
+		dev->data->dev_conf.rxmode.jumbo_frame = 0;
+		rctl &= ~E1000_RCTL_LPE;
+	}
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+	/* update max frame size */
+	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
+	return 0;
+}
+
+struct rte_driver em_pmd_drv = {
+	.type = PMD_PDEV,
+	.init = rte_em_pmd_init,
+};
+
+PMD_REGISTER_DRIVER(em_pmd_drv);
diff --git a/drivers/net/e1000/em_rxtx.c b/drivers/net/e1000/em_rxtx.c
new file mode 100644
index 0000000..3a79e8b
--- /dev/null
+++ b/drivers/net/e1000/em_rxtx.c
@@ -0,0 +1,1865 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_prefetch.h>
+#include <rte_ip.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+#include "base/e1000_osdep.h"
+
+#define	E1000_TXD_VLAN_SHIFT	16
+
+#define E1000_RXDCTL_GRAN	0x01000000 /* RXDCTL Granularity */
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+	struct rte_mbuf *m;
+
+	m = __rte_mbuf_raw_alloc(mp);
+	__rte_mbuf_sanity_check_raw(m, 0);
+	return (m);
+}
+
+#define RTE_MBUF_DATA_DMA_ADDR(mb)             \
+	(uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
+
+#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
+	(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct em_rx_entry {
+	struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct em_tx_entry {
+	struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+	uint16_t next_id; /**< Index of next descriptor in ring. */
+	uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct em_rx_queue {
+	struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
+	volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
+	uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
+	volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
+	volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
+	struct em_rx_entry *sw_ring;   /**< address of RX software ring. */
+	struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+	struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
+	uint16_t            nb_rx_desc; /**< number of RX descriptors. */
+	uint16_t            rx_tail;    /**< current value of RDT register. */
+	uint16_t            nb_rx_hold; /**< number of held free RX desc. */
+	uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
+	uint16_t            queue_id;   /**< RX queue index. */
+	uint8_t             port_id;    /**< Device port identifier. */
+	uint8_t             pthresh;    /**< Prefetch threshold register. */
+	uint8_t             hthresh;    /**< Host threshold register. */
+	uint8_t             wthresh;    /**< Write-back threshold register. */
+	uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
+};
+
+/**
+ * Hardware context number
+ */
+enum {
+	EM_CTX_0    = 0, /**< CTX0 */
+	EM_CTX_NUM  = 1, /**< CTX NUM */
+};
+
+/** Offload features */
+union em_vlan_macip {
+	uint32_t data;
+	struct {
+		uint16_t l3_len:9; /**< L3 (IP) Header Length. */
+		uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
+		uint16_t vlan_tci;
+		/**< VLAN Tag Control Identifier (CPU order). */
+	} f;
+};
+
+/*
+ * Compare mask for vlan_macip_len.data,
+ * should be in sync with em_vlan_macip.f layout.
+ * */
+#define TX_VLAN_CMP_MASK        0xFFFF0000  /**< VLAN length - 16-bits. */
+#define TX_MAC_LEN_CMP_MASK     0x0000FE00  /**< MAC length - 7-bits. */
+#define TX_IP_LEN_CMP_MASK      0x000001FF  /**< IP  length - 9-bits. */
+/** MAC+IP  length. */
+#define TX_MACIP_LEN_CMP_MASK   (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
+
+/**
+ * Structure to check if new context need be built
+ */
+struct em_ctx_info {
+	uint64_t flags;              /**< ol_flags related to context build. */
+	uint32_t cmp_mask;           /**< compare mask */
+	union em_vlan_macip hdrlen;  /**< L2 and L3 header lenghts */
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct em_tx_queue {
+	volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
+	uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
+	struct em_tx_entry    *sw_ring; /**< virtual address of SW ring. */
+	volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
+	uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
+	uint16_t               tx_tail;  /**< Current value of TDT register. */
+	uint16_t               tx_free_thresh;/**< minimum TX before freeing. */
+	/**< Number of TX descriptors to use before RS bit is set. */
+	uint16_t               tx_rs_thresh;
+	/** Number of TX descriptors used since RS bit was set. */
+	uint16_t               nb_tx_used;
+	/** Index to last TX descriptor to have been cleaned. */
+	uint16_t	       last_desc_cleaned;
+	/** Total number of TX descriptors ready to be allocated. */
+	uint16_t               nb_tx_free;
+	uint16_t               queue_id; /**< TX queue index. */
+	uint8_t                port_id;  /**< Device port identifier. */
+	uint8_t                pthresh;  /**< Prefetch threshold register. */
+	uint8_t                hthresh;  /**< Host threshold register. */
+	uint8_t                wthresh;  /**< Write-back threshold register. */
+	struct em_ctx_info ctx_cache;
+	/**< Hardware context history.*/
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_em_prefetch(p)	rte_prefetch0(p)
+#else
+#define rte_em_prefetch(p)	do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p)	do {} while(0)
+#endif
+
+#ifndef DEFAULT_TX_FREE_THRESH
+#define DEFAULT_TX_FREE_THRESH  32
+#endif /* DEFAULT_TX_FREE_THRESH */
+
+#ifndef DEFAULT_TX_RS_THRESH
+#define DEFAULT_TX_RS_THRESH  32
+#endif /* DEFAULT_TX_RS_THRESH */
+
+
+/*********************************************************************
+ *
+ *  TX function
+ *
+ **********************************************************************/
+
+/*
+ * Populates TX context descriptor.
+ */
+static inline void
+em_set_xmit_ctx(struct em_tx_queue* txq,
+		volatile struct e1000_context_desc *ctx_txd,
+		uint64_t flags,
+		union em_vlan_macip hdrlen)
+{
+	uint32_t cmp_mask, cmd_len;
+	uint16_t ipcse, l2len;
+	struct e1000_context_desc ctx;
+
+	cmp_mask = 0;
+	cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
+
+	l2len = hdrlen.f.l2_len;
+	ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
+
+	/* setup IPCS* fields */
+	ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
+	ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
+			offsetof(struct ipv4_hdr, hdr_checksum));
+
+	/*
+	 * When doing checksum or TCP segmentation with IPv6 headers,
+	 * IPCSE field should be set t0 0.
+	 */
+	if (flags & PKT_TX_IP_CKSUM) {
+		ctx.lower_setup.ip_fields.ipcse =
+			(uint16_t)rte_cpu_to_le_16(ipcse - 1);
+		cmd_len |= E1000_TXD_CMD_IP;
+		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+	} else {
+		ctx.lower_setup.ip_fields.ipcse = 0;
+	}
+
+	/* setup TUCS* fields */
+	ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
+	ctx.upper_setup.tcp_fields.tucse = 0;
+
+	switch (flags & PKT_TX_L4_MASK) {
+	case PKT_TX_UDP_CKSUM:
+		ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
+				offsetof(struct udp_hdr, dgram_cksum));
+		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+		break;
+	case PKT_TX_TCP_CKSUM:
+		ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
+				offsetof(struct tcp_hdr, cksum));
+		cmd_len |= E1000_TXD_CMD_TCP;
+		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+		break;
+	default:
+		ctx.upper_setup.tcp_fields.tucso = 0;
+	}
+
+	ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
+	ctx.tcp_seg_setup.data = 0;
+
+	*ctx_txd = ctx;
+
+	txq->ctx_cache.flags = flags;
+	txq->ctx_cache.cmp_mask = cmp_mask;
+	txq->ctx_cache.hdrlen = hdrlen;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
+		union em_vlan_macip hdrlen)
+{
+	/* If match with the current context */
+	if (likely (txq->ctx_cache.flags == flags &&
+			((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
+			txq->ctx_cache.cmp_mask) == 0))
+		return (EM_CTX_0);
+
+	/* Mismatch */
+	return (EM_CTX_NUM);
+}
+
+/* Reset transmit descriptors after they have been used */
+static inline int
+em_xmit_cleanup(struct em_tx_queue *txq)
+{
+	struct em_tx_entry *sw_ring = txq->sw_ring;
+	volatile struct e1000_data_desc *txr = txq->tx_ring;
+	uint16_t last_desc_cleaned = txq->last_desc_cleaned;
+	uint16_t nb_tx_desc = txq->nb_tx_desc;
+	uint16_t desc_to_clean_to;
+	uint16_t nb_tx_to_clean;
+
+	/* Determine the last descriptor needing to be cleaned */
+	desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
+	if (desc_to_clean_to >= nb_tx_desc)
+		desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
+
+	/* Check to make sure the last descriptor to clean is done */
+	desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
+	if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
+	{
+		PMD_TX_FREE_LOG(DEBUG,
+				"TX descriptor %4u is not done"
+				"(port=%d queue=%d)", desc_to_clean_to,
+				txq->port_id, txq->queue_id);
+		/* Failed to clean any descriptors, better luck next time */
+		return -(1);
+	}
+
+	/* Figure out how many descriptors will be cleaned */
+	if (last_desc_cleaned > desc_to_clean_to)
+		nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
+							desc_to_clean_to);
+	else
+		nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
+						last_desc_cleaned);
+
+	PMD_TX_FREE_LOG(DEBUG,
+			"Cleaning %4u TX descriptors: %4u to %4u "
+			"(port=%d queue=%d)", nb_tx_to_clean,
+			last_desc_cleaned, desc_to_clean_to, txq->port_id,
+			txq->queue_id);
+
+	/*
+	 * The last descriptor to clean is done, so that means all the
+	 * descriptors from the last descriptor that was cleaned
+	 * up to the last descriptor with the RS bit set
+	 * are done. Only reset the threshold descriptor.
+	 */
+	txr[desc_to_clean_to].upper.fields.status = 0;
+
+	/* Update the txq to reflect the last descriptor that was cleaned */
+	txq->last_desc_cleaned = desc_to_clean_to;
+	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
+
+	/* No Error */
+	return (0);
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
+{
+	static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
+	static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
+	uint32_t tmp;
+
+	tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
+	tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+	return (tmp);
+}
+
+uint16_t
+eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+		uint16_t nb_pkts)
+{
+	struct em_tx_queue *txq;
+	struct em_tx_entry *sw_ring;
+	struct em_tx_entry *txe, *txn;
+	volatile struct e1000_data_desc *txr;
+	volatile struct e1000_data_desc *txd;
+	struct rte_mbuf     *tx_pkt;
+	struct rte_mbuf     *m_seg;
+	uint64_t buf_dma_addr;
+	uint32_t popts_spec;
+	uint32_t cmd_type_len;
+	uint16_t slen;
+	uint64_t ol_flags;
+	uint16_t tx_id;
+	uint16_t tx_last;
+	uint16_t nb_tx;
+	uint16_t nb_used;
+	uint64_t tx_ol_req;
+	uint32_t ctx;
+	uint32_t new_ctx;
+	union em_vlan_macip hdrlen;
+
+	txq = tx_queue;
+	sw_ring = txq->sw_ring;
+	txr     = txq->tx_ring;
+	tx_id   = txq->tx_tail;
+	txe = &sw_ring[tx_id];
+
+	/* Determine if the descriptor ring needs to be cleaned. */
+	if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) {
+		em_xmit_cleanup(txq);
+	}
+
+	/* TX loop */
+	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+		new_ctx = 0;
+		tx_pkt = *tx_pkts++;
+
+		RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+		/*
+		 * Determine how many (if any) context descriptors
+		 * are needed for offload functionality.
+		 */
+		ol_flags = tx_pkt->ol_flags;
+
+		/* If hardware offload required */
+		tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
+		if (tx_ol_req) {
+			hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
+			hdrlen.f.l2_len = tx_pkt->l2_len;
+			hdrlen.f.l3_len = tx_pkt->l3_len;
+			/* If new context to be built or reuse the exist ctx. */
+			ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
+
+			/* Only allocate context descriptor if required*/
+			new_ctx = (ctx == EM_CTX_NUM);
+		}
+
+		/*
+		 * Keep track of how many descriptors are used this loop
+		 * This will always be the number of segments + the number of
+		 * Context descriptors required to transmit the packet
+		 */
+		nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
+
+		/*
+		 * The number of descriptors that must be allocated for a
+		 * packet is the number of segments of that packet, plus 1
+		 * Context Descriptor for the hardware offload, if any.
+		 * Determine the last TX descriptor to allocate in the TX ring
+		 * for the packet, starting from the current position (tx_id)
+		 * in the ring.
+		 */
+		tx_last = (uint16_t) (tx_id + nb_used - 1);
+
+		/* Circular ring */
+		if (tx_last >= txq->nb_tx_desc)
+			tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+		PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+			   " tx_first=%u tx_last=%u",
+			   (unsigned) txq->port_id,
+			   (unsigned) txq->queue_id,
+			   (unsigned) tx_pkt->pkt_len,
+			   (unsigned) tx_id,
+			   (unsigned) tx_last);
+
+		/*
+		 * Make sure there are enough TX descriptors available to
+		 * transmit the entire packet.
+		 * nb_used better be less than or equal to txq->tx_rs_thresh
+		 */
+		while (unlikely (nb_used > txq->nb_tx_free)) {
+			PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
+					"nb_used=%4u nb_free=%4u "
+					"(port=%d queue=%d)",
+					nb_used, txq->nb_tx_free,
+					txq->port_id, txq->queue_id);
+
+			if (em_xmit_cleanup(txq) != 0) {
+				/* Could not clean any descriptors */
+				if (nb_tx == 0)
+					return (0);
+				goto end_of_tx;
+			}
+		}
+
+		/*
+		 * By now there are enough free TX descriptors to transmit
+		 * the packet.
+		 */
+
+		/*
+		 * Set common flags of all TX Data Descriptors.
+		 *
+		 * The following bits must be set in all Data Descriptors:
+		 *    - E1000_TXD_DTYP_DATA
+		 *    - E1000_TXD_DTYP_DEXT
+		 *
+		 * The following bits must be set in the first Data Descriptor
+		 * and are ignored in the other ones:
+		 *    - E1000_TXD_POPTS_IXSM
+		 *    - E1000_TXD_POPTS_TXSM
+		 *
+		 * The following bits must be set in the last Data Descriptor
+		 * and are ignored in the other ones:
+		 *    - E1000_TXD_CMD_VLE
+		 *    - E1000_TXD_CMD_IFCS
+		 *
+		 * The following bits must only be set in the last Data
+		 * Descriptor:
+		 *   - E1000_TXD_CMD_EOP
+		 *
+		 * The following bits can be set in any Data Descriptor, but
+		 * are only set in the last Data Descriptor:
+		 *   - E1000_TXD_CMD_RS
+		 */
+		cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+			E1000_TXD_CMD_IFCS;
+		popts_spec = 0;
+
+		/* Set VLAN Tag offload fields. */
+		if (ol_flags & PKT_TX_VLAN_PKT) {
+			cmd_type_len |= E1000_TXD_CMD_VLE;
+			popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
+		}
+
+		if (tx_ol_req) {
+			/*
+			 * Setup the TX Context Descriptor if required
+			 */
+			if (new_ctx) {
+				volatile struct e1000_context_desc *ctx_txd;
+
+				ctx_txd = (volatile struct e1000_context_desc *)
+					&txr[tx_id];
+
+				txn = &sw_ring[txe->next_id];
+				RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+				if (txe->mbuf != NULL) {
+					rte_pktmbuf_free_seg(txe->mbuf);
+					txe->mbuf = NULL;
+				}
+
+				em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
+					hdrlen);
+
+				txe->last_id = tx_last;
+				tx_id = txe->next_id;
+				txe = txn;
+			}
+
+			/*
+			 * Setup the TX Data Descriptor,
+			 * This path will go through
+			 * whatever new/reuse the context descriptor
+			 */
+			popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
+		}
+
+		m_seg = tx_pkt;
+		do {
+			txd = &txr[tx_id];
+			txn = &sw_ring[txe->next_id];
+
+			if (txe->mbuf != NULL)
+				rte_pktmbuf_free_seg(txe->mbuf);
+			txe->mbuf = m_seg;
+
+			/*
+			 * Set up Transmit Data Descriptor.
+			 */
+			slen = m_seg->data_len;
+			buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
+
+			txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
+			txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
+			txd->upper.data = rte_cpu_to_le_32(popts_spec);
+
+			txe->last_id = tx_last;
+			tx_id = txe->next_id;
+			txe = txn;
+			m_seg = m_seg->next;
+		} while (m_seg != NULL);
+
+		/*
+		 * The last packet data descriptor needs End Of Packet (EOP)
+		 */
+		cmd_type_len |= E1000_TXD_CMD_EOP;
+		txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
+		txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
+
+		/* Set RS bit only on threshold packets' last descriptor */
+		if (txq->nb_tx_used >= txq->tx_rs_thresh) {
+			PMD_TX_FREE_LOG(DEBUG,
+					"Setting RS bit on TXD id=%4u "
+					"(port=%d queue=%d)",
+					tx_last, txq->port_id, txq->queue_id);
+
+			cmd_type_len |= E1000_TXD_CMD_RS;
+
+			/* Update txq RS bit counters */
+			txq->nb_tx_used = 0;
+		}
+		txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
+	}
+end_of_tx:
+	rte_wmb();
+
+	/*
+	 * Set the Transmit Descriptor Tail (TDT)
+	 */
+	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+		(unsigned) txq->port_id, (unsigned) txq->queue_id,
+		(unsigned) tx_id, (unsigned) nb_tx);
+	E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
+	txq->tx_tail = tx_id;
+
+	return (nb_tx);
+}
+
+/*********************************************************************
+ *
+ *  RX functions
+ *
+ **********************************************************************/
+
+static inline uint64_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+	uint64_t pkt_flags;
+
+	/* Check if VLAN present */
+	pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?  PKT_RX_VLAN_PKT : 0);
+
+	return pkt_flags;
+}
+
+static inline uint64_t
+rx_desc_error_to_pkt_flags(uint32_t rx_error)
+{
+	uint64_t pkt_flags = 0;
+
+	if (rx_error & E1000_RXD_ERR_IPE)
+		pkt_flags |= PKT_RX_IP_CKSUM_BAD;
+	if (rx_error & E1000_RXD_ERR_TCPE)
+		pkt_flags |= PKT_RX_L4_CKSUM_BAD;
+	return (pkt_flags);
+}
+
+uint16_t
+eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+		uint16_t nb_pkts)
+{
+	volatile struct e1000_rx_desc *rx_ring;
+	volatile struct e1000_rx_desc *rxdp;
+	struct em_rx_queue *rxq;
+	struct em_rx_entry *sw_ring;
+	struct em_rx_entry *rxe;
+	struct rte_mbuf *rxm;
+	struct rte_mbuf *nmb;
+	struct e1000_rx_desc rxd;
+	uint64_t dma_addr;
+	uint16_t pkt_len;
+	uint16_t rx_id;
+	uint16_t nb_rx;
+	uint16_t nb_hold;
+	uint8_t status;
+
+	rxq = rx_queue;
+
+	nb_rx = 0;
+	nb_hold = 0;
+	rx_id = rxq->rx_tail;
+	rx_ring = rxq->rx_ring;
+	sw_ring = rxq->sw_ring;
+	while (nb_rx < nb_pkts) {
+		/*
+		 * The order of operations here is important as the DD status
+		 * bit must not be read after any other descriptor fields.
+		 * rx_ring and rxdp are pointing to volatile data so the order
+		 * of accesses cannot be reordered by the compiler. If they were
+		 * not volatile, they could be reordered which could lead to
+		 * using invalid descriptor fields when read from rxd.
+		 */
+		rxdp = &rx_ring[rx_id];
+		status = rxdp->status;
+		if (! (status & E1000_RXD_STAT_DD))
+			break;
+		rxd = *rxdp;
+
+		/*
+		 * End of packet.
+		 *
+		 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+		 * likely to be invalid and to be dropped by the various
+		 * validation checks performed by the network stack.
+		 *
+		 * Allocate a new mbuf to replenish the RX ring descriptor.
+		 * If the allocation fails:
+		 *    - arrange for that RX descriptor to be the first one
+		 *      being parsed the next time the receive function is
+		 *      invoked [on the same queue].
+		 *
+		 *    - Stop parsing the RX ring and return immediately.
+		 *
+		 * This policy do not drop the packet received in the RX
+		 * descriptor for which the allocation of a new mbuf failed.
+		 * Thus, it allows that packet to be later retrieved if
+		 * mbuf have been freed in the mean time.
+		 * As a side effect, holding RX descriptors instead of
+		 * systematically giving them back to the NIC may lead to
+		 * RX ring exhaustion situations.
+		 * However, the NIC can gracefully prevent such situations
+		 * to happen by sending specific "back-pressure" flow control
+		 * frames to its peer(s).
+		 */
+		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+			   "status=0x%x pkt_len=%u",
+			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+			   (unsigned) rx_id, (unsigned) status,
+			   (unsigned) rte_le_to_cpu_16(rxd.length));
+
+		nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+		if (nmb == NULL) {
+			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+				   "queue_id=%u",
+				   (unsigned) rxq->port_id,
+				   (unsigned) rxq->queue_id);
+			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+			break;
+		}
+
+		nb_hold++;
+		rxe = &sw_ring[rx_id];
+		rx_id++;
+		if (rx_id == rxq->nb_rx_desc)
+			rx_id = 0;
+
+		/* Prefetch next mbuf while processing current one. */
+		rte_em_prefetch(sw_ring[rx_id].mbuf);
+
+		/*
+		 * When next RX descriptor is on a cache-line boundary,
+		 * prefetch the next 4 RX descriptors and the next 8 pointers
+		 * to mbufs.
+		 */
+		if ((rx_id & 0x3) == 0) {
+			rte_em_prefetch(&rx_ring[rx_id]);
+			rte_em_prefetch(&sw_ring[rx_id]);
+		}
+
+		/* Rearm RXD: attach new mbuf and reset status to zero. */
+
+		rxm = rxe->mbuf;
+		rxe->mbuf = nmb;
+		dma_addr =
+			rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+		rxdp->buffer_addr = dma_addr;
+		rxdp->status = 0;
+
+		/*
+		 * Initialize the returned mbuf.
+		 * 1) setup generic mbuf fields:
+		 *    - number of segments,
+		 *    - next segment,
+		 *    - packet length,
+		 *    - RX port identifier.
+		 * 2) integrate hardware offload data, if any:
+		 *    - RSS flag & hash,
+		 *    - IP checksum flag,
+		 *    - VLAN TCI, if any,
+		 *    - error flags.
+		 */
+		pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
+				rxq->crc_len);
+		rxm->data_off = RTE_PKTMBUF_HEADROOM;
+		rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
+		rxm->nb_segs = 1;
+		rxm->next = NULL;
+		rxm->pkt_len = pkt_len;
+		rxm->data_len = pkt_len;
+		rxm->port = rxq->port_id;
+
+		rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
+		rxm->ol_flags = rxm->ol_flags |
+				rx_desc_error_to_pkt_flags(rxd.errors);
+
+		/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+		rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
+
+		/*
+		 * Store the mbuf address into the next entry of the array
+		 * of returned packets.
+		 */
+		rx_pkts[nb_rx++] = rxm;
+	}
+	rxq->rx_tail = rx_id;
+
+	/*
+	 * If the number of free RX descriptors is greater than the RX free
+	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+	 * register.
+	 * Update the RDT with the value of the last processed RX descriptor
+	 * minus 1, to guarantee that the RDT register is never equal to the
+	 * RDH register, which creates a "full" ring situtation from the
+	 * hardware point of view...
+	 */
+	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+	if (nb_hold > rxq->rx_free_thresh) {
+		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+			   "nb_hold=%u nb_rx=%u",
+			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+			   (unsigned) rx_id, (unsigned) nb_hold,
+			   (unsigned) nb_rx);
+		rx_id = (uint16_t) ((rx_id == 0) ?
+			(rxq->nb_rx_desc - 1) : (rx_id - 1));
+		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+		nb_hold = 0;
+	}
+	rxq->nb_rx_hold = nb_hold;
+	return (nb_rx);
+}
+
+uint16_t
+eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+			 uint16_t nb_pkts)
+{
+	struct em_rx_queue *rxq;
+	volatile struct e1000_rx_desc *rx_ring;
+	volatile struct e1000_rx_desc *rxdp;
+	struct em_rx_entry *sw_ring;
+	struct em_rx_entry *rxe;
+	struct rte_mbuf *first_seg;
+	struct rte_mbuf *last_seg;
+	struct rte_mbuf *rxm;
+	struct rte_mbuf *nmb;
+	struct e1000_rx_desc rxd;
+	uint64_t dma; /* Physical address of mbuf data buffer */
+	uint16_t rx_id;
+	uint16_t nb_rx;
+	uint16_t nb_hold;
+	uint16_t data_len;
+	uint8_t status;
+
+	rxq = rx_queue;
+
+	nb_rx = 0;
+	nb_hold = 0;
+	rx_id = rxq->rx_tail;
+	rx_ring = rxq->rx_ring;
+	sw_ring = rxq->sw_ring;
+
+	/*
+	 * Retrieve RX context of current packet, if any.
+	 */
+	first_seg = rxq->pkt_first_seg;
+	last_seg = rxq->pkt_last_seg;
+
+	while (nb_rx < nb_pkts) {
+	next_desc:
+		/*
+		 * The order of operations here is important as the DD status
+		 * bit must not be read after any other descriptor fields.
+		 * rx_ring and rxdp are pointing to volatile data so the order
+		 * of accesses cannot be reordered by the compiler. If they were
+		 * not volatile, they could be reordered which could lead to
+		 * using invalid descriptor fields when read from rxd.
+		 */
+		rxdp = &rx_ring[rx_id];
+		status = rxdp->status;
+		if (! (status & E1000_RXD_STAT_DD))
+			break;
+		rxd = *rxdp;
+
+		/*
+		 * Descriptor done.
+		 *
+		 * Allocate a new mbuf to replenish the RX ring descriptor.
+		 * If the allocation fails:
+		 *    - arrange for that RX descriptor to be the first one
+		 *      being parsed the next time the receive function is
+		 *      invoked [on the same queue].
+		 *
+		 *    - Stop parsing the RX ring and return immediately.
+		 *
+		 * This policy does not drop the packet received in the RX
+		 * descriptor for which the allocation of a new mbuf failed.
+		 * Thus, it allows that packet to be later retrieved if
+		 * mbuf have been freed in the mean time.
+		 * As a side effect, holding RX descriptors instead of
+		 * systematically giving them back to the NIC may lead to
+		 * RX ring exhaustion situations.
+		 * However, the NIC can gracefully prevent such situations
+		 * to happen by sending specific "back-pressure" flow control
+		 * frames to its peer(s).
+		 */
+		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+			   "status=0x%x data_len=%u",
+			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+			   (unsigned) rx_id, (unsigned) status,
+			   (unsigned) rte_le_to_cpu_16(rxd.length));
+
+		nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+		if (nmb == NULL) {
+			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+				   "queue_id=%u", (unsigned) rxq->port_id,
+				   (unsigned) rxq->queue_id);
+			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+			break;
+		}
+
+		nb_hold++;
+		rxe = &sw_ring[rx_id];
+		rx_id++;
+		if (rx_id == rxq->nb_rx_desc)
+			rx_id = 0;
+
+		/* Prefetch next mbuf while processing current one. */
+		rte_em_prefetch(sw_ring[rx_id].mbuf);
+
+		/*
+		 * When next RX descriptor is on a cache-line boundary,
+		 * prefetch the next 4 RX descriptors and the next 8 pointers
+		 * to mbufs.
+		 */
+		if ((rx_id & 0x3) == 0) {
+			rte_em_prefetch(&rx_ring[rx_id]);
+			rte_em_prefetch(&sw_ring[rx_id]);
+		}
+
+		/*
+		 * Update RX descriptor with the physical address of the new
+		 * data buffer of the new allocated mbuf.
+		 */
+		rxm = rxe->mbuf;
+		rxe->mbuf = nmb;
+		dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+		rxdp->buffer_addr = dma;
+		rxdp->status = 0;
+
+		/*
+		 * Set data length & data buffer address of mbuf.
+		 */
+		data_len = rte_le_to_cpu_16(rxd.length);
+		rxm->data_len = data_len;
+		rxm->data_off = RTE_PKTMBUF_HEADROOM;
+
+		/*
+		 * If this is the first buffer of the received packet,
+		 * set the pointer to the first mbuf of the packet and
+		 * initialize its context.
+		 * Otherwise, update the total length and the number of segments
+		 * of the current scattered packet, and update the pointer to
+		 * the last mbuf of the current packet.
+		 */
+		if (first_seg == NULL) {
+			first_seg = rxm;
+			first_seg->pkt_len = data_len;
+			first_seg->nb_segs = 1;
+		} else {
+			first_seg->pkt_len += data_len;
+			first_seg->nb_segs++;
+			last_seg->next = rxm;
+		}
+
+		/*
+		 * If this is not the last buffer of the received packet,
+		 * update the pointer to the last mbuf of the current scattered
+		 * packet and continue to parse the RX ring.
+		 */
+		if (! (status & E1000_RXD_STAT_EOP)) {
+			last_seg = rxm;
+			goto next_desc;
+		}
+
+		/*
+		 * This is the last buffer of the received packet.
+		 * If the CRC is not stripped by the hardware:
+		 *   - Subtract the CRC	length from the total packet length.
+		 *   - If the last buffer only contains the whole CRC or a part
+		 *     of it, free the mbuf associated to the last buffer.
+		 *     If part of the CRC is also contained in the previous
+		 *     mbuf, subtract the length of that CRC part from the
+		 *     data length of the previous mbuf.
+		 */
+		rxm->next = NULL;
+		if (unlikely(rxq->crc_len > 0)) {
+			first_seg->pkt_len -= ETHER_CRC_LEN;
+			if (data_len <= ETHER_CRC_LEN) {
+				rte_pktmbuf_free_seg(rxm);
+				first_seg->nb_segs--;
+				last_seg->data_len = (uint16_t)
+					(last_seg->data_len -
+					 (ETHER_CRC_LEN - data_len));
+				last_seg->next = NULL;
+			} else
+				rxm->data_len =
+					(uint16_t) (data_len - ETHER_CRC_LEN);
+		}
+
+		/*
+		 * Initialize the first mbuf of the returned packet:
+		 *    - RX port identifier,
+		 *    - hardware offload data, if any:
+		 *      - IP checksum flag,
+		 *      - error flags.
+		 */
+		first_seg->port = rxq->port_id;
+
+		first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
+		first_seg->ol_flags = first_seg->ol_flags |
+					rx_desc_error_to_pkt_flags(rxd.errors);
+
+		/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+		rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
+
+		/* Prefetch data of first segment, if configured to do so. */
+		rte_packet_prefetch((char *)first_seg->buf_addr +
+			first_seg->data_off);
+
+		/*
+		 * Store the mbuf address into the next entry of the array
+		 * of returned packets.
+		 */
+		rx_pkts[nb_rx++] = first_seg;
+
+		/*
+		 * Setup receipt context for a new packet.
+		 */
+		first_seg = NULL;
+	}
+
+	/*
+	 * Record index of the next RX descriptor to probe.
+	 */
+	rxq->rx_tail = rx_id;
+
+	/*
+	 * Save receive context.
+	 */
+	rxq->pkt_first_seg = first_seg;
+	rxq->pkt_last_seg = last_seg;
+
+	/*
+	 * If the number of free RX descriptors is greater than the RX free
+	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+	 * register.
+	 * Update the RDT with the value of the last processed RX descriptor
+	 * minus 1, to guarantee that the RDT register is never equal to the
+	 * RDH register, which creates a "full" ring situtation from the
+	 * hardware point of view...
+	 */
+	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+	if (nb_hold > rxq->rx_free_thresh) {
+		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+			   "nb_hold=%u nb_rx=%u",
+			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+			   (unsigned) rx_id, (unsigned) nb_hold,
+			   (unsigned) nb_rx);
+		rx_id = (uint16_t) ((rx_id == 0) ?
+			(rxq->nb_rx_desc - 1) : (rx_id - 1));
+		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+		nb_hold = 0;
+	}
+	rxq->nb_rx_hold = nb_hold;
+	return (nb_rx);
+}
+
+/*
+ * Rings setup and release.
+ *
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
+ * This will also optimize cache line size effect.
+ * H/W supports up to cache line size 128.
+ */
+#define EM_ALIGN 128
+
+/*
+ * Maximum number of Ring Descriptors.
+ *
+ * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring
+ * desscriptors should meet the following condition:
+ * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
+ */
+#define EM_MIN_RING_DESC 32
+#define EM_MAX_RING_DESC 4096
+
+#define	EM_MAX_BUF_SIZE     16384
+#define EM_RCTL_FLXBUF_STEP 1024
+
+static const struct rte_memzone *
+ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
+		uint16_t queue_id, uint32_t ring_size, int socket_id)
+{
+	const struct rte_memzone *mz;
+	char z_name[RTE_MEMZONE_NAMESIZE];
+
+	snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
+		dev->driver->pci_drv.name, ring_name, dev->data->port_id,
+		queue_id);
+
+	if ((mz = rte_memzone_lookup(z_name)) != 0)
+		return (mz);
+
+#ifdef RTE_LIBRTE_XEN_DOM0
+	return rte_memzone_reserve_bounded(z_name, ring_size,
+			socket_id, 0, RTE_CACHE_LINE_SIZE, RTE_PGSIZE_2M);
+#else
+	return rte_memzone_reserve(z_name, ring_size, socket_id, 0);
+#endif
+}
+
+static void
+em_tx_queue_release_mbufs(struct em_tx_queue *txq)
+{
+	unsigned i;
+
+	if (txq->sw_ring != NULL) {
+		for (i = 0; i != txq->nb_tx_desc; i++) {
+			if (txq->sw_ring[i].mbuf != NULL) {
+				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+				txq->sw_ring[i].mbuf = NULL;
+			}
+		}
+	}
+}
+
+static void
+em_tx_queue_release(struct em_tx_queue *txq)
+{
+	if (txq != NULL) {
+		em_tx_queue_release_mbufs(txq);
+		rte_free(txq->sw_ring);
+		rte_free(txq);
+	}
+}
+
+void
+eth_em_tx_queue_release(void *txq)
+{
+	em_tx_queue_release(txq);
+}
+
+/* (Re)set dynamic em_tx_queue fields to defaults */
+static void
+em_reset_tx_queue(struct em_tx_queue *txq)
+{
+	uint16_t i, nb_desc, prev;
+	static const struct e1000_data_desc txd_init = {
+		.upper.fields = {.status = E1000_TXD_STAT_DD},
+	};
+
+	nb_desc = txq->nb_tx_desc;
+
+	/* Initialize ring entries */
+
+	prev = (uint16_t) (nb_desc - 1);
+
+	for (i = 0; i < nb_desc; i++) {
+		txq->tx_ring[i] = txd_init;
+		txq->sw_ring[i].mbuf = NULL;
+		txq->sw_ring[i].last_id = i;
+		txq->sw_ring[prev].next_id = i;
+		prev = i;
+	}
+
+	/*
+	 * Always allow 1 descriptor to be un-allocated to avoid
+	 * a H/W race condition
+	 */
+	txq->nb_tx_free = (uint16_t)(nb_desc - 1);
+	txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
+	txq->nb_tx_used = 0;
+	txq->tx_tail = 0;
+
+	memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
+}
+
+int
+eth_em_tx_queue_setup(struct rte_eth_dev *dev,
+			 uint16_t queue_idx,
+			 uint16_t nb_desc,
+			 unsigned int socket_id,
+			 const struct rte_eth_txconf *tx_conf)
+{
+	const struct rte_memzone *tz;
+	struct em_tx_queue *txq;
+	struct e1000_hw     *hw;
+	uint32_t tsize;
+	uint16_t tx_rs_thresh, tx_free_thresh;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/*
+	 * Validate number of transmit descriptors.
+	 * It must not exceed hardware maximum, and must be multiple
+	 * of EM_ALIGN.
+	 */
+	if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 ||
+			(nb_desc > EM_MAX_RING_DESC) ||
+			(nb_desc < EM_MIN_RING_DESC)) {
+		return -(EINVAL);
+	}
+
+	tx_free_thresh = tx_conf->tx_free_thresh;
+	if (tx_free_thresh == 0)
+		tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
+					DEFAULT_TX_FREE_THRESH);
+
+	tx_rs_thresh = tx_conf->tx_rs_thresh;
+	if (tx_rs_thresh == 0)
+		tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
+					DEFAULT_TX_RS_THRESH);
+
+	if (tx_free_thresh >= (nb_desc - 3)) {
+		PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
+			     "number of TX descriptors minus 3. "
+			     "(tx_free_thresh=%u port=%d queue=%d)",
+			     (unsigned int)tx_free_thresh,
+			     (int)dev->data->port_id, (int)queue_idx);
+		return -(EINVAL);
+	}
+	if (tx_rs_thresh > tx_free_thresh) {
+		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
+			     "tx_free_thresh. (tx_free_thresh=%u "
+			     "tx_rs_thresh=%u port=%d queue=%d)",
+			     (unsigned int)tx_free_thresh,
+			     (unsigned int)tx_rs_thresh,
+			     (int)dev->data->port_id,
+			     (int)queue_idx);
+		return -(EINVAL);
+	}
+
+	/*
+	 * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
+	 * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
+	 * by the NIC and all descriptors are written back after the NIC
+	 * accumulates WTHRESH descriptors.
+	 */
+	if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
+		PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
+			     "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
+			     "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
+			     (int)dev->data->port_id, (int)queue_idx);
+		return -(EINVAL);
+	}
+
+	/* Free memory prior to re-allocation if needed... */
+	if (dev->data->tx_queues[queue_idx] != NULL) {
+		em_tx_queue_release(dev->data->tx_queues[queue_idx]);
+		dev->data->tx_queues[queue_idx] = NULL;
+	}
+
+	/*
+	 * Allocate TX ring hardware descriptors. A memzone large enough to
+	 * handle the maximum ring size is allocated in order to allow for
+	 * resizing in later calls to the queue setup function.
+	 */
+	tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC;
+	if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
+			socket_id)) == NULL)
+		return (-ENOMEM);
+
+	/* Allocate the tx queue data structure. */
+	if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
+			RTE_CACHE_LINE_SIZE)) == NULL)
+		return (-ENOMEM);
+
+	/* Allocate software ring */
+	if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
+			sizeof(txq->sw_ring[0]) * nb_desc,
+			RTE_CACHE_LINE_SIZE)) == NULL) {
+		em_tx_queue_release(txq);
+		return (-ENOMEM);
+	}
+
+	txq->nb_tx_desc = nb_desc;
+	txq->tx_free_thresh = tx_free_thresh;
+	txq->tx_rs_thresh = tx_rs_thresh;
+	txq->pthresh = tx_conf->tx_thresh.pthresh;
+	txq->hthresh = tx_conf->tx_thresh.hthresh;
+	txq->wthresh = tx_conf->tx_thresh.wthresh;
+	txq->queue_id = queue_idx;
+	txq->port_id = dev->data->port_id;
+
+	txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
+#ifndef RTE_LIBRTE_XEN_DOM0
+	txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
+#else
+	txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+#endif
+	txq->tx_ring = (struct e1000_data_desc *) tz->addr;
+
+	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+		     txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+	em_reset_tx_queue(txq);
+
+	dev->data->tx_queues[queue_idx] = txq;
+	return (0);
+}
+
+static void
+em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
+{
+	unsigned i;
+
+	if (rxq->sw_ring != NULL) {
+		for (i = 0; i != rxq->nb_rx_desc; i++) {
+			if (rxq->sw_ring[i].mbuf != NULL) {
+				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+				rxq->sw_ring[i].mbuf = NULL;
+			}
+		}
+	}
+}
+
+static void
+em_rx_queue_release(struct em_rx_queue *rxq)
+{
+	if (rxq != NULL) {
+		em_rx_queue_release_mbufs(rxq);
+		rte_free(rxq->sw_ring);
+		rte_free(rxq);
+	}
+}
+
+void
+eth_em_rx_queue_release(void *rxq)
+{
+	em_rx_queue_release(rxq);
+}
+
+/* Reset dynamic em_rx_queue fields back to defaults */
+static void
+em_reset_rx_queue(struct em_rx_queue *rxq)
+{
+	rxq->rx_tail = 0;
+	rxq->nb_rx_hold = 0;
+	rxq->pkt_first_seg = NULL;
+	rxq->pkt_last_seg = NULL;
+}
+
+int
+eth_em_rx_queue_setup(struct rte_eth_dev *dev,
+		uint16_t queue_idx,
+		uint16_t nb_desc,
+		unsigned int socket_id,
+		const struct rte_eth_rxconf *rx_conf,
+		struct rte_mempool *mp)
+{
+	const struct rte_memzone *rz;
+	struct em_rx_queue *rxq;
+	struct e1000_hw     *hw;
+	uint32_t rsize;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/*
+	 * Validate number of receive descriptors.
+	 * It must not exceed hardware maximum, and must be multiple
+	 * of EM_ALIGN.
+	 */
+	if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 ||
+			(nb_desc > EM_MAX_RING_DESC) ||
+			(nb_desc < EM_MIN_RING_DESC)) {
+		return (-EINVAL);
+	}
+
+	/*
+	 * EM devices don't support drop_en functionality
+	 */
+	if (rx_conf->rx_drop_en) {
+		PMD_INIT_LOG(ERR, "drop_en functionality not supported by "
+			     "device");
+		return (-EINVAL);
+	}
+
+	/* Free memory prior to re-allocation if needed. */
+	if (dev->data->rx_queues[queue_idx] != NULL) {
+		em_rx_queue_release(dev->data->rx_queues[queue_idx]);
+		dev->data->rx_queues[queue_idx] = NULL;
+	}
+
+	/* Allocate RX ring for max possible mumber of hardware descriptors. */
+	rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC;
+	if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
+			socket_id)) == NULL)
+		return (-ENOMEM);
+
+	/* Allocate the RX queue data structure. */
+	if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
+			RTE_CACHE_LINE_SIZE)) == NULL)
+		return (-ENOMEM);
+
+	/* Allocate software ring. */
+	if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+			sizeof (rxq->sw_ring[0]) * nb_desc,
+			RTE_CACHE_LINE_SIZE)) == NULL) {
+		em_rx_queue_release(rxq);
+		return (-ENOMEM);
+	}
+
+	rxq->mb_pool = mp;
+	rxq->nb_rx_desc = nb_desc;
+	rxq->pthresh = rx_conf->rx_thresh.pthresh;
+	rxq->hthresh = rx_conf->rx_thresh.hthresh;
+	rxq->wthresh = rx_conf->rx_thresh.wthresh;
+	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+	rxq->queue_id = queue_idx;
+	rxq->port_id = dev->data->port_id;
+	rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
+				0 : ETHER_CRC_LEN);
+
+	rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
+	rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
+#ifndef RTE_LIBRTE_XEN_DOM0
+	rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
+#else
+	rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+#endif
+	rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
+
+	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+		     rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+	dev->data->rx_queues[queue_idx] = rxq;
+	em_reset_rx_queue(rxq);
+
+	return (0);
+}
+
+uint32_t
+eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define EM_RXQ_SCAN_INTERVAL 4
+	volatile struct e1000_rx_desc *rxdp;
+	struct em_rx_queue *rxq;
+	uint32_t desc = 0;
+
+	if (rx_queue_id >= dev->data->nb_rx_queues) {
+		PMD_RX_LOG(DEBUG, "Invalid RX queue_id=%d", rx_queue_id);
+		return 0;
+	}
+
+	rxq = dev->data->rx_queues[rx_queue_id];
+	rxdp = &(rxq->rx_ring[rxq->rx_tail]);
+
+	while ((desc < rxq->nb_rx_desc) &&
+		(rxdp->status & E1000_RXD_STAT_DD)) {
+		desc += EM_RXQ_SCAN_INTERVAL;
+		rxdp += EM_RXQ_SCAN_INTERVAL;
+		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+			rxdp = &(rxq->rx_ring[rxq->rx_tail +
+				desc - rxq->nb_rx_desc]);
+	}
+
+	return desc;
+}
+
+int
+eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
+{
+	volatile struct e1000_rx_desc *rxdp;
+	struct em_rx_queue *rxq = rx_queue;
+	uint32_t desc;
+
+	if (unlikely(offset >= rxq->nb_rx_desc))
+		return 0;
+	desc = rxq->rx_tail + offset;
+	if (desc >= rxq->nb_rx_desc)
+		desc -= rxq->nb_rx_desc;
+
+	rxdp = &rxq->rx_ring[desc];
+	return !!(rxdp->status & E1000_RXD_STAT_DD);
+}
+
+void
+em_dev_clear_queues(struct rte_eth_dev *dev)
+{
+	uint16_t i;
+	struct em_tx_queue *txq;
+	struct em_rx_queue *rxq;
+
+	for (i = 0; i < dev->data->nb_tx_queues; i++) {
+		txq = dev->data->tx_queues[i];
+		if (txq != NULL) {
+			em_tx_queue_release_mbufs(txq);
+			em_reset_tx_queue(txq);
+		}
+	}
+
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		rxq = dev->data->rx_queues[i];
+		if (rxq != NULL) {
+			em_rx_queue_release_mbufs(rxq);
+			em_reset_rx_queue(rxq);
+		}
+	}
+}
+
+/*
+ * Takes as input/output parameter RX buffer size.
+ * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
+ */
+static uint32_t
+em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
+{
+	/*
+	 * For BSIZE & BSEX all configurable sizes are:
+	 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+	 *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
+	 *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
+	 *  2048: rctl |= E1000_RCTL_SZ_2048;
+	 *  1024: rctl |= E1000_RCTL_SZ_1024;
+	 *   512: rctl |= E1000_RCTL_SZ_512;
+	 *   256: rctl |= E1000_RCTL_SZ_256;
+	 */
+	static const struct {
+		uint32_t bufsz;
+		uint32_t rctl;
+	} bufsz_to_rctl[] = {
+		{16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
+		{8192,  (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX)},
+		{4096,  (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX)},
+		{2048,  E1000_RCTL_SZ_2048},
+		{1024,  E1000_RCTL_SZ_1024},
+		{512,   E1000_RCTL_SZ_512},
+		{256,   E1000_RCTL_SZ_256},
+	};
+
+	int i;
+	uint32_t rctl_bsize;
+
+	rctl_bsize = *bufsz;
+
+	/*
+	 * Starting from 82571 it is possible to specify RX buffer size
+	 * by RCTL.FLXBUF. When this field is different from zero, the
+	 * RX buffer size = RCTL.FLXBUF * 1K
+	 * (e.g. t is possible to specify RX buffer size  1,2,...,15KB).
+	 * It is working ok on real HW, but by some reason doesn't work
+	 * on VMware emulated 82574L.
+	 * So for now, always use BSIZE/BSEX to setup RX buffer size.
+	 * If you don't plan to use it on VMware emulated 82574L and
+	 * would like to specify RX buffer size in 1K granularity,
+	 * uncomment the following lines:
+	 * ***************************************************************
+	 * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
+	 *		rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
+	 *	rctl_bsize /= EM_RCTL_FLXBUF_STEP;
+	 *	*bufsz = rctl_bsize;
+	 *	return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
+	 *		E1000_RCTL_FLXBUF_MASK);
+	 * }
+	 * ***************************************************************
+	 */
+
+	for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
+			i++) {
+		if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
+			*bufsz = bufsz_to_rctl[i].bufsz;
+			return (bufsz_to_rctl[i].rctl);
+		}
+	}
+
+	/* Should never happen. */
+	return (-EINVAL);
+}
+
+static int
+em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
+{
+	struct em_rx_entry *rxe = rxq->sw_ring;
+	uint64_t dma_addr;
+	unsigned i;
+	static const struct e1000_rx_desc rxd_init = {
+		.buffer_addr = 0,
+	};
+
+	/* Initialize software ring entries */
+	for (i = 0; i < rxq->nb_rx_desc; i++) {
+		volatile struct e1000_rx_desc *rxd;
+		struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
+
+		if (mbuf == NULL) {
+			PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+				     "queue_id=%hu", rxq->queue_id);
+			return (-ENOMEM);
+		}
+
+		dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
+
+		/* Clear HW ring memory */
+		rxq->rx_ring[i] = rxd_init;
+
+		rxd = &rxq->rx_ring[i];
+		rxd->buffer_addr = dma_addr;
+		rxe[i].mbuf = mbuf;
+	}
+
+	return 0;
+}
+
+/*********************************************************************
+ *
+ *  Enable receive unit.
+ *
+ **********************************************************************/
+int
+eth_em_rx_init(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw;
+	struct em_rx_queue *rxq;
+	uint32_t rctl;
+	uint32_t rfctl;
+	uint32_t rxcsum;
+	uint32_t rctl_bsize;
+	uint16_t i;
+	int ret;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/*
+	 * Make sure receives are disabled while setting
+	 * up the descriptor ring.
+	 */
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+
+	/* Disable extended descriptor type. */
+	rfctl &= ~E1000_RFCTL_EXTEN;
+	/* Disable accelerated acknowledge */
+	if (hw->mac.type == e1000_82574)
+		rfctl |= E1000_RFCTL_ACK_DIS;
+
+	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+
+	/*
+	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
+	 * long latencies are observed, like Lenovo X60. This
+	 * change eliminates the problem, but since having positive
+	 * values in RDTR is a known source of problems on other
+	 * platforms another solution is being sought.
+	 */
+	if (hw->mac.type == e1000_82573)
+		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
+
+	dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
+
+	/* Determine RX bufsize. */
+	rctl_bsize = EM_MAX_BUF_SIZE;
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		uint32_t buf_size;
+
+		rxq = dev->data->rx_queues[i];
+		buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
+			RTE_PKTMBUF_HEADROOM;
+		rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
+	}
+
+	rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
+
+	/* Configure and enable each RX queue. */
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		uint64_t bus_addr;
+		uint32_t rxdctl;
+
+		rxq = dev->data->rx_queues[i];
+
+		/* Allocate buffers for descriptor rings and setup queue */
+		ret = em_alloc_rx_queue_mbufs(rxq);
+		if (ret)
+			return ret;
+
+		/*
+		 * Reset crc_len in case it was changed after queue setup by a
+		 *  call to configure
+		 */
+		rxq->crc_len =
+			(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
+							0 : ETHER_CRC_LEN);
+
+		bus_addr = rxq->rx_ring_phys_addr;
+		E1000_WRITE_REG(hw, E1000_RDLEN(i),
+				rxq->nb_rx_desc *
+				sizeof(*rxq->rx_ring));
+		E1000_WRITE_REG(hw, E1000_RDBAH(i),
+				(uint32_t)(bus_addr >> 32));
+		E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+		E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+
+		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+		rxdctl &= 0xFE000000;
+		rxdctl |= rxq->pthresh & 0x3F;
+		rxdctl |= (rxq->hthresh & 0x3F) << 8;
+		rxdctl |= (rxq->wthresh & 0x3F) << 16;
+		rxdctl |= E1000_RXDCTL_GRAN;
+		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+
+		/*
+		 * Due to EM devices not having any sort of hardware
+		 * limit for packet length, jumbo frame of any size
+		 * can be accepted, thus we have to enable scattered
+		 * rx if jumbo frames are enabled (or if buffer size
+		 * is too small to accommodate non-jumbo packets)
+		 * to avoid splitting packets that don't fit into
+		 * one buffer.
+		 */
+		if (dev->data->dev_conf.rxmode.jumbo_frame ||
+				rctl_bsize < ETHER_MAX_LEN) {
+			if (!dev->data->scattered_rx)
+				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+			dev->rx_pkt_burst =
+				(eth_rx_burst_t)eth_em_recv_scattered_pkts;
+			dev->data->scattered_rx = 1;
+		}
+	}
+
+	if (dev->data->dev_conf.rxmode.enable_scatter) {
+		if (!dev->data->scattered_rx)
+			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+		dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
+		dev->data->scattered_rx = 1;
+	}
+
+	/*
+	 * Setup the Checksum Register.
+	 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+	 */
+	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+
+	if (dev->data->dev_conf.rxmode.hw_ip_checksum)
+		rxcsum |= E1000_RXCSUM_IPOFL;
+	else
+		rxcsum &= ~E1000_RXCSUM_IPOFL;
+	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+	/* No MRQ or RSS support for now */
+
+	/* Set early receive threshold on appropriate hw */
+	if ((hw->mac.type == e1000_ich9lan ||
+			hw->mac.type == e1000_pch2lan ||
+			hw->mac.type == e1000_ich10lan) &&
+			dev->data->dev_conf.rxmode.jumbo_frame == 1) {
+		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
+		E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
+	}
+
+	if (hw->mac.type == e1000_pch2lan) {
+		if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
+		else
+			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
+	}
+
+	/* Setup the Receive Control Register. */
+	if (dev->data->dev_conf.rxmode.hw_strip_crc)
+		rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+	else
+		rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+		E1000_RCTL_RDMTS_HALF |
+		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	/* Make sure VLAN Filters are off. */
+	rctl &= ~E1000_RCTL_VFE;
+	/* Don't store bad packets. */
+	rctl &= ~E1000_RCTL_SBP;
+	/* Legacy descriptor type. */
+	rctl &= ~E1000_RCTL_DTYP_MASK;
+
+	/*
+	 * Configure support of jumbo frames, if any.
+	 */
+	if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+		rctl |= E1000_RCTL_LPE;
+	else
+		rctl &= ~E1000_RCTL_LPE;
+
+	/* Enable Receives. */
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+	return 0;
+}
+
+/*********************************************************************
+ *
+ *  Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_em_tx_init(struct rte_eth_dev *dev)
+{
+	struct e1000_hw     *hw;
+	struct em_tx_queue *txq;
+	uint32_t tctl;
+	uint32_t txdctl;
+	uint16_t i;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/* Setup the Base and Length of the Tx Descriptor Rings. */
+	for (i = 0; i < dev->data->nb_tx_queues; i++) {
+		uint64_t bus_addr;
+
+		txq = dev->data->tx_queues[i];
+		bus_addr = txq->tx_ring_phys_addr;
+		E1000_WRITE_REG(hw, E1000_TDLEN(i),
+				txq->nb_tx_desc *
+				sizeof(*txq->tx_ring));
+		E1000_WRITE_REG(hw, E1000_TDBAH(i),
+				(uint32_t)(bus_addr >> 32));
+		E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+		/* Setup the HW Tx Head and Tail descriptor pointers. */
+		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+		/* Setup Transmit threshold registers. */
+		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+		/*
+		 * bit 22 is reserved, on some models should always be 0,
+		 * on others  - always 1.
+		 */
+		txdctl &= E1000_TXDCTL_COUNT_DESC;
+		txdctl |= txq->pthresh & 0x3F;
+		txdctl |= (txq->hthresh & 0x3F) << 8;
+		txdctl |= (txq->wthresh & 0x3F) << 16;
+		txdctl |= E1000_TXDCTL_GRAN;
+		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+	}
+
+	/* Program the Transmit Control Register. */
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+		 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+	/* This write will effectively turn on the transmit unit. */
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
diff --git a/drivers/net/e1000/igb_ethdev.c b/drivers/net/e1000/igb_ethdev.c
new file mode 100644
index 0000000..e4b370d
--- /dev/null
+++ b/drivers/net/e1000/igb_ethdev.c
@@ -0,0 +1,3656 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+#include <stdio.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+
+#include <rte_common.h>
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_eal.h>
+#include <rte_atomic.h>
+#include <rte_malloc.h>
+#include <rte_dev.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+
+/*
+ * Default values for port configuration
+ */
+#define IGB_DEFAULT_RX_FREE_THRESH  32
+#define IGB_DEFAULT_RX_PTHRESH      8
+#define IGB_DEFAULT_RX_HTHRESH      8
+#define IGB_DEFAULT_RX_WTHRESH      0
+
+#define IGB_DEFAULT_TX_PTHRESH      32
+#define IGB_DEFAULT_TX_HTHRESH      0
+#define IGB_DEFAULT_TX_WTHRESH      0
+
+/* Bit shift and mask */
+#define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
+#define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
+#define IGB_8_BIT_WIDTH  CHAR_BIT
+#define IGB_8_BIT_MASK   UINT8_MAX
+
+static int  eth_igb_configure(struct rte_eth_dev *dev);
+static int  eth_igb_start(struct rte_eth_dev *dev);
+static void eth_igb_stop(struct rte_eth_dev *dev);
+static void eth_igb_close(struct rte_eth_dev *dev);
+static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
+static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
+static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
+static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
+static int  eth_igb_link_update(struct rte_eth_dev *dev,
+				int wait_to_complete);
+static void eth_igb_stats_get(struct rte_eth_dev *dev,
+				struct rte_eth_stats *rte_stats);
+static void eth_igb_stats_reset(struct rte_eth_dev *dev);
+static void eth_igb_infos_get(struct rte_eth_dev *dev,
+			      struct rte_eth_dev_info *dev_info);
+static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
+				struct rte_eth_dev_info *dev_info);
+static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
+				struct rte_eth_fc_conf *fc_conf);
+static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
+				struct rte_eth_fc_conf *fc_conf);
+static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
+static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
+static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
+static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
+							void *param);
+static int  igb_hardware_init(struct e1000_hw *hw);
+static void igb_hw_control_acquire(struct e1000_hw *hw);
+static void igb_hw_control_release(struct e1000_hw *hw);
+static void igb_init_manageability(struct e1000_hw *hw);
+static void igb_release_manageability(struct e1000_hw *hw);
+
+static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
+
+static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
+		uint16_t vlan_id, int on);
+static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
+static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
+
+static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
+static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
+
+static int eth_igb_led_on(struct rte_eth_dev *dev);
+static int eth_igb_led_off(struct rte_eth_dev *dev);
+
+static void igb_intr_disable(struct e1000_hw *hw);
+static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
+static void eth_igb_rar_set(struct rte_eth_dev *dev,
+		struct ether_addr *mac_addr,
+		uint32_t index, uint32_t pool);
+static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
+
+static void igbvf_intr_disable(struct e1000_hw *hw);
+static int igbvf_dev_configure(struct rte_eth_dev *dev);
+static int igbvf_dev_start(struct rte_eth_dev *dev);
+static void igbvf_dev_stop(struct rte_eth_dev *dev);
+static void igbvf_dev_close(struct rte_eth_dev *dev);
+static int eth_igbvf_link_update(struct e1000_hw *hw);
+static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
+static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
+static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
+		uint16_t vlan_id, int on);
+static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
+static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
+static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
+				   struct rte_eth_rss_reta_entry64 *reta_conf,
+				   uint16_t reta_size);
+static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
+				  struct rte_eth_rss_reta_entry64 *reta_conf,
+				  uint16_t reta_size);
+
+static int eth_igb_syn_filter_set(struct rte_eth_dev *dev,
+			struct rte_eth_syn_filter *filter,
+			bool add);
+static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
+			struct rte_eth_syn_filter *filter);
+static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
+			enum rte_filter_op filter_op,
+			void *arg);
+static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter);
+static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter);
+static int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
+			struct rte_eth_flex_filter *filter,
+			bool add);
+static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
+			struct rte_eth_flex_filter *filter);
+static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
+			enum rte_filter_op filter_op,
+			void *arg);
+static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter);
+static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter);
+static int igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *filter,
+			bool add);
+static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *filter);
+static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
+				enum rte_filter_op filter_op,
+				void *arg);
+static int igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ethertype_filter *filter,
+			bool add);
+static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
+				enum rte_filter_op filter_op,
+				void *arg);
+static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ethertype_filter *filter);
+static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
+		     enum rte_filter_type filter_type,
+		     enum rte_filter_op filter_op,
+		     void *arg);
+
+/*
+ * Define VF Stats MACRO for Non "cleared on read" register
+ */
+#define UPDATE_VF_STAT(reg, last, cur)            \
+{                                                 \
+	u32 latest = E1000_READ_REG(hw, reg);     \
+	cur += latest - last;                     \
+	last = latest;                            \
+}
+
+
+#define IGB_FC_PAUSE_TIME 0x0680
+#define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
+#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
+
+#define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
+
+static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
+
+/*
+ * The set of PCI devices this driver supports
+ */
+static const struct rte_pci_id pci_id_igb_map[] = {
+
+#define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
+#include "rte_pci_dev_ids.h"
+
+{0},
+};
+
+/*
+ * The set of PCI devices this driver supports (for 82576&I350 VF)
+ */
+static const struct rte_pci_id pci_id_igbvf_map[] = {
+
+#define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
+#include "rte_pci_dev_ids.h"
+
+{0},
+};
+
+static const struct eth_dev_ops eth_igb_ops = {
+	.dev_configure        = eth_igb_configure,
+	.dev_start            = eth_igb_start,
+	.dev_stop             = eth_igb_stop,
+	.dev_close            = eth_igb_close,
+	.promiscuous_enable   = eth_igb_promiscuous_enable,
+	.promiscuous_disable  = eth_igb_promiscuous_disable,
+	.allmulticast_enable  = eth_igb_allmulticast_enable,
+	.allmulticast_disable = eth_igb_allmulticast_disable,
+	.link_update          = eth_igb_link_update,
+	.stats_get            = eth_igb_stats_get,
+	.stats_reset          = eth_igb_stats_reset,
+	.dev_infos_get        = eth_igb_infos_get,
+	.mtu_set              = eth_igb_mtu_set,
+	.vlan_filter_set      = eth_igb_vlan_filter_set,
+	.vlan_tpid_set        = eth_igb_vlan_tpid_set,
+	.vlan_offload_set     = eth_igb_vlan_offload_set,
+	.rx_queue_setup       = eth_igb_rx_queue_setup,
+	.rx_queue_release     = eth_igb_rx_queue_release,
+	.rx_queue_count       = eth_igb_rx_queue_count,
+	.rx_descriptor_done   = eth_igb_rx_descriptor_done,
+	.tx_queue_setup       = eth_igb_tx_queue_setup,
+	.tx_queue_release     = eth_igb_tx_queue_release,
+	.dev_led_on           = eth_igb_led_on,
+	.dev_led_off          = eth_igb_led_off,
+	.flow_ctrl_get        = eth_igb_flow_ctrl_get,
+	.flow_ctrl_set        = eth_igb_flow_ctrl_set,
+	.mac_addr_add         = eth_igb_rar_set,
+	.mac_addr_remove      = eth_igb_rar_clear,
+	.reta_update          = eth_igb_rss_reta_update,
+	.reta_query           = eth_igb_rss_reta_query,
+	.rss_hash_update      = eth_igb_rss_hash_update,
+	.rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
+	.filter_ctrl          = eth_igb_filter_ctrl,
+};
+
+/*
+ * dev_ops for virtual function, bare necessities for basic vf
+ * operation have been implemented
+ */
+static const struct eth_dev_ops igbvf_eth_dev_ops = {
+	.dev_configure        = igbvf_dev_configure,
+	.dev_start            = igbvf_dev_start,
+	.dev_stop             = igbvf_dev_stop,
+	.dev_close            = igbvf_dev_close,
+	.link_update          = eth_igb_link_update,
+	.stats_get            = eth_igbvf_stats_get,
+	.stats_reset          = eth_igbvf_stats_reset,
+	.vlan_filter_set      = igbvf_vlan_filter_set,
+	.dev_infos_get        = eth_igbvf_infos_get,
+	.rx_queue_setup       = eth_igb_rx_queue_setup,
+	.rx_queue_release     = eth_igb_rx_queue_release,
+	.tx_queue_setup       = eth_igb_tx_queue_setup,
+	.tx_queue_release     = eth_igb_tx_queue_release,
+};
+
+/**
+ * Atomically reads the link status information from global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ *   - Pointer to the structure rte_eth_dev to read from.
+ *   - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ *   - On success, zero.
+ *   - On failure, negative value.
+ */
+static inline int
+rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
+				struct rte_eth_link *link)
+{
+	struct rte_eth_link *dst = link;
+	struct rte_eth_link *src = &(dev->data->dev_link);
+
+	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+					*(uint64_t *)src) == 0)
+		return -1;
+
+	return 0;
+}
+
+/**
+ * Atomically writes the link status information into global
+ * structure rte_eth_dev.
+ *
+ * @param dev
+ *   - Pointer to the structure rte_eth_dev to read from.
+ *   - Pointer to the buffer to be saved with the link status.
+ *
+ * @return
+ *   - On success, zero.
+ *   - On failure, negative value.
+ */
+static inline int
+rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
+				struct rte_eth_link *link)
+{
+	struct rte_eth_link *dst = &(dev->data->dev_link);
+	struct rte_eth_link *src = link;
+
+	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
+					*(uint64_t *)src) == 0)
+		return -1;
+
+	return 0;
+}
+
+static inline void
+igb_intr_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
+	E1000_WRITE_FLUSH(hw);
+}
+
+static void
+igb_intr_disable(struct e1000_hw *hw)
+{
+	E1000_WRITE_REG(hw, E1000_IMC, ~0);
+	E1000_WRITE_FLUSH(hw);
+}
+
+static inline int32_t
+igb_pf_reset_hw(struct e1000_hw *hw)
+{
+	uint32_t ctrl_ext;
+	int32_t status;
+
+	status = e1000_reset_hw(hw);
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
+	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	return status;
+}
+
+static void
+igb_identify_hardware(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	hw->vendor_id = dev->pci_dev->id.vendor_id;
+	hw->device_id = dev->pci_dev->id.device_id;
+	hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
+	hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
+
+	e1000_set_mac_type(hw);
+
+	/* need to check if it is a vf device below */
+}
+
+static int
+igb_reset_swfw_lock(struct e1000_hw *hw)
+{
+	int ret_val;
+
+	/*
+	 * Do mac ops initialization manually here, since we will need
+	 * some function pointers set by this call.
+	 */
+	ret_val = e1000_init_mac_params(hw);
+	if (ret_val)
+		return ret_val;
+
+	/*
+	 * SMBI lock should not fail in this early stage. If this is the case,
+	 * it is due to an improper exit of the application.
+	 * So force the release of the faulty lock.
+	 */
+	if (e1000_get_hw_semaphore_generic(hw) < 0) {
+		PMD_DRV_LOG(DEBUG, "SMBI lock released");
+	}
+	e1000_put_hw_semaphore_generic(hw);
+
+	if (hw->mac.ops.acquire_swfw_sync != NULL) {
+		uint16_t mask;
+
+		/*
+		 * Phy lock should not fail in this early stage. If this is the case,
+		 * it is due to an improper exit of the application.
+		 * So force the release of the faulty lock.
+		 */
+		mask = E1000_SWFW_PHY0_SM << hw->bus.func;
+		if (hw->bus.func > E1000_FUNC_1)
+			mask <<= 2;
+		if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
+			PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
+				    hw->bus.func);
+		}
+		hw->mac.ops.release_swfw_sync(hw, mask);
+
+		/*
+		 * This one is more tricky since it is common to all ports; but
+		 * swfw_sync retries last long enough (1s) to be almost sure that if
+		 * lock can not be taken it is due to an improper lock of the
+		 * semaphore.
+		 */
+		mask = E1000_SWFW_EEP_SM;
+		if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
+			PMD_DRV_LOG(DEBUG, "SWFW common locks released");
+		}
+		hw->mac.ops.release_swfw_sync(hw, mask);
+	}
+
+	return E1000_SUCCESS;
+}
+
+static int
+eth_igb_dev_init(struct rte_eth_dev *eth_dev)
+{
+	int error = 0;
+	struct rte_pci_device *pci_dev;
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+	struct e1000_vfta * shadow_vfta =
+			E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
+	uint32_t ctrl_ext;
+
+	pci_dev = eth_dev->pci_dev;
+	eth_dev->dev_ops = &eth_igb_ops;
+	eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
+	eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
+
+	/* for secondary processes, we don't initialise any further as primary
+	 * has already done this work. Only check we don't need a different
+	 * RX function */
+	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
+		if (eth_dev->data->scattered_rx)
+			eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
+		return 0;
+	}
+
+	hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
+
+	igb_identify_hardware(eth_dev);
+	if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
+		error = -EIO;
+		goto err_late;
+	}
+
+	e1000_get_bus_info(hw);
+
+	/* Reset any pending lock */
+	if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
+		error = -EIO;
+		goto err_late;
+	}
+
+	/* Finish initialization */
+	if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
+		error = -EIO;
+		goto err_late;
+	}
+
+	hw->mac.autoneg = 1;
+	hw->phy.autoneg_wait_to_complete = 0;
+	hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+
+	/* Copper options */
+	if (hw->phy.media_type == e1000_media_type_copper) {
+		hw->phy.mdix = 0; /* AUTO_ALL_MODES */
+		hw->phy.disable_polarity_correction = 0;
+		hw->phy.ms_type = e1000_ms_hw_default;
+	}
+
+	/*
+	 * Start from a known state, this is important in reading the nvm
+	 * and mac from that.
+	 */
+	igb_pf_reset_hw(hw);
+
+	/* Make sure we have a good EEPROM before we read from it */
+	if (e1000_validate_nvm_checksum(hw) < 0) {
+		/*
+		 * Some PCI-E parts fail the first check due to
+		 * the link being in sleep state, call it again,
+		 * if it fails a second time its a real issue.
+		 */
+		if (e1000_validate_nvm_checksum(hw) < 0) {
+			PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
+			error = -EIO;
+			goto err_late;
+		}
+	}
+
+	/* Read the permanent MAC address out of the EEPROM */
+	if (e1000_read_mac_addr(hw) != 0) {
+		PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
+		error = -EIO;
+		goto err_late;
+	}
+
+	/* Allocate memory for storing MAC addresses */
+	eth_dev->data->mac_addrs = rte_zmalloc("e1000",
+		ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
+	if (eth_dev->data->mac_addrs == NULL) {
+		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
+						"store MAC addresses",
+				ETHER_ADDR_LEN * hw->mac.rar_entry_count);
+		error = -ENOMEM;
+		goto err_late;
+	}
+
+	/* Copy the permanent MAC address */
+	ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
+
+	/* initialize the vfta */
+	memset(shadow_vfta, 0, sizeof(*shadow_vfta));
+
+	/* Now initialize the hardware */
+	if (igb_hardware_init(hw) != 0) {
+		PMD_INIT_LOG(ERR, "Hardware initialization failed");
+		rte_free(eth_dev->data->mac_addrs);
+		eth_dev->data->mac_addrs = NULL;
+		error = -ENODEV;
+		goto err_late;
+	}
+	hw->mac.get_link_status = 1;
+
+	/* Indicate SOL/IDER usage */
+	if (e1000_check_reset_block(hw) < 0) {
+		PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
+					"SOL/IDER session");
+	}
+
+	/* initialize PF if max_vfs not zero */
+	igb_pf_host_init(eth_dev);
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
+	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
+		     eth_dev->data->port_id, pci_dev->id.vendor_id,
+		     pci_dev->id.device_id);
+
+	rte_intr_callback_register(&(pci_dev->intr_handle),
+		eth_igb_interrupt_handler, (void *)eth_dev);
+
+	/* enable uio intr after callback register */
+	rte_intr_enable(&(pci_dev->intr_handle));
+
+	/* enable support intr */
+	igb_intr_enable(eth_dev);
+
+	TAILQ_INIT(&filter_info->flex_list);
+	filter_info->flex_mask = 0;
+	TAILQ_INIT(&filter_info->twotuple_list);
+	filter_info->twotuple_mask = 0;
+	TAILQ_INIT(&filter_info->fivetuple_list);
+	filter_info->fivetuple_mask = 0;
+
+	return 0;
+
+err_late:
+	igb_hw_control_release(hw);
+
+	return (error);
+}
+
+/*
+ * Virtual Function device init
+ */
+static int
+eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
+{
+	struct rte_pci_device *pci_dev;
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+	int diag;
+
+	PMD_INIT_FUNC_TRACE();
+
+	eth_dev->dev_ops = &igbvf_eth_dev_ops;
+	eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
+	eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
+
+	/* for secondary processes, we don't initialise any further as primary
+	 * has already done this work. Only check we don't need a different
+	 * RX function */
+	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
+		if (eth_dev->data->scattered_rx)
+			eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
+		return 0;
+	}
+
+	pci_dev = eth_dev->pci_dev;
+
+	hw->device_id = pci_dev->id.device_id;
+	hw->vendor_id = pci_dev->id.vendor_id;
+	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
+
+	/* Initialize the shared code (base driver) */
+	diag = e1000_setup_init_funcs(hw, TRUE);
+	if (diag != 0) {
+		PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
+			diag);
+		return -EIO;
+	}
+
+	/* init_mailbox_params */
+	hw->mbx.ops.init_params(hw);
+
+	/* Disable the interrupts for VF */
+	igbvf_intr_disable(hw);
+
+	diag = hw->mac.ops.reset_hw(hw);
+
+	/* Allocate memory for storing MAC addresses */
+	eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
+		hw->mac.rar_entry_count, 0);
+	if (eth_dev->data->mac_addrs == NULL) {
+		PMD_INIT_LOG(ERR,
+			"Failed to allocate %d bytes needed to store MAC "
+			"addresses",
+			ETHER_ADDR_LEN * hw->mac.rar_entry_count);
+		return -ENOMEM;
+	}
+
+	/* Copy the permanent MAC address */
+	ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
+			&eth_dev->data->mac_addrs[0]);
+
+	PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
+		     "mac.type=%s",
+		     eth_dev->data->port_id, pci_dev->id.vendor_id,
+		     pci_dev->id.device_id, "igb_mac_82576_vf");
+
+	return 0;
+}
+
+static struct eth_driver rte_igb_pmd = {
+	{
+		.name = "rte_igb_pmd",
+		.id_table = pci_id_igb_map,
+		.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
+	},
+	.eth_dev_init = eth_igb_dev_init,
+	.dev_private_size = sizeof(struct e1000_adapter),
+};
+
+/*
+ * virtual function driver struct
+ */
+static struct eth_driver rte_igbvf_pmd = {
+	{
+		.name = "rte_igbvf_pmd",
+		.id_table = pci_id_igbvf_map,
+		.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
+	},
+	.eth_dev_init = eth_igbvf_dev_init,
+	.dev_private_size = sizeof(struct e1000_adapter),
+};
+
+static int
+rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
+{
+	rte_eth_driver_register(&rte_igb_pmd);
+	return 0;
+}
+
+static void
+igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	/* RCTL: enable VLAN filter since VMDq always use VLAN filter */
+	uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl |= E1000_RCTL_VFE;
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+/*
+ * VF Driver initialization routine.
+ * Invoked one at EAL init time.
+ * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
+ */
+static int
+rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
+{
+	PMD_INIT_FUNC_TRACE();
+
+	rte_eth_driver_register(&rte_igbvf_pmd);
+	return (0);
+}
+
+static int
+eth_igb_configure(struct rte_eth_dev *dev)
+{
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+	PMD_INIT_FUNC_TRACE();
+	intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+	PMD_INIT_FUNC_TRACE();
+
+	return (0);
+}
+
+static int
+eth_igb_start(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	int ret, i, mask;
+	uint32_t ctrl_ext;
+
+	PMD_INIT_FUNC_TRACE();
+
+	/* Power up the phy. Needed to make the link go Up */
+	e1000_power_up_phy(hw);
+
+	/*
+	 * Packet Buffer Allocation (PBA)
+	 * Writing PBA sets the receive portion of the buffer
+	 * the remainder is used for the transmit buffer.
+	 */
+	if (hw->mac.type == e1000_82575) {
+		uint32_t pba;
+
+		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+		E1000_WRITE_REG(hw, E1000_PBA, pba);
+	}
+
+	/* Put the address into the Receive Address Array */
+	e1000_rar_set(hw, hw->mac.addr, 0);
+
+	/* Initialize the hardware */
+	if (igb_hardware_init(hw)) {
+		PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
+		return (-EIO);
+	}
+
+	E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
+
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
+	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+	E1000_WRITE_FLUSH(hw);
+
+	/* configure PF module if SRIOV enabled */
+	igb_pf_host_configure(dev);
+
+	/* Configure for OS presence */
+	igb_init_manageability(hw);
+
+	eth_igb_tx_init(dev);
+
+	/* This can fail when allocating mbufs for descriptor rings */
+	ret = eth_igb_rx_init(dev);
+	if (ret) {
+		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
+		igb_dev_clear_queues(dev);
+		return ret;
+	}
+
+	e1000_clear_hw_cntrs_base_generic(hw);
+
+	/*
+	 * VLAN Offload Settings
+	 */
+	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
+			ETH_VLAN_EXTEND_MASK;
+	eth_igb_vlan_offload_set(dev, mask);
+
+	if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
+		/* Enable VLAN filter since VMDq always use VLAN filter */
+		igb_vmdq_vlan_hw_filter_enable(dev);
+	}
+
+	/*
+	 * Configure the Interrupt Moderation register (EITR) with the maximum
+	 * possible value (0xFFFF) to minimize "System Partial Write" issued by
+	 * spurious [DMA] memory updates of RX and TX ring descriptors.
+	 *
+	 * With a EITR granularity of 2 microseconds in the 82576, only 7/8
+	 * spurious memory updates per second should be expected.
+	 * ((65535 * 2) / 1000.1000 ~= 0.131 second).
+	 *
+	 * Because interrupts are not used at all, the MSI-X is not activated
+	 * and interrupt moderation is controlled by EITR[0].
+	 *
+	 * Note that having [almost] disabled memory updates of RX and TX ring
+	 * descriptors through the Interrupt Moderation mechanism, memory
+	 * updates of ring descriptors are now moderated by the configurable
+	 * value of Write-Back Threshold registers.
+	 */
+	if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
+		(hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
+		(hw->mac.type == e1000_i211)) {
+		uint32_t ivar;
+
+		/* Enable all RX & TX queues in the IVAR registers */
+		ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
+		for (i = 0; i < 8; i++)
+			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
+
+		/* Configure EITR with the maximum possible value (0xFFFF) */
+		E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
+	}
+
+	/* Setup link speed and duplex */
+	switch (dev->data->dev_conf.link_speed) {
+	case ETH_LINK_SPEED_AUTONEG:
+		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
+		else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
+		else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
+		else
+			goto error_invalid_config;
+		break;
+	case ETH_LINK_SPEED_10:
+		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
+		else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+			hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
+		else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+			hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
+		else
+			goto error_invalid_config;
+		break;
+	case ETH_LINK_SPEED_100:
+		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
+			hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
+		else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
+			hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
+		else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
+			hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
+		else
+			goto error_invalid_config;
+		break;
+	case ETH_LINK_SPEED_1000:
+		if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
+				(dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
+			hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
+		else
+			goto error_invalid_config;
+		break;
+	case ETH_LINK_SPEED_10000:
+	default:
+		goto error_invalid_config;
+	}
+	e1000_setup_link(hw);
+
+	/* check if lsc interrupt feature is enabled */
+	if (dev->data->dev_conf.intr_conf.lsc != 0)
+		ret = eth_igb_lsc_interrupt_setup(dev);
+
+	/* resume enabled intr since hw reset */
+	igb_intr_enable(dev);
+
+	PMD_INIT_LOG(DEBUG, "<<");
+
+	return (0);
+
+error_invalid_config:
+	PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
+		     dev->data->dev_conf.link_speed,
+		     dev->data->dev_conf.link_duplex, dev->data->port_id);
+	igb_dev_clear_queues(dev);
+	return (-EINVAL);
+}
+
+/*********************************************************************
+ *
+ *  This routine disables all traffic on the adapter by issuing a
+ *  global reset on the MAC.
+ *
+ **********************************************************************/
+static void
+eth_igb_stop(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	struct rte_eth_link link;
+	struct e1000_flex_filter *p_flex;
+	struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
+	struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
+
+	igb_intr_disable(hw);
+	igb_pf_reset_hw(hw);
+	E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+	/* Set bit for Go Link disconnect */
+	if (hw->mac.type >= e1000_82580) {
+		uint32_t phpm_reg;
+
+		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+		phpm_reg |= E1000_82580_PM_GO_LINKD;
+		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
+	}
+
+	/* Power down the phy. Needed to make the link go Down */
+	if (hw->phy.media_type == e1000_media_type_copper)
+		e1000_power_down_phy(hw);
+	else
+		e1000_shutdown_fiber_serdes_link(hw);
+
+	igb_dev_clear_queues(dev);
+
+	/* clear the recorded link status */
+	memset(&link, 0, sizeof(link));
+	rte_igb_dev_atomic_write_link_status(dev, &link);
+
+	/* Remove all flex filters of the device */
+	while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
+		TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
+		rte_free(p_flex);
+	}
+	filter_info->flex_mask = 0;
+
+	/* Remove all ntuple filters of the device */
+	for (p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list);
+	     p_5tuple != NULL; p_5tuple = p_5tuple_next) {
+		p_5tuple_next = TAILQ_NEXT(p_5tuple, entries);
+		TAILQ_REMOVE(&filter_info->fivetuple_list,
+			     p_5tuple, entries);
+		rte_free(p_5tuple);
+	}
+	filter_info->fivetuple_mask = 0;
+	for (p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list);
+	     p_2tuple != NULL; p_2tuple = p_2tuple_next) {
+		p_2tuple_next = TAILQ_NEXT(p_2tuple, entries);
+		TAILQ_REMOVE(&filter_info->twotuple_list,
+			     p_2tuple, entries);
+		rte_free(p_2tuple);
+	}
+	filter_info->twotuple_mask = 0;
+}
+
+static void
+eth_igb_close(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct rte_eth_link link;
+
+	eth_igb_stop(dev);
+	e1000_phy_hw_reset(hw);
+	igb_release_manageability(hw);
+	igb_hw_control_release(hw);
+
+	/* Clear bit for Go Link disconnect */
+	if (hw->mac.type >= e1000_82580) {
+		uint32_t phpm_reg;
+
+		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
+		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
+		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
+	}
+
+	igb_dev_clear_queues(dev);
+
+	memset(&link, 0, sizeof(link));
+	rte_igb_dev_atomic_write_link_status(dev, &link);
+}
+
+static int
+igb_get_rx_buffer_size(struct e1000_hw *hw)
+{
+	uint32_t rx_buf_size;
+	if (hw->mac.type == e1000_82576) {
+		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
+	} else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
+		/* PBS needs to be translated according to a lookup table */
+		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
+		rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
+		rx_buf_size = (rx_buf_size << 10);
+	} else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
+		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
+	} else {
+		rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
+	}
+
+	return rx_buf_size;
+}
+
+/*********************************************************************
+ *
+ *  Initialize the hardware
+ *
+ **********************************************************************/
+static int
+igb_hardware_init(struct e1000_hw *hw)
+{
+	uint32_t rx_buf_size;
+	int diag;
+
+	/* Let the firmware know the OS is in control */
+	igb_hw_control_acquire(hw);
+
+	/*
+	 * These parameters control the automatic generation (Tx) and
+	 * response (Rx) to Ethernet PAUSE frames.
+	 * - High water mark should allow for at least two standard size (1518)
+	 *   frames to be received after sending an XOFF.
+	 * - Low water mark works best when it is very near the high water mark.
+	 *   This allows the receiver to restart by sending XON when it has
+	 *   drained a bit. Here we use an arbitrary value of 1500 which will
+	 *   restart after one full frame is pulled from the buffer. There
+	 *   could be several smaller frames in the buffer and if so they will
+	 *   not trigger the XON until their total number reduces the buffer
+	 *   by 1500.
+	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
+	 */
+	rx_buf_size = igb_get_rx_buffer_size(hw);
+
+	hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
+	hw->fc.low_water = hw->fc.high_water - 1500;
+	hw->fc.pause_time = IGB_FC_PAUSE_TIME;
+	hw->fc.send_xon = 1;
+
+	/* Set Flow control, use the tunable location if sane */
+	if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
+		hw->fc.requested_mode = igb_fc_setting;
+	else
+		hw->fc.requested_mode = e1000_fc_none;
+
+	/* Issue a global reset */
+	igb_pf_reset_hw(hw);
+	E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+	diag = e1000_init_hw(hw);
+	if (diag < 0)
+		return (diag);
+
+	E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
+	e1000_get_phy_info(hw);
+	e1000_check_for_link(hw);
+
+	return (0);
+}
+
+/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
+static void
+eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_hw_stats *stats =
+			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+	int pause_frames;
+
+	if(hw->phy.media_type == e1000_media_type_copper ||
+	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
+		stats->symerrs +=
+		    E1000_READ_REG(hw,E1000_SYMERRS);
+		stats->sec += E1000_READ_REG(hw, E1000_SEC);
+	}
+
+	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
+	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
+	stats->scc += E1000_READ_REG(hw, E1000_SCC);
+	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
+
+	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
+	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
+	stats->colc += E1000_READ_REG(hw, E1000_COLC);
+	stats->dc += E1000_READ_REG(hw, E1000_DC);
+	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
+	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
+	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
+	/*
+	** For watchdog management we need to know if we have been
+	** paused during the last interval, so capture that here.
+	*/
+	pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
+	stats->xoffrxc += pause_frames;
+	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
+	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
+	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
+	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
+	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
+	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
+	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
+	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
+	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
+	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
+	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
+	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
+
+	/* For the 64-bit byte counters the low dword must be read first. */
+	/* Both registers clear on the read of the high dword */
+
+	stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
+	stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
+	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
+	stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
+
+	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
+	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
+	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
+	stats->roc += E1000_READ_REG(hw, E1000_ROC);
+	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
+
+	stats->tor += E1000_READ_REG(hw, E1000_TORH);
+	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
+
+	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
+	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
+	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
+	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
+	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
+	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
+	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
+	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
+	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
+	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
+
+	/* Interrupt Counts */
+
+	stats->iac += E1000_READ_REG(hw, E1000_IAC);
+	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
+	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
+	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
+	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
+	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
+	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
+	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
+	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
+
+	/* Host to Card Statistics */
+
+	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
+	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
+	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
+	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
+	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
+	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
+	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
+	stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
+	stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
+	stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
+	stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
+	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
+	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
+	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
+
+	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
+	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
+	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
+	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
+	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
+	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
+
+	if (rte_stats == NULL)
+		return;
+
+	/* Rx Errors */
+	rte_stats->ibadcrc = stats->crcerrs;
+	rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
+	rte_stats->imissed = stats->mpc;
+	rte_stats->ierrors = rte_stats->ibadcrc +
+	                     rte_stats->ibadlen +
+	                     rte_stats->imissed +
+	                     stats->rxerrc + stats->algnerrc + stats->cexterr;
+
+	/* Tx Errors */
+	rte_stats->oerrors = stats->ecol + stats->latecol;
+
+	/* XON/XOFF pause frames */
+	rte_stats->tx_pause_xon  = stats->xontxc;
+	rte_stats->rx_pause_xon  = stats->xonrxc;
+	rte_stats->tx_pause_xoff = stats->xofftxc;
+	rte_stats->rx_pause_xoff = stats->xoffrxc;
+
+	rte_stats->ipackets = stats->gprc;
+	rte_stats->opackets = stats->gptc;
+	rte_stats->ibytes   = stats->gorc;
+	rte_stats->obytes   = stats->gotc;
+}
+
+static void
+eth_igb_stats_reset(struct rte_eth_dev *dev)
+{
+	struct e1000_hw_stats *hw_stats =
+			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+	/* HW registers are cleared on read */
+	eth_igb_stats_get(dev, NULL);
+
+	/* Reset software totals */
+	memset(hw_stats, 0, sizeof(*hw_stats));
+}
+
+static void
+eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
+			  E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+	/* Good Rx packets, include VF loopback */
+	UPDATE_VF_STAT(E1000_VFGPRC,
+	    hw_stats->last_gprc, hw_stats->gprc);
+
+	/* Good Rx octets, include VF loopback */
+	UPDATE_VF_STAT(E1000_VFGORC,
+	    hw_stats->last_gorc, hw_stats->gorc);
+
+	/* Good Tx packets, include VF loopback */
+	UPDATE_VF_STAT(E1000_VFGPTC,
+	    hw_stats->last_gptc, hw_stats->gptc);
+
+	/* Good Tx octets, include VF loopback */
+	UPDATE_VF_STAT(E1000_VFGOTC,
+	    hw_stats->last_gotc, hw_stats->gotc);
+
+	/* Rx Multicst packets */
+	UPDATE_VF_STAT(E1000_VFMPRC,
+	    hw_stats->last_mprc, hw_stats->mprc);
+
+	/* Good Rx loopback packets */
+	UPDATE_VF_STAT(E1000_VFGPRLBC,
+	    hw_stats->last_gprlbc, hw_stats->gprlbc);
+
+	/* Good Rx loopback octets */
+	UPDATE_VF_STAT(E1000_VFGORLBC,
+	    hw_stats->last_gorlbc, hw_stats->gorlbc);
+
+	/* Good Tx loopback packets */
+	UPDATE_VF_STAT(E1000_VFGPTLBC,
+	    hw_stats->last_gptlbc, hw_stats->gptlbc);
+
+	/* Good Tx loopback octets */
+	UPDATE_VF_STAT(E1000_VFGOTLBC,
+	    hw_stats->last_gotlbc, hw_stats->gotlbc);
+
+	if (rte_stats == NULL)
+		return;
+
+	rte_stats->ipackets = hw_stats->gprc;
+	rte_stats->ibytes = hw_stats->gorc;
+	rte_stats->opackets = hw_stats->gptc;
+	rte_stats->obytes = hw_stats->gotc;
+	rte_stats->imcasts = hw_stats->mprc;
+	rte_stats->ilbpackets = hw_stats->gprlbc;
+	rte_stats->ilbbytes = hw_stats->gorlbc;
+	rte_stats->olbpackets = hw_stats->gptlbc;
+	rte_stats->olbbytes = hw_stats->gotlbc;
+
+}
+
+static void
+eth_igbvf_stats_reset(struct rte_eth_dev *dev)
+{
+	struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
+			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
+
+	/* Sync HW register to the last stats */
+	eth_igbvf_stats_get(dev, NULL);
+
+	/* reset HW current stats*/
+	memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
+	       offsetof(struct e1000_vf_stats, gprc));
+
+}
+
+static void
+eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
+	dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
+	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
+	dev_info->rx_offload_capa =
+		DEV_RX_OFFLOAD_VLAN_STRIP |
+		DEV_RX_OFFLOAD_IPV4_CKSUM |
+		DEV_RX_OFFLOAD_UDP_CKSUM  |
+		DEV_RX_OFFLOAD_TCP_CKSUM;
+	dev_info->tx_offload_capa =
+		DEV_TX_OFFLOAD_VLAN_INSERT |
+		DEV_TX_OFFLOAD_IPV4_CKSUM  |
+		DEV_TX_OFFLOAD_UDP_CKSUM   |
+		DEV_TX_OFFLOAD_TCP_CKSUM   |
+		DEV_TX_OFFLOAD_SCTP_CKSUM;
+
+	switch (hw->mac.type) {
+	case e1000_82575:
+		dev_info->max_rx_queues = 4;
+		dev_info->max_tx_queues = 4;
+		dev_info->max_vmdq_pools = 0;
+		break;
+
+	case e1000_82576:
+		dev_info->max_rx_queues = 16;
+		dev_info->max_tx_queues = 16;
+		dev_info->max_vmdq_pools = ETH_8_POOLS;
+		dev_info->vmdq_queue_num = 16;
+		break;
+
+	case e1000_82580:
+		dev_info->max_rx_queues = 8;
+		dev_info->max_tx_queues = 8;
+		dev_info->max_vmdq_pools = ETH_8_POOLS;
+		dev_info->vmdq_queue_num = 8;
+		break;
+
+	case e1000_i350:
+		dev_info->max_rx_queues = 8;
+		dev_info->max_tx_queues = 8;
+		dev_info->max_vmdq_pools = ETH_8_POOLS;
+		dev_info->vmdq_queue_num = 8;
+		break;
+
+	case e1000_i354:
+		dev_info->max_rx_queues = 8;
+		dev_info->max_tx_queues = 8;
+		break;
+
+	case e1000_i210:
+		dev_info->max_rx_queues = 4;
+		dev_info->max_tx_queues = 4;
+		dev_info->max_vmdq_pools = 0;
+		break;
+
+	case e1000_i211:
+		dev_info->max_rx_queues = 2;
+		dev_info->max_tx_queues = 2;
+		dev_info->max_vmdq_pools = 0;
+		break;
+
+	default:
+		/* Should not happen */
+		break;
+	}
+	dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
+	dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
+
+	dev_info->default_rxconf = (struct rte_eth_rxconf) {
+		.rx_thresh = {
+			.pthresh = IGB_DEFAULT_RX_PTHRESH,
+			.hthresh = IGB_DEFAULT_RX_HTHRESH,
+			.wthresh = IGB_DEFAULT_RX_WTHRESH,
+		},
+		.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
+		.rx_drop_en = 0,
+	};
+
+	dev_info->default_txconf = (struct rte_eth_txconf) {
+		.tx_thresh = {
+			.pthresh = IGB_DEFAULT_TX_PTHRESH,
+			.hthresh = IGB_DEFAULT_TX_HTHRESH,
+			.wthresh = IGB_DEFAULT_TX_WTHRESH,
+		},
+		.txq_flags = 0,
+	};
+}
+
+static void
+eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
+	dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
+	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
+	dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
+				DEV_RX_OFFLOAD_IPV4_CKSUM |
+				DEV_RX_OFFLOAD_UDP_CKSUM  |
+				DEV_RX_OFFLOAD_TCP_CKSUM;
+	dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
+				DEV_TX_OFFLOAD_IPV4_CKSUM  |
+				DEV_TX_OFFLOAD_UDP_CKSUM   |
+				DEV_TX_OFFLOAD_TCP_CKSUM   |
+				DEV_TX_OFFLOAD_SCTP_CKSUM;
+	switch (hw->mac.type) {
+	case e1000_vfadapt:
+		dev_info->max_rx_queues = 2;
+		dev_info->max_tx_queues = 2;
+		break;
+	case e1000_vfadapt_i350:
+		dev_info->max_rx_queues = 1;
+		dev_info->max_tx_queues = 1;
+		break;
+	default:
+		/* Should not happen */
+		break;
+	}
+
+	dev_info->default_rxconf = (struct rte_eth_rxconf) {
+		.rx_thresh = {
+			.pthresh = IGB_DEFAULT_RX_PTHRESH,
+			.hthresh = IGB_DEFAULT_RX_HTHRESH,
+			.wthresh = IGB_DEFAULT_RX_WTHRESH,
+		},
+		.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
+		.rx_drop_en = 0,
+	};
+
+	dev_info->default_txconf = (struct rte_eth_txconf) {
+		.tx_thresh = {
+			.pthresh = IGB_DEFAULT_TX_PTHRESH,
+			.hthresh = IGB_DEFAULT_TX_HTHRESH,
+			.wthresh = IGB_DEFAULT_TX_WTHRESH,
+		},
+		.txq_flags = 0,
+	};
+}
+
+/* return 0 means link status changed, -1 means not changed */
+static int
+eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct rte_eth_link link, old;
+	int link_check, count;
+
+	link_check = 0;
+	hw->mac.get_link_status = 1;
+
+	/* possible wait-to-complete in up to 9 seconds */
+	for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
+		/* Read the real link status */
+		switch (hw->phy.media_type) {
+		case e1000_media_type_copper:
+			/* Do the work to read phy */
+			e1000_check_for_link(hw);
+			link_check = !hw->mac.get_link_status;
+			break;
+
+		case e1000_media_type_fiber:
+			e1000_check_for_link(hw);
+			link_check = (E1000_READ_REG(hw, E1000_STATUS) &
+				      E1000_STATUS_LU);
+			break;
+
+		case e1000_media_type_internal_serdes:
+			e1000_check_for_link(hw);
+			link_check = hw->mac.serdes_has_link;
+			break;
+
+		/* VF device is type_unknown */
+		case e1000_media_type_unknown:
+			eth_igbvf_link_update(hw);
+			link_check = !hw->mac.get_link_status;
+			break;
+
+		default:
+			break;
+		}
+		if (link_check || wait_to_complete == 0)
+			break;
+		rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
+	}
+	memset(&link, 0, sizeof(link));
+	rte_igb_dev_atomic_read_link_status(dev, &link);
+	old = link;
+
+	/* Now we check if a transition has happened */
+	if (link_check) {
+		hw->mac.ops.get_link_up_info(hw, &link.link_speed,
+					  &link.link_duplex);
+		link.link_status = 1;
+	} else if (!link_check) {
+		link.link_speed = 0;
+		link.link_duplex = 0;
+		link.link_status = 0;
+	}
+	rte_igb_dev_atomic_write_link_status(dev, &link);
+
+	/* not changed */
+	if (old.link_status == link.link_status)
+		return -1;
+
+	/* changed */
+	return 0;
+}
+
+/*
+ * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means
+ * that the driver is loaded.
+ */
+static void
+igb_hw_control_acquire(struct e1000_hw *hw)
+{
+	uint32_t ctrl_ext;
+
+	/* Let firmware know the driver has taken over */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
+}
+
+/*
+ * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
+ * For ASF and Pass Through versions of f/w this means that the
+ * driver is no longer loaded.
+ */
+static void
+igb_hw_control_release(struct e1000_hw *hw)
+{
+	uint32_t ctrl_ext;
+
+	/* Let firmware taken over control of h/w */
+	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
+			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
+}
+
+/*
+ * Bit of a misnomer, what this really means is
+ * to enable OS management of the system... aka
+ * to disable special hardware management features.
+ */
+static void
+igb_init_manageability(struct e1000_hw *hw)
+{
+	if (e1000_enable_mng_pass_thru(hw)) {
+		uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
+		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+		/* disable hardware interception of ARP */
+		manc &= ~(E1000_MANC_ARP_EN);
+
+		/* enable receiving management packets to the host */
+		manc |= E1000_MANC_EN_MNG2HOST;
+		manc2h |= 1 << 5;  /* Mng Port 623 */
+		manc2h |= 1 << 6;  /* Mng Port 664 */
+		E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
+		E1000_WRITE_REG(hw, E1000_MANC, manc);
+	}
+}
+
+static void
+igb_release_manageability(struct e1000_hw *hw)
+{
+	if (e1000_enable_mng_pass_thru(hw)) {
+		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
+
+		manc |= E1000_MANC_ARP_EN;
+		manc &= ~E1000_MANC_EN_MNG2HOST;
+
+		E1000_WRITE_REG(hw, E1000_MANC, manc);
+	}
+}
+
+static void
+eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rctl;
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rctl;
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl &= (~E1000_RCTL_UPE);
+	if (dev->data->all_multicast == 1)
+		rctl |= E1000_RCTL_MPE;
+	else
+		rctl &= (~E1000_RCTL_MPE);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rctl;
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl |= E1000_RCTL_MPE;
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static void
+eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rctl;
+
+	if (dev->data->promiscuous == 1)
+		return; /* must remain in all_multicast mode */
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl &= (~E1000_RCTL_MPE);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+}
+
+static int
+eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vfta * shadow_vfta =
+		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+	uint32_t vfta;
+	uint32_t vid_idx;
+	uint32_t vid_bit;
+
+	vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
+			      E1000_VFTA_ENTRY_MASK);
+	vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
+	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
+	if (on)
+		vfta |= vid_bit;
+	else
+		vfta &= ~vid_bit;
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
+
+	/* update local VFTA copy */
+	shadow_vfta->vfta[vid_idx] = vfta;
+
+	return 0;
+}
+
+static void
+eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg = ETHER_TYPE_VLAN ;
+
+	reg |= (tpid << 16);
+	E1000_WRITE_REG(hw, E1000_VET, reg);
+}
+
+static void
+igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* Filter Table Disable */
+	reg = E1000_READ_REG(hw, E1000_RCTL);
+	reg &= ~E1000_RCTL_CFIEN;
+	reg &= ~E1000_RCTL_VFE;
+	E1000_WRITE_REG(hw, E1000_RCTL, reg);
+}
+
+static void
+igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vfta * shadow_vfta =
+		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+	uint32_t reg;
+	int i;
+
+	/* Filter Table Enable, CFI not used for packet acceptance */
+	reg = E1000_READ_REG(hw, E1000_RCTL);
+	reg &= ~E1000_RCTL_CFIEN;
+	reg |= E1000_RCTL_VFE;
+	E1000_WRITE_REG(hw, E1000_RCTL, reg);
+
+	/* restore VFTA table */
+	for (i = 0; i < IGB_VFTA_SIZE; i++)
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
+}
+
+static void
+igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* VLAN Mode Disable */
+	reg = E1000_READ_REG(hw, E1000_CTRL);
+	reg &= ~E1000_CTRL_VME;
+	E1000_WRITE_REG(hw, E1000_CTRL, reg);
+}
+
+static void
+igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* VLAN Mode Enable */
+	reg = E1000_READ_REG(hw, E1000_CTRL);
+	reg |= E1000_CTRL_VME;
+	E1000_WRITE_REG(hw, E1000_CTRL, reg);
+}
+
+static void
+igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* CTRL_EXT: Extended VLAN */
+	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+	/* Update maximum packet length */
+	if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+		E1000_WRITE_REG(hw, E1000_RLPML,
+			dev->data->dev_conf.rxmode.max_rx_pkt_len +
+						VLAN_TAG_SIZE);
+}
+
+static void
+igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* CTRL_EXT: Extended VLAN */
+	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+	reg |= E1000_CTRL_EXT_EXTEND_VLAN;
+	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+
+	/* Update maximum packet length */
+	if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+		E1000_WRITE_REG(hw, E1000_RLPML,
+			dev->data->dev_conf.rxmode.max_rx_pkt_len +
+						2 * VLAN_TAG_SIZE);
+}
+
+static void
+eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
+{
+	if(mask & ETH_VLAN_STRIP_MASK){
+		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
+			igb_vlan_hw_strip_enable(dev);
+		else
+			igb_vlan_hw_strip_disable(dev);
+	}
+
+	if(mask & ETH_VLAN_FILTER_MASK){
+		if (dev->data->dev_conf.rxmode.hw_vlan_filter)
+			igb_vlan_hw_filter_enable(dev);
+		else
+			igb_vlan_hw_filter_disable(dev);
+	}
+
+	if(mask & ETH_VLAN_EXTEND_MASK){
+		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
+			igb_vlan_hw_extend_enable(dev);
+		else
+			igb_vlan_hw_extend_disable(dev);
+	}
+}
+
+
+/**
+ * It enables the interrupt mask and then enable the interrupt.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
+{
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+	intr->mask |= E1000_ICR_LSC;
+
+	return 0;
+}
+
+/*
+ * It reads ICR and gets interrupt causes, check it and set a bit flag
+ * to update link status.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
+{
+	uint32_t icr;
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+	igb_intr_disable(hw);
+
+	/* read-on-clear nic registers here */
+	icr = E1000_READ_REG(hw, E1000_ICR);
+
+	intr->flags = 0;
+	if (icr & E1000_ICR_LSC) {
+		intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
+	}
+
+	if (icr & E1000_ICR_VMMB)
+		intr->flags |= E1000_FLAG_MAILBOX;
+
+	return 0;
+}
+
+/*
+ * It executes link_update after knowing an interrupt is prsent.
+ *
+ * @param dev
+ *  Pointer to struct rte_eth_dev.
+ *
+ * @return
+ *  - On success, zero.
+ *  - On failure, a negative value.
+ */
+static int
+eth_igb_interrupt_action(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+	uint32_t tctl, rctl;
+	struct rte_eth_link link;
+	int ret;
+
+	if (intr->flags & E1000_FLAG_MAILBOX) {
+		igb_pf_mbx_process(dev);
+		intr->flags &= ~E1000_FLAG_MAILBOX;
+	}
+
+	igb_intr_enable(dev);
+	rte_intr_enable(&(dev->pci_dev->intr_handle));
+
+	if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
+		intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
+
+		/* set get_link_status to check register later */
+		hw->mac.get_link_status = 1;
+		ret = eth_igb_link_update(dev, 0);
+
+		/* check if link has changed */
+		if (ret < 0)
+			return 0;
+
+		memset(&link, 0, sizeof(link));
+		rte_igb_dev_atomic_read_link_status(dev, &link);
+		if (link.link_status) {
+			PMD_INIT_LOG(INFO,
+				     " Port %d: Link Up - speed %u Mbps - %s",
+				     dev->data->port_id,
+				     (unsigned)link.link_speed,
+				     link.link_duplex == ETH_LINK_FULL_DUPLEX ?
+				     "full-duplex" : "half-duplex");
+		} else {
+			PMD_INIT_LOG(INFO, " Port %d: Link Down",
+				     dev->data->port_id);
+		}
+		PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
+			     dev->pci_dev->addr.domain,
+			     dev->pci_dev->addr.bus,
+			     dev->pci_dev->addr.devid,
+			     dev->pci_dev->addr.function);
+		tctl = E1000_READ_REG(hw, E1000_TCTL);
+		rctl = E1000_READ_REG(hw, E1000_RCTL);
+		if (link.link_status) {
+			/* enable Tx/Rx */
+			tctl |= E1000_TCTL_EN;
+			rctl |= E1000_RCTL_EN;
+		} else {
+			/* disable Tx/Rx */
+			tctl &= ~E1000_TCTL_EN;
+			rctl &= ~E1000_RCTL_EN;
+		}
+		E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+		E1000_WRITE_FLUSH(hw);
+		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
+	}
+
+	return 0;
+}
+
+/**
+ * Interrupt handler which shall be registered at first.
+ *
+ * @param handle
+ *  Pointer to interrupt handle.
+ * @param param
+ *  The address of parameter (struct rte_eth_dev *) regsitered before.
+ *
+ * @return
+ *  void
+ */
+static void
+eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
+							void *param)
+{
+	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
+
+	eth_igb_interrupt_get_status(dev);
+	eth_igb_interrupt_action(dev);
+}
+
+static int
+eth_igb_led_on(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_igb_led_off(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
+}
+
+static int
+eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+	struct e1000_hw *hw;
+	uint32_t ctrl;
+	int tx_pause;
+	int rx_pause;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	fc_conf->pause_time = hw->fc.pause_time;
+	fc_conf->high_water = hw->fc.high_water;
+	fc_conf->low_water = hw->fc.low_water;
+	fc_conf->send_xon = hw->fc.send_xon;
+	fc_conf->autoneg = hw->mac.autoneg;
+
+	/*
+	 * Return rx_pause and tx_pause status according to actual setting of
+	 * the TFCE and RFCE bits in the CTRL register.
+	 */
+	ctrl = E1000_READ_REG(hw, E1000_CTRL);
+	if (ctrl & E1000_CTRL_TFCE)
+		tx_pause = 1;
+	else
+		tx_pause = 0;
+
+	if (ctrl & E1000_CTRL_RFCE)
+		rx_pause = 1;
+	else
+		rx_pause = 0;
+
+	if (rx_pause && tx_pause)
+		fc_conf->mode = RTE_FC_FULL;
+	else if (rx_pause)
+		fc_conf->mode = RTE_FC_RX_PAUSE;
+	else if (tx_pause)
+		fc_conf->mode = RTE_FC_TX_PAUSE;
+	else
+		fc_conf->mode = RTE_FC_NONE;
+
+	return 0;
+}
+
+static int
+eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
+{
+	struct e1000_hw *hw;
+	int err;
+	enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
+		e1000_fc_none,
+		e1000_fc_rx_pause,
+		e1000_fc_tx_pause,
+		e1000_fc_full
+	};
+	uint32_t rx_buf_size;
+	uint32_t max_high_water;
+	uint32_t rctl;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	if (fc_conf->autoneg != hw->mac.autoneg)
+		return -ENOTSUP;
+	rx_buf_size = igb_get_rx_buffer_size(hw);
+	PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
+
+	/* At least reserve one Ethernet frame for watermark */
+	max_high_water = rx_buf_size - ETHER_MAX_LEN;
+	if ((fc_conf->high_water > max_high_water) ||
+	    (fc_conf->high_water < fc_conf->low_water)) {
+		PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
+		PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
+		return (-EINVAL);
+	}
+
+	hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
+	hw->fc.pause_time     = fc_conf->pause_time;
+	hw->fc.high_water     = fc_conf->high_water;
+	hw->fc.low_water      = fc_conf->low_water;
+	hw->fc.send_xon	      = fc_conf->send_xon;
+
+	err = e1000_setup_link_generic(hw);
+	if (err == E1000_SUCCESS) {
+
+		/* check if we want to forward MAC frames - driver doesn't have native
+		 * capability to do that, so we'll write the registers ourselves */
+
+		rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+		/* set or clear MFLCN.PMCF bit depending on configuration */
+		if (fc_conf->mac_ctrl_frame_fwd != 0)
+			rctl |= E1000_RCTL_PMCF;
+		else
+			rctl &= ~E1000_RCTL_PMCF;
+
+		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+		E1000_WRITE_FLUSH(hw);
+
+		return 0;
+	}
+
+	PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
+	return (-EIO);
+}
+
+#define E1000_RAH_POOLSEL_SHIFT      (18)
+static void
+eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
+	        uint32_t index, __rte_unused uint32_t pool)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t rah;
+
+	e1000_rar_set(hw, mac_addr->addr_bytes, index);
+	rah = E1000_READ_REG(hw, E1000_RAH(index));
+	rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
+	E1000_WRITE_REG(hw, E1000_RAH(index), rah);
+}
+
+static void
+eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
+{
+	uint8_t addr[ETHER_ADDR_LEN];
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	memset(addr, 0, sizeof(addr));
+
+	e1000_rar_set(hw, addr, index);
+}
+
+/*
+ * Virtual Function operations
+ */
+static void
+igbvf_intr_disable(struct e1000_hw *hw)
+{
+	PMD_INIT_FUNC_TRACE();
+
+	/* Clear interrupt mask to stop from interrupts being generated */
+	E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
+
+	E1000_WRITE_FLUSH(hw);
+}
+
+static void
+igbvf_stop_adapter(struct rte_eth_dev *dev)
+{
+	u32 reg_val;
+	u16 i;
+	struct rte_eth_dev_info dev_info;
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	memset(&dev_info, 0, sizeof(dev_info));
+	eth_igbvf_infos_get(dev, &dev_info);
+
+	/* Clear interrupt mask to stop from interrupts being generated */
+	igbvf_intr_disable(hw);
+
+	/* Clear any pending interrupts, flush previous writes */
+	E1000_READ_REG(hw, E1000_EICR);
+
+	/* Disable the transmit unit.  Each queue must be disabled. */
+	for (i = 0; i < dev_info.max_tx_queues; i++)
+		E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
+
+	/* Disable the receive unit by stopping each queue */
+	for (i = 0; i < dev_info.max_rx_queues; i++) {
+		reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
+		reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
+		E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
+		while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
+			;
+	}
+
+	/* flush all queues disables */
+	E1000_WRITE_FLUSH(hw);
+	msec_delay(2);
+}
+
+static int eth_igbvf_link_update(struct e1000_hw *hw)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	struct e1000_mac_info *mac = &hw->mac;
+	int ret_val = E1000_SUCCESS;
+
+	PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
+
+	/*
+	 * We only want to run this if there has been a rst asserted.
+	 * in this case that could mean a link change, device reset,
+	 * or a virtual function reset
+	 */
+
+	/* If we were hit with a reset or timeout drop the link */
+	if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
+		mac->get_link_status = TRUE;
+
+	if (!mac->get_link_status)
+		goto out;
+
+	/* if link status is down no point in checking to see if pf is up */
+	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
+		goto out;
+
+	/* if we passed all the tests above then the link is up and we no
+	 * longer need to check for link */
+	mac->get_link_status = FALSE;
+
+out:
+	return ret_val;
+}
+
+
+static int
+igbvf_dev_configure(struct rte_eth_dev *dev)
+{
+	struct rte_eth_conf* conf = &dev->data->dev_conf;
+
+	PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
+		     dev->data->port_id);
+
+	/*
+	 * VF has no ability to enable/disable HW CRC
+	 * Keep the persistent behavior the same as Host PF
+	 */
+#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
+	if (!conf->rxmode.hw_strip_crc) {
+		PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip");
+		conf->rxmode.hw_strip_crc = 1;
+	}
+#else
+	if (conf->rxmode.hw_strip_crc) {
+		PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip");
+		conf->rxmode.hw_strip_crc = 0;
+	}
+#endif
+
+	return 0;
+}
+
+static int
+igbvf_dev_start(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	int ret;
+
+	PMD_INIT_FUNC_TRACE();
+
+	hw->mac.ops.reset_hw(hw);
+
+	/* Set all vfta */
+	igbvf_set_vfta_all(dev,1);
+
+	eth_igbvf_tx_init(dev);
+
+	/* This can fail when allocating mbufs for descriptor rings */
+	ret = eth_igbvf_rx_init(dev);
+	if (ret) {
+		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
+		igb_dev_clear_queues(dev);
+		return ret;
+	}
+
+	return 0;
+}
+
+static void
+igbvf_dev_stop(struct rte_eth_dev *dev)
+{
+	PMD_INIT_FUNC_TRACE();
+
+	igbvf_stop_adapter(dev);
+
+	/*
+	  * Clear what we set, but we still keep shadow_vfta to
+	  * restore after device starts
+	  */
+	igbvf_set_vfta_all(dev,0);
+
+	igb_dev_clear_queues(dev);
+}
+
+static void
+igbvf_dev_close(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	PMD_INIT_FUNC_TRACE();
+
+	e1000_reset_hw(hw);
+
+	igbvf_dev_stop(dev);
+}
+
+static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
+{
+	struct e1000_mbx_info *mbx = &hw->mbx;
+	uint32_t msgbuf[2];
+
+	/* After set vlan, vlan strip will also be enabled in igb driver*/
+	msgbuf[0] = E1000_VF_SET_VLAN;
+	msgbuf[1] = vid;
+	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
+	if (on)
+		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
+
+	return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
+}
+
+static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vfta * shadow_vfta =
+		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+	int i = 0, j = 0, vfta = 0, mask = 1;
+
+	for (i = 0; i < IGB_VFTA_SIZE; i++){
+		vfta = shadow_vfta->vfta[i];
+		if(vfta){
+			mask = 1;
+			for (j = 0; j < 32; j++){
+				if(vfta & mask)
+					igbvf_set_vfta(hw,
+						(uint16_t)((i<<5)+j), on);
+				mask<<=1;
+			}
+		}
+	}
+
+}
+
+static int
+igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vfta * shadow_vfta =
+		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
+	uint32_t vid_idx = 0;
+	uint32_t vid_bit = 0;
+	int ret = 0;
+
+	PMD_INIT_FUNC_TRACE();
+
+	/*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
+	ret = igbvf_set_vfta(hw, vlan_id, !!on);
+	if(ret){
+		PMD_INIT_LOG(ERR, "Unable to set VF vlan");
+		return ret;
+	}
+	vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
+	vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
+
+	/*Save what we set and retore it after device reset*/
+	if (on)
+		shadow_vfta->vfta[vid_idx] |= vid_bit;
+	else
+		shadow_vfta->vfta[vid_idx] &= ~vid_bit;
+
+	return 0;
+}
+
+static int
+eth_igb_rss_reta_update(struct rte_eth_dev *dev,
+			struct rte_eth_rss_reta_entry64 *reta_conf,
+			uint16_t reta_size)
+{
+	uint8_t i, j, mask;
+	uint32_t reta, r;
+	uint16_t idx, shift;
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	if (reta_size != ETH_RSS_RETA_SIZE_128) {
+		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
+			"(%d) doesn't match the number hardware can supported "
+			"(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
+		return -EINVAL;
+	}
+
+	for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
+		idx = i / RTE_RETA_GROUP_SIZE;
+		shift = i % RTE_RETA_GROUP_SIZE;
+		mask = (uint8_t)((reta_conf[idx].mask >> shift) &
+						IGB_4_BIT_MASK);
+		if (!mask)
+			continue;
+		if (mask == IGB_4_BIT_MASK)
+			r = 0;
+		else
+			r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
+		for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
+			if (mask & (0x1 << j))
+				reta |= reta_conf[idx].reta[shift + j] <<
+							(CHAR_BIT * j);
+			else
+				reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
+		}
+		E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
+	}
+
+	return 0;
+}
+
+static int
+eth_igb_rss_reta_query(struct rte_eth_dev *dev,
+		       struct rte_eth_rss_reta_entry64 *reta_conf,
+		       uint16_t reta_size)
+{
+	uint8_t i, j, mask;
+	uint32_t reta;
+	uint16_t idx, shift;
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	if (reta_size != ETH_RSS_RETA_SIZE_128) {
+		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
+			"(%d) doesn't match the number hardware can supported "
+			"(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
+		return -EINVAL;
+	}
+
+	for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
+		idx = i / RTE_RETA_GROUP_SIZE;
+		shift = i % RTE_RETA_GROUP_SIZE;
+		mask = (uint8_t)((reta_conf[idx].mask >> shift) &
+						IGB_4_BIT_MASK);
+		if (!mask)
+			continue;
+		reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
+		for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
+			if (mask & (0x1 << j))
+				reta_conf[idx].reta[shift + j] =
+					((reta >> (CHAR_BIT * j)) &
+						IGB_8_BIT_MASK);
+		}
+	}
+
+	return 0;
+}
+
+#define MAC_TYPE_FILTER_SUP(type)    do {\
+	if ((type) != e1000_82580 && (type) != e1000_i350 &&\
+		(type) != e1000_82576)\
+		return -ENOTSUP;\
+} while (0)
+
+static int
+eth_igb_syn_filter_set(struct rte_eth_dev *dev,
+			struct rte_eth_syn_filter *filter,
+			bool add)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t synqf, rfctl;
+
+	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
+		return -EINVAL;
+
+	synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
+
+	if (add) {
+		if (synqf & E1000_SYN_FILTER_ENABLE)
+			return -EINVAL;
+
+		synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
+			E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
+
+		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+		if (filter->hig_pri)
+			rfctl |= E1000_RFCTL_SYNQFP;
+		else
+			rfctl &= ~E1000_RFCTL_SYNQFP;
+
+		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+	} else {
+		if (!(synqf & E1000_SYN_FILTER_ENABLE))
+			return -ENOENT;
+		synqf = 0;
+	}
+
+	E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
+	E1000_WRITE_FLUSH(hw);
+	return 0;
+}
+
+static int
+eth_igb_syn_filter_get(struct rte_eth_dev *dev,
+			struct rte_eth_syn_filter *filter)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t synqf, rfctl;
+
+	synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
+	if (synqf & E1000_SYN_FILTER_ENABLE) {
+		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+		filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
+		filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
+				E1000_SYN_FILTER_QUEUE_SHIFT);
+		return 0;
+	}
+
+	return -ENOENT;
+}
+
+static int
+eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
+			enum rte_filter_op filter_op,
+			void *arg)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	int ret;
+
+	MAC_TYPE_FILTER_SUP(hw->mac.type);
+
+	if (filter_op == RTE_ETH_FILTER_NOP)
+		return 0;
+
+	if (arg == NULL) {
+		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
+			    filter_op);
+		return -EINVAL;
+	}
+
+	switch (filter_op) {
+	case RTE_ETH_FILTER_ADD:
+		ret = eth_igb_syn_filter_set(dev,
+				(struct rte_eth_syn_filter *)arg,
+				TRUE);
+		break;
+	case RTE_ETH_FILTER_DELETE:
+		ret = eth_igb_syn_filter_set(dev,
+				(struct rte_eth_syn_filter *)arg,
+				FALSE);
+		break;
+	case RTE_ETH_FILTER_GET:
+		ret = eth_igb_syn_filter_get(dev,
+				(struct rte_eth_syn_filter *)arg);
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
+		ret = -EINVAL;
+		break;
+	}
+
+	return ret;
+}
+
+#define MAC_TYPE_FILTER_SUP_EXT(type)    do {\
+	if ((type) != e1000_82580 && (type) != e1000_i350)\
+		return -ENOSYS; \
+} while (0)
+
+/* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
+static inline int
+ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
+			struct e1000_2tuple_filter_info *filter_info)
+{
+	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
+		return -EINVAL;
+	if (filter->priority > E1000_2TUPLE_MAX_PRI)
+		return -EINVAL;  /* filter index is out of range. */
+	if (filter->tcp_flags > TCP_FLAG_ALL)
+		return -EINVAL;  /* flags is invalid. */
+
+	switch (filter->dst_port_mask) {
+	case UINT16_MAX:
+		filter_info->dst_port_mask = 0;
+		filter_info->dst_port = filter->dst_port;
+		break;
+	case 0:
+		filter_info->dst_port_mask = 1;
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
+		return -EINVAL;
+	}
+
+	switch (filter->proto_mask) {
+	case UINT8_MAX:
+		filter_info->proto_mask = 0;
+		filter_info->proto = filter->proto;
+		break;
+	case 0:
+		filter_info->proto_mask = 1;
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "invalid protocol mask.");
+		return -EINVAL;
+	}
+
+	filter_info->priority = (uint8_t)filter->priority;
+	if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
+		filter_info->tcp_flags = filter->tcp_flags;
+	else
+		filter_info->tcp_flags = 0;
+
+	return 0;
+}
+
+static inline struct e1000_2tuple_filter *
+igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
+			struct e1000_2tuple_filter_info *key)
+{
+	struct e1000_2tuple_filter *it;
+
+	TAILQ_FOREACH(it, filter_list, entries) {
+		if (memcmp(key, &it->filter_info,
+			sizeof(struct e1000_2tuple_filter_info)) == 0) {
+			return it;
+		}
+	}
+	return NULL;
+}
+
+/*
+ * igb_add_2tuple_filter - add a 2tuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: ponter to the filter that will be added.
+ *
+ * @return
+ *    - On success, zero.
+ *    - On failure, a negative value.
+ */
+static int
+igb_add_2tuple_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	struct e1000_2tuple_filter *filter;
+	uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
+	uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
+	int i, ret;
+
+	filter = rte_zmalloc("e1000_2tuple_filter",
+			sizeof(struct e1000_2tuple_filter), 0);
+	if (filter == NULL)
+		return -ENOMEM;
+
+	ret = ntuple_filter_to_2tuple(ntuple_filter,
+				      &filter->filter_info);
+	if (ret < 0) {
+		rte_free(filter);
+		return ret;
+	}
+	if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
+					 &filter->filter_info) != NULL) {
+		PMD_DRV_LOG(ERR, "filter exists.");
+		rte_free(filter);
+		return -EEXIST;
+	}
+	filter->queue = ntuple_filter->queue;
+
+	/*
+	 * look for an unused 2tuple filter index,
+	 * and insert the filter to list.
+	 */
+	for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
+		if (!(filter_info->twotuple_mask & (1 << i))) {
+			filter_info->twotuple_mask |= 1 << i;
+			filter->index = i;
+			TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
+					  filter,
+					  entries);
+			break;
+		}
+	}
+	if (i >= E1000_MAX_TTQF_FILTERS) {
+		PMD_DRV_LOG(ERR, "2tuple filters are full.");
+		rte_free(filter);
+		return -ENOSYS;
+	}
+
+	imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
+	if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
+		imir |= E1000_IMIR_PORT_BP;
+	else
+		imir &= ~E1000_IMIR_PORT_BP;
+
+	imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
+
+	ttqf |= E1000_TTQF_QUEUE_ENABLE;
+	ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
+	ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK);
+	if (filter->filter_info.proto_mask == 0)
+		ttqf &= ~E1000_TTQF_MASK_ENABLE;
+
+	/* tcp flags bits setting. */
+	if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
+		if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_URG;
+		if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_ACK;
+		if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_PSH;
+		if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_RST;
+		if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_SYN;
+		if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_FIN;
+	} else
+		imir_ext |= E1000_IMIREXT_CTRL_BP;
+	E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
+	E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
+	E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
+	return 0;
+}
+
+/*
+ * igb_remove_2tuple_filter - remove a 2tuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: ponter to the filter that will be removed.
+ *
+ * @return
+ *    - On success, zero.
+ *    - On failure, a negative value.
+ */
+static int
+igb_remove_2tuple_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	struct e1000_2tuple_filter_info filter_2tuple;
+	struct e1000_2tuple_filter *filter;
+	int ret;
+
+	memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
+	ret = ntuple_filter_to_2tuple(ntuple_filter,
+				      &filter_2tuple);
+	if (ret < 0)
+		return ret;
+
+	filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
+					 &filter_2tuple);
+	if (filter == NULL) {
+		PMD_DRV_LOG(ERR, "filter doesn't exist.");
+		return -ENOENT;
+	}
+
+	filter_info->twotuple_mask &= ~(1 << filter->index);
+	TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
+	rte_free(filter);
+
+	E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
+	E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
+	E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
+	return 0;
+}
+
+static inline struct e1000_flex_filter *
+eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
+			struct e1000_flex_filter_info *key)
+{
+	struct e1000_flex_filter *it;
+
+	TAILQ_FOREACH(it, filter_list, entries) {
+		if (memcmp(key, &it->filter_info,
+			sizeof(struct e1000_flex_filter_info)) == 0)
+			return it;
+	}
+
+	return NULL;
+}
+
+static int
+eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
+			struct rte_eth_flex_filter *filter,
+			bool add)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	struct e1000_flex_filter *flex_filter, *it;
+	uint32_t wufc, queueing, mask;
+	uint32_t reg_off;
+	uint8_t shift, i, j = 0;
+
+	flex_filter = rte_zmalloc("e1000_flex_filter",
+			sizeof(struct e1000_flex_filter), 0);
+	if (flex_filter == NULL)
+		return -ENOMEM;
+
+	flex_filter->filter_info.len = filter->len;
+	flex_filter->filter_info.priority = filter->priority;
+	memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
+	for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
+		mask = 0;
+		/* reverse bits in flex filter's mask*/
+		for (shift = 0; shift < CHAR_BIT; shift++) {
+			if (filter->mask[i] & (0x01 << shift))
+				mask |= (0x80 >> shift);
+		}
+		flex_filter->filter_info.mask[i] = mask;
+	}
+
+	wufc = E1000_READ_REG(hw, E1000_WUFC);
+	if (flex_filter->index < E1000_MAX_FHFT)
+		reg_off = E1000_FHFT(flex_filter->index);
+	else
+		reg_off = E1000_FHFT_EXT(flex_filter->index - E1000_MAX_FHFT);
+
+	if (add) {
+		if (eth_igb_flex_filter_lookup(&filter_info->flex_list,
+				&flex_filter->filter_info) != NULL) {
+			PMD_DRV_LOG(ERR, "filter exists.");
+			rte_free(flex_filter);
+			return -EEXIST;
+		}
+		flex_filter->queue = filter->queue;
+		/*
+		 * look for an unused flex filter index
+		 * and insert the filter into the list.
+		 */
+		for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
+			if (!(filter_info->flex_mask & (1 << i))) {
+				filter_info->flex_mask |= 1 << i;
+				flex_filter->index = i;
+				TAILQ_INSERT_TAIL(&filter_info->flex_list,
+					flex_filter,
+					entries);
+				break;
+			}
+		}
+		if (i >= E1000_MAX_FLEX_FILTERS) {
+			PMD_DRV_LOG(ERR, "flex filters are full.");
+			rte_free(flex_filter);
+			return -ENOSYS;
+		}
+
+		E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
+				(E1000_WUFC_FLX0 << flex_filter->index));
+		queueing = filter->len |
+			(filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
+			(filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT);
+		E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
+				queueing);
+		for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
+			E1000_WRITE_REG(hw, reg_off,
+					flex_filter->filter_info.dwords[j]);
+			reg_off += sizeof(uint32_t);
+			E1000_WRITE_REG(hw, reg_off,
+					flex_filter->filter_info.dwords[++j]);
+			reg_off += sizeof(uint32_t);
+			E1000_WRITE_REG(hw, reg_off,
+				(uint32_t)flex_filter->filter_info.mask[i]);
+			reg_off += sizeof(uint32_t) * 2;
+			++j;
+		}
+	} else {
+		it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
+				&flex_filter->filter_info);
+		if (it == NULL) {
+			PMD_DRV_LOG(ERR, "filter doesn't exist.");
+			rte_free(flex_filter);
+			return -ENOENT;
+		}
+
+		for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
+			E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
+		E1000_WRITE_REG(hw, E1000_WUFC, wufc &
+			(~(E1000_WUFC_FLX0 << it->index)));
+
+		filter_info->flex_mask &= ~(1 << it->index);
+		TAILQ_REMOVE(&filter_info->flex_list, it, entries);
+		rte_free(it);
+		rte_free(flex_filter);
+	}
+
+	return 0;
+}
+
+static int
+eth_igb_get_flex_filter(struct rte_eth_dev *dev,
+			struct rte_eth_flex_filter *filter)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	struct e1000_flex_filter flex_filter, *it;
+	uint32_t wufc, queueing, wufc_en = 0;
+
+	memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
+	flex_filter.filter_info.len = filter->len;
+	flex_filter.filter_info.priority = filter->priority;
+	memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
+	memcpy(flex_filter.filter_info.mask, filter->mask,
+			RTE_ALIGN(filter->len, sizeof(char)) / sizeof(char));
+
+	it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
+				&flex_filter.filter_info);
+	if (it == NULL) {
+		PMD_DRV_LOG(ERR, "filter doesn't exist.");
+		return -ENOENT;
+	}
+
+	wufc = E1000_READ_REG(hw, E1000_WUFC);
+	wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
+
+	if ((wufc & wufc_en) == wufc_en) {
+		uint32_t reg_off = 0;
+		if (it->index < E1000_MAX_FHFT)
+			reg_off = E1000_FHFT(it->index);
+		else
+			reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
+
+		queueing = E1000_READ_REG(hw,
+				reg_off + E1000_FHFT_QUEUEING_OFFSET);
+		filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
+		filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
+			E1000_FHFT_QUEUEING_PRIO_SHIFT;
+		filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
+			E1000_FHFT_QUEUEING_QUEUE_SHIFT;
+		return 0;
+	}
+	return -ENOENT;
+}
+
+static int
+eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
+			enum rte_filter_op filter_op,
+			void *arg)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct rte_eth_flex_filter *filter;
+	int ret = 0;
+
+	MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
+
+	if (filter_op == RTE_ETH_FILTER_NOP)
+		return ret;
+
+	if (arg == NULL) {
+		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
+			    filter_op);
+		return -EINVAL;
+	}
+
+	filter = (struct rte_eth_flex_filter *)arg;
+	if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
+	    || filter->len % sizeof(uint64_t) != 0) {
+		PMD_DRV_LOG(ERR, "filter's length is out of range");
+		return -EINVAL;
+	}
+	if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
+		PMD_DRV_LOG(ERR, "filter's priority is out of range");
+		return -EINVAL;
+	}
+
+	switch (filter_op) {
+	case RTE_ETH_FILTER_ADD:
+		ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
+		break;
+	case RTE_ETH_FILTER_DELETE:
+		ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
+		break;
+	case RTE_ETH_FILTER_GET:
+		ret = eth_igb_get_flex_filter(dev, filter);
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
+		ret = -EINVAL;
+		break;
+	}
+
+	return ret;
+}
+
+/* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
+static inline int
+ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
+			struct e1000_5tuple_filter_info *filter_info)
+{
+	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
+		return -EINVAL;
+	if (filter->priority > E1000_2TUPLE_MAX_PRI)
+		return -EINVAL;  /* filter index is out of range. */
+	if (filter->tcp_flags > TCP_FLAG_ALL)
+		return -EINVAL;  /* flags is invalid. */
+
+	switch (filter->dst_ip_mask) {
+	case UINT32_MAX:
+		filter_info->dst_ip_mask = 0;
+		filter_info->dst_ip = filter->dst_ip;
+		break;
+	case 0:
+		filter_info->dst_ip_mask = 1;
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
+		return -EINVAL;
+	}
+
+	switch (filter->src_ip_mask) {
+	case UINT32_MAX:
+		filter_info->src_ip_mask = 0;
+		filter_info->src_ip = filter->src_ip;
+		break;
+	case 0:
+		filter_info->src_ip_mask = 1;
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
+		return -EINVAL;
+	}
+
+	switch (filter->dst_port_mask) {
+	case UINT16_MAX:
+		filter_info->dst_port_mask = 0;
+		filter_info->dst_port = filter->dst_port;
+		break;
+	case 0:
+		filter_info->dst_port_mask = 1;
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
+		return -EINVAL;
+	}
+
+	switch (filter->src_port_mask) {
+	case UINT16_MAX:
+		filter_info->src_port_mask = 0;
+		filter_info->src_port = filter->src_port;
+		break;
+	case 0:
+		filter_info->src_port_mask = 1;
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "invalid src_port mask.");
+		return -EINVAL;
+	}
+
+	switch (filter->proto_mask) {
+	case UINT8_MAX:
+		filter_info->proto_mask = 0;
+		filter_info->proto = filter->proto;
+		break;
+	case 0:
+		filter_info->proto_mask = 1;
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "invalid protocol mask.");
+		return -EINVAL;
+	}
+
+	filter_info->priority = (uint8_t)filter->priority;
+	if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
+		filter_info->tcp_flags = filter->tcp_flags;
+	else
+		filter_info->tcp_flags = 0;
+
+	return 0;
+}
+
+static inline struct e1000_5tuple_filter *
+igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
+			struct e1000_5tuple_filter_info *key)
+{
+	struct e1000_5tuple_filter *it;
+
+	TAILQ_FOREACH(it, filter_list, entries) {
+		if (memcmp(key, &it->filter_info,
+			sizeof(struct e1000_5tuple_filter_info)) == 0) {
+			return it;
+		}
+	}
+	return NULL;
+}
+
+/*
+ * igb_add_5tuple_filter_82576 - add a 5tuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: ponter to the filter that will be added.
+ *
+ * @return
+ *    - On success, zero.
+ *    - On failure, a negative value.
+ */
+static int
+igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	struct e1000_5tuple_filter *filter;
+	uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
+	uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
+	uint8_t i;
+	int ret;
+
+	filter = rte_zmalloc("e1000_5tuple_filter",
+			sizeof(struct e1000_5tuple_filter), 0);
+	if (filter == NULL)
+		return -ENOMEM;
+
+	ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
+					    &filter->filter_info);
+	if (ret < 0) {
+		rte_free(filter);
+		return ret;
+	}
+
+	if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
+					 &filter->filter_info) != NULL) {
+		PMD_DRV_LOG(ERR, "filter exists.");
+		rte_free(filter);
+		return -EEXIST;
+	}
+	filter->queue = ntuple_filter->queue;
+
+	/*
+	 * look for an unused 5tuple filter index,
+	 * and insert the filter to list.
+	 */
+	for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
+		if (!(filter_info->fivetuple_mask & (1 << i))) {
+			filter_info->fivetuple_mask |= 1 << i;
+			filter->index = i;
+			TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
+					  filter,
+					  entries);
+			break;
+		}
+	}
+	if (i >= E1000_MAX_FTQF_FILTERS) {
+		PMD_DRV_LOG(ERR, "5tuple filters are full.");
+		rte_free(filter);
+		return -ENOSYS;
+	}
+
+	ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
+	if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
+		ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
+	if (filter->filter_info.dst_ip_mask == 0)
+		ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
+	if (filter->filter_info.src_port_mask == 0)
+		ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
+	if (filter->filter_info.proto_mask == 0)
+		ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
+	ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
+		E1000_FTQF_QUEUE_MASK;
+	ftqf |= E1000_FTQF_QUEUE_ENABLE;
+	E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
+	E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
+	E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
+
+	spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
+	E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
+
+	imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
+	if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
+		imir |= E1000_IMIR_PORT_BP;
+	else
+		imir &= ~E1000_IMIR_PORT_BP;
+	imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
+
+	/* tcp flags bits setting. */
+	if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
+		if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_URG;
+		if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_ACK;
+		if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_PSH;
+		if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_RST;
+		if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_SYN;
+		if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
+			imir_ext |= E1000_IMIREXT_CTRL_FIN;
+	} else
+		imir_ext |= E1000_IMIREXT_CTRL_BP;
+	E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
+	E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
+	return 0;
+}
+
+/*
+ * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: ponter to the filter that will be removed.
+ *
+ * @return
+ *    - On success, zero.
+ *    - On failure, a negative value.
+ */
+static int
+igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
+				struct rte_eth_ntuple_filter *ntuple_filter)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	struct e1000_5tuple_filter_info filter_5tuple;
+	struct e1000_5tuple_filter *filter;
+	int ret;
+
+	memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
+	ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
+					    &filter_5tuple);
+	if (ret < 0)
+		return ret;
+
+	filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
+					 &filter_5tuple);
+	if (filter == NULL) {
+		PMD_DRV_LOG(ERR, "filter doesn't exist.");
+		return -ENOENT;
+	}
+
+	filter_info->fivetuple_mask &= ~(1 << filter->index);
+	TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
+	rte_free(filter);
+
+	E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
+			E1000_FTQF_VF_BP | E1000_FTQF_MASK);
+	E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
+	E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
+	E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
+	E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
+	E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
+	return 0;
+}
+
+static int
+eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
+{
+	uint32_t rctl;
+	struct e1000_hw *hw;
+	struct rte_eth_dev_info dev_info;
+	uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
+				     VLAN_TAG_SIZE);
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+#ifdef RTE_LIBRTE_82571_SUPPORT
+	/* XXX: not bigger than max_rx_pktlen */
+	if (hw->mac.type == e1000_82571)
+		return -ENOTSUP;
+#endif
+	eth_igb_infos_get(dev, &dev_info);
+
+	/* check that mtu is within the allowed range */
+	if ((mtu < ETHER_MIN_MTU) ||
+	    (frame_size > dev_info.max_rx_pktlen))
+		return -EINVAL;
+
+	/* refuse mtu that requires the support of scattered packets when this
+	 * feature has not been enabled before. */
+	if (!dev->data->scattered_rx &&
+	    frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
+		return -EINVAL;
+
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+
+	/* switch to jumbo mode if needed */
+	if (frame_size > ETHER_MAX_LEN) {
+		dev->data->dev_conf.rxmode.jumbo_frame = 1;
+		rctl |= E1000_RCTL_LPE;
+	} else {
+		dev->data->dev_conf.rxmode.jumbo_frame = 0;
+		rctl &= ~E1000_RCTL_LPE;
+	}
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+	/* update max frame size */
+	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
+
+	E1000_WRITE_REG(hw, E1000_RLPML,
+			dev->data->dev_conf.rxmode.max_rx_pkt_len);
+
+	return 0;
+}
+
+/*
+ * igb_add_del_ntuple_filter - add or delete a ntuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
+ * add: if true, add filter, if false, remove filter
+ *
+ * @return
+ *    - On success, zero.
+ *    - On failure, a negative value.
+ */
+static int
+igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter,
+			bool add)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	int ret;
+
+	switch (ntuple_filter->flags) {
+	case RTE_5TUPLE_FLAGS:
+	case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
+		if (hw->mac.type != e1000_82576)
+			return -ENOTSUP;
+		if (add)
+			ret = igb_add_5tuple_filter_82576(dev,
+							  ntuple_filter);
+		else
+			ret = igb_remove_5tuple_filter_82576(dev,
+							     ntuple_filter);
+		break;
+	case RTE_2TUPLE_FLAGS:
+	case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
+		if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
+			return -ENOTSUP;
+		if (add)
+			ret = igb_add_2tuple_filter(dev, ntuple_filter);
+		else
+			ret = igb_remove_2tuple_filter(dev, ntuple_filter);
+		break;
+	default:
+		ret = -EINVAL;
+		break;
+	}
+
+	return ret;
+}
+
+/*
+ * igb_get_ntuple_filter - get a ntuple filter
+ *
+ * @param
+ * dev: Pointer to struct rte_eth_dev.
+ * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
+ *
+ * @return
+ *    - On success, zero.
+ *    - On failure, a negative value.
+ */
+static int
+igb_get_ntuple_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ntuple_filter *ntuple_filter)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	struct e1000_5tuple_filter_info filter_5tuple;
+	struct e1000_2tuple_filter_info filter_2tuple;
+	struct e1000_5tuple_filter *p_5tuple_filter;
+	struct e1000_2tuple_filter *p_2tuple_filter;
+	int ret;
+
+	switch (ntuple_filter->flags) {
+	case RTE_5TUPLE_FLAGS:
+	case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
+		if (hw->mac.type != e1000_82576)
+			return -ENOTSUP;
+		memset(&filter_5tuple,
+			0,
+			sizeof(struct e1000_5tuple_filter_info));
+		ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
+						    &filter_5tuple);
+		if (ret < 0)
+			return ret;
+		p_5tuple_filter = igb_5tuple_filter_lookup_82576(
+					&filter_info->fivetuple_list,
+					&filter_5tuple);
+		if (p_5tuple_filter == NULL) {
+			PMD_DRV_LOG(ERR, "filter doesn't exist.");
+			return -ENOENT;
+		}
+		ntuple_filter->queue = p_5tuple_filter->queue;
+		break;
+	case RTE_2TUPLE_FLAGS:
+	case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
+		if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
+			return -ENOTSUP;
+		memset(&filter_2tuple,
+			0,
+			sizeof(struct e1000_2tuple_filter_info));
+		ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
+		if (ret < 0)
+			return ret;
+		p_2tuple_filter = igb_2tuple_filter_lookup(
+					&filter_info->twotuple_list,
+					&filter_2tuple);
+		if (p_2tuple_filter == NULL) {
+			PMD_DRV_LOG(ERR, "filter doesn't exist.");
+			return -ENOENT;
+		}
+		ntuple_filter->queue = p_2tuple_filter->queue;
+		break;
+	default:
+		ret = -EINVAL;
+		break;
+	}
+
+	return 0;
+}
+
+/*
+ * igb_ntuple_filter_handle - Handle operations for ntuple filter.
+ * @dev: pointer to rte_eth_dev structure
+ * @filter_op:operation will be taken.
+ * @arg: a pointer to specific structure corresponding to the filter_op
+ */
+static int
+igb_ntuple_filter_handle(struct rte_eth_dev *dev,
+				enum rte_filter_op filter_op,
+				void *arg)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	int ret;
+
+	MAC_TYPE_FILTER_SUP(hw->mac.type);
+
+	if (filter_op == RTE_ETH_FILTER_NOP)
+		return 0;
+
+	if (arg == NULL) {
+		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
+			    filter_op);
+		return -EINVAL;
+	}
+
+	switch (filter_op) {
+	case RTE_ETH_FILTER_ADD:
+		ret = igb_add_del_ntuple_filter(dev,
+			(struct rte_eth_ntuple_filter *)arg,
+			TRUE);
+		break;
+	case RTE_ETH_FILTER_DELETE:
+		ret = igb_add_del_ntuple_filter(dev,
+			(struct rte_eth_ntuple_filter *)arg,
+			FALSE);
+		break;
+	case RTE_ETH_FILTER_GET:
+		ret = igb_get_ntuple_filter(dev,
+			(struct rte_eth_ntuple_filter *)arg);
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
+		ret = -EINVAL;
+		break;
+	}
+	return ret;
+}
+
+static inline int
+igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
+			uint16_t ethertype)
+{
+	int i;
+
+	for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
+		if (filter_info->ethertype_filters[i] == ethertype &&
+		    (filter_info->ethertype_mask & (1 << i)))
+			return i;
+	}
+	return -1;
+}
+
+static inline int
+igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
+			uint16_t ethertype)
+{
+	int i;
+
+	for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
+		if (!(filter_info->ethertype_mask & (1 << i))) {
+			filter_info->ethertype_mask |= 1 << i;
+			filter_info->ethertype_filters[i] = ethertype;
+			return i;
+		}
+	}
+	return -1;
+}
+
+static inline int
+igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
+			uint8_t idx)
+{
+	if (idx >= E1000_MAX_ETQF_FILTERS)
+		return -1;
+	filter_info->ethertype_mask &= ~(1 << idx);
+	filter_info->ethertype_filters[idx] = 0;
+	return idx;
+}
+
+
+static int
+igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ethertype_filter *filter,
+			bool add)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	uint32_t etqf = 0;
+	int ret;
+
+	if (filter->ether_type == ETHER_TYPE_IPv4 ||
+		filter->ether_type == ETHER_TYPE_IPv6) {
+		PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
+			" ethertype filter.", filter->ether_type);
+		return -EINVAL;
+	}
+
+	if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
+		PMD_DRV_LOG(ERR, "mac compare is unsupported.");
+		return -EINVAL;
+	}
+	if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
+		PMD_DRV_LOG(ERR, "drop option is unsupported.");
+		return -EINVAL;
+	}
+
+	ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
+	if (ret >= 0 && add) {
+		PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
+			    filter->ether_type);
+		return -EEXIST;
+	}
+	if (ret < 0 && !add) {
+		PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
+			    filter->ether_type);
+		return -ENOENT;
+	}
+
+	if (add) {
+		ret = igb_ethertype_filter_insert(filter_info,
+			filter->ether_type);
+		if (ret < 0) {
+			PMD_DRV_LOG(ERR, "ethertype filters are full.");
+			return -ENOSYS;
+		}
+
+		etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
+		etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
+		etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
+	} else {
+		ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
+		if (ret < 0)
+			return -ENOSYS;
+	}
+	E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
+	E1000_WRITE_FLUSH(hw);
+
+	return 0;
+}
+
+static int
+igb_get_ethertype_filter(struct rte_eth_dev *dev,
+			struct rte_eth_ethertype_filter *filter)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_filter_info *filter_info =
+		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
+	uint32_t etqf;
+	int ret;
+
+	ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
+	if (ret < 0) {
+		PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
+			    filter->ether_type);
+		return -ENOENT;
+	}
+
+	etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
+	if (etqf & E1000_ETQF_FILTER_ENABLE) {
+		filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
+		filter->flags = 0;
+		filter->queue = (etqf & E1000_ETQF_QUEUE) >>
+				E1000_ETQF_QUEUE_SHIFT;
+		return 0;
+	}
+
+	return -ENOENT;
+}
+
+/*
+ * igb_ethertype_filter_handle - Handle operations for ethertype filter.
+ * @dev: pointer to rte_eth_dev structure
+ * @filter_op:operation will be taken.
+ * @arg: a pointer to specific structure corresponding to the filter_op
+ */
+static int
+igb_ethertype_filter_handle(struct rte_eth_dev *dev,
+				enum rte_filter_op filter_op,
+				void *arg)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	int ret;
+
+	MAC_TYPE_FILTER_SUP(hw->mac.type);
+
+	if (filter_op == RTE_ETH_FILTER_NOP)
+		return 0;
+
+	if (arg == NULL) {
+		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
+			    filter_op);
+		return -EINVAL;
+	}
+
+	switch (filter_op) {
+	case RTE_ETH_FILTER_ADD:
+		ret = igb_add_del_ethertype_filter(dev,
+			(struct rte_eth_ethertype_filter *)arg,
+			TRUE);
+		break;
+	case RTE_ETH_FILTER_DELETE:
+		ret = igb_add_del_ethertype_filter(dev,
+			(struct rte_eth_ethertype_filter *)arg,
+			FALSE);
+		break;
+	case RTE_ETH_FILTER_GET:
+		ret = igb_get_ethertype_filter(dev,
+			(struct rte_eth_ethertype_filter *)arg);
+		break;
+	default:
+		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
+		ret = -EINVAL;
+		break;
+	}
+	return ret;
+}
+
+static int
+eth_igb_filter_ctrl(struct rte_eth_dev *dev,
+		     enum rte_filter_type filter_type,
+		     enum rte_filter_op filter_op,
+		     void *arg)
+{
+	int ret = -EINVAL;
+
+	switch (filter_type) {
+	case RTE_ETH_FILTER_NTUPLE:
+		ret = igb_ntuple_filter_handle(dev, filter_op, arg);
+		break;
+	case RTE_ETH_FILTER_ETHERTYPE:
+		ret = igb_ethertype_filter_handle(dev, filter_op, arg);
+		break;
+	case RTE_ETH_FILTER_SYN:
+		ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
+		break;
+	case RTE_ETH_FILTER_FLEXIBLE:
+		ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
+		break;
+	default:
+		PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
+							filter_type);
+		break;
+	}
+
+	return ret;
+}
+
+static struct rte_driver pmd_igb_drv = {
+	.type = PMD_PDEV,
+	.init = rte_igb_pmd_init,
+};
+
+static struct rte_driver pmd_igbvf_drv = {
+	.type = PMD_PDEV,
+	.init = rte_igbvf_pmd_init,
+};
+
+PMD_REGISTER_DRIVER(pmd_igb_drv);
+PMD_REGISTER_DRIVER(pmd_igbvf_drv);
diff --git a/drivers/net/e1000/igb_pf.c b/drivers/net/e1000/igb_pf.c
new file mode 100644
index 0000000..6a4d210
--- /dev/null
+++ b/drivers/net/e1000/igb_pf.c
@@ -0,0 +1,511 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdio.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_eal.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_memcpy.h>
+#include <rte_malloc.h>
+#include <rte_random.h>
+
+#include "base/e1000_defines.h"
+#include "base/e1000_regs.h"
+#include "base/e1000_hw.h"
+#include "e1000_ethdev.h"
+
+static inline uint16_t
+dev_num_vf(struct rte_eth_dev *eth_dev)
+{
+	return eth_dev->pci_dev->max_vfs;
+}
+
+static inline
+int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
+{
+	unsigned char vf_mac_addr[ETHER_ADDR_LEN];
+	struct e1000_vf_info *vfinfo =
+		*E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
+	uint16_t vfn;
+
+	for (vfn = 0; vfn < vf_num; vfn++) {
+		eth_random_addr(vf_mac_addr);
+		/* keep the random address as default */
+		memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
+				ETHER_ADDR_LEN);
+	}
+
+	return 0;
+}
+
+static inline int
+igb_mb_intr_setup(struct rte_eth_dev *dev)
+{
+	struct e1000_interrupt *intr =
+		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
+
+	intr->mask |= E1000_ICR_VMMB;
+
+	return 0;
+}
+
+void igb_pf_host_init(struct rte_eth_dev *eth_dev)
+{
+	struct e1000_vf_info **vfinfo =
+		E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+	uint16_t vf_num;
+	uint8_t nb_queue;
+
+	RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
+	if (0 == (vf_num = dev_num_vf(eth_dev)))
+		return;
+
+	if (hw->mac.type == e1000_i350)
+		nb_queue = 1;
+	else if(hw->mac.type == e1000_82576)
+		/* per datasheet, it should be 2, but 1 seems correct */
+		nb_queue = 1;
+	else
+		return;
+
+	*vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
+	if (*vfinfo == NULL)
+		rte_panic("Cannot allocate memory for private VF data\n");
+
+	RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
+	RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
+	RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
+	RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
+
+	igb_vf_perm_addr_gen(eth_dev, vf_num);
+
+	/* set mb interrupt mask */
+	igb_mb_intr_setup(eth_dev);
+
+	return;
+}
+
+#define E1000_RAH_POOLSEL_SHIFT    (18)
+int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
+{
+	uint32_t vtctl;
+	uint16_t vf_num;
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+	uint32_t vlanctrl;
+	int i;
+	uint32_t rah;
+
+	if (0 == (vf_num = dev_num_vf(eth_dev)))
+		return -1;
+
+	/* enable VMDq and set the default pool for PF */
+	vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
+	vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
+	vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
+		<< E1000_VT_CTL_DEFAULT_POOL_SHIFT;
+	vtctl |= E1000_VT_CTL_VM_REPL_EN;
+	E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
+
+	/* Enable pools reserved to PF only */
+	E1000_WRITE_REG(hw, E1000_VFRE, (~0) << vf_num);
+	E1000_WRITE_REG(hw, E1000_VFTE, (~0) << vf_num);
+
+	/* PFDMA Tx General Switch Control Enables VMDQ loopback */
+	if (hw->mac.type == e1000_i350)
+		E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
+	else
+		E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
+
+	/* clear VMDq map to perment rar 0 */
+	rah = E1000_READ_REG(hw, E1000_RAH(0));
+	rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
+	E1000_WRITE_REG(hw, E1000_RAH(0), rah);
+
+	/* clear VMDq map to scan rar 32 */
+	rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
+	rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
+	E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
+
+	/* set VMDq map to default PF pool */
+	rah = E1000_READ_REG(hw, E1000_RAH(0));
+	rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
+			E1000_RAH_POOLSEL_SHIFT));
+	E1000_WRITE_REG(hw, E1000_RAH(0), rah);
+
+	/*
+	 * enable vlan filtering and allow all vlan tags through
+	 */
+	vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
+	vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
+	E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
+
+	/* VFTA - enable all vlan filters */
+	for (i = 0; i < IGB_VFTA_SIZE; i++) {
+		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
+	}
+
+	/* Enable/Disable MAC Anti-Spoofing */
+	e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
+
+	return 0;
+}
+
+static void
+set_rx_mode(struct rte_eth_dev *dev)
+{
+	struct rte_eth_dev_data *dev_data =
+		(struct rte_eth_dev_data*)dev->data->dev_private;
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
+	uint16_t vfn = dev_num_vf(dev);
+
+	/* Check for Promiscuous and All Multicast modes */
+	fctrl = E1000_READ_REG(hw, E1000_RCTL);
+
+	/* set all bits that we expect to always be set */
+	fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
+	fctrl |= E1000_RCTL_BAM;;
+
+	/* clear the bits we are changing the status of */
+	fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
+
+	if (dev_data->promiscuous) {
+		fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
+	} else {
+		if (dev_data->all_multicast) {
+			fctrl |= E1000_RCTL_MPE;
+			vmolr |= E1000_VMOLR_MPME;
+		} else {
+			vmolr |= E1000_VMOLR_ROMPE;
+		}
+	}
+
+	if ((hw->mac.type == e1000_82576) ||
+		(hw->mac.type == e1000_i350)) {
+		vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
+			 ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
+			   E1000_VMOLR_ROPE);
+		E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
+	}
+
+	E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
+}
+
+static inline void
+igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vf_info *vfinfo =
+		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+	uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
+
+	vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
+			E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
+	E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
+
+	E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
+
+	/* reset multicast table array for vf */
+	vfinfo[vf].num_vf_mc_hashes = 0;
+
+	/* reset rx mode */
+	set_rx_mode(dev);
+}
+
+static inline void
+igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t reg;
+
+	/* enable transmit and receive for vf */
+	reg = E1000_READ_REG(hw, E1000_VFTE);
+	reg |= (reg | (1 << vf));
+	E1000_WRITE_REG(hw, E1000_VFTE, reg);
+
+	reg = E1000_READ_REG(hw, E1000_VFRE);
+	reg |= (reg | (1 << vf));
+	E1000_WRITE_REG(hw, E1000_VFRE, reg);
+
+	igb_vf_reset_event(dev, vf);
+}
+
+static int
+igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vf_info *vfinfo =
+		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+	unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
+	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
+	uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
+	uint32_t rah;
+
+	igb_vf_reset_msg(dev, vf);
+
+	hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
+	rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
+	rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
+	E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
+
+	/* reply to reset with ack and vf mac address */
+	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
+	rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
+	e1000_write_mbx(hw, msgbuf, 3, vf);
+
+	return 0;
+}
+
+static int
+igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vf_info *vfinfo =
+		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
+	uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
+
+	if (is_valid_assigned_ether_addr((struct ether_addr*)new_mac)) {
+		rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, 6);
+		hw->mac.ops.rar_set(hw, new_mac, rar_entry);
+		return 0;
+	}
+	return -1;
+}
+
+static int
+igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
+{
+	int i;
+	uint32_t vector_bit;
+	uint32_t vector_reg;
+	uint32_t mta_reg;
+	int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
+		E1000_VT_MSGINFO_SHIFT;
+	uint16_t *hash_list = (uint16_t *)&msgbuf[1];
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vf_info *vfinfo =
+		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+
+	/* only so many hash values supported */
+	entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
+
+	/*
+	 * salt away the number of multi cast addresses assigned
+	 * to this VF for later use to restore when the PF multi cast
+	 * list changes
+	 */
+	vfinfo->num_vf_mc_hashes = (uint16_t)entries;
+
+	/*
+	 * VFs are limited to using the MTA hash table for their multicast
+	 * addresses
+	 */
+	for (i = 0; i < entries; i++) {
+		vfinfo->vf_mc_hashes[i] = hash_list[i];
+	}
+
+	for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
+		vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
+		vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
+		mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
+		mta_reg |= (1 << vector_bit);
+		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
+	}
+
+	return 0;
+}
+
+static int
+igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
+{
+	int add, vid;
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	struct e1000_vf_info *vfinfo =
+		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
+	uint32_t vid_idx, vid_bit, vfta;
+
+	add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
+		>> E1000_VT_MSGINFO_SHIFT;
+	vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
+
+	if (add)
+		vfinfo[vf].vlan_count++;
+	else if (vfinfo[vf].vlan_count)
+		vfinfo[vf].vlan_count--;
+
+	vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
+			     E1000_VFTA_ENTRY_MASK);
+	vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
+	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
+	if (add)
+		vfta |= vid_bit;
+	else
+		vfta &= ~vid_bit;
+
+	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
+	E1000_WRITE_FLUSH(hw);
+
+	return 0;
+}
+
+static int
+igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
+{
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
+	uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
+	uint32_t vmolr;
+
+	if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
+		return -1;
+
+	vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
+
+	vmolr &= ~E1000_VMOLR_RLPML_MASK;
+	vmolr |= rlpml;
+
+	/* Enable Long Packet support */
+	vmolr |= E1000_VMOLR_LPE;
+
+	E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
+	E1000_WRITE_FLUSH(hw);
+
+	return 0;
+}
+
+static int
+igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
+{
+	uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
+	uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
+	int32_t retval;
+	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
+	if (retval) {
+		PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
+		return retval;
+	}
+
+	/* do nothing with the message already processed */
+	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
+		return retval;
+
+	/* flush the ack before we write any messages back */
+	E1000_WRITE_FLUSH(hw);
+
+	/* perform VF reset */
+	if (msgbuf[0] == E1000_VF_RESET) {
+		return igb_vf_reset(dev, vf, msgbuf);
+	}
+
+	/* check & process VF to PF mailbox message */
+	switch ((msgbuf[0] & 0xFFFF)) {
+	case E1000_VF_SET_MAC_ADDR:
+		retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
+		break;
+	case E1000_VF_SET_MULTICAST:
+		retval = igb_vf_set_multicast(dev, vf, msgbuf);
+		break;
+	case E1000_VF_SET_LPE:
+		retval = igb_vf_set_rlpml(dev, vf, msgbuf);
+		break;
+	case E1000_VF_SET_VLAN:
+		retval = igb_vf_set_vlan(dev, vf, msgbuf);
+		break;
+	default:
+		PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
+			     (unsigned) msgbuf[0]);
+		retval = E1000_ERR_MBX;
+		break;
+	}
+
+	/* response the VF according to the message process result */
+	if (retval)
+		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
+	else
+		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
+
+	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
+
+	e1000_write_mbx(hw, msgbuf, 1, vf);
+
+	return retval;
+}
+
+static inline void
+igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
+{
+	uint32_t msg = E1000_VT_MSGTYPE_NACK;
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	e1000_write_mbx(hw, &msg, 1, vf);
+}
+
+void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
+{
+	uint16_t vf;
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
+
+	for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
+		/* check & process vf function level reset */
+		if (!e1000_check_for_rst(hw, vf))
+			igb_vf_reset_event(eth_dev, vf);
+
+		/* check & process vf mailbox messages */
+		if (!e1000_check_for_msg(hw, vf))
+			igb_rcv_msg_from_vf(eth_dev, vf);
+
+		/* check & process acks from vf */
+		if (!e1000_check_for_ack(hw, vf))
+			igb_rcv_ack_from_vf(eth_dev, vf);
+	}
+}
diff --git a/drivers/net/e1000/igb_rxtx.c b/drivers/net/e1000/igb_rxtx.c
new file mode 100644
index 0000000..f586311
--- /dev/null
+++ b/drivers/net/e1000/igb_rxtx.c
@@ -0,0 +1,2397 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_prefetch.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+
+/* Bit Mask to indicate what bits required for building TX context */
+#define IGB_TX_OFFLOAD_MASK (			 \
+		PKT_TX_VLAN_PKT |		 \
+		PKT_TX_IP_CKSUM |		 \
+		PKT_TX_L4_MASK)
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+	struct rte_mbuf *m;
+
+	m = __rte_mbuf_raw_alloc(mp);
+	__rte_mbuf_sanity_check_raw(m, 0);
+	return (m);
+}
+
+#define RTE_MBUF_DATA_DMA_ADDR(mb) \
+	(uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
+
+#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
+	(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct igb_rx_entry {
+	struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct igb_tx_entry {
+	struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+	uint16_t next_id; /**< Index of next descriptor in ring. */
+	uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct igb_rx_queue {
+	struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
+	volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
+	uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
+	volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
+	volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
+	struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
+	struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+	struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
+	uint16_t            nb_rx_desc; /**< number of RX descriptors. */
+	uint16_t            rx_tail;    /**< current value of RDT register. */
+	uint16_t            nb_rx_hold; /**< number of held free RX desc. */
+	uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
+	uint16_t            queue_id;   /**< RX queue index. */
+	uint16_t            reg_idx;    /**< RX queue register index. */
+	uint8_t             port_id;    /**< Device port identifier. */
+	uint8_t             pthresh;    /**< Prefetch threshold register. */
+	uint8_t             hthresh;    /**< Host threshold register. */
+	uint8_t             wthresh;    /**< Write-back threshold register. */
+	uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
+	uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
+};
+
+/**
+ * Hardware context number
+ */
+enum igb_advctx_num {
+	IGB_CTX_0    = 0, /**< CTX0    */
+	IGB_CTX_1    = 1, /**< CTX1    */
+	IGB_CTX_NUM  = 2, /**< CTX_NUM */
+};
+
+/** Offload features */
+union igb_vlan_macip {
+	uint32_t data;
+	struct {
+		uint16_t l2_l3_len; /**< 7bit L2 and 9b L3 lengths combined */
+		uint16_t vlan_tci;
+		/**< VLAN Tag Control Identifier (CPU order). */
+	} f;
+};
+
+/*
+ * Compare mask for vlan_macip_len.data,
+ * should be in sync with igb_vlan_macip.f layout.
+ * */
+#define TX_VLAN_CMP_MASK        0xFFFF0000  /**< VLAN length - 16-bits. */
+#define TX_MAC_LEN_CMP_MASK     0x0000FE00  /**< MAC length - 7-bits. */
+#define TX_IP_LEN_CMP_MASK      0x000001FF  /**< IP  length - 9-bits. */
+/** MAC+IP  length. */
+#define TX_MACIP_LEN_CMP_MASK   (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
+
+/**
+ * Strucutre to check if new context need be built
+ */
+struct igb_advctx_info {
+	uint64_t flags;           /**< ol_flags related to context build. */
+	uint32_t cmp_mask;        /**< compare mask for vlan_macip_lens */
+	union igb_vlan_macip vlan_macip_lens; /**< vlan, mac & ip length. */
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct igb_tx_queue {
+	volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
+	uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
+	struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
+	volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
+	uint32_t               txd_type;      /**< Device-specific TXD type */
+	uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
+	uint16_t               tx_tail; /**< Current value of TDT register. */
+	uint16_t               tx_head;
+	/**< Index of first used TX descriptor. */
+	uint16_t               queue_id; /**< TX queue index. */
+	uint16_t               reg_idx;  /**< TX queue register index. */
+	uint8_t                port_id;  /**< Device port identifier. */
+	uint8_t                pthresh;  /**< Prefetch threshold register. */
+	uint8_t                hthresh;  /**< Host threshold register. */
+	uint8_t                wthresh;  /**< Write-back threshold register. */
+	uint32_t               ctx_curr;
+	/**< Current used hardware descriptor. */
+	uint32_t               ctx_start;
+	/**< Start context position for transmit queue. */
+	struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
+	/**< Hardware context history.*/
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_igb_prefetch(p)	rte_prefetch0(p)
+#else
+#define rte_igb_prefetch(p)	do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p)	do {} while(0)
+#endif
+
+/*
+ * Macro for VMDq feature for 1 GbE NIC.
+ */
+#define E1000_VMOLR_SIZE			(8)
+
+/*********************************************************************
+ *
+ *  TX function
+ *
+ **********************************************************************/
+
+/*
+ * Advanced context descriptor are almost same between igb/ixgbe
+ * This is a separate function, looking for optimization opportunity here
+ * Rework required to go with the pre-defined values.
+ */
+
+static inline void
+igbe_set_xmit_ctx(struct igb_tx_queue* txq,
+		volatile struct e1000_adv_tx_context_desc *ctx_txd,
+		uint64_t ol_flags, uint32_t vlan_macip_lens)
+{
+	uint32_t type_tucmd_mlhl;
+	uint32_t mss_l4len_idx;
+	uint32_t ctx_idx, ctx_curr;
+	uint32_t cmp_mask;
+
+	ctx_curr = txq->ctx_curr;
+	ctx_idx = ctx_curr + txq->ctx_start;
+
+	cmp_mask = 0;
+	type_tucmd_mlhl = 0;
+
+	if (ol_flags & PKT_TX_VLAN_PKT) {
+		cmp_mask |= TX_VLAN_CMP_MASK;
+	}
+
+	if (ol_flags & PKT_TX_IP_CKSUM) {
+		type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
+		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+	}
+
+	/* Specify which HW CTX to upload. */
+	mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
+	switch (ol_flags & PKT_TX_L4_MASK) {
+	case PKT_TX_UDP_CKSUM:
+		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
+				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+		mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+		break;
+	case PKT_TX_TCP_CKSUM:
+		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
+				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+		mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+		break;
+	case PKT_TX_SCTP_CKSUM:
+		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
+				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+		mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
+		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+		break;
+	default:
+		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
+				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
+		break;
+	}
+
+	txq->ctx_cache[ctx_curr].flags           = ol_flags;
+	txq->ctx_cache[ctx_curr].cmp_mask        = cmp_mask;
+	txq->ctx_cache[ctx_curr].vlan_macip_lens.data =
+		vlan_macip_lens & cmp_mask;
+
+	ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
+	ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
+	ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
+	ctx_txd->seqnum_seed     = 0;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
+		uint32_t vlan_macip_lens)
+{
+	/* If match with the current context */
+	if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+		(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
+		(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
+			return txq->ctx_curr;
+	}
+
+	/* If match with the second context */
+	txq->ctx_curr ^= 1;
+	if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
+		(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
+		(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
+			return txq->ctx_curr;
+	}
+
+	/* Mismatch, use the previous context */
+	return (IGB_CTX_NUM);
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
+{
+	static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
+	static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
+	uint32_t tmp;
+
+	tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
+	tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+	return tmp;
+}
+
+static inline uint32_t
+tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
+{
+	static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
+	return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
+}
+
+uint16_t
+eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+	       uint16_t nb_pkts)
+{
+	struct igb_tx_queue *txq;
+	struct igb_tx_entry *sw_ring;
+	struct igb_tx_entry *txe, *txn;
+	volatile union e1000_adv_tx_desc *txr;
+	volatile union e1000_adv_tx_desc *txd;
+	struct rte_mbuf     *tx_pkt;
+	struct rte_mbuf     *m_seg;
+	union igb_vlan_macip vlan_macip_lens;
+	union {
+		uint16_t u16;
+		struct {
+			uint16_t l3_len:9;
+			uint16_t l2_len:7;
+		};
+	} l2_l3_len;
+	uint64_t buf_dma_addr;
+	uint32_t olinfo_status;
+	uint32_t cmd_type_len;
+	uint32_t pkt_len;
+	uint16_t slen;
+	uint64_t ol_flags;
+	uint16_t tx_end;
+	uint16_t tx_id;
+	uint16_t tx_last;
+	uint16_t nb_tx;
+	uint64_t tx_ol_req;
+	uint32_t new_ctx = 0;
+	uint32_t ctx = 0;
+
+	txq = tx_queue;
+	sw_ring = txq->sw_ring;
+	txr     = txq->tx_ring;
+	tx_id   = txq->tx_tail;
+	txe = &sw_ring[tx_id];
+
+	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+		tx_pkt = *tx_pkts++;
+		pkt_len = tx_pkt->pkt_len;
+
+		RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+		/*
+		 * The number of descriptors that must be allocated for a
+		 * packet is the number of segments of that packet, plus 1
+		 * Context Descriptor for the VLAN Tag Identifier, if any.
+		 * Determine the last TX descriptor to allocate in the TX ring
+		 * for the packet, starting from the current position (tx_id)
+		 * in the ring.
+		 */
+		tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
+
+		ol_flags = tx_pkt->ol_flags;
+		l2_l3_len.l2_len = tx_pkt->l2_len;
+		l2_l3_len.l3_len = tx_pkt->l3_len;
+		vlan_macip_lens.f.vlan_tci = tx_pkt->vlan_tci;
+		vlan_macip_lens.f.l2_l3_len = l2_l3_len.u16;
+		tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
+
+		/* If a Context Descriptor need be built . */
+		if (tx_ol_req) {
+			ctx = what_advctx_update(txq, tx_ol_req,
+				vlan_macip_lens.data);
+			/* Only allocate context descriptor if required*/
+			new_ctx = (ctx == IGB_CTX_NUM);
+			ctx = txq->ctx_curr;
+			tx_last = (uint16_t) (tx_last + new_ctx);
+		}
+		if (tx_last >= txq->nb_tx_desc)
+			tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+		PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+			   " tx_first=%u tx_last=%u",
+			   (unsigned) txq->port_id,
+			   (unsigned) txq->queue_id,
+			   (unsigned) pkt_len,
+			   (unsigned) tx_id,
+			   (unsigned) tx_last);
+
+		/*
+		 * Check if there are enough free descriptors in the TX ring
+		 * to transmit the next packet.
+		 * This operation is based on the two following rules:
+		 *
+		 *   1- Only check that the last needed TX descriptor can be
+		 *      allocated (by construction, if that descriptor is free,
+		 *      all intermediate ones are also free).
+		 *
+		 *      For this purpose, the index of the last TX descriptor
+		 *      used for a packet (the "last descriptor" of a packet)
+		 *      is recorded in the TX entries (the last one included)
+		 *      that are associated with all TX descriptors allocated
+		 *      for that packet.
+		 *
+		 *   2- Avoid to allocate the last free TX descriptor of the
+		 *      ring, in order to never set the TDT register with the
+		 *      same value stored in parallel by the NIC in the TDH
+		 *      register, which makes the TX engine of the NIC enter
+		 *      in a deadlock situation.
+		 *
+		 *      By extension, avoid to allocate a free descriptor that
+		 *      belongs to the last set of free descriptors allocated
+		 *      to the same packet previously transmitted.
+		 */
+
+		/*
+		 * The "last descriptor" of the previously sent packet, if any,
+		 * which used the last descriptor to allocate.
+		 */
+		tx_end = sw_ring[tx_last].last_id;
+
+		/*
+		 * The next descriptor following that "last descriptor" in the
+		 * ring.
+		 */
+		tx_end = sw_ring[tx_end].next_id;
+
+		/*
+		 * The "last descriptor" associated with that next descriptor.
+		 */
+		tx_end = sw_ring[tx_end].last_id;
+
+		/*
+		 * Check that this descriptor is free.
+		 */
+		if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
+			if (nb_tx == 0)
+				return (0);
+			goto end_of_tx;
+		}
+
+		/*
+		 * Set common flags of all TX Data Descriptors.
+		 *
+		 * The following bits must be set in all Data Descriptors:
+		 *   - E1000_ADVTXD_DTYP_DATA
+		 *   - E1000_ADVTXD_DCMD_DEXT
+		 *
+		 * The following bits must be set in the first Data Descriptor
+		 * and are ignored in the other ones:
+		 *   - E1000_ADVTXD_DCMD_IFCS
+		 *   - E1000_ADVTXD_MAC_1588
+		 *   - E1000_ADVTXD_DCMD_VLE
+		 *
+		 * The following bits must only be set in the last Data
+		 * Descriptor:
+		 *   - E1000_TXD_CMD_EOP
+		 *
+		 * The following bits can be set in any Data Descriptor, but
+		 * are only set in the last Data Descriptor:
+		 *   - E1000_TXD_CMD_RS
+		 */
+		cmd_type_len = txq->txd_type |
+			E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
+		olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
+#if defined(RTE_LIBRTE_IEEE1588)
+		if (ol_flags & PKT_TX_IEEE1588_TMST)
+			cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
+#endif
+		if (tx_ol_req) {
+			/* Setup TX Advanced context descriptor if required */
+			if (new_ctx) {
+				volatile struct e1000_adv_tx_context_desc *
+				    ctx_txd;
+
+				ctx_txd = (volatile struct
+				    e1000_adv_tx_context_desc *)
+				    &txr[tx_id];
+
+				txn = &sw_ring[txe->next_id];
+				RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+				if (txe->mbuf != NULL) {
+					rte_pktmbuf_free_seg(txe->mbuf);
+					txe->mbuf = NULL;
+				}
+
+				igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
+				    vlan_macip_lens.data);
+
+				txe->last_id = tx_last;
+				tx_id = txe->next_id;
+				txe = txn;
+			}
+
+			/* Setup the TX Advanced Data Descriptor */
+			cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
+			olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
+			olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
+		}
+
+		m_seg = tx_pkt;
+		do {
+			txn = &sw_ring[txe->next_id];
+			txd = &txr[tx_id];
+
+			if (txe->mbuf != NULL)
+				rte_pktmbuf_free_seg(txe->mbuf);
+			txe->mbuf = m_seg;
+
+			/*
+			 * Set up transmit descriptor.
+			 */
+			slen = (uint16_t) m_seg->data_len;
+			buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
+			txd->read.buffer_addr =
+				rte_cpu_to_le_64(buf_dma_addr);
+			txd->read.cmd_type_len =
+				rte_cpu_to_le_32(cmd_type_len | slen);
+			txd->read.olinfo_status =
+				rte_cpu_to_le_32(olinfo_status);
+			txe->last_id = tx_last;
+			tx_id = txe->next_id;
+			txe = txn;
+			m_seg = m_seg->next;
+		} while (m_seg != NULL);
+
+		/*
+		 * The last packet data descriptor needs End Of Packet (EOP)
+		 * and Report Status (RS).
+		 */
+		txd->read.cmd_type_len |=
+			rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
+	}
+ end_of_tx:
+	rte_wmb();
+
+	/*
+	 * Set the Transmit Descriptor Tail (TDT).
+	 */
+	E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
+	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+		   (unsigned) txq->port_id, (unsigned) txq->queue_id,
+		   (unsigned) tx_id, (unsigned) nb_tx);
+	txq->tx_tail = tx_id;
+
+	return (nb_tx);
+}
+
+/*********************************************************************
+ *
+ *  RX functions
+ *
+ **********************************************************************/
+static inline uint64_t
+rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
+{
+	uint64_t pkt_flags;
+
+	static uint64_t ip_pkt_types_map[16] = {
+		0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
+		PKT_RX_IPV6_HDR, 0, 0, 0,
+		PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
+		PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
+	};
+
+#if defined(RTE_LIBRTE_IEEE1588)
+	static uint32_t ip_pkt_etqf_map[8] = {
+		0, 0, 0, PKT_RX_IEEE1588_PTP,
+		0, 0, 0, 0,
+	};
+
+	pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
+				ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
+				ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
+#else
+	pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
+				ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
+#endif
+	return pkt_flags | (((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH);
+}
+
+static inline uint64_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+	uint64_t pkt_flags;
+
+	/* Check if VLAN present */
+	pkt_flags = (rx_status & E1000_RXD_STAT_VP) ?  PKT_RX_VLAN_PKT : 0;
+
+#if defined(RTE_LIBRTE_IEEE1588)
+	if (rx_status & E1000_RXD_STAT_TMST)
+		pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
+#endif
+	return pkt_flags;
+}
+
+static inline uint64_t
+rx_desc_error_to_pkt_flags(uint32_t rx_status)
+{
+	/*
+	 * Bit 30: IPE, IPv4 checksum error
+	 * Bit 29: L4I, L4I integrity error
+	 */
+
+	static uint64_t error_to_pkt_flags_map[4] = {
+		0,  PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
+		PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
+	};
+	return error_to_pkt_flags_map[(rx_status >>
+		E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
+}
+
+uint16_t
+eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+	       uint16_t nb_pkts)
+{
+	struct igb_rx_queue *rxq;
+	volatile union e1000_adv_rx_desc *rx_ring;
+	volatile union e1000_adv_rx_desc *rxdp;
+	struct igb_rx_entry *sw_ring;
+	struct igb_rx_entry *rxe;
+	struct rte_mbuf *rxm;
+	struct rte_mbuf *nmb;
+	union e1000_adv_rx_desc rxd;
+	uint64_t dma_addr;
+	uint32_t staterr;
+	uint32_t hlen_type_rss;
+	uint16_t pkt_len;
+	uint16_t rx_id;
+	uint16_t nb_rx;
+	uint16_t nb_hold;
+	uint64_t pkt_flags;
+
+	nb_rx = 0;
+	nb_hold = 0;
+	rxq = rx_queue;
+	rx_id = rxq->rx_tail;
+	rx_ring = rxq->rx_ring;
+	sw_ring = rxq->sw_ring;
+	while (nb_rx < nb_pkts) {
+		/*
+		 * The order of operations here is important as the DD status
+		 * bit must not be read after any other descriptor fields.
+		 * rx_ring and rxdp are pointing to volatile data so the order
+		 * of accesses cannot be reordered by the compiler. If they were
+		 * not volatile, they could be reordered which could lead to
+		 * using invalid descriptor fields when read from rxd.
+		 */
+		rxdp = &rx_ring[rx_id];
+		staterr = rxdp->wb.upper.status_error;
+		if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+			break;
+		rxd = *rxdp;
+
+		/*
+		 * End of packet.
+		 *
+		 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+		 * likely to be invalid and to be dropped by the various
+		 * validation checks performed by the network stack.
+		 *
+		 * Allocate a new mbuf to replenish the RX ring descriptor.
+		 * If the allocation fails:
+		 *    - arrange for that RX descriptor to be the first one
+		 *      being parsed the next time the receive function is
+		 *      invoked [on the same queue].
+		 *
+		 *    - Stop parsing the RX ring and return immediately.
+		 *
+		 * This policy do not drop the packet received in the RX
+		 * descriptor for which the allocation of a new mbuf failed.
+		 * Thus, it allows that packet to be later retrieved if
+		 * mbuf have been freed in the mean time.
+		 * As a side effect, holding RX descriptors instead of
+		 * systematically giving them back to the NIC may lead to
+		 * RX ring exhaustion situations.
+		 * However, the NIC can gracefully prevent such situations
+		 * to happen by sending specific "back-pressure" flow control
+		 * frames to its peer(s).
+		 */
+		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+			   "staterr=0x%x pkt_len=%u",
+			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+			   (unsigned) rx_id, (unsigned) staterr,
+			   (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+		nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+		if (nmb == NULL) {
+			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+				   "queue_id=%u", (unsigned) rxq->port_id,
+				   (unsigned) rxq->queue_id);
+			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+			break;
+		}
+
+		nb_hold++;
+		rxe = &sw_ring[rx_id];
+		rx_id++;
+		if (rx_id == rxq->nb_rx_desc)
+			rx_id = 0;
+
+		/* Prefetch next mbuf while processing current one. */
+		rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+		/*
+		 * When next RX descriptor is on a cache-line boundary,
+		 * prefetch the next 4 RX descriptors and the next 8 pointers
+		 * to mbufs.
+		 */
+		if ((rx_id & 0x3) == 0) {
+			rte_igb_prefetch(&rx_ring[rx_id]);
+			rte_igb_prefetch(&sw_ring[rx_id]);
+		}
+
+		rxm = rxe->mbuf;
+		rxe->mbuf = nmb;
+		dma_addr =
+			rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+		rxdp->read.hdr_addr = dma_addr;
+		rxdp->read.pkt_addr = dma_addr;
+
+		/*
+		 * Initialize the returned mbuf.
+		 * 1) setup generic mbuf fields:
+		 *    - number of segments,
+		 *    - next segment,
+		 *    - packet length,
+		 *    - RX port identifier.
+		 * 2) integrate hardware offload data, if any:
+		 *    - RSS flag & hash,
+		 *    - IP checksum flag,
+		 *    - VLAN TCI, if any,
+		 *    - error flags.
+		 */
+		pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
+				      rxq->crc_len);
+		rxm->data_off = RTE_PKTMBUF_HEADROOM;
+		rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
+		rxm->nb_segs = 1;
+		rxm->next = NULL;
+		rxm->pkt_len = pkt_len;
+		rxm->data_len = pkt_len;
+		rxm->port = rxq->port_id;
+
+		rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
+		hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+		/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+		rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+
+		pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
+		pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
+		pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
+		rxm->ol_flags = pkt_flags;
+
+		/*
+		 * Store the mbuf address into the next entry of the array
+		 * of returned packets.
+		 */
+		rx_pkts[nb_rx++] = rxm;
+	}
+	rxq->rx_tail = rx_id;
+
+	/*
+	 * If the number of free RX descriptors is greater than the RX free
+	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+	 * register.
+	 * Update the RDT with the value of the last processed RX descriptor
+	 * minus 1, to guarantee that the RDT register is never equal to the
+	 * RDH register, which creates a "full" ring situtation from the
+	 * hardware point of view...
+	 */
+	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+	if (nb_hold > rxq->rx_free_thresh) {
+		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+			   "nb_hold=%u nb_rx=%u",
+			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+			   (unsigned) rx_id, (unsigned) nb_hold,
+			   (unsigned) nb_rx);
+		rx_id = (uint16_t) ((rx_id == 0) ?
+				     (rxq->nb_rx_desc - 1) : (rx_id - 1));
+		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+		nb_hold = 0;
+	}
+	rxq->nb_rx_hold = nb_hold;
+	return (nb_rx);
+}
+
+uint16_t
+eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+			 uint16_t nb_pkts)
+{
+	struct igb_rx_queue *rxq;
+	volatile union e1000_adv_rx_desc *rx_ring;
+	volatile union e1000_adv_rx_desc *rxdp;
+	struct igb_rx_entry *sw_ring;
+	struct igb_rx_entry *rxe;
+	struct rte_mbuf *first_seg;
+	struct rte_mbuf *last_seg;
+	struct rte_mbuf *rxm;
+	struct rte_mbuf *nmb;
+	union e1000_adv_rx_desc rxd;
+	uint64_t dma; /* Physical address of mbuf data buffer */
+	uint32_t staterr;
+	uint32_t hlen_type_rss;
+	uint16_t rx_id;
+	uint16_t nb_rx;
+	uint16_t nb_hold;
+	uint16_t data_len;
+	uint64_t pkt_flags;
+
+	nb_rx = 0;
+	nb_hold = 0;
+	rxq = rx_queue;
+	rx_id = rxq->rx_tail;
+	rx_ring = rxq->rx_ring;
+	sw_ring = rxq->sw_ring;
+
+	/*
+	 * Retrieve RX context of current packet, if any.
+	 */
+	first_seg = rxq->pkt_first_seg;
+	last_seg = rxq->pkt_last_seg;
+
+	while (nb_rx < nb_pkts) {
+	next_desc:
+		/*
+		 * The order of operations here is important as the DD status
+		 * bit must not be read after any other descriptor fields.
+		 * rx_ring and rxdp are pointing to volatile data so the order
+		 * of accesses cannot be reordered by the compiler. If they were
+		 * not volatile, they could be reordered which could lead to
+		 * using invalid descriptor fields when read from rxd.
+		 */
+		rxdp = &rx_ring[rx_id];
+		staterr = rxdp->wb.upper.status_error;
+		if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
+			break;
+		rxd = *rxdp;
+
+		/*
+		 * Descriptor done.
+		 *
+		 * Allocate a new mbuf to replenish the RX ring descriptor.
+		 * If the allocation fails:
+		 *    - arrange for that RX descriptor to be the first one
+		 *      being parsed the next time the receive function is
+		 *      invoked [on the same queue].
+		 *
+		 *    - Stop parsing the RX ring and return immediately.
+		 *
+		 * This policy does not drop the packet received in the RX
+		 * descriptor for which the allocation of a new mbuf failed.
+		 * Thus, it allows that packet to be later retrieved if
+		 * mbuf have been freed in the mean time.
+		 * As a side effect, holding RX descriptors instead of
+		 * systematically giving them back to the NIC may lead to
+		 * RX ring exhaustion situations.
+		 * However, the NIC can gracefully prevent such situations
+		 * to happen by sending specific "back-pressure" flow control
+		 * frames to its peer(s).
+		 */
+		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+			   "staterr=0x%x data_len=%u",
+			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+			   (unsigned) rx_id, (unsigned) staterr,
+			   (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
+
+		nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+		if (nmb == NULL) {
+			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+				   "queue_id=%u", (unsigned) rxq->port_id,
+				   (unsigned) rxq->queue_id);
+			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+			break;
+		}
+
+		nb_hold++;
+		rxe = &sw_ring[rx_id];
+		rx_id++;
+		if (rx_id == rxq->nb_rx_desc)
+			rx_id = 0;
+
+		/* Prefetch next mbuf while processing current one. */
+		rte_igb_prefetch(sw_ring[rx_id].mbuf);
+
+		/*
+		 * When next RX descriptor is on a cache-line boundary,
+		 * prefetch the next 4 RX descriptors and the next 8 pointers
+		 * to mbufs.
+		 */
+		if ((rx_id & 0x3) == 0) {
+			rte_igb_prefetch(&rx_ring[rx_id]);
+			rte_igb_prefetch(&sw_ring[rx_id]);
+		}
+
+		/*
+		 * Update RX descriptor with the physical address of the new
+		 * data buffer of the new allocated mbuf.
+		 */
+		rxm = rxe->mbuf;
+		rxe->mbuf = nmb;
+		dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
+		rxdp->read.pkt_addr = dma;
+		rxdp->read.hdr_addr = dma;
+
+		/*
+		 * Set data length & data buffer address of mbuf.
+		 */
+		data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
+		rxm->data_len = data_len;
+		rxm->data_off = RTE_PKTMBUF_HEADROOM;
+
+		/*
+		 * If this is the first buffer of the received packet,
+		 * set the pointer to the first mbuf of the packet and
+		 * initialize its context.
+		 * Otherwise, update the total length and the number of segments
+		 * of the current scattered packet, and update the pointer to
+		 * the last mbuf of the current packet.
+		 */
+		if (first_seg == NULL) {
+			first_seg = rxm;
+			first_seg->pkt_len = data_len;
+			first_seg->nb_segs = 1;
+		} else {
+			first_seg->pkt_len += data_len;
+			first_seg->nb_segs++;
+			last_seg->next = rxm;
+		}
+
+		/*
+		 * If this is not the last buffer of the received packet,
+		 * update the pointer to the last mbuf of the current scattered
+		 * packet and continue to parse the RX ring.
+		 */
+		if (! (staterr & E1000_RXD_STAT_EOP)) {
+			last_seg = rxm;
+			goto next_desc;
+		}
+
+		/*
+		 * This is the last buffer of the received packet.
+		 * If the CRC is not stripped by the hardware:
+		 *   - Subtract the CRC	length from the total packet length.
+		 *   - If the last buffer only contains the whole CRC or a part
+		 *     of it, free the mbuf associated to the last buffer.
+		 *     If part of the CRC is also contained in the previous
+		 *     mbuf, subtract the length of that CRC part from the
+		 *     data length of the previous mbuf.
+		 */
+		rxm->next = NULL;
+		if (unlikely(rxq->crc_len > 0)) {
+			first_seg->pkt_len -= ETHER_CRC_LEN;
+			if (data_len <= ETHER_CRC_LEN) {
+				rte_pktmbuf_free_seg(rxm);
+				first_seg->nb_segs--;
+				last_seg->data_len = (uint16_t)
+					(last_seg->data_len -
+					 (ETHER_CRC_LEN - data_len));
+				last_seg->next = NULL;
+			} else
+				rxm->data_len =
+					(uint16_t) (data_len - ETHER_CRC_LEN);
+		}
+
+		/*
+		 * Initialize the first mbuf of the returned packet:
+		 *    - RX port identifier,
+		 *    - hardware offload data, if any:
+		 *      - RSS flag & hash,
+		 *      - IP checksum flag,
+		 *      - VLAN TCI, if any,
+		 *      - error flags.
+		 */
+		first_seg->port = rxq->port_id;
+		first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
+
+		/*
+		 * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
+		 * set in the pkt_flags field.
+		 */
+		first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
+		hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
+		pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
+		pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
+		pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
+		first_seg->ol_flags = pkt_flags;
+
+		/* Prefetch data of first segment, if configured to do so. */
+		rte_packet_prefetch((char *)first_seg->buf_addr +
+			first_seg->data_off);
+
+		/*
+		 * Store the mbuf address into the next entry of the array
+		 * of returned packets.
+		 */
+		rx_pkts[nb_rx++] = first_seg;
+
+		/*
+		 * Setup receipt context for a new packet.
+		 */
+		first_seg = NULL;
+	}
+
+	/*
+	 * Record index of the next RX descriptor to probe.
+	 */
+	rxq->rx_tail = rx_id;
+
+	/*
+	 * Save receive context.
+	 */
+	rxq->pkt_first_seg = first_seg;
+	rxq->pkt_last_seg = last_seg;
+
+	/*
+	 * If the number of free RX descriptors is greater than the RX free
+	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+	 * register.
+	 * Update the RDT with the value of the last processed RX descriptor
+	 * minus 1, to guarantee that the RDT register is never equal to the
+	 * RDH register, which creates a "full" ring situtation from the
+	 * hardware point of view...
+	 */
+	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+	if (nb_hold > rxq->rx_free_thresh) {
+		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+			   "nb_hold=%u nb_rx=%u",
+			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+			   (unsigned) rx_id, (unsigned) nb_hold,
+			   (unsigned) nb_rx);
+		rx_id = (uint16_t) ((rx_id == 0) ?
+				     (rxq->nb_rx_desc - 1) : (rx_id - 1));
+		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+		nb_hold = 0;
+	}
+	rxq->nb_rx_hold = nb_hold;
+	return (nb_rx);
+}
+
+/*
+ * Rings setup and release.
+ *
+ * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
+ * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
+ * This will also optimize cache line size effect.
+ * H/W supports up to cache line size 128.
+ */
+#define IGB_ALIGN 128
+
+/*
+ * Maximum number of Ring Descriptors.
+ *
+ * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
+ * desscriptors should meet the following condition:
+ *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
+ */
+#define IGB_MIN_RING_DESC 32
+#define IGB_MAX_RING_DESC 4096
+
+static const struct rte_memzone *
+ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
+		      uint16_t queue_id, uint32_t ring_size, int socket_id)
+{
+	char z_name[RTE_MEMZONE_NAMESIZE];
+	const struct rte_memzone *mz;
+
+	snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
+			dev->driver->pci_drv.name, ring_name,
+				dev->data->port_id, queue_id);
+	mz = rte_memzone_lookup(z_name);
+	if (mz)
+		return mz;
+
+#ifdef RTE_LIBRTE_XEN_DOM0
+	return rte_memzone_reserve_bounded(z_name, ring_size,
+			socket_id, 0, IGB_ALIGN, RTE_PGSIZE_2M);
+#else
+	return rte_memzone_reserve_aligned(z_name, ring_size,
+			socket_id, 0, IGB_ALIGN);
+#endif
+}
+
+static void
+igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
+{
+	unsigned i;
+
+	if (txq->sw_ring != NULL) {
+		for (i = 0; i < txq->nb_tx_desc; i++) {
+			if (txq->sw_ring[i].mbuf != NULL) {
+				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+				txq->sw_ring[i].mbuf = NULL;
+			}
+		}
+	}
+}
+
+static void
+igb_tx_queue_release(struct igb_tx_queue *txq)
+{
+	if (txq != NULL) {
+		igb_tx_queue_release_mbufs(txq);
+		rte_free(txq->sw_ring);
+		rte_free(txq);
+	}
+}
+
+void
+eth_igb_tx_queue_release(void *txq)
+{
+	igb_tx_queue_release(txq);
+}
+
+static void
+igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
+{
+	txq->tx_head = 0;
+	txq->tx_tail = 0;
+	txq->ctx_curr = 0;
+	memset((void*)&txq->ctx_cache, 0,
+		IGB_CTX_NUM * sizeof(struct igb_advctx_info));
+}
+
+static void
+igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
+{
+	static const union e1000_adv_tx_desc zeroed_desc = {{0}};
+	struct igb_tx_entry *txe = txq->sw_ring;
+	uint16_t i, prev;
+	struct e1000_hw *hw;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	/* Zero out HW ring memory */
+	for (i = 0; i < txq->nb_tx_desc; i++) {
+		txq->tx_ring[i] = zeroed_desc;
+	}
+
+	/* Initialize ring entries */
+	prev = (uint16_t)(txq->nb_tx_desc - 1);
+	for (i = 0; i < txq->nb_tx_desc; i++) {
+		volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
+
+		txd->wb.status = E1000_TXD_STAT_DD;
+		txe[i].mbuf = NULL;
+		txe[i].last_id = i;
+		txe[prev].next_id = i;
+		prev = i;
+	}
+
+	txq->txd_type = E1000_ADVTXD_DTYP_DATA;
+	/* 82575 specific, each tx queue will use 2 hw contexts */
+	if (hw->mac.type == e1000_82575)
+		txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
+
+	igb_reset_tx_queue_stat(txq);
+}
+
+int
+eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
+			 uint16_t queue_idx,
+			 uint16_t nb_desc,
+			 unsigned int socket_id,
+			 const struct rte_eth_txconf *tx_conf)
+{
+	const struct rte_memzone *tz;
+	struct igb_tx_queue *txq;
+	struct e1000_hw     *hw;
+	uint32_t size;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/*
+	 * Validate number of transmit descriptors.
+	 * It must not exceed hardware maximum, and must be multiple
+	 * of IGB_ALIGN.
+	 */
+	if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
+	    (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
+		return -EINVAL;
+	}
+
+	/*
+	 * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
+	 * driver.
+	 */
+	if (tx_conf->tx_free_thresh != 0)
+		PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not "
+			     "used for the 1G driver.");
+	if (tx_conf->tx_rs_thresh != 0)
+		PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not "
+			     "used for the 1G driver.");
+	if (tx_conf->tx_thresh.wthresh == 0)
+		PMD_INIT_LOG(WARNING, "To improve 1G driver performance, "
+			     "consider setting the TX WTHRESH value to 4, 8, "
+			     "or 16.");
+
+	/* Free memory prior to re-allocation if needed */
+	if (dev->data->tx_queues[queue_idx] != NULL) {
+		igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
+		dev->data->tx_queues[queue_idx] = NULL;
+	}
+
+	/* First allocate the tx queue data structure */
+	txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
+							RTE_CACHE_LINE_SIZE);
+	if (txq == NULL)
+		return (-ENOMEM);
+
+	/*
+	 * Allocate TX ring hardware descriptors. A memzone large enough to
+	 * handle the maximum ring size is allocated in order to allow for
+	 * resizing in later calls to the queue setup function.
+	 */
+	size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
+	tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
+					size, socket_id);
+	if (tz == NULL) {
+		igb_tx_queue_release(txq);
+		return (-ENOMEM);
+	}
+
+	txq->nb_tx_desc = nb_desc;
+	txq->pthresh = tx_conf->tx_thresh.pthresh;
+	txq->hthresh = tx_conf->tx_thresh.hthresh;
+	txq->wthresh = tx_conf->tx_thresh.wthresh;
+	if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
+		txq->wthresh = 1;
+	txq->queue_id = queue_idx;
+	txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
+		queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
+	txq->port_id = dev->data->port_id;
+
+	txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
+#ifndef RTE_LIBRTE_XEN_DOM0
+	txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
+#else
+	txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+#endif
+	 txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
+	/* Allocate software ring */
+	txq->sw_ring = rte_zmalloc("txq->sw_ring",
+				   sizeof(struct igb_tx_entry) * nb_desc,
+				   RTE_CACHE_LINE_SIZE);
+	if (txq->sw_ring == NULL) {
+		igb_tx_queue_release(txq);
+		return (-ENOMEM);
+	}
+	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+		     txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+	igb_reset_tx_queue(txq, dev);
+	dev->tx_pkt_burst = eth_igb_xmit_pkts;
+	dev->data->tx_queues[queue_idx] = txq;
+
+	return (0);
+}
+
+static void
+igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
+{
+	unsigned i;
+
+	if (rxq->sw_ring != NULL) {
+		for (i = 0; i < rxq->nb_rx_desc; i++) {
+			if (rxq->sw_ring[i].mbuf != NULL) {
+				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+				rxq->sw_ring[i].mbuf = NULL;
+			}
+		}
+	}
+}
+
+static void
+igb_rx_queue_release(struct igb_rx_queue *rxq)
+{
+	if (rxq != NULL) {
+		igb_rx_queue_release_mbufs(rxq);
+		rte_free(rxq->sw_ring);
+		rte_free(rxq);
+	}
+}
+
+void
+eth_igb_rx_queue_release(void *rxq)
+{
+	igb_rx_queue_release(rxq);
+}
+
+static void
+igb_reset_rx_queue(struct igb_rx_queue *rxq)
+{
+	static const union e1000_adv_rx_desc zeroed_desc = {{0}};
+	unsigned i;
+
+	/* Zero out HW ring memory */
+	for (i = 0; i < rxq->nb_rx_desc; i++) {
+		rxq->rx_ring[i] = zeroed_desc;
+	}
+
+	rxq->rx_tail = 0;
+	rxq->pkt_first_seg = NULL;
+	rxq->pkt_last_seg = NULL;
+}
+
+int
+eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
+			 uint16_t queue_idx,
+			 uint16_t nb_desc,
+			 unsigned int socket_id,
+			 const struct rte_eth_rxconf *rx_conf,
+			 struct rte_mempool *mp)
+{
+	const struct rte_memzone *rz;
+	struct igb_rx_queue *rxq;
+	struct e1000_hw     *hw;
+	unsigned int size;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/*
+	 * Validate number of receive descriptors.
+	 * It must not exceed hardware maximum, and must be multiple
+	 * of IGB_ALIGN.
+	 */
+	if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
+	    (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
+		return (-EINVAL);
+	}
+
+	/* Free memory prior to re-allocation if needed */
+	if (dev->data->rx_queues[queue_idx] != NULL) {
+		igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
+		dev->data->rx_queues[queue_idx] = NULL;
+	}
+
+	/* First allocate the RX queue data structure. */
+	rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
+			  RTE_CACHE_LINE_SIZE);
+	if (rxq == NULL)
+		return (-ENOMEM);
+	rxq->mb_pool = mp;
+	rxq->nb_rx_desc = nb_desc;
+	rxq->pthresh = rx_conf->rx_thresh.pthresh;
+	rxq->hthresh = rx_conf->rx_thresh.hthresh;
+	rxq->wthresh = rx_conf->rx_thresh.wthresh;
+	if (rxq->wthresh > 0 && hw->mac.type == e1000_82576)
+		rxq->wthresh = 1;
+	rxq->drop_en = rx_conf->rx_drop_en;
+	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+	rxq->queue_id = queue_idx;
+	rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
+		queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
+	rxq->port_id = dev->data->port_id;
+	rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
+				  ETHER_CRC_LEN);
+
+	/*
+	 *  Allocate RX ring hardware descriptors. A memzone large enough to
+	 *  handle the maximum ring size is allocated in order to allow for
+	 *  resizing in later calls to the queue setup function.
+	 */
+	size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
+	rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
+	if (rz == NULL) {
+		igb_rx_queue_release(rxq);
+		return (-ENOMEM);
+	}
+	rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
+	rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
+#ifndef RTE_LIBRTE_XEN_DOM0
+	rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
+#else
+	rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+#endif
+	rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
+
+	/* Allocate software ring. */
+	rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+				   sizeof(struct igb_rx_entry) * nb_desc,
+				   RTE_CACHE_LINE_SIZE);
+	if (rxq->sw_ring == NULL) {
+		igb_rx_queue_release(rxq);
+		return (-ENOMEM);
+	}
+	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+		     rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+	dev->data->rx_queues[queue_idx] = rxq;
+	igb_reset_rx_queue(rxq);
+
+	return 0;
+}
+
+uint32_t
+eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define IGB_RXQ_SCAN_INTERVAL 4
+	volatile union e1000_adv_rx_desc *rxdp;
+	struct igb_rx_queue *rxq;
+	uint32_t desc = 0;
+
+	if (rx_queue_id >= dev->data->nb_rx_queues) {
+		PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id);
+		return 0;
+	}
+
+	rxq = dev->data->rx_queues[rx_queue_id];
+	rxdp = &(rxq->rx_ring[rxq->rx_tail]);
+
+	while ((desc < rxq->nb_rx_desc) &&
+		(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
+		desc += IGB_RXQ_SCAN_INTERVAL;
+		rxdp += IGB_RXQ_SCAN_INTERVAL;
+		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+			rxdp = &(rxq->rx_ring[rxq->rx_tail +
+				desc - rxq->nb_rx_desc]);
+	}
+
+	return 0;
+}
+
+int
+eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
+{
+	volatile union e1000_adv_rx_desc *rxdp;
+	struct igb_rx_queue *rxq = rx_queue;
+	uint32_t desc;
+
+	if (unlikely(offset >= rxq->nb_rx_desc))
+		return 0;
+	desc = rxq->rx_tail + offset;
+	if (desc >= rxq->nb_rx_desc)
+		desc -= rxq->nb_rx_desc;
+
+	rxdp = &rxq->rx_ring[desc];
+	return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
+}
+
+void
+igb_dev_clear_queues(struct rte_eth_dev *dev)
+{
+	uint16_t i;
+	struct igb_tx_queue *txq;
+	struct igb_rx_queue *rxq;
+
+	for (i = 0; i < dev->data->nb_tx_queues; i++) {
+		txq = dev->data->tx_queues[i];
+		if (txq != NULL) {
+			igb_tx_queue_release_mbufs(txq);
+			igb_reset_tx_queue(txq, dev);
+		}
+	}
+
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		rxq = dev->data->rx_queues[i];
+		if (rxq != NULL) {
+			igb_rx_queue_release_mbufs(rxq);
+			igb_reset_rx_queue(rxq);
+		}
+	}
+}
+
+/**
+ * Receive Side Scaling (RSS).
+ * See section 7.1.1.7 in the following document:
+ *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
+ *
+ * Principles:
+ * The source and destination IP addresses of the IP header and the source and
+ * destination ports of TCP/UDP headers, if any, of received packets are hashed
+ * against a configurable random key to compute a 32-bit RSS hash result.
+ * The seven (7) LSBs of the 32-bit hash result are used as an index into a
+ * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
+ * RSS output index which is used as the RX queue index where to store the
+ * received packets.
+ * The following output is supplied in the RX write-back descriptor:
+ *     - 32-bit result of the Microsoft RSS hash function,
+ *     - 4-bit RSS type field.
+ */
+
+/*
+ * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
+ * Used as the default key.
+ */
+static uint8_t rss_intel_key[40] = {
+	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
+	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
+	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
+	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
+	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
+};
+
+static void
+igb_rss_disable(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw;
+	uint32_t mrqc;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	mrqc = E1000_READ_REG(hw, E1000_MRQC);
+	mrqc &= ~E1000_MRQC_ENABLE_MASK;
+	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+static void
+igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
+{
+	uint8_t  *hash_key;
+	uint32_t rss_key;
+	uint32_t mrqc;
+	uint64_t rss_hf;
+	uint16_t i;
+
+	hash_key = rss_conf->rss_key;
+	if (hash_key != NULL) {
+		/* Fill in RSS hash key */
+		for (i = 0; i < 10; i++) {
+			rss_key  = hash_key[(i * 4)];
+			rss_key |= hash_key[(i * 4) + 1] << 8;
+			rss_key |= hash_key[(i * 4) + 2] << 16;
+			rss_key |= hash_key[(i * 4) + 3] << 24;
+			E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
+		}
+	}
+
+	/* Set configured hashing protocols in MRQC register */
+	rss_hf = rss_conf->rss_hf;
+	mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
+	if (rss_hf & ETH_RSS_IPV4)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
+	if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
+	if (rss_hf & ETH_RSS_IPV6)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
+	if (rss_hf & ETH_RSS_IPV6_EX)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
+	if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
+	if (rss_hf & ETH_RSS_IPV6_TCP_EX)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
+	if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
+	if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
+	if (rss_hf & ETH_RSS_IPV6_UDP_EX)
+		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
+	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+}
+
+int
+eth_igb_rss_hash_update(struct rte_eth_dev *dev,
+			struct rte_eth_rss_conf *rss_conf)
+{
+	struct e1000_hw *hw;
+	uint32_t mrqc;
+	uint64_t rss_hf;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/*
+	 * Before changing anything, first check that the update RSS operation
+	 * does not attempt to disable RSS, if RSS was enabled at
+	 * initialization time, or does not attempt to enable RSS, if RSS was
+	 * disabled at initialization time.
+	 */
+	rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
+	mrqc = E1000_READ_REG(hw, E1000_MRQC);
+	if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
+		if (rss_hf != 0) /* Enable RSS */
+			return -(EINVAL);
+		return 0; /* Nothing to do */
+	}
+	/* RSS enabled */
+	if (rss_hf == 0) /* Disable RSS */
+		return -(EINVAL);
+	igb_hw_rss_hash_set(hw, rss_conf);
+	return 0;
+}
+
+int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
+			      struct rte_eth_rss_conf *rss_conf)
+{
+	struct e1000_hw *hw;
+	uint8_t *hash_key;
+	uint32_t rss_key;
+	uint32_t mrqc;
+	uint64_t rss_hf;
+	uint16_t i;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	hash_key = rss_conf->rss_key;
+	if (hash_key != NULL) {
+		/* Return RSS hash key */
+		for (i = 0; i < 10; i++) {
+			rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
+			hash_key[(i * 4)] = rss_key & 0x000000FF;
+			hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
+			hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
+			hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
+		}
+	}
+
+	/* Get RSS functions configured in MRQC register */
+	mrqc = E1000_READ_REG(hw, E1000_MRQC);
+	if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
+		rss_conf->rss_hf = 0;
+		return 0;
+	}
+	rss_hf = 0;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
+		rss_hf |= ETH_RSS_IPV4;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
+		rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
+		rss_hf |= ETH_RSS_IPV6;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
+		rss_hf |= ETH_RSS_IPV6_EX;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
+		rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
+		rss_hf |= ETH_RSS_IPV6_TCP_EX;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
+		rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
+		rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
+	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
+		rss_hf |= ETH_RSS_IPV6_UDP_EX;
+	rss_conf->rss_hf = rss_hf;
+	return 0;
+}
+
+static void
+igb_rss_configure(struct rte_eth_dev *dev)
+{
+	struct rte_eth_rss_conf rss_conf;
+	struct e1000_hw *hw;
+	uint32_t shift;
+	uint16_t i;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/* Fill in redirection table. */
+	shift = (hw->mac.type == e1000_82575) ? 6 : 0;
+	for (i = 0; i < 128; i++) {
+		union e1000_reta {
+			uint32_t dword;
+			uint8_t  bytes[4];
+		} reta;
+		uint8_t q_idx;
+
+		q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
+				   i % dev->data->nb_rx_queues : 0);
+		reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
+		if ((i & 3) == 3)
+			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
+	}
+
+	/*
+	 * Configure the RSS key and the RSS protocols used to compute
+	 * the RSS hash of input packets.
+	 */
+	rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
+	if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
+		igb_rss_disable(dev);
+		return;
+	}
+	if (rss_conf.rss_key == NULL)
+		rss_conf.rss_key = rss_intel_key; /* Default hash key */
+	igb_hw_rss_hash_set(hw, &rss_conf);
+}
+
+/*
+ * Check if the mac type support VMDq or not.
+ * Return 1 if it supports, otherwise, return 0.
+ */
+static int
+igb_is_vmdq_supported(const struct rte_eth_dev *dev)
+{
+	const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	switch (hw->mac.type) {
+	case e1000_82576:
+	case e1000_82580:
+	case e1000_i350:
+		return 1;
+	case e1000_82540:
+	case e1000_82541:
+	case e1000_82542:
+	case e1000_82543:
+	case e1000_82544:
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82547:
+	case e1000_82571:
+	case e1000_82572:
+	case e1000_82573:
+	case e1000_82574:
+	case e1000_82583:
+	case e1000_i210:
+	case e1000_i211:
+	default:
+		PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
+		return 0;
+	}
+}
+
+static int
+igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
+{
+	struct rte_eth_vmdq_rx_conf *cfg;
+	struct e1000_hw *hw;
+	uint32_t mrqc, vt_ctl, vmolr, rctl;
+	int i;
+
+	PMD_INIT_FUNC_TRACE();
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
+
+	/* Check if mac type can support VMDq, return value of 0 means NOT support */
+	if (igb_is_vmdq_supported(dev) == 0)
+		return -1;
+
+	igb_rss_disable(dev);
+
+	/* RCTL: eanble VLAN filter */
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	rctl |= E1000_RCTL_VFE;
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+	/* MRQC: enable vmdq */
+	mrqc = E1000_READ_REG(hw, E1000_MRQC);
+	mrqc |= E1000_MRQC_ENABLE_VMDQ;
+	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+
+	/* VTCTL:  pool selection according to VLAN tag */
+	vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
+	if (cfg->enable_default_pool)
+		vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
+	vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
+	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
+
+	for (i = 0; i < E1000_VMOLR_SIZE; i++) {
+		vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
+		vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
+			E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
+			E1000_VMOLR_MPME);
+
+		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
+			vmolr |= E1000_VMOLR_AUPE;
+		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
+			vmolr |= E1000_VMOLR_ROMPE;
+		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
+			vmolr |= E1000_VMOLR_ROPE;
+		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
+			vmolr |= E1000_VMOLR_BAM;
+		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
+			vmolr |= E1000_VMOLR_MPME;
+
+		E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
+	}
+
+	/*
+	 * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
+	 * Both 82576 and 82580 support it
+	 */
+	if (hw->mac.type != e1000_i350) {
+		for (i = 0; i < E1000_VMOLR_SIZE; i++) {
+			vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
+			vmolr |= E1000_VMOLR_STRVLAN;
+			E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
+		}
+	}
+
+	/* VFTA - enable all vlan filters */
+	for (i = 0; i < IGB_VFTA_SIZE; i++)
+		E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
+
+	/* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
+	if (hw->mac.type != e1000_82580)
+		E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
+
+	/*
+	 * RAH/RAL - allow pools to read specific mac addresses
+	 * In this case, all pools should be able to read from mac addr 0
+	 */
+	E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
+	E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
+
+	/* VLVF: set up filters for vlan tags as configured */
+	for (i = 0; i < cfg->nb_pool_maps; i++) {
+		/* set vlan id in VF register and set the valid bit */
+		E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
+                        (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
+			((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
+			E1000_VLVF_POOLSEL_MASK)));
+	}
+
+	E1000_WRITE_FLUSH(hw);
+
+	return 0;
+}
+
+
+/*********************************************************************
+ *
+ *  Enable receive unit.
+ *
+ **********************************************************************/
+
+static int
+igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
+{
+	struct igb_rx_entry *rxe = rxq->sw_ring;
+	uint64_t dma_addr;
+	unsigned i;
+
+	/* Initialize software ring entries. */
+	for (i = 0; i < rxq->nb_rx_desc; i++) {
+		volatile union e1000_adv_rx_desc *rxd;
+		struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
+
+		if (mbuf == NULL) {
+			PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+				     "queue_id=%hu", rxq->queue_id);
+			return (-ENOMEM);
+		}
+		dma_addr =
+			rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
+		rxd = &rxq->rx_ring[i];
+		rxd->read.hdr_addr = dma_addr;
+		rxd->read.pkt_addr = dma_addr;
+		rxe[i].mbuf = mbuf;
+	}
+
+	return 0;
+}
+
+#define E1000_MRQC_DEF_Q_SHIFT               (3)
+static int
+igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
+{
+	struct e1000_hw *hw =
+		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	uint32_t mrqc;
+
+	if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
+		/*
+		 * SRIOV active scheme
+		 * FIXME if support RSS together with VMDq & SRIOV
+		 */
+		mrqc = E1000_MRQC_ENABLE_VMDQ;
+		/* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
+		mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
+		E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+	} else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
+		/*
+		 * SRIOV inactive scheme
+		 */
+		switch (dev->data->dev_conf.rxmode.mq_mode) {
+			case ETH_MQ_RX_RSS:
+				igb_rss_configure(dev);
+				break;
+			case ETH_MQ_RX_VMDQ_ONLY:
+				/*Configure general VMDQ only RX parameters*/
+				igb_vmdq_rx_hw_configure(dev);
+				break;
+			case ETH_MQ_RX_NONE:
+				/* if mq_mode is none, disable rss mode.*/
+			default:
+				igb_rss_disable(dev);
+				break;
+		}
+	}
+
+	return 0;
+}
+
+int
+eth_igb_rx_init(struct rte_eth_dev *dev)
+{
+	struct e1000_hw     *hw;
+	struct igb_rx_queue *rxq;
+	uint32_t rctl;
+	uint32_t rxcsum;
+	uint32_t srrctl;
+	uint16_t buf_size;
+	uint16_t rctl_bsize;
+	uint16_t i;
+	int ret;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+	srrctl = 0;
+
+	/*
+	 * Make sure receives are disabled while setting
+	 * up the descriptor ring.
+	 */
+	rctl = E1000_READ_REG(hw, E1000_RCTL);
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+	/*
+	 * Configure support of jumbo frames, if any.
+	 */
+	if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
+		rctl |= E1000_RCTL_LPE;
+
+		/*
+		 * Set maximum packet length by default, and might be updated
+		 * together with enabling/disabling dual VLAN.
+		 */
+		E1000_WRITE_REG(hw, E1000_RLPML,
+			dev->data->dev_conf.rxmode.max_rx_pkt_len +
+						VLAN_TAG_SIZE);
+	} else
+		rctl &= ~E1000_RCTL_LPE;
+
+	/* Configure and enable each RX queue. */
+	rctl_bsize = 0;
+	dev->rx_pkt_burst = eth_igb_recv_pkts;
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		uint64_t bus_addr;
+		uint32_t rxdctl;
+
+		rxq = dev->data->rx_queues[i];
+
+		/* Allocate buffers for descriptor rings and set up queue */
+		ret = igb_alloc_rx_queue_mbufs(rxq);
+		if (ret)
+			return ret;
+
+		/*
+		 * Reset crc_len in case it was changed after queue setup by a
+		 *  call to configure
+		 */
+		rxq->crc_len =
+			(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
+							0 : ETHER_CRC_LEN);
+
+		bus_addr = rxq->rx_ring_phys_addr;
+		E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
+				rxq->nb_rx_desc *
+				sizeof(union e1000_adv_rx_desc));
+		E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
+				(uint32_t)(bus_addr >> 32));
+		E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
+
+		srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+		/*
+		 * Configure RX buffer size.
+		 */
+		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
+			RTE_PKTMBUF_HEADROOM);
+		if (buf_size >= 1024) {
+			/*
+			 * Configure the BSIZEPACKET field of the SRRCTL
+			 * register of the queue.
+			 * Value is in 1 KB resolution, from 1 KB to 127 KB.
+			 * If this field is equal to 0b, then RCTL.BSIZE
+			 * determines the RX packet buffer size.
+			 */
+			srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
+				   E1000_SRRCTL_BSIZEPKT_MASK);
+			buf_size = (uint16_t) ((srrctl &
+						E1000_SRRCTL_BSIZEPKT_MASK) <<
+					       E1000_SRRCTL_BSIZEPKT_SHIFT);
+
+			/* It adds dual VLAN length for supporting dual VLAN */
+			if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
+						2 * VLAN_TAG_SIZE) > buf_size){
+				if (!dev->data->scattered_rx)
+					PMD_INIT_LOG(DEBUG,
+						     "forcing scatter mode");
+				dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+				dev->data->scattered_rx = 1;
+			}
+		} else {
+			/*
+			 * Use BSIZE field of the device RCTL register.
+			 */
+			if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
+				rctl_bsize = buf_size;
+			if (!dev->data->scattered_rx)
+				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+			dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+			dev->data->scattered_rx = 1;
+		}
+
+		/* Set if packets are dropped when no descriptors available */
+		if (rxq->drop_en)
+			srrctl |= E1000_SRRCTL_DROP_EN;
+
+		E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
+
+		/* Enable this RX queue. */
+		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
+		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+		rxdctl &= 0xFFF00000;
+		rxdctl |= (rxq->pthresh & 0x1F);
+		rxdctl |= ((rxq->hthresh & 0x1F) << 8);
+		rxdctl |= ((rxq->wthresh & 0x1F) << 16);
+		E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
+	}
+
+	if (dev->data->dev_conf.rxmode.enable_scatter) {
+		if (!dev->data->scattered_rx)
+			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+		dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+		dev->data->scattered_rx = 1;
+	}
+
+	/*
+	 * Setup BSIZE field of RCTL register, if needed.
+	 * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
+	 * register, since the code above configures the SRRCTL register of
+	 * the RX queue in such a case.
+	 * All configurable sizes are:
+	 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+	 *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
+	 *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
+	 *  2048: rctl |= E1000_RCTL_SZ_2048;
+	 *  1024: rctl |= E1000_RCTL_SZ_1024;
+	 *   512: rctl |= E1000_RCTL_SZ_512;
+	 *   256: rctl |= E1000_RCTL_SZ_256;
+	 */
+	if (rctl_bsize > 0) {
+		if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
+			rctl |= E1000_RCTL_SZ_512;
+		else /* 256 <= buf_size < 512 - use 256 */
+			rctl |= E1000_RCTL_SZ_256;
+	}
+
+	/*
+	 * Configure RSS if device configured with multiple RX queues.
+	 */
+	igb_dev_mq_rx_configure(dev);
+
+	/* Update the rctl since igb_dev_mq_rx_configure may change its value */
+	rctl |= E1000_READ_REG(hw, E1000_RCTL);
+
+	/*
+	 * Setup the Checksum Register.
+	 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+	 */
+	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+	rxcsum |= E1000_RXCSUM_PCSD;
+
+	/* Enable both L3/L4 rx checksum offload */
+	if (dev->data->dev_conf.rxmode.hw_ip_checksum)
+		rxcsum |= (E1000_RXCSUM_IPOFL  | E1000_RXCSUM_TUOFL);
+	else
+		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
+	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+	/* Setup the Receive Control Register. */
+	if (dev->data->dev_conf.rxmode.hw_strip_crc) {
+		rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+
+		/* set STRCRC bit in all queues */
+		if (hw->mac.type == e1000_i350 ||
+		    hw->mac.type == e1000_i210 ||
+		    hw->mac.type == e1000_i211 ||
+		    hw->mac.type == e1000_i354) {
+			for (i = 0; i < dev->data->nb_rx_queues; i++) {
+				rxq = dev->data->rx_queues[i];
+				uint32_t dvmolr = E1000_READ_REG(hw,
+					E1000_DVMOLR(rxq->reg_idx));
+				dvmolr |= E1000_DVMOLR_STRCRC;
+				E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
+			}
+		}
+	} else {
+		rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+		/* clear STRCRC bit in all queues */
+		if (hw->mac.type == e1000_i350 ||
+		    hw->mac.type == e1000_i210 ||
+		    hw->mac.type == e1000_i211 ||
+		    hw->mac.type == e1000_i354) {
+			for (i = 0; i < dev->data->nb_rx_queues; i++) {
+				rxq = dev->data->rx_queues[i];
+				uint32_t dvmolr = E1000_READ_REG(hw,
+					E1000_DVMOLR(rxq->reg_idx));
+				dvmolr &= ~E1000_DVMOLR_STRCRC;
+				E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
+			}
+		}
+	}
+
+	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+		E1000_RCTL_RDMTS_HALF |
+		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+	/* Make sure VLAN Filters are off. */
+	if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
+		rctl &= ~E1000_RCTL_VFE;
+	/* Don't store bad packets. */
+	rctl &= ~E1000_RCTL_SBP;
+
+	/* Enable Receives. */
+	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+	/*
+	 * Setup the HW Rx Head and Tail Descriptor Pointers.
+	 * This needs to be done after enable.
+	 */
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		rxq = dev->data->rx_queues[i];
+		E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
+		E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
+	}
+
+	return 0;
+}
+
+/*********************************************************************
+ *
+ *  Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_igb_tx_init(struct rte_eth_dev *dev)
+{
+	struct e1000_hw     *hw;
+	struct igb_tx_queue *txq;
+	uint32_t tctl;
+	uint32_t txdctl;
+	uint16_t i;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/* Setup the Base and Length of the Tx Descriptor Rings. */
+	for (i = 0; i < dev->data->nb_tx_queues; i++) {
+		uint64_t bus_addr;
+		txq = dev->data->tx_queues[i];
+		bus_addr = txq->tx_ring_phys_addr;
+
+		E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
+				txq->nb_tx_desc *
+				sizeof(union e1000_adv_tx_desc));
+		E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
+				(uint32_t)(bus_addr >> 32));
+		E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
+
+		/* Setup the HW Tx Head and Tail descriptor pointers. */
+		E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
+		E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
+
+		/* Setup Transmit threshold registers. */
+		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
+		txdctl |= txq->pthresh & 0x1F;
+		txdctl |= ((txq->hthresh & 0x1F) << 8);
+		txdctl |= ((txq->wthresh & 0x1F) << 16);
+		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+		E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
+	}
+
+	/* Program the Transmit Control Register. */
+	tctl = E1000_READ_REG(hw, E1000_TCTL);
+	tctl &= ~E1000_TCTL_CT;
+	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+		 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+	e1000_config_collision_dist(hw);
+
+	/* This write will effectively turn on the transmit unit. */
+	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
+/*********************************************************************
+ *
+ *  Enable VF receive unit.
+ *
+ **********************************************************************/
+int
+eth_igbvf_rx_init(struct rte_eth_dev *dev)
+{
+	struct e1000_hw     *hw;
+	struct igb_rx_queue *rxq;
+	uint32_t srrctl;
+	uint16_t buf_size;
+	uint16_t rctl_bsize;
+	uint16_t i;
+	int ret;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/* setup MTU */
+	e1000_rlpml_set_vf(hw,
+		(uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
+		VLAN_TAG_SIZE));
+
+	/* Configure and enable each RX queue. */
+	rctl_bsize = 0;
+	dev->rx_pkt_burst = eth_igb_recv_pkts;
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		uint64_t bus_addr;
+		uint32_t rxdctl;
+
+		rxq = dev->data->rx_queues[i];
+
+		/* Allocate buffers for descriptor rings and set up queue */
+		ret = igb_alloc_rx_queue_mbufs(rxq);
+		if (ret)
+			return ret;
+
+		bus_addr = rxq->rx_ring_phys_addr;
+		E1000_WRITE_REG(hw, E1000_RDLEN(i),
+				rxq->nb_rx_desc *
+				sizeof(union e1000_adv_rx_desc));
+		E1000_WRITE_REG(hw, E1000_RDBAH(i),
+				(uint32_t)(bus_addr >> 32));
+		E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+		srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+		/*
+		 * Configure RX buffer size.
+		 */
+		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
+			RTE_PKTMBUF_HEADROOM);
+		if (buf_size >= 1024) {
+			/*
+			 * Configure the BSIZEPACKET field of the SRRCTL
+			 * register of the queue.
+			 * Value is in 1 KB resolution, from 1 KB to 127 KB.
+			 * If this field is equal to 0b, then RCTL.BSIZE
+			 * determines the RX packet buffer size.
+			 */
+			srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
+				   E1000_SRRCTL_BSIZEPKT_MASK);
+			buf_size = (uint16_t) ((srrctl &
+						E1000_SRRCTL_BSIZEPKT_MASK) <<
+					       E1000_SRRCTL_BSIZEPKT_SHIFT);
+
+			/* It adds dual VLAN length for supporting dual VLAN */
+			if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
+						2 * VLAN_TAG_SIZE) > buf_size){
+				if (!dev->data->scattered_rx)
+					PMD_INIT_LOG(DEBUG,
+						     "forcing scatter mode");
+				dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+				dev->data->scattered_rx = 1;
+			}
+		} else {
+			/*
+			 * Use BSIZE field of the device RCTL register.
+			 */
+			if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
+				rctl_bsize = buf_size;
+			if (!dev->data->scattered_rx)
+				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+			dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+			dev->data->scattered_rx = 1;
+		}
+
+		/* Set if packets are dropped when no descriptors available */
+		if (rxq->drop_en)
+			srrctl |= E1000_SRRCTL_DROP_EN;
+
+		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
+
+		/* Enable this RX queue. */
+		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
+		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
+		rxdctl &= 0xFFF00000;
+		rxdctl |= (rxq->pthresh & 0x1F);
+		rxdctl |= ((rxq->hthresh & 0x1F) << 8);
+		if (hw->mac.type == e1000_vfadapt) {
+			/*
+			 * Workaround of 82576 VF Erratum
+			 * force set WTHRESH to 1
+			 * to avoid Write-Back not triggered sometimes
+			 */
+			rxdctl |= 0x10000;
+			PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
+		}
+		else
+			rxdctl |= ((rxq->wthresh & 0x1F) << 16);
+		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+	}
+
+	if (dev->data->dev_conf.rxmode.enable_scatter) {
+		if (!dev->data->scattered_rx)
+			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+		dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
+		dev->data->scattered_rx = 1;
+	}
+
+	/*
+	 * Setup the HW Rx Head and Tail Descriptor Pointers.
+	 * This needs to be done after enable.
+	 */
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		rxq = dev->data->rx_queues[i];
+		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+		E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+	}
+
+	return 0;
+}
+
+/*********************************************************************
+ *
+ *  Enable VF transmit unit.
+ *
+ **********************************************************************/
+void
+eth_igbvf_tx_init(struct rte_eth_dev *dev)
+{
+	struct e1000_hw     *hw;
+	struct igb_tx_queue *txq;
+	uint32_t txdctl;
+	uint16_t i;
+
+	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+	/* Setup the Base and Length of the Tx Descriptor Rings. */
+	for (i = 0; i < dev->data->nb_tx_queues; i++) {
+		uint64_t bus_addr;
+
+		txq = dev->data->tx_queues[i];
+		bus_addr = txq->tx_ring_phys_addr;
+		E1000_WRITE_REG(hw, E1000_TDLEN(i),
+				txq->nb_tx_desc *
+				sizeof(union e1000_adv_tx_desc));
+		E1000_WRITE_REG(hw, E1000_TDBAH(i),
+				(uint32_t)(bus_addr >> 32));
+		E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+		/* Setup the HW Tx Head and Tail descriptor pointers. */
+		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+		/* Setup Transmit threshold registers. */
+		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+		txdctl |= txq->pthresh & 0x1F;
+		txdctl |= ((txq->hthresh & 0x1F) << 8);
+		if (hw->mac.type == e1000_82576) {
+			/*
+			 * Workaround of 82576 VF Erratum
+			 * force set WTHRESH to 1
+			 * to avoid Write-Back not triggered sometimes
+			 */
+			txdctl |= 0x10000;
+			PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
+		}
+		else
+			txdctl |= ((txq->wthresh & 0x1F) << 16);
+		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
+		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+	}
+
+}
+
diff --git a/drivers/net/e1000/rte_pmd_e1000_version.map b/drivers/net/e1000/rte_pmd_e1000_version.map
new file mode 100644
index 0000000..ef35398
--- /dev/null
+++ b/drivers/net/e1000/rte_pmd_e1000_version.map
@@ -0,0 +1,4 @@
+DPDK_2.0 {
+
+	local: *;
+};
diff --git a/lib/Makefile b/lib/Makefile
index 889a20d..3350e99 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -41,7 +41,6 @@ DIRS-$(CONFIG_RTE_LIBRTE_TIMER) += librte_timer
 DIRS-$(CONFIG_RTE_LIBRTE_CFGFILE) += librte_cfgfile
 DIRS-$(CONFIG_RTE_LIBRTE_CMDLINE) += librte_cmdline
 DIRS-$(CONFIG_RTE_LIBRTE_ETHER) += librte_ether
-DIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += librte_pmd_e1000
 DIRS-$(CONFIG_RTE_LIBRTE_IXGBE_PMD) += librte_pmd_ixgbe
 DIRS-$(CONFIG_RTE_LIBRTE_I40E_PMD) += librte_pmd_i40e
 DIRS-$(CONFIG_RTE_LIBRTE_FM10K_PMD) += librte_pmd_fm10k
diff --git a/lib/librte_pmd_e1000/Makefile b/lib/librte_pmd_e1000/Makefile
deleted file mode 100644
index 158bc81..0000000
--- a/lib/librte_pmd_e1000/Makefile
+++ /dev/null
@@ -1,99 +0,0 @@
-#   BSD LICENSE
-#
-#   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
-#   All rights reserved.
-#
-#   Redistribution and use in source and binary forms, with or without
-#   modification, are permitted provided that the following conditions
-#   are met:
-#
-#     * Redistributions of source code must retain the above copyright
-#       notice, this list of conditions and the following disclaimer.
-#     * Redistributions in binary form must reproduce the above copyright
-#       notice, this list of conditions and the following disclaimer in
-#       the documentation and/or other materials provided with the
-#       distribution.
-#     * Neither the name of Intel Corporation nor the names of its
-#       contributors may be used to endorse or promote products derived
-#       from this software without specific prior written permission.
-#
-#   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-#   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-#   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-#   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-#   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-#   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-#   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-#   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-#   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-#   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-#   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-include $(RTE_SDK)/mk/rte.vars.mk
-
-#
-# library name
-#
-LIB = librte_pmd_e1000.a
-
-CFLAGS += -O3
-CFLAGS += $(WERROR_FLAGS)
-
-EXPORT_MAP := rte_pmd_e1000_version.map
-
-LIBABIVER := 1
-
-ifeq ($(CC), icc)
-#
-# CFLAGS for icc
-#
-CFLAGS_BASE_DRIVER = -wd177 -wd181 -wd188 -wd869 -wd2259
-else
-#
-# CFLAGS for gcc
-#
-CFLAGS_BASE_DRIVER = -Wno-uninitialized -Wno-unused-parameter
-CFLAGS_BASE_DRIVER += -Wno-unused-variable
-endif
-
-#
-# Add extra flags for base driver files (also known as shared code)
-# to disable warnings in them
-#
-BASE_DRIVER_OBJS=$(patsubst %.c,%.o,$(notdir $(wildcard $(SRCDIR)/e1000/*.c)))
-$(foreach obj, $(BASE_DRIVER_OBJS), $(eval CFLAGS_$(obj)+=$(CFLAGS_BASE_DRIVER)))
-
-VPATH += $(SRCDIR)/e1000
-
-#
-# all source are stored in SRCS-y
-#
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_80003es2lan.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82540.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82541.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82542.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82543.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82571.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82575.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_i210.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_api.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_ich8lan.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mac.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_manage.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mbx.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_nvm.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_osdep.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_phy.c
-SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_vf.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_ethdev.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_rxtx.c
-SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_pf.c
-SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_ethdev.c
-SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_rxtx.c
-
-# this lib depends upon:
-DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_eal lib/librte_ether
-DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_mempool lib/librte_mbuf
-DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_net lib/librte_malloc
-
-include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/lib/librte_pmd_e1000/e1000/README b/lib/librte_pmd_e1000/e1000/README
deleted file mode 100644
index 851e54e..0000000
--- a/lib/librte_pmd_e1000/e1000/README
+++ /dev/null
@@ -1,39 +0,0 @@
-..
-     BSD LICENSE
-   
-     Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
-     All rights reserved.
-   
-     Redistribution and use in source and binary forms, with or without
-     modification, are permitted provided that the following conditions
-     are met:
-   
-       * Redistributions of source code must retain the above copyright
-         notice, this list of conditions and the following disclaimer.
-       * Redistributions in binary form must reproduce the above copyright
-         notice, this list of conditions and the following disclaimer in
-         the documentation and/or other materials provided with the
-         distribution.
-       * Neither the name of Intel Corporation nor the names of its
-         contributors may be used to endorse or promote products derived
-         from this software without specific prior written permission.
-   
-     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-     "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-     LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-     A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-     OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-     OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-This directory contains source code of FreeBSD em & igb drivers of version
-cid-shared-code.2014.04.21 released by LAD. The sub-directory of lad/
-contains the original source package.
-Few changes to the original FreeBSD sources were made to:
-- Adopt it for PMD usage mode:
-	e1000_osdep.c
-	e1000_osdep.h
diff --git a/lib/librte_pmd_e1000/e1000/e1000_80003es2lan.c b/lib/librte_pmd_e1000/e1000/e1000_80003es2lan.c
deleted file mode 100644
index 72692d9..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_80003es2lan.c
+++ /dev/null
@@ -1,1514 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
- * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
- */
-
-#include "e1000_api.h"
-
-STATIC s32  e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
-						   u32 offset,
-						   u16 *data);
-STATIC s32  e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
-						    u32 offset,
-						    u16 data);
-STATIC s32  e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
-					u16 words, u16 *data);
-STATIC s32  e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
-					       u16 *duplex);
-STATIC s32  e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_init_hw_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
-STATIC s32  e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
-STATIC s32  e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
-STATIC s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
-					    u16 *data);
-STATIC s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
-					     u16 data);
-STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
-STATIC s32  e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
-
-/* A table for the GG82563 cable length where the range is defined
- * with a lower bound at "index" and the upper bound at
- * "index + 5".
- */
-STATIC const u16 e1000_gg82563_cable_length_table[] = {
-	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
-#define GG82563_CABLE_LENGTH_TABLE_SIZE \
-		(sizeof(e1000_gg82563_cable_length_table) / \
-		 sizeof(e1000_gg82563_cable_length_table[0]))
-
-/**
- *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_init_phy_params_80003es2lan");
-
-	if (hw->phy.media_type != e1000_media_type_copper) {
-		phy->type = e1000_phy_none;
-		return E1000_SUCCESS;
-	} else {
-		phy->ops.power_up = e1000_power_up_phy_copper;
-		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
-	}
-
-	phy->addr		= 1;
-	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-	phy->reset_delay_us	= 100;
-	phy->type		= e1000_phy_gg82563;
-
-	phy->ops.acquire	= e1000_acquire_phy_80003es2lan;
-	phy->ops.check_polarity	= e1000_check_polarity_m88;
-	phy->ops.check_reset_block = e1000_check_reset_block_generic;
-	phy->ops.commit		= e1000_phy_sw_reset_generic;
-	phy->ops.get_cfg_done	= e1000_get_cfg_done_80003es2lan;
-	phy->ops.get_info	= e1000_get_phy_info_m88;
-	phy->ops.release	= e1000_release_phy_80003es2lan;
-	phy->ops.reset		= e1000_phy_hw_reset_generic;
-	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
-
-	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
-	phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
-	phy->ops.read_reg	= e1000_read_phy_reg_gg82563_80003es2lan;
-	phy->ops.write_reg	= e1000_write_phy_reg_gg82563_80003es2lan;
-
-	phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
-
-	/* This can only be done after all function pointers are setup. */
-	ret_val = e1000_get_phy_id(hw);
-
-	/* Verify phy id */
-	if (phy->id != GG82563_E_PHY_ID)
-		return -E1000_ERR_PHY;
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-	u16 size;
-
-	DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
-
-	nvm->opcode_bits = 8;
-	nvm->delay_usec = 1;
-	switch (nvm->override) {
-	case e1000_nvm_override_spi_large:
-		nvm->page_size = 32;
-		nvm->address_bits = 16;
-		break;
-	case e1000_nvm_override_spi_small:
-		nvm->page_size = 8;
-		nvm->address_bits = 8;
-		break;
-	default:
-		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
-		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
-		break;
-	}
-
-	nvm->type = e1000_nvm_eeprom_spi;
-
-	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
-		     E1000_EECD_SIZE_EX_SHIFT);
-
-	/* Added to a constant, "size" becomes the left-shift value
-	 * for setting word_size.
-	 */
-	size += NVM_WORD_SIZE_BASE_SHIFT;
-
-	/* EEPROM access above 16k is unsupported */
-	if (size > 14)
-		size = 14;
-	nvm->word_size = 1 << size;
-
-	/* Function Pointers */
-	nvm->ops.acquire	= e1000_acquire_nvm_80003es2lan;
-	nvm->ops.read		= e1000_read_nvm_eerd;
-	nvm->ops.release	= e1000_release_nvm_80003es2lan;
-	nvm->ops.update		= e1000_update_nvm_checksum_generic;
-	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
-	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
-	nvm->ops.write		= e1000_write_nvm_80003es2lan;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-
-	DEBUGFUNC("e1000_init_mac_params_80003es2lan");
-
-	/* Set media type and media-dependent function pointers */
-	switch (hw->device_id) {
-	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-		hw->phy.media_type = e1000_media_type_internal_serdes;
-		mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
-		mac->ops.setup_physical_interface =
-					e1000_setup_fiber_serdes_link_generic;
-		break;
-	default:
-		hw->phy.media_type = e1000_media_type_copper;
-		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
-		mac->ops.setup_physical_interface =
-					e1000_setup_copper_link_80003es2lan;
-		break;
-	}
-
-	/* Set mta register count */
-	mac->mta_reg_count = 128;
-	/* Set rar entry count */
-	mac->rar_entry_count = E1000_RAR_ENTRIES;
-	/* Set if part includes ASF firmware */
-	mac->asf_firmware_present = true;
-	/* FWSM register */
-	mac->has_fwsm = true;
-	/* ARC supported; valid only if manageability features are enabled. */
-	mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
-				      E1000_FWSM_MODE_MASK);
-	/* Adaptive IFS not supported */
-	mac->adaptive_ifs = false;
-
-	/* Function pointers */
-
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
-	/* reset */
-	mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
-	/* hw initialization */
-	mac->ops.init_hw = e1000_init_hw_80003es2lan;
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_generic;
-	/* check management mode */
-	mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
-	/* writing VFTA */
-	mac->ops.write_vfta = e1000_write_vfta_generic;
-	/* clearing VFTA */
-	mac->ops.clear_vfta = e1000_clear_vfta_generic;
-	/* read mac address */
-	mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
-	/* ID LED init */
-	mac->ops.id_led_init = e1000_id_led_init_generic;
-	/* blink LED */
-	mac->ops.blink_led = e1000_blink_led_generic;
-	/* setup LED */
-	mac->ops.setup_led = e1000_setup_led_generic;
-	/* cleanup LED */
-	mac->ops.cleanup_led = e1000_cleanup_led_generic;
-	/* turn on/off LED */
-	mac->ops.led_on = e1000_led_on_generic;
-	mac->ops.led_off = e1000_led_off_generic;
-	/* clear hardware counters */
-	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
-	/* link info */
-	mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
-
-	/* set lan id for port to determine which phy lock to use */
-	hw->mac.ops.set_lan_id(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
- *  @hw: pointer to the HW structure
- *
- *  Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
-	hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
-}
-
-/**
- *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
- *  @hw: pointer to the HW structure
- *
- *  A wrapper to acquire access rights to the correct PHY.
- **/
-STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
-{
-	u16 mask;
-
-	DEBUGFUNC("e1000_acquire_phy_80003es2lan");
-
-	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
-	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- *  e1000_release_phy_80003es2lan - Release rights to access PHY
- *  @hw: pointer to the HW structure
- *
- *  A wrapper to release access rights to the correct PHY.
- **/
-STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
-{
-	u16 mask;
-
-	DEBUGFUNC("e1000_release_phy_80003es2lan");
-
-	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
-	e1000_release_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
- *  @hw: pointer to the HW structure
- *
- *  Acquire the semaphore to access the Kumeran interface.
- *
- **/
-STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
-{
-	u16 mask;
-
-	DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
-
-	mask = E1000_SWFW_CSR_SM;
-
-	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
- *  @hw: pointer to the HW structure
- *
- *  Release the semaphore used to access the Kumeran interface
- **/
-STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
-{
-	u16 mask;
-
-	DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
-
-	mask = E1000_SWFW_CSR_SM;
-
-	e1000_release_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
- *  @hw: pointer to the HW structure
- *
- *  Acquire the semaphore to access the EEPROM.
- **/
-STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
-
-	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_acquire_nvm_generic(hw);
-
-	if (ret_val)
-		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-
-	return ret_val;
-}
-
-/**
- *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
- *  @hw: pointer to the HW structure
- *
- *  Release the semaphore used to access the EEPROM.
- **/
-STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_release_nvm_80003es2lan");
-
-	e1000_release_nvm_generic(hw);
-	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
- *  @hw: pointer to the HW structure
- *  @mask: specifies which semaphore to acquire
- *
- *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
- *  will also specify which port we're acquiring the lock for.
- **/
-STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
-{
-	u32 swfw_sync;
-	u32 swmask = mask;
-	u32 fwmask = mask << 16;
-	s32 i = 0;
-	s32 timeout = 50;
-
-	DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
-
-	while (i < timeout) {
-		if (e1000_get_hw_semaphore_generic(hw))
-			return -E1000_ERR_SWFW_SYNC;
-
-		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
-		if (!(swfw_sync & (fwmask | swmask)))
-			break;
-
-		/* Firmware currently using resource (fwmask)
-		 * or other software thread using resource (swmask)
-		 */
-		e1000_put_hw_semaphore_generic(hw);
-		msec_delay_irq(5);
-		i++;
-	}
-
-	if (i == timeout) {
-		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
-		return -E1000_ERR_SWFW_SYNC;
-	}
-
-	swfw_sync |= swmask;
-	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
-	e1000_put_hw_semaphore_generic(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
- *  @hw: pointer to the HW structure
- *  @mask: specifies which semaphore to acquire
- *
- *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
- *  will also specify which port we're releasing the lock for.
- **/
-STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
-{
-	u32 swfw_sync;
-
-	DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
-
-	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
-		; /* Empty */
-
-	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
-	swfw_sync &= ~mask;
-	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
-	e1000_put_hw_semaphore_generic(hw);
-}
-
-/**
- *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
- *  @hw: pointer to the HW structure
- *  @offset: offset of the register to read
- *  @data: pointer to the data returned from the operation
- *
- *  Read the GG82563 PHY register.
- **/
-STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
-						  u32 offset, u16 *data)
-{
-	s32 ret_val;
-	u32 page_select;
-	u16 temp;
-
-	DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
-
-	ret_val = e1000_acquire_phy_80003es2lan(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Select Configuration Page */
-	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-		page_select = GG82563_PHY_PAGE_SELECT;
-	} else {
-		/* Use Alternative Page Select register to access
-		 * registers 30 and 31
-		 */
-		page_select = GG82563_PHY_PAGE_SELECT_ALT;
-	}
-
-	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
-	ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
-	if (ret_val) {
-		e1000_release_phy_80003es2lan(hw);
-		return ret_val;
-	}
-
-	if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
-		/* The "ready" bit in the MDIC register may be incorrectly set
-		 * before the device has completed the "Page Select" MDI
-		 * transaction.  So we wait 200us after each MDI command...
-		 */
-		usec_delay(200);
-
-		/* ...and verify the command was successful. */
-		ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
-
-		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
-			e1000_release_phy_80003es2lan(hw);
-			return -E1000_ERR_PHY;
-		}
-
-		usec_delay(200);
-
-		ret_val = e1000_read_phy_reg_mdic(hw,
-						  MAX_PHY_REG_ADDRESS & offset,
-						  data);
-
-		usec_delay(200);
-	} else {
-		ret_val = e1000_read_phy_reg_mdic(hw,
-						  MAX_PHY_REG_ADDRESS & offset,
-						  data);
-	}
-
-	e1000_release_phy_80003es2lan(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
- *  @hw: pointer to the HW structure
- *  @offset: offset of the register to read
- *  @data: value to write to the register
- *
- *  Write to the GG82563 PHY register.
- **/
-STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
-						   u32 offset, u16 data)
-{
-	s32 ret_val;
-	u32 page_select;
-	u16 temp;
-
-	DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
-
-	ret_val = e1000_acquire_phy_80003es2lan(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Select Configuration Page */
-	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-		page_select = GG82563_PHY_PAGE_SELECT;
-	} else {
-		/* Use Alternative Page Select register to access
-		 * registers 30 and 31
-		 */
-		page_select = GG82563_PHY_PAGE_SELECT_ALT;
-	}
-
-	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
-	ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
-	if (ret_val) {
-		e1000_release_phy_80003es2lan(hw);
-		return ret_val;
-	}
-
-	if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
-		/* The "ready" bit in the MDIC register may be incorrectly set
-		 * before the device has completed the "Page Select" MDI
-		 * transaction.  So we wait 200us after each MDI command...
-		 */
-		usec_delay(200);
-
-		/* ...and verify the command was successful. */
-		ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
-
-		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
-			e1000_release_phy_80003es2lan(hw);
-			return -E1000_ERR_PHY;
-		}
-
-		usec_delay(200);
-
-		ret_val = e1000_write_phy_reg_mdic(hw,
-						  MAX_PHY_REG_ADDRESS & offset,
-						  data);
-
-		usec_delay(200);
-	} else {
-		ret_val = e1000_write_phy_reg_mdic(hw,
-						  MAX_PHY_REG_ADDRESS & offset,
-						  data);
-	}
-
-	e1000_release_phy_80003es2lan(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
- *  @hw: pointer to the HW structure
- *  @offset: offset of the register to read
- *  @words: number of words to write
- *  @data: buffer of data to write to the NVM
- *
- *  Write "words" of data to the ESB2 NVM.
- **/
-STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
-				       u16 words, u16 *data)
-{
-	DEBUGFUNC("e1000_write_nvm_80003es2lan");
-
-	return e1000_write_nvm_spi(hw, offset, words, data);
-}
-
-/**
- *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
- *  @hw: pointer to the HW structure
- *
- *  Wait a specific amount of time for manageability processes to complete.
- *  This is a function pointer entry point called by the phy module.
- **/
-STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
-{
-	s32 timeout = PHY_CFG_TIMEOUT;
-	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
-
-	DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
-
-	if (hw->bus.func == 1)
-		mask = E1000_NVM_CFG_DONE_PORT_1;
-
-	while (timeout) {
-		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
-			break;
-		msec_delay(1);
-		timeout--;
-	}
-	if (!timeout) {
-		DEBUGOUT("MNG configuration cycle has not completed.\n");
-		return -E1000_ERR_RESET;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
- *  @hw: pointer to the HW structure
- *
- *  Force the speed and duplex settings onto the PHY.  This is a
- *  function pointer entry point called by the phy module.
- **/
-STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 phy_data;
-	bool link;
-
-	DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
-
-	if (!(hw->phy.ops.read_reg))
-		return E1000_SUCCESS;
-
-	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
-	 * forced whenever speed and duplex are forced.
-	 */
-	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
-	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
-
-	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
-	/* Reset the phy to commit changes. */
-	phy_data |= MII_CR_RESET;
-
-	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	usec_delay(1);
-
-	if (hw->phy.autoneg_wait_to_complete) {
-		DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
-
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-		if (ret_val)
-			return ret_val;
-
-		if (!link) {
-			/* We didn't get link.
-			 * Reset the DSP and cross our fingers.
-			 */
-			ret_val = e1000_phy_reset_dsp_generic(hw);
-			if (ret_val)
-				return ret_val;
-		}
-
-		/* Try once more */
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-		if (ret_val)
-			return ret_val;
-	}
-
-	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-				       &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Resetting the phy means we need to verify the TX_CLK corresponds
-	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
-	 */
-	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
-	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
-		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
-	else
-		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
-
-	/* In addition, we must re-enable CRS on Tx for both half and full
-	 * duplex.
-	 */
-	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-					phy_data);
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_cable_length_80003es2lan - Set approximate cable length
- *  @hw: pointer to the HW structure
- *
- *  Find the approximate cable length as measured by the GG82563 PHY.
- *  This is a function pointer entry point called by the phy module.
- **/
-STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data, index;
-
-	DEBUGFUNC("e1000_get_cable_length_80003es2lan");
-
-	if (!(hw->phy.ops.read_reg))
-		return E1000_SUCCESS;
-
-	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
-	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
-		return -E1000_ERR_PHY;
-
-	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
-	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
-
-	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
- *  @hw: pointer to the HW structure
- *  @speed: pointer to speed buffer
- *  @duplex: pointer to duplex buffer
- *
- *  Retrieve the current speed and duplex configuration.
- **/
-STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
-					      u16 *duplex)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
-
-	if (hw->phy.media_type == e1000_media_type_copper) {
-		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
-								    duplex);
-		hw->phy.ops.cfg_on_link_up(hw);
-	} else {
-		ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
-								  speed,
-								  duplex);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
- *  @hw: pointer to the HW structure
- *
- *  Perform a global reset to the ESB2 controller.
- **/
-STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-	u16 kum_reg_data;
-
-	DEBUGFUNC("e1000_reset_hw_80003es2lan");
-
-	/* Prevent the PCI-E bus from sticking if there is no TLP connection
-	 * on the last TLP read/write transaction when MAC is reset.
-	 */
-	ret_val = e1000_disable_pcie_master_generic(hw);
-	if (ret_val)
-		DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
-	E1000_WRITE_FLUSH(hw);
-
-	msec_delay(10);
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	ret_val = e1000_acquire_phy_80003es2lan(hw);
-	if (ret_val)
-		return ret_val;
-
-	DEBUGOUT("Issuing a global reset to MAC\n");
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-	e1000_release_phy_80003es2lan(hw);
-
-	/* Disable IBIST slave mode (far-end loopback) */
-	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
-				E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data);
-	if (ret_val)
-		return ret_val;
-	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
-	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
-					kum_reg_data);
-
-	ret_val = e1000_get_auto_rd_done_generic(hw);
-	if (ret_val)
-		/* We don't want to continue accessing MAC registers. */
-		return ret_val;
-
-	/* Clear any pending interrupt events. */
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_READ_REG(hw, E1000_ICR);
-
-	return e1000_check_alt_mac_addr_generic(hw);
-}
-
-/**
- *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
- *  @hw: pointer to the HW structure
- *
- *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
- **/
-STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 reg_data;
-	s32 ret_val;
-	u16 kum_reg_data;
-	u16 i;
-
-	DEBUGFUNC("e1000_init_hw_80003es2lan");
-
-	e1000_initialize_hw_bits_80003es2lan(hw);
-
-	/* Initialize identification LED */
-	ret_val = mac->ops.id_led_init(hw);
-	/* An error is not fatal and we should not stop init due to this */
-	if (ret_val)
-		DEBUGOUT("Error initializing identification LED\n");
-
-	/* Disabling VLAN filtering */
-	DEBUGOUT("Initializing the IEEE VLAN\n");
-	mac->ops.clear_vfta(hw);
-
-	/* Setup the receive address. */
-	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
-	/* Zero out the Multicast HASH table */
-	DEBUGOUT("Zeroing the MTA\n");
-	for (i = 0; i < mac->mta_reg_count; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
-	/* Setup link and flow control */
-	ret_val = mac->ops.setup_link(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Disable IBIST slave mode (far-end loopback) */
-	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
-					&kum_reg_data);
-	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
-	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
-					 kum_reg_data);
-
-	/* Set the transmit descriptor write-back policy */
-	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
-	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
-		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
-
-	/* ...for both queues. */
-	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
-	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
-		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
-
-	/* Enable retransmit on late collisions */
-	reg_data = E1000_READ_REG(hw, E1000_TCTL);
-	reg_data |= E1000_TCTL_RTLC;
-	E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
-
-	/* Configure Gigabit Carry Extend Padding */
-	reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
-	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
-	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
-	E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
-
-	/* Configure Transmit Inter-Packet Gap */
-	reg_data = E1000_READ_REG(hw, E1000_TIPG);
-	reg_data &= ~E1000_TIPG_IPGT_MASK;
-	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
-	E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
-
-	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
-	reg_data &= ~0x00100000;
-	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
-
-	/* default to true to enable the MDIC W/A */
-	hw->dev_spec._80003es2lan.mdic_wa_enable = true;
-
-	ret_val =
-	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
-					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
-	if (!ret_val) {
-		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
-		     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
-			hw->dev_spec._80003es2lan.mdic_wa_enable = false;
-	}
-
-	/* Clear all of the statistics registers (clear on read).  It is
-	 * important that we do this after we have tried to establish link
-	 * because the symbol error count will increment wildly if there
-	 * is no link.
-	 */
-	e1000_clear_hw_cntrs_80003es2lan(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
- *  @hw: pointer to the HW structure
- *
- *  Initializes required hardware-dependent bits needed for normal operation.
- **/
-STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
-{
-	u32 reg;
-
-	DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
-
-	/* Transmit Descriptor Control 0 */
-	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
-	reg |= (1 << 22);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
-
-	/* Transmit Descriptor Control 1 */
-	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
-	reg |= (1 << 22);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
-
-	/* Transmit Arbitration Control 0 */
-	reg = E1000_READ_REG(hw, E1000_TARC(0));
-	reg &= ~(0xF << 27); /* 30:27 */
-	if (hw->phy.media_type != e1000_media_type_copper)
-		reg &= ~(1 << 20);
-	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
-
-	/* Transmit Arbitration Control 1 */
-	reg = E1000_READ_REG(hw, E1000_TARC(1));
-	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
-		reg &= ~(1 << 28);
-	else
-		reg |= (1 << 28);
-	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
-
-	/* Disable IPv6 extension header parsing because some malformed
-	 * IPv6 headers can hang the Rx.
-	 */
-	reg = E1000_READ_REG(hw, E1000_RFCTL);
-	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
-	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
-
-	return;
-}
-
-/**
- *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
- *  @hw: pointer to the HW structure
- *
- *  Setup some GG82563 PHY registers for obtaining link
- **/
-STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u32 reg;
-	u16 data;
-
-	DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
-
-	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
-	if (ret_val)
-		return ret_val;
-
-	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
-	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
-
-	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
-	if (ret_val)
-		return ret_val;
-
-	/* Options:
-	 *   MDI/MDI-X = 0 (default)
-	 *   0 - Auto for all speeds
-	 *   1 - MDI mode
-	 *   2 - MDI-X mode
-	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-	 */
-	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
-	if (ret_val)
-		return ret_val;
-
-	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
-	switch (phy->mdix) {
-	case 1:
-		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
-		break;
-	case 2:
-		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
-		break;
-	case 0:
-	default:
-		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
-		break;
-	}
-
-	/* Options:
-	 *   disable_polarity_correction = 0 (default)
-	 *       Automatic Correction for Reversed Cable Polarity
-	 *   0 - Disabled
-	 *   1 - Enabled
-	 */
-	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-	if (phy->disable_polarity_correction)
-		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-
-	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
-	if (ret_val)
-		return ret_val;
-
-	/* SW Reset the PHY so all changes take effect */
-	ret_val = hw->phy.ops.commit(hw);
-	if (ret_val) {
-		DEBUGOUT("Error Resetting the PHY\n");
-		return ret_val;
-	}
-
-	/* Bypass Rx and Tx FIFO's */
-	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
-	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
-		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
-	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
-	if (ret_val)
-		return ret_val;
-
-	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
-	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
-	if (ret_val)
-		return ret_val;
-	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
-	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
-	if (ret_val)
-		return ret_val;
-
-	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
-	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
-	if (ret_val)
-		return ret_val;
-
-	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
-	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
-	if (ret_val)
-		return ret_val;
-
-	/* Do not init these registers when the HW is in IAMT mode, since the
-	 * firmware will have already initialized them.  We only initialize
-	 * them if the HW is not in IAMT mode.
-	 */
-	if (!hw->mac.ops.check_mng_mode(hw)) {
-		/* Enable Electrical Idle on the PHY */
-		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
-		ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-						data);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-					       &data);
-		if (ret_val)
-			return ret_val;
-
-		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-		ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-						data);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Workaround: Disable padding in Kumeran interface in the MAC
-	 * and in the PHY to avoid CRC errors.
-	 */
-	ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
-	if (ret_val)
-		return ret_val;
-
-	data |= GG82563_ICR_DIS_PADDING;
-	ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
-	if (ret_val)
-		return ret_val;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
- *  @hw: pointer to the HW structure
- *
- *  Essentially a wrapper for setting up all things "copper" related.
- *  This is a function pointer entry point called by the mac module.
- **/
-STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-	u16 reg_data;
-
-	DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= E1000_CTRL_SLU;
-	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	/* Set the mac to wait the maximum time between each
-	 * iteration and increase the max iterations when
-	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
-	 */
-	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
-						   0xFFFF);
-	if (ret_val)
-		return ret_val;
-	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
-						  &reg_data);
-	if (ret_val)
-		return ret_val;
-	reg_data |= 0x3F;
-	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
-						   reg_data);
-	if (ret_val)
-		return ret_val;
-	ret_val =
-	    e1000_read_kmrn_reg_80003es2lan(hw,
-					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
-					    &reg_data);
-	if (ret_val)
-		return ret_val;
-	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
-	ret_val =
-	    e1000_write_kmrn_reg_80003es2lan(hw,
-					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
-					     reg_data);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
-	if (ret_val)
-		return ret_val;
-
-	return e1000_setup_copper_link_generic(hw);
-}
-
-/**
- *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
- *  @hw: pointer to the HW structure
- *  @duplex: current duplex setting
- *
- *  Configure the KMRN interface by applying last minute quirks for
- *  10/100 operation.
- **/
-STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 speed;
-	u16 duplex;
-
-	DEBUGFUNC("e1000_configure_on_link_up");
-
-	if (hw->phy.media_type == e1000_media_type_copper) {
-		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
-								    &duplex);
-		if (ret_val)
-			return ret_val;
-
-		if (speed == SPEED_1000)
-			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
-		else
-			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
- *  @hw: pointer to the HW structure
- *  @duplex: current duplex setting
- *
- *  Configure the KMRN interface by applying last minute quirks for
- *  10/100 operation.
- **/
-STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
-{
-	s32 ret_val;
-	u32 tipg;
-	u32 i = 0;
-	u16 reg_data, reg_data2;
-
-	DEBUGFUNC("e1000_configure_kmrn_for_10_100");
-
-	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
-	ret_val =
-	    e1000_write_kmrn_reg_80003es2lan(hw,
-					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
-					     reg_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Configure Transmit Inter-Packet Gap */
-	tipg = E1000_READ_REG(hw, E1000_TIPG);
-	tipg &= ~E1000_TIPG_IPGT_MASK;
-	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
-	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
-
-	do {
-		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-					       &reg_data);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-					       &reg_data2);
-		if (ret_val)
-			return ret_val;
-		i++;
-	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
-
-	if (duplex == HALF_DUPLEX)
-		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
-	else
-		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
-	return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-}
-
-/**
- *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
- *  @hw: pointer to the HW structure
- *
- *  Configure the KMRN interface by applying last minute quirks for
- *  gigabit operation.
- **/
-STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 reg_data, reg_data2;
-	u32 tipg;
-	u32 i = 0;
-
-	DEBUGFUNC("e1000_configure_kmrn_for_1000");
-
-	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
-	ret_val =
-	    e1000_write_kmrn_reg_80003es2lan(hw,
-					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
-					     reg_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Configure Transmit Inter-Packet Gap */
-	tipg = E1000_READ_REG(hw, E1000_TIPG);
-	tipg &= ~E1000_TIPG_IPGT_MASK;
-	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
-	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
-
-	do {
-		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-					       &reg_data);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-					       &reg_data2);
-		if (ret_val)
-			return ret_val;
-		i++;
-	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
-
-	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
-	return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-}
-
-/**
- *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Acquire semaphore, then read the PHY register at offset
- *  using the kumeran interface.  The information retrieved is stored in data.
- *  Release the semaphore before exiting.
- **/
-STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
-					   u16 *data)
-{
-	u32 kmrnctrlsta;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
-
-	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
-	if (ret_val)
-		return ret_val;
-
-	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
-		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
-	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
-	E1000_WRITE_FLUSH(hw);
-
-	usec_delay(2);
-
-	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
-	*data = (u16)kmrnctrlsta;
-
-	e1000_release_mac_csr_80003es2lan(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Acquire semaphore, then write the data to PHY register
- *  at the offset using the kumeran interface.  Release semaphore
- *  before exiting.
- **/
-STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
-					    u16 data)
-{
-	u32 kmrnctrlsta;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
-
-	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
-	if (ret_val)
-		return ret_val;
-
-	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
-		       E1000_KMRNCTRLSTA_OFFSET) | data;
-	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
-	E1000_WRITE_FLUSH(hw);
-
-	usec_delay(2);
-
-	e1000_release_mac_csr_80003es2lan(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_mac_addr_80003es2lan - Read device MAC address
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
-
-	/* If there's an alternate MAC address place it in RAR0
-	 * so that it will override the Si installed default perm
-	 * address.
-	 */
-	ret_val = e1000_check_alt_mac_addr_generic(hw);
-	if (ret_val)
-		return ret_val;
-
-	return e1000_read_mac_addr_generic(hw);
-}
-
-/**
- * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
-{
-	/* If the management interface is not enabled, then power down */
-	if (!(hw->mac.ops.check_mng_mode(hw) ||
-	      hw->phy.ops.check_reset_block(hw)))
-		e1000_power_down_phy_copper(hw);
-
-	return;
-}
-
-/**
- *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
- *  @hw: pointer to the HW structure
- *
- *  Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	E1000_READ_REG(hw, E1000_PRC64);
-	E1000_READ_REG(hw, E1000_PRC127);
-	E1000_READ_REG(hw, E1000_PRC255);
-	E1000_READ_REG(hw, E1000_PRC511);
-	E1000_READ_REG(hw, E1000_PRC1023);
-	E1000_READ_REG(hw, E1000_PRC1522);
-	E1000_READ_REG(hw, E1000_PTC64);
-	E1000_READ_REG(hw, E1000_PTC127);
-	E1000_READ_REG(hw, E1000_PTC255);
-	E1000_READ_REG(hw, E1000_PTC511);
-	E1000_READ_REG(hw, E1000_PTC1023);
-	E1000_READ_REG(hw, E1000_PTC1522);
-
-	E1000_READ_REG(hw, E1000_ALGNERRC);
-	E1000_READ_REG(hw, E1000_RXERRC);
-	E1000_READ_REG(hw, E1000_TNCRS);
-	E1000_READ_REG(hw, E1000_CEXTERR);
-	E1000_READ_REG(hw, E1000_TSCTC);
-	E1000_READ_REG(hw, E1000_TSCTFC);
-
-	E1000_READ_REG(hw, E1000_MGTPRC);
-	E1000_READ_REG(hw, E1000_MGTPDC);
-	E1000_READ_REG(hw, E1000_MGTPTC);
-
-	E1000_READ_REG(hw, E1000_IAC);
-	E1000_READ_REG(hw, E1000_ICRXOC);
-
-	E1000_READ_REG(hw, E1000_ICRXPTC);
-	E1000_READ_REG(hw, E1000_ICRXATC);
-	E1000_READ_REG(hw, E1000_ICTXPTC);
-	E1000_READ_REG(hw, E1000_ICTXATC);
-	E1000_READ_REG(hw, E1000_ICTXQEC);
-	E1000_READ_REG(hw, E1000_ICTXQMTC);
-	E1000_READ_REG(hw, E1000_ICRXDMTC);
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_80003es2lan.h b/lib/librte_pmd_e1000/e1000/e1000_80003es2lan.h
deleted file mode 100644
index f5fe967..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_80003es2lan.h
+++ /dev/null
@@ -1,100 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_80003ES2LAN_H_
-#define _E1000_80003ES2LAN_H_
-
-#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	0x00
-#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	0x02
-#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	0x10
-#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	0x1F
-
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	0x0008
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	0x0800
-#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	0x0010
-
-#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
-#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	0x0000
-#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		0x2000
-
-#define E1000_KMRNCTRLSTA_OPMODE_MASK		0x000C
-#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO	0x0004
-
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gig Carry Extend Padding */
-#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	0x00010000
-
-#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	0x8
-#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	0x9
-
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	0x0002 /* 1=Reversal Dis */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK	0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI		0x0000 /* 00=Manual MDI */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX	0x0020 /* 01=Manual MDIX */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO	0x0060 /* 11=Auto crossover */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG		0x2000 /* 1=Reverse Auto-Neg */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK		0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5		0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25		0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_25		0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX		0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26)
- * 0 = <50M
- * 1 = 50-80M
- * 2 = 80-100M
- * 3 = 110-140M
- * 4 = >140M
- */
-#define GG82563_DSPD_CABLE_LENGTH		0x0007
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PASS_FALSE_CARRIER		0x0800
-
-/* Max number of times Kumeran read/write should be validated */
-#define GG82563_MAX_KMRN_RETRY			0x5
-
-/* Power Management Control Register (Page 193, Register 20) */
-/* 1=Enable SERDES Electrical Idle */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	0x0001
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING			0x0010 /* Disable Padding */
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82540.c b/lib/librte_pmd_e1000/e1000/e1000_82540.c
deleted file mode 100644
index fc1fa94..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82540.c
+++ /dev/null
@@ -1,717 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82540EM Gigabit Ethernet Controller
- * 82540EP Gigabit Ethernet Controller
- * 82545EM Gigabit Ethernet Controller (Copper)
- * 82545EM Gigabit Ethernet Controller (Fiber)
- * 82545GM Gigabit Ethernet Controller
- * 82546EB Gigabit Ethernet Controller (Copper)
- * 82546EB Gigabit Ethernet Controller (Fiber)
- * 82546GB Gigabit Ethernet Controller
- */
-
-#include "e1000_api.h"
-
-STATIC s32  e1000_init_phy_params_82540(struct e1000_hw *hw);
-STATIC s32  e1000_init_nvm_params_82540(struct e1000_hw *hw);
-STATIC s32  e1000_init_mac_params_82540(struct e1000_hw *hw);
-STATIC s32  e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw);
-STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw);
-STATIC s32  e1000_init_hw_82540(struct e1000_hw *hw);
-STATIC s32  e1000_reset_hw_82540(struct e1000_hw *hw);
-STATIC s32  e1000_set_phy_mode_82540(struct e1000_hw *hw);
-STATIC s32  e1000_set_vco_speed_82540(struct e1000_hw *hw);
-STATIC s32  e1000_setup_copper_link_82540(struct e1000_hw *hw);
-STATIC s32  e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw);
-STATIC s32  e1000_read_mac_addr_82540(struct e1000_hw *hw);
-
-/**
- * e1000_init_phy_params_82540 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-
-	phy->addr		= 1;
-	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-	phy->reset_delay_us	= 10000;
-	phy->type		= e1000_phy_m88;
-
-	/* Function Pointers */
-	phy->ops.check_polarity	= e1000_check_polarity_m88;
-	phy->ops.commit		= e1000_phy_sw_reset_generic;
-	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
-	phy->ops.get_cable_length = e1000_get_cable_length_m88;
-	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
-	phy->ops.read_reg	= e1000_read_phy_reg_m88;
-	phy->ops.reset		= e1000_phy_hw_reset_generic;
-	phy->ops.write_reg	= e1000_write_phy_reg_m88;
-	phy->ops.get_info	= e1000_get_phy_info_m88;
-	phy->ops.power_up	= e1000_power_up_phy_copper;
-	phy->ops.power_down	= e1000_power_down_phy_copper_82540;
-
-	ret_val = e1000_get_phy_id(hw);
-	if (ret_val)
-		goto out;
-
-	/* Verify phy id */
-	switch (hw->mac.type) {
-	case e1000_82540:
-	case e1000_82545:
-	case e1000_82545_rev_3:
-	case e1000_82546:
-	case e1000_82546_rev_3:
-		if (phy->id == M88E1011_I_PHY_ID)
-			break;
-		/* Fall Through */
-	default:
-		ret_val = -E1000_ERR_PHY;
-		goto out;
-		break;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82540 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-
-	DEBUGFUNC("e1000_init_nvm_params_82540");
-
-	nvm->type = e1000_nvm_eeprom_microwire;
-	nvm->delay_usec = 50;
-	nvm->opcode_bits = 3;
-	switch (nvm->override) {
-	case e1000_nvm_override_microwire_large:
-		nvm->address_bits = 8;
-		nvm->word_size = 256;
-		break;
-	case e1000_nvm_override_microwire_small:
-		nvm->address_bits = 6;
-		nvm->word_size = 64;
-		break;
-	default:
-		nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6;
-		nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64;
-		break;
-	}
-
-	/* Function Pointers */
-	nvm->ops.acquire	= e1000_acquire_nvm_generic;
-	nvm->ops.read		= e1000_read_nvm_microwire;
-	nvm->ops.release	= e1000_release_nvm_generic;
-	nvm->ops.update		= e1000_update_nvm_checksum_generic;
-	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
-	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
-	nvm->ops.write		= e1000_write_nvm_microwire;
-
-	return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_mac_params_82540 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_init_mac_params_82540");
-
-	/* Set media type */
-	switch (hw->device_id) {
-	case E1000_DEV_ID_82545EM_FIBER:
-	case E1000_DEV_ID_82545GM_FIBER:
-	case E1000_DEV_ID_82546EB_FIBER:
-	case E1000_DEV_ID_82546GB_FIBER:
-		hw->phy.media_type = e1000_media_type_fiber;
-		break;
-	case E1000_DEV_ID_82545GM_SERDES:
-	case E1000_DEV_ID_82546GB_SERDES:
-		hw->phy.media_type = e1000_media_type_internal_serdes;
-		break;
-	default:
-		hw->phy.media_type = e1000_media_type_copper;
-		break;
-	}
-
-	/* Set mta register count */
-	mac->mta_reg_count = 128;
-	/* Set rar entry count */
-	mac->rar_entry_count = E1000_RAR_ENTRIES;
-
-	/* Function pointers */
-
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
-	/* function id */
-	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
-	/* reset */
-	mac->ops.reset_hw = e1000_reset_hw_82540;
-	/* hw initialization */
-	mac->ops.init_hw = e1000_init_hw_82540;
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_generic;
-	/* physical interface setup */
-	mac->ops.setup_physical_interface =
-		(hw->phy.media_type == e1000_media_type_copper)
-			? e1000_setup_copper_link_82540
-			: e1000_setup_fiber_serdes_link_82540;
-	/* check for link */
-	switch (hw->phy.media_type) {
-	case e1000_media_type_copper:
-		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
-		break;
-	case e1000_media_type_fiber:
-		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
-		break;
-	case e1000_media_type_internal_serdes:
-		mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
-		break;
-	default:
-		ret_val = -E1000_ERR_CONFIG;
-		goto out;
-		break;
-	}
-	/* link info */
-	mac->ops.get_link_up_info =
-		(hw->phy.media_type == e1000_media_type_copper)
-			? e1000_get_speed_and_duplex_copper_generic
-			: e1000_get_speed_and_duplex_fiber_serdes_generic;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
-	/* writing VFTA */
-	mac->ops.write_vfta = e1000_write_vfta_generic;
-	/* clearing VFTA */
-	mac->ops.clear_vfta = e1000_clear_vfta_generic;
-	/* read mac address */
-	mac->ops.read_mac_addr = e1000_read_mac_addr_82540;
-	/* ID LED init */
-	mac->ops.id_led_init = e1000_id_led_init_generic;
-	/* setup LED */
-	mac->ops.setup_led = e1000_setup_led_generic;
-	/* cleanup LED */
-	mac->ops.cleanup_led = e1000_cleanup_led_generic;
-	/* turn on/off LED */
-	mac->ops.led_on = e1000_led_on_generic;
-	mac->ops.led_off = e1000_led_off_generic;
-	/* clear hardware counters */
-	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540;
-
-out:
-	return ret_val;
-}
-
-/**
- * e1000_init_function_pointers_82540 - Init func ptrs.
- * @hw: pointer to the HW structure
- *
- * Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82540(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_82540");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_82540;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_82540;
-	hw->phy.ops.init_params = e1000_init_phy_params_82540;
-}
-
-/**
- *  e1000_reset_hw_82540 - Reset hardware
- *  @hw: pointer to the HW structure
- *
- *  This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw)
-{
-	u32 ctrl, manc;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_reset_hw_82540");
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
-
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
-	E1000_WRITE_FLUSH(hw);
-
-	/*
-	 * Delay to allow any outstanding PCI transactions to complete
-	 * before resetting the device.
-	 */
-	msec_delay(10);
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n");
-	switch (hw->mac.type) {
-	case e1000_82545_rev_3:
-	case e1000_82546_rev_3:
-		E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST);
-		break;
-	default:
-		/*
-		 * These controllers can't ack the 64-bit write when
-		 * issuing the reset, so we use IO-mapping as a
-		 * workaround to issue the reset.
-		 */
-		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-		break;
-	}
-
-	/* Wait for EEPROM reload */
-	msec_delay(5);
-
-	/* Disable HW ARPs on ASF enabled adapters */
-	manc = E1000_READ_REG(hw, E1000_MANC);
-	manc &= ~E1000_MANC_ARP_EN;
-	E1000_WRITE_REG(hw, E1000_MANC, manc);
-
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_READ_REG(hw, E1000_ICR);
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_hw_82540 - Initialize hardware
- *  @hw: pointer to the HW structure
- *
- *  This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 txdctl, ctrl_ext;
-	s32 ret_val;
-	u16 i;
-
-	DEBUGFUNC("e1000_init_hw_82540");
-
-	/* Initialize identification LED */
-	ret_val = mac->ops.id_led_init(hw);
-	if (ret_val) {
-		DEBUGOUT("Error initializing identification LED\n");
-		/* This is not fatal and we should not stop init due to this */
-	}
-
-	/* Disabling VLAN filtering */
-	DEBUGOUT("Initializing the IEEE VLAN\n");
-	if (mac->type < e1000_82545_rev_3)
-		E1000_WRITE_REG(hw, E1000_VET, 0);
-
-	mac->ops.clear_vfta(hw);
-
-	/* Setup the receive address. */
-	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
-	/* Zero out the Multicast HASH table */
-	DEBUGOUT("Zeroing the MTA\n");
-	for (i = 0; i < mac->mta_reg_count; i++) {
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-		/*
-		 * Avoid back to back register writes by adding the register
-		 * read (flush).  This is to protect against some strange
-		 * bridge configurations that may issue Memory Write Block
-		 * (MWB) to our register space.  The *_rev_3 hardware at
-		 * least doesn't respond correctly to every other dword in an
-		 * MWB to our register space.
-		 */
-		E1000_WRITE_FLUSH(hw);
-	}
-
-	if (mac->type < e1000_82545_rev_3)
-		e1000_pcix_mmrbc_workaround_generic(hw);
-
-	/* Setup link and flow control */
-	ret_val = mac->ops.setup_link(hw);
-
-	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
-	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
-		  E1000_TXDCTL_FULL_TX_DESC_WB;
-	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
-
-	/*
-	 * Clear all of the statistics registers (clear on read).  It is
-	 * important that we do this after we have tried to establish link
-	 * because the symbol error count will increment wildly if there
-	 * is no link.
-	 */
-	e1000_clear_hw_cntrs_82540(hw);
-
-	if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) ||
-	    (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) {
-		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		/*
-		 * Relaxed ordering must be disabled to avoid a parity
-		 * error crash in a PCI slot.
-		 */
-		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_setup_copper_link_82540 - Configure copper link settings
- *  @hw: pointer to the HW structure
- *
- *  Calls the appropriate function to configure the link for auto-neg or forced
- *  speed and duplex.  Then we check for link, once link is established calls
- *  to configure collision distance and flow control are called.  If link is
- *  not established, we return -E1000_ERR_PHY (-2).
- **/
-STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_setup_copper_link_82540");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= E1000_CTRL_SLU;
-	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	ret_val = e1000_set_phy_mode_82540(hw);
-	if (ret_val)
-		goto out;
-
-	if (hw->mac.type == e1000_82545_rev_3 ||
-	    hw->mac.type == e1000_82546_rev_3) {
-		ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
-					       &data);
-		if (ret_val)
-			goto out;
-		data |= 0x00000008;
-		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
-						data);
-		if (ret_val)
-			goto out;
-	}
-
-	ret_val = e1000_copper_link_setup_m88(hw);
-	if (ret_val)
-		goto out;
-
-	ret_val = e1000_setup_copper_link_generic(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes
- *  @hw: pointer to the HW structure
- *
- *  Set the output amplitude to the value in the EEPROM and adjust the VCO
- *  speed to improve Bit Error Rate (BER) performance.  Configures collision
- *  distance and flow control for fiber and serdes links.  Upon successful
- *  setup, poll for link.
- **/
-STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_setup_fiber_serdes_link_82540");
-
-	switch (mac->type) {
-	case e1000_82545_rev_3:
-	case e1000_82546_rev_3:
-		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
-			/*
-			 * If we're on serdes media, adjust the output
-			 * amplitude to value set in the EEPROM.
-			 */
-			ret_val = e1000_adjust_serdes_amplitude_82540(hw);
-			if (ret_val)
-				goto out;
-		}
-		/* Adjust VCO speed to improve BER performance */
-		ret_val = e1000_set_vco_speed_82540(hw);
-		if (ret_val)
-			goto out;
-	default:
-		break;
-	}
-
-	ret_val = e1000_setup_fiber_serdes_link_generic(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Adjust the SERDES output amplitude based on the EEPROM settings.
- **/
-STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 nvm_data;
-
-	DEBUGFUNC("e1000_adjust_serdes_amplitude_82540");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data);
-	if (ret_val)
-		goto out;
-
-	if (nvm_data != NVM_RESERVED_WORD) {
-		/* Adjust serdes output amplitude only. */
-		nvm_data &= NVM_SERDES_AMPLITUDE_MASK;
-		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL,
-						nvm_data);
-		if (ret_val)
-			goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_set_vco_speed_82540 - Set VCO speed for better performance
- *  @hw: pointer to the HW structure
- *
- *  Set the VCO speed to improve Bit Error Rate (BER) performance.
- **/
-STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw)
-{
-	s32  ret_val;
-	u16 default_page = 0;
-	u16 phy_data;
-
-	DEBUGFUNC("e1000_set_vco_speed_82540");
-
-	/* Set PHY register 30, page 5, bit 8 to 0 */
-
-	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT,
-				       &default_page);
-	if (ret_val)
-		goto out;
-
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
-	if (ret_val)
-		goto out;
-
-	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
-	if (ret_val)
-		goto out;
-
-	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
-	if (ret_val)
-		goto out;
-
-	/* Set PHY register 30, page 4, bit 11 to 1 */
-
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
-	if (ret_val)
-		goto out;
-
-	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
-	if (ret_val)
-		goto out;
-
-	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
-	if (ret_val)
-		goto out;
-
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
-					default_page);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_set_phy_mode_82540 - Set PHY to class A mode
- *  @hw: pointer to the HW structure
- *
- *  Sets the PHY to class A mode and assumes the following operations will
- *  follow to enable the new class mode:
- *    1.  Do a PHY soft reset.
- *    2.  Restart auto-negotiation or force link.
- **/
-STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 nvm_data;
-
-	DEBUGFUNC("e1000_set_phy_mode_82540");
-
-	if (hw->mac.type != e1000_82545_rev_3)
-		goto out;
-
-	ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data);
-	if (ret_val) {
-		ret_val = -E1000_ERR_PHY;
-		goto out;
-	}
-
-	if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) {
-		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT,
-						0x000B);
-		if (ret_val) {
-			ret_val = -E1000_ERR_PHY;
-			goto out;
-		}
-		ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL,
-						0x8104);
-		if (ret_val) {
-			ret_val = -E1000_ERR_PHY;
-			goto out;
-		}
-
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw)
-{
-	/* If the management interface is not enabled, then power down */
-	if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
-		e1000_power_down_phy_copper(hw);
-
-	return;
-}
-
-/**
- *  e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters
- *  @hw: pointer to the HW structure
- *
- *  Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_clear_hw_cntrs_82540");
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	E1000_READ_REG(hw, E1000_PRC64);
-	E1000_READ_REG(hw, E1000_PRC127);
-	E1000_READ_REG(hw, E1000_PRC255);
-	E1000_READ_REG(hw, E1000_PRC511);
-	E1000_READ_REG(hw, E1000_PRC1023);
-	E1000_READ_REG(hw, E1000_PRC1522);
-	E1000_READ_REG(hw, E1000_PTC64);
-	E1000_READ_REG(hw, E1000_PTC127);
-	E1000_READ_REG(hw, E1000_PTC255);
-	E1000_READ_REG(hw, E1000_PTC511);
-	E1000_READ_REG(hw, E1000_PTC1023);
-	E1000_READ_REG(hw, E1000_PTC1522);
-
-	E1000_READ_REG(hw, E1000_ALGNERRC);
-	E1000_READ_REG(hw, E1000_RXERRC);
-	E1000_READ_REG(hw, E1000_TNCRS);
-	E1000_READ_REG(hw, E1000_CEXTERR);
-	E1000_READ_REG(hw, E1000_TSCTC);
-	E1000_READ_REG(hw, E1000_TSCTFC);
-
-	E1000_READ_REG(hw, E1000_MGTPRC);
-	E1000_READ_REG(hw, E1000_MGTPDC);
-	E1000_READ_REG(hw, E1000_MGTPTC);
-}
-
-/**
- *  e1000_read_mac_addr_82540 - Read device MAC address
- *  @hw: pointer to the HW structure
- *
- *  Reads the device MAC address from the EEPROM and stores the value.
- *  Since devices with two ports use the same EEPROM, we increment the
- *  last bit in the MAC address for the second port.
- *
- *  This version is being used over generic because of customer issues
- *  with VmWare and Virtual Box when using generic. It seems in
- *  the emulated 82545, RAR[0] does NOT have a valid address after a
- *  reset, this older method works and using this breaks nothing for
- *  these legacy adapters.
- **/
-s32 e1000_read_mac_addr_82540(struct e1000_hw *hw)
-{
-	s32  ret_val = E1000_SUCCESS;
-	u16 offset, nvm_data, i;
-
-	DEBUGFUNC("e1000_read_mac_addr");
-
-	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
-		offset = i >> 1;
-		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error\n");
-			goto out;
-		}
-		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
-		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
-	}
-
-	/* Flip last bit of mac address if we're on second port */
-	if (hw->bus.func == E1000_FUNC_1)
-		hw->mac.perm_addr[5] ^= 1;
-
-	for (i = 0; i < ETH_ADDR_LEN; i++)
-		hw->mac.addr[i] = hw->mac.perm_addr[i];
-
-out:
-	return ret_val;
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82541.c b/lib/librte_pmd_e1000/e1000/e1000_82541.c
deleted file mode 100644
index 952aea2..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82541.c
+++ /dev/null
@@ -1,1268 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82541EI Gigabit Ethernet Controller
- * 82541ER Gigabit Ethernet Controller
- * 82541GI Gigabit Ethernet Controller
- * 82541PI Gigabit Ethernet Controller
- * 82547EI Gigabit Ethernet Controller
- * 82547GI Gigabit Ethernet Controller
- */
-
-#include "e1000_api.h"
-
-STATIC s32  e1000_init_phy_params_82541(struct e1000_hw *hw);
-STATIC s32  e1000_init_nvm_params_82541(struct e1000_hw *hw);
-STATIC s32  e1000_init_mac_params_82541(struct e1000_hw *hw);
-STATIC s32  e1000_reset_hw_82541(struct e1000_hw *hw);
-STATIC s32  e1000_init_hw_82541(struct e1000_hw *hw);
-STATIC s32  e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
-					 u16 *duplex);
-STATIC s32  e1000_phy_hw_reset_82541(struct e1000_hw *hw);
-STATIC s32  e1000_setup_copper_link_82541(struct e1000_hw *hw);
-STATIC s32  e1000_check_for_link_82541(struct e1000_hw *hw);
-STATIC s32  e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
-STATIC s32  e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
-					  bool active);
-STATIC s32  e1000_setup_led_82541(struct e1000_hw *hw);
-STATIC s32  e1000_cleanup_led_82541(struct e1000_hw *hw);
-STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
-STATIC s32  e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
-						     bool link_up);
-STATIC s32  e1000_phy_init_script_82541(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
-
-STATIC const u16 e1000_igp_cable_length_table[] = {
-	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10,
-	10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30,
-	40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60,
-	60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80,
-	80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100,
-	100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110,
-	110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120,
-	120, 120, 120, 120, 120, 120, 120, 120};
-#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
-		(sizeof(e1000_igp_cable_length_table) / \
-		 sizeof(e1000_igp_cable_length_table[0]))
-
-/**
- *  e1000_init_phy_params_82541 - Init PHY func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_init_phy_params_82541");
-
-	phy->addr		= 1;
-	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-	phy->reset_delay_us	= 10000;
-	phy->type		= e1000_phy_igp;
-
-	/* Function Pointers */
-	phy->ops.check_polarity	= e1000_check_polarity_igp;
-	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
-	phy->ops.get_cable_length = e1000_get_cable_length_igp_82541;
-	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
-	phy->ops.get_info	= e1000_get_phy_info_igp;
-	phy->ops.read_reg	= e1000_read_phy_reg_igp;
-	phy->ops.reset		= e1000_phy_hw_reset_82541;
-	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
-	phy->ops.write_reg	= e1000_write_phy_reg_igp;
-	phy->ops.power_up	= e1000_power_up_phy_copper;
-	phy->ops.power_down	= e1000_power_down_phy_copper_82541;
-
-	ret_val = e1000_get_phy_id(hw);
-	if (ret_val)
-		goto out;
-
-	/* Verify phy id */
-	if (phy->id != IGP01E1000_I_PHY_ID) {
-		ret_val = -E1000_ERR_PHY;
-		goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_nvm_params_82541 - Init NVM func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	s32 ret_val = E1000_SUCCESS;
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-	u16 size;
-
-	DEBUGFUNC("e1000_init_nvm_params_82541");
-
-	switch (nvm->override) {
-	case e1000_nvm_override_spi_large:
-		nvm->type = e1000_nvm_eeprom_spi;
-		eecd |= E1000_EECD_ADDR_BITS;
-		break;
-	case e1000_nvm_override_spi_small:
-		nvm->type = e1000_nvm_eeprom_spi;
-		eecd &= ~E1000_EECD_ADDR_BITS;
-		break;
-	case e1000_nvm_override_microwire_large:
-		nvm->type = e1000_nvm_eeprom_microwire;
-		eecd |= E1000_EECD_SIZE;
-		break;
-	case e1000_nvm_override_microwire_small:
-		nvm->type = e1000_nvm_eeprom_microwire;
-		eecd &= ~E1000_EECD_SIZE;
-		break;
-	default:
-		nvm->type = eecd & E1000_EECD_TYPE ? e1000_nvm_eeprom_spi
-			    : e1000_nvm_eeprom_microwire;
-		break;
-	}
-
-	if (nvm->type == e1000_nvm_eeprom_spi) {
-		nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 16 : 8;
-		nvm->delay_usec = 1;
-		nvm->opcode_bits = 8;
-		nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) ? 32 : 8;
-
-		/* Function Pointers */
-		nvm->ops.acquire	= e1000_acquire_nvm_generic;
-		nvm->ops.read		= e1000_read_nvm_spi;
-		nvm->ops.release	= e1000_release_nvm_generic;
-		nvm->ops.update		= e1000_update_nvm_checksum_generic;
-		nvm->ops.valid_led_default = e1000_valid_led_default_generic;
-		nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
-		nvm->ops.write		= e1000_write_nvm_spi;
-
-		/*
-		 * nvm->word_size must be discovered after the pointers
-		 * are set so we can verify the size from the nvm image
-		 * itself.  Temporarily set it to a dummy value so the
-		 * read will work.
-		 */
-		nvm->word_size = 64;
-		ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size);
-		if (ret_val)
-			goto out;
-		size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
-		/*
-		 * if size != 0, it can be added to a constant and become
-		 * the left-shift value to set the word_size.  Otherwise,
-		 * word_size stays at 64.
-		 */
-		if (size) {
-			size += NVM_WORD_SIZE_BASE_SHIFT_82541;
-			nvm->word_size = 1 << size;
-		}
-	} else {
-		nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 8 : 6;
-		nvm->delay_usec = 50;
-		nvm->opcode_bits = 3;
-		nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) ? 256 : 64;
-
-		/* Function Pointers */
-		nvm->ops.acquire	= e1000_acquire_nvm_generic;
-		nvm->ops.read		= e1000_read_nvm_microwire;
-		nvm->ops.release	= e1000_release_nvm_generic;
-		nvm->ops.update		= e1000_update_nvm_checksum_generic;
-		nvm->ops.valid_led_default = e1000_valid_led_default_generic;
-		nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
-		nvm->ops.write		= e1000_write_nvm_microwire;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_mac_params_82541 - Init MAC func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-
-	DEBUGFUNC("e1000_init_mac_params_82541");
-
-	/* Set media type */
-	hw->phy.media_type = e1000_media_type_copper;
-	/* Set mta register count */
-	mac->mta_reg_count = 128;
-	/* Set rar entry count */
-	mac->rar_entry_count = E1000_RAR_ENTRIES;
-	/* Set if part includes ASF firmware */
-	mac->asf_firmware_present = true;
-
-	/* Function Pointers */
-
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
-	/* function id */
-	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
-	/* reset */
-	mac->ops.reset_hw = e1000_reset_hw_82541;
-	/* hw initialization */
-	mac->ops.init_hw = e1000_init_hw_82541;
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_generic;
-	/* physical interface link setup */
-	mac->ops.setup_physical_interface = e1000_setup_copper_link_82541;
-	/* check for link */
-	mac->ops.check_for_link = e1000_check_for_link_82541;
-	/* link info */
-	mac->ops.get_link_up_info = e1000_get_link_up_info_82541;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
-	/* writing VFTA */
-	mac->ops.write_vfta = e1000_write_vfta_generic;
-	/* clearing VFTA */
-	mac->ops.clear_vfta = e1000_clear_vfta_generic;
-	/* ID LED init */
-	mac->ops.id_led_init = e1000_id_led_init_generic;
-	/* setup LED */
-	mac->ops.setup_led = e1000_setup_led_82541;
-	/* cleanup LED */
-	mac->ops.cleanup_led = e1000_cleanup_led_82541;
-	/* turn on/off LED */
-	mac->ops.led_on = e1000_led_on_generic;
-	mac->ops.led_off = e1000_led_off_generic;
-	/* clear hardware counters */
-	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_function_pointers_82541 - Init func ptrs.
- *  @hw: pointer to the HW structure
- *
- *  Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82541(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_82541");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_82541;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_82541;
-	hw->phy.ops.init_params = e1000_init_phy_params_82541;
-}
-
-/**
- *  e1000_reset_hw_82541 - Reset hardware
- *  @hw: pointer to the HW structure
- *
- *  This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw)
-{
-	u32 ledctl, ctrl, manc;
-
-	DEBUGFUNC("e1000_reset_hw_82541");
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
-
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
-	E1000_WRITE_FLUSH(hw);
-
-	/*
-	 * Delay to allow any outstanding PCI transactions to complete
-	 * before resetting the device.
-	 */
-	msec_delay(10);
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	/* Must reset the Phy before resetting the MAC */
-	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
-		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
-		E1000_WRITE_FLUSH(hw);
-		msec_delay(5);
-	}
-
-	DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
-	switch (hw->mac.type) {
-	case e1000_82541:
-	case e1000_82541_rev_2:
-		/*
-		 * These controllers can't ack the 64-bit write when
-		 * issuing the reset, so we use IO-mapping as a
-		 * workaround to issue the reset.
-		 */
-		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-		break;
-	default:
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-		break;
-	}
-
-	/* Wait for NVM reload */
-	msec_delay(20);
-
-	/* Disable HW ARPs on ASF enabled adapters */
-	manc = E1000_READ_REG(hw, E1000_MANC);
-	manc &= ~E1000_MANC_ARP_EN;
-	E1000_WRITE_REG(hw, E1000_MANC, manc);
-
-	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
-		e1000_phy_init_script_82541(hw);
-
-		/* Configure activity LED after Phy reset */
-		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
-		ledctl &= IGP_ACTIVITY_LED_MASK;
-		ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
-	}
-
-	/* Once again, mask the interrupts */
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
-
-	/* Clear any pending interrupt events. */
-	E1000_READ_REG(hw, E1000_ICR);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_hw_82541 - Initialize hardware
- *  @hw: pointer to the HW structure
- *
- *  This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
-	u32 i, txdctl;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_init_hw_82541");
-
-	/* Initialize identification LED */
-	ret_val = mac->ops.id_led_init(hw);
-	if (ret_val) {
-		DEBUGOUT("Error initializing identification LED\n");
-		/* This is not fatal and we should not stop init due to this */
-	}
-
-	/* Storing the Speed Power Down  value for later use */
-	ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
-				       &dev_spec->spd_default);
-	if (ret_val)
-		goto out;
-
-	/* Disabling VLAN filtering */
-	DEBUGOUT("Initializing the IEEE VLAN\n");
-	mac->ops.clear_vfta(hw);
-
-	/* Setup the receive address. */
-	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
-	/* Zero out the Multicast HASH table */
-	DEBUGOUT("Zeroing the MTA\n");
-	for (i = 0; i < mac->mta_reg_count; i++) {
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-		/*
-		 * Avoid back to back register writes by adding the register
-		 * read (flush).  This is to protect against some strange
-		 * bridge configurations that may issue Memory Write Block
-		 * (MWB) to our register space.
-		 */
-		E1000_WRITE_FLUSH(hw);
-	}
-
-	/* Setup link and flow control */
-	ret_val = mac->ops.setup_link(hw);
-
-	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
-	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
-		  E1000_TXDCTL_FULL_TX_DESC_WB;
-	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
-
-	/*
-	 * Clear all of the statistics registers (clear on read).  It is
-	 * important that we do this after we have tried to establish link
-	 * because the symbol error count will increment wildly if there
-	 * is no link.
-	 */
-	e1000_clear_hw_cntrs_82541(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- * e1000_get_link_up_info_82541 - Report speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to speed buffer
- * @duplex: pointer to duplex buffer
- *
- * Retrieve the current speed and duplex configuration.
- **/
-STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
-					u16 *duplex)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_get_link_up_info_82541");
-
-	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
-	if (ret_val)
-		goto out;
-
-	if (!phy->speed_downgraded)
-		goto out;
-
-	/*
-	 * IGP01 PHY may advertise full duplex operation after speed
-	 * downgrade even if it is operating at half duplex.
-	 * Here we set the duplex settings to match the duplex in the
-	 * link partner's capabilities.
-	 */
-	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data);
-	if (ret_val)
-		goto out;
-
-	if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
-		*duplex = HALF_DUPLEX;
-	} else {
-		ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data);
-		if (ret_val)
-			goto out;
-
-		if (*speed == SPEED_100) {
-			if (!(data & NWAY_LPAR_100TX_FD_CAPS))
-				*duplex = HALF_DUPLEX;
-		} else if (*speed == SPEED_10) {
-			if (!(data & NWAY_LPAR_10T_FD_CAPS))
-				*duplex = HALF_DUPLEX;
-		}
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_phy_hw_reset_82541 - PHY hardware reset
- *  @hw: pointer to the HW structure
- *
- *  Verify the reset block is not blocking us from resetting.  Acquire
- *  semaphore (if necessary) and read/set/write the device control reset
- *  bit in the PHY.  Wait the appropriate delay time for the device to
- *  reset and release the semaphore (if necessary).
- **/
-STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u32 ledctl;
-
-	DEBUGFUNC("e1000_phy_hw_reset_82541");
-
-	ret_val = e1000_phy_hw_reset_generic(hw);
-	if (ret_val)
-		goto out;
-
-	e1000_phy_init_script_82541(hw);
-
-	if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
-		/* Configure activity LED after PHY reset */
-		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
-		ledctl &= IGP_ACTIVITY_LED_MASK;
-		ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_setup_copper_link_82541 - Configure copper link settings
- *  @hw: pointer to the HW structure
- *
- *  Calls the appropriate function to configure the link for auto-neg or forced
- *  speed and duplex.  Then we check for link, once link is established calls
- *  to configure collision distance and flow control are called.  If link is
- *  not established, we return -E1000_ERR_PHY (-2).
- **/
-STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
-	s32  ret_val;
-	u32 ctrl, ledctl;
-
-	DEBUGFUNC("e1000_setup_copper_link_82541");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= E1000_CTRL_SLU;
-	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-
-	/* Earlier revs of the IGP phy require us to force MDI. */
-	if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
-		dev_spec->dsp_config = e1000_dsp_config_disabled;
-		phy->mdix = 1;
-	} else {
-		dev_spec->dsp_config = e1000_dsp_config_enabled;
-	}
-
-	ret_val = e1000_copper_link_setup_igp(hw);
-	if (ret_val)
-		goto out;
-
-	if (hw->mac.autoneg) {
-		if (dev_spec->ffe_config == e1000_ffe_config_active)
-			dev_spec->ffe_config = e1000_ffe_config_enabled;
-	}
-
-	/* Configure activity LED after Phy reset */
-	ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
-	ledctl &= IGP_ACTIVITY_LED_MASK;
-	ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
-
-	ret_val = e1000_setup_copper_link_generic(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_link_82541 - Check/Store link connection
- *  @hw: pointer to the HW structure
- *
- *  This checks the link condition of the adapter and stores the
- *  results in the hw->mac structure.
- **/
-STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val;
-	bool link;
-
-	DEBUGFUNC("e1000_check_for_link_82541");
-
-	/*
-	 * We only want to go out to the PHY registers to see if Auto-Neg
-	 * has completed and/or if our link status has changed.  The
-	 * get_link_status flag is set upon receiving a Link Status
-	 * Change or Rx Sequence Error interrupt.
-	 */
-	if (!mac->get_link_status) {
-		ret_val = E1000_SUCCESS;
-		goto out;
-	}
-
-	/*
-	 * First we want to see if the MII Status Register reports
-	 * link.  If so, then we want to get the current speed/duplex
-	 * of the PHY.
-	 */
-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-	if (ret_val)
-		goto out;
-
-	if (!link) {
-		ret_val = e1000_config_dsp_after_link_change_82541(hw, false);
-		goto out; /* No link detected */
-	}
-
-	mac->get_link_status = false;
-
-	/*
-	 * Check if there was DownShift, must be checked
-	 * immediately after link-up
-	 */
-	e1000_check_downshift_generic(hw);
-
-	/*
-	 * If we are forcing speed/duplex, then we simply return since
-	 * we have already determined whether we have link or not.
-	 */
-	if (!mac->autoneg) {
-		ret_val = -E1000_ERR_CONFIG;
-		goto out;
-	}
-
-	ret_val = e1000_config_dsp_after_link_change_82541(hw, true);
-
-	/*
-	 * Auto-Neg is enabled.  Auto Speed Detection takes care
-	 * of MAC speed/duplex configuration.  So we only need to
-	 * configure Collision Distance in the MAC.
-	 */
-	mac->ops.config_collision_dist(hw);
-
-	/*
-	 * Configure Flow Control now that Auto-Neg has completed.
-	 * First, we need to restore the desired flow control
-	 * settings because we may have had to re-autoneg with a
-	 * different link partner.
-	 */
-	ret_val = e1000_config_fc_after_link_up_generic(hw);
-	if (ret_val)
-		DEBUGOUT("Error configuring flow control\n");
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_config_dsp_after_link_change_82541 - Config DSP after link
- *  @hw: pointer to the HW structure
- *  @link_up: boolean flag for link up status
- *
- *  Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
- *  at any other case.
- *
- *  82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- *  gigabit link is achieved to improve link quality.
- **/
-STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
-						    bool link_up)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
-	s32 ret_val;
-	u32 idle_errs = 0;
-	u16 phy_data, phy_saved_data, speed, duplex, i;
-	u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
-	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
-						IGP01E1000_PHY_AGC_PARAM_A,
-						IGP01E1000_PHY_AGC_PARAM_B,
-						IGP01E1000_PHY_AGC_PARAM_C,
-						IGP01E1000_PHY_AGC_PARAM_D};
-
-	DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
-
-	if (link_up) {
-		ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
-		if (ret_val) {
-			DEBUGOUT("Error getting link speed and duplex\n");
-			goto out;
-		}
-
-		if (speed != SPEED_1000) {
-			ret_val = E1000_SUCCESS;
-			goto out;
-		}
-
-		ret_val = phy->ops.get_cable_length(hw);
-		if (ret_val)
-			goto out;
-
-		if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
-		    phy->min_cable_length >= 50) {
-
-			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-				ret_val = phy->ops.read_reg(hw,
-							    dsp_reg_array[i],
-							    &phy_data);
-				if (ret_val)
-					goto out;
-
-				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
-				ret_val = phy->ops.write_reg(hw,
-							     dsp_reg_array[i],
-							     phy_data);
-				if (ret_val)
-					goto out;
-			}
-			dev_spec->dsp_config = e1000_dsp_config_activated;
-		}
-
-		if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
-		    (phy->min_cable_length >= 50)) {
-			ret_val = E1000_SUCCESS;
-			goto out;
-		}
-
-		/* clear previous idle error counts */
-		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
-		if (ret_val)
-			goto out;
-
-		for (i = 0; i < ffe_idle_err_timeout; i++) {
-			usec_delay(1000);
-			ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS,
-						    &phy_data);
-			if (ret_val)
-				goto out;
-
-			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
-			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
-				dev_spec->ffe_config = e1000_ffe_config_active;
-
-				ret_val = phy->ops.write_reg(hw,
-						  IGP01E1000_PHY_DSP_FFE,
-						  IGP01E1000_PHY_DSP_FFE_CM_CP);
-				if (ret_val)
-					goto out;
-				break;
-			}
-
-			if (idle_errs)
-				ffe_idle_err_timeout =
-						 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
-		}
-	} else {
-		if (dev_spec->dsp_config == e1000_dsp_config_activated) {
-			/*
-			 * Save off the current value of register 0x2F5B
-			 * to be restored at the end of the routines.
-			 */
-			ret_val = phy->ops.read_reg(hw, 0x2F5B,
-						    &phy_saved_data);
-			if (ret_val)
-				goto out;
-
-			/* Disable the PHY transmitter */
-			ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
-			if (ret_val)
-				goto out;
-
-			msec_delay_irq(20);
-
-			ret_val = phy->ops.write_reg(hw, 0x0000,
-						     IGP01E1000_IEEE_FORCE_GIG);
-			if (ret_val)
-				goto out;
-			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-				ret_val = phy->ops.read_reg(hw,
-							    dsp_reg_array[i],
-							    &phy_data);
-				if (ret_val)
-					goto out;
-
-				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
-				ret_val = phy->ops.write_reg(hw,
-							     dsp_reg_array[i],
-							     phy_data);
-				if (ret_val)
-					goto out;
-			}
-
-			ret_val = phy->ops.write_reg(hw, 0x0000,
-					       IGP01E1000_IEEE_RESTART_AUTONEG);
-			if (ret_val)
-				goto out;
-
-			msec_delay_irq(20);
-
-			/* Now enable the transmitter */
-			ret_val = phy->ops.write_reg(hw, 0x2F5B,
-						     phy_saved_data);
-			if (ret_val)
-				goto out;
-
-			dev_spec->dsp_config = e1000_dsp_config_enabled;
-		}
-
-		if (dev_spec->ffe_config != e1000_ffe_config_active) {
-			ret_val = E1000_SUCCESS;
-			goto out;
-		}
-
-		/*
-		 * Save off the current value of register 0x2F5B
-		 * to be restored at the end of the routines.
-		 */
-		ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data);
-		if (ret_val)
-			goto out;
-
-		/* Disable the PHY transmitter */
-		ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
-		if (ret_val)
-			goto out;
-
-		msec_delay_irq(20);
-
-		ret_val = phy->ops.write_reg(hw, 0x0000,
-					     IGP01E1000_IEEE_FORCE_GIG);
-		if (ret_val)
-			goto out;
-
-		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE,
-					     IGP01E1000_PHY_DSP_FFE_DEFAULT);
-		if (ret_val)
-			goto out;
-
-		ret_val = phy->ops.write_reg(hw, 0x0000,
-					     IGP01E1000_IEEE_RESTART_AUTONEG);
-		if (ret_val)
-			goto out;
-
-		msec_delay_irq(20);
-
-		/* Now enable the transmitter */
-		ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data);
-
-		if (ret_val)
-			goto out;
-
-		dev_spec->ffe_config = e1000_ffe_config_enabled;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
- *  @hw: pointer to the HW structure
- *
- *  The automatic gain control (agc) normalizes the amplitude of the
- *  received signal, adjusting for the attenuation produced by the
- *  cable.  By reading the AGC registers, which represent the
- *  combination of coarse and fine gain value, the value can be put
- *  into a lookup table to obtain the approximate cable length
- *  for each channel.
- **/
-STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-	u16 i, data;
-	u16 cur_agc_value, agc_value = 0;
-	u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
-	u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A,
-							 IGP01E1000_PHY_AGC_B,
-							 IGP01E1000_PHY_AGC_C,
-							 IGP01E1000_PHY_AGC_D};
-
-	DEBUGFUNC("e1000_get_cable_length_igp_82541");
-
-	/* Read the AGC registers for all channels */
-	for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data);
-		if (ret_val)
-			goto out;
-
-		cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
-		/* Bounds checking */
-		if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
-		    (cur_agc_value == 0)) {
-			ret_val = -E1000_ERR_PHY;
-			goto out;
-		}
-
-		agc_value += cur_agc_value;
-
-		if (min_agc_value > cur_agc_value)
-			min_agc_value = cur_agc_value;
-	}
-
-	/* Remove the minimal AGC result for length < 50m */
-	if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
-		agc_value -= min_agc_value;
-		/* Average the three remaining channels for the length. */
-		agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
-	} else {
-		/* Average the channels for the length. */
-		agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
-	}
-
-	phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
-				 IGP01E1000_AGC_RANGE)
-				? (e1000_igp_cable_length_table[agc_value] -
-				   IGP01E1000_AGC_RANGE)
-				: 0;
-	phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
-				IGP01E1000_AGC_RANGE;
-
-	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
- *  @hw: pointer to the HW structure
- *  @active: boolean used to enable/disable lplu
- *
- *  Success returns 0, Failure returns 1
- *
- *  The low power link up (lplu) state is set to the power management level D3
- *  and SmartSpeed is disabled when active is true, else clear lplu for D3
- *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
- *  is used during Dx states where the power conservation is most important.
- *  During driver activity, SmartSpeed should be enabled so performance is
- *  maintained.
- **/
-STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_set_d3_lplu_state_82541");
-
-	switch (hw->mac.type) {
-	case e1000_82541_rev_2:
-	case e1000_82547_rev_2:
-		break;
-	default:
-		ret_val = e1000_set_d3_lplu_state_generic(hw, active);
-		goto out;
-		break;
-	}
-
-	ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data);
-	if (ret_val)
-		goto out;
-
-	if (!active) {
-		data &= ~IGP01E1000_GMII_FLEX_SPD;
-		ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
-		if (ret_val)
-			goto out;
-
-		/*
-		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
-		 * during Dx states where the power conservation is most
-		 * important.  During driver activity we should enable
-		 * SmartSpeed, so performance is maintained.
-		 */
-		if (phy->smart_speed == e1000_smart_speed_on) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				goto out;
-
-			data |= IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				goto out;
-		} else if (phy->smart_speed == e1000_smart_speed_off) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				goto out;
-
-			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				goto out;
-		}
-	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
-		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
-		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
-		data |= IGP01E1000_GMII_FLEX_SPD;
-		ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
-		if (ret_val)
-			goto out;
-
-		/* When LPLU is enabled, we should disable SmartSpeed */
-		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-					    &data);
-		if (ret_val)
-			goto out;
-
-		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-					     data);
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_setup_led_82541 - Configures SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  This prepares the SW controllable LED for use and saves the current state
- *  of the LED so it can be later restored.
- **/
-STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_setup_led_82541");
-
-	ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
-				       &dev_spec->spd_default);
-	if (ret_val)
-		goto out;
-
-	ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
-					(u16)(dev_spec->spd_default &
-					~IGP01E1000_GMII_SPD));
-	if (ret_val)
-		goto out;
-
-	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_cleanup_led_82541 - Set LED config to default operation
- *  @hw: pointer to the HW structure
- *
- *  Remove the current LED configuration and set the LED configuration
- *  to the default value, saved from the EEPROM.
- **/
-STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_cleanup_led_82541");
-
-	ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
-					dev_spec->spd_default);
-	if (ret_val)
-		goto out;
-
-	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_phy_init_script_82541 - Initialize GbE PHY
- *  @hw: pointer to the HW structure
- *
- *  Initializes the IGP PHY.
- **/
-STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
-	u32 ret_val;
-	u16 phy_saved_data;
-
-	DEBUGFUNC("e1000_phy_init_script_82541");
-
-	if (!dev_spec->phy_init_script) {
-		ret_val = E1000_SUCCESS;
-		goto out;
-	}
-
-	/* Delay after phy reset to enable NVM configuration to load */
-	msec_delay(20);
-
-	/*
-	 * Save off the current value of register 0x2F5B to be restored at
-	 * the end of this routine.
-	 */
-	ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data);
-
-	/* Disabled the PHY transmitter */
-	hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003);
-
-	msec_delay(20);
-
-	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
-
-	msec_delay(5);
-
-	switch (hw->mac.type) {
-	case e1000_82541:
-	case e1000_82547:
-		hw->phy.ops.write_reg(hw, 0x1F95, 0x0001);
-
-		hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21);
-
-		hw->phy.ops.write_reg(hw, 0x1F79, 0x0018);
-
-		hw->phy.ops.write_reg(hw, 0x1F30, 0x1600);
-
-		hw->phy.ops.write_reg(hw, 0x1F31, 0x0014);
-
-		hw->phy.ops.write_reg(hw, 0x1F32, 0x161C);
-
-		hw->phy.ops.write_reg(hw, 0x1F94, 0x0003);
-
-		hw->phy.ops.write_reg(hw, 0x1F96, 0x003F);
-
-		hw->phy.ops.write_reg(hw, 0x2010, 0x0008);
-		break;
-	case e1000_82541_rev_2:
-	case e1000_82547_rev_2:
-		hw->phy.ops.write_reg(hw, 0x1F73, 0x0099);
-		break;
-	default:
-		break;
-	}
-
-	hw->phy.ops.write_reg(hw, 0x0000, 0x3300);
-
-	msec_delay(20);
-
-	/* Now enable the transmitter */
-	hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data);
-
-	if (hw->mac.type == e1000_82547) {
-		u16 fused, fine, coarse;
-
-		/* Move to analog registers page */
-		hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
-				     &fused);
-
-		if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
-			hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS,
-					     &fused);
-
-			fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
-			coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
-			if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
-				coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
-				fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
-			} else if (coarse ==
-				   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
-				fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
-			fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
-				(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
-				(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
-			hw->phy.ops.write_reg(hw,
-					      IGP01E1000_ANALOG_FUSE_CONTROL,
-					      fused);
-			hw->phy.ops.write_reg(hw,
-				      IGP01E1000_ANALOG_FUSE_BYPASS,
-				      IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
-		}
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_script_state_82541 - Enable/Disable PHY init script
- *  @hw: pointer to the HW structure
- *  @state: boolean value used to enable/disable PHY init script
- *
- *  Allows the driver to enable/disable the PHY init script, if the PHY is an
- *  IGP PHY.
- **/
-void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
-{
-	struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
-
-	DEBUGFUNC("e1000_init_script_state_82541");
-
-	if (hw->phy.type != e1000_phy_igp) {
-		DEBUGOUT("Initialization script not necessary.\n");
-		goto out;
-	}
-
-	dev_spec->phy_init_script = state;
-
-out:
-	return;
-}
-
-/**
- * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
-{
-	/* If the management interface is not enabled, then power down */
-	if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
-		e1000_power_down_phy_copper(hw);
-
-	return;
-}
-
-/**
- *  e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
- *  @hw: pointer to the HW structure
- *
- *  Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_clear_hw_cntrs_82541");
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	E1000_READ_REG(hw, E1000_PRC64);
-	E1000_READ_REG(hw, E1000_PRC127);
-	E1000_READ_REG(hw, E1000_PRC255);
-	E1000_READ_REG(hw, E1000_PRC511);
-	E1000_READ_REG(hw, E1000_PRC1023);
-	E1000_READ_REG(hw, E1000_PRC1522);
-	E1000_READ_REG(hw, E1000_PTC64);
-	E1000_READ_REG(hw, E1000_PTC127);
-	E1000_READ_REG(hw, E1000_PTC255);
-	E1000_READ_REG(hw, E1000_PTC511);
-	E1000_READ_REG(hw, E1000_PTC1023);
-	E1000_READ_REG(hw, E1000_PTC1522);
-
-	E1000_READ_REG(hw, E1000_ALGNERRC);
-	E1000_READ_REG(hw, E1000_RXERRC);
-	E1000_READ_REG(hw, E1000_TNCRS);
-	E1000_READ_REG(hw, E1000_CEXTERR);
-	E1000_READ_REG(hw, E1000_TSCTC);
-	E1000_READ_REG(hw, E1000_TSCTFC);
-
-	E1000_READ_REG(hw, E1000_MGTPRC);
-	E1000_READ_REG(hw, E1000_MGTPDC);
-	E1000_READ_REG(hw, E1000_MGTPTC);
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82541.h b/lib/librte_pmd_e1000/e1000/e1000_82541.h
deleted file mode 100644
index 0f50f55..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82541.h
+++ /dev/null
@@ -1,91 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_82541_H_
-#define _E1000_82541_H_
-
-#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1)
-
-#define IGP01E1000_PHY_CHANNEL_NUM		4
-
-#define IGP01E1000_PHY_AGC_A			0x1172
-#define IGP01E1000_PHY_AGC_B			0x1272
-#define IGP01E1000_PHY_AGC_C			0x1472
-#define IGP01E1000_PHY_AGC_D			0x1872
-
-#define IGP01E1000_PHY_AGC_PARAM_A		0x1171
-#define IGP01E1000_PHY_AGC_PARAM_B		0x1271
-#define IGP01E1000_PHY_AGC_PARAM_C		0x1471
-#define IGP01E1000_PHY_AGC_PARAM_D		0x1871
-
-#define IGP01E1000_PHY_EDAC_MU_INDEX		0xC000
-#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS	0x8000
-
-#define IGP01E1000_PHY_DSP_RESET		0x1F33
-
-#define IGP01E1000_PHY_DSP_FFE			0x1F35
-#define IGP01E1000_PHY_DSP_FFE_CM_CP		0x0069
-#define IGP01E1000_PHY_DSP_FFE_DEFAULT		0x002A
-
-#define IGP01E1000_IEEE_FORCE_GIG		0x0140
-#define IGP01E1000_IEEE_RESTART_AUTONEG		0x3300
-
-#define IGP01E1000_AGC_LENGTH_SHIFT		7
-#define IGP01E1000_AGC_RANGE			10
-
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_20		20
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_100		100
-
-#define IGP01E1000_ANALOG_FUSE_STATUS		0x20D0
-#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS	0x20D1
-#define IGP01E1000_ANALOG_FUSE_CONTROL		0x20DC
-#define IGP01E1000_ANALOG_FUSE_BYPASS		0x20DE
-
-#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED	0x0100
-#define IGP01E1000_ANALOG_FUSE_FINE_MASK	0x0F80
-#define IGP01E1000_ANALOG_FUSE_COARSE_MASK	0x0070
-#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH	0x0040
-#define IGP01E1000_ANALOG_FUSE_COARSE_10	0x0010
-#define IGP01E1000_ANALOG_FUSE_FINE_1		0x0080
-#define IGP01E1000_ANALOG_FUSE_FINE_10		0x0500
-#define IGP01E1000_ANALOG_FUSE_POLY_MASK	0xF000
-#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
-
-#define IGP01E1000_MSE_CHANNEL_D		0x000F
-#define IGP01E1000_MSE_CHANNEL_C		0x00F0
-#define IGP01E1000_MSE_CHANNEL_B		0x0F00
-#define IGP01E1000_MSE_CHANNEL_A		0xF000
-
-
-void e1000_init_script_state_82541(struct e1000_hw *hw, bool state);
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82542.c b/lib/librte_pmd_e1000/e1000/e1000_82542.c
deleted file mode 100644
index afea469..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82542.c
+++ /dev/null
@@ -1,588 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82542 Gigabit Ethernet Controller
- */
-
-#include "e1000_api.h"
-
-STATIC s32  e1000_init_phy_params_82542(struct e1000_hw *hw);
-STATIC s32  e1000_init_nvm_params_82542(struct e1000_hw *hw);
-STATIC s32  e1000_init_mac_params_82542(struct e1000_hw *hw);
-STATIC s32  e1000_get_bus_info_82542(struct e1000_hw *hw);
-STATIC s32  e1000_reset_hw_82542(struct e1000_hw *hw);
-STATIC s32  e1000_init_hw_82542(struct e1000_hw *hw);
-STATIC s32  e1000_setup_link_82542(struct e1000_hw *hw);
-STATIC s32  e1000_led_on_82542(struct e1000_hw *hw);
-STATIC s32  e1000_led_off_82542(struct e1000_hw *hw);
-STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index);
-STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw);
-STATIC s32  e1000_read_mac_addr_82542(struct e1000_hw *hw);
-
-/**
- *  e1000_init_phy_params_82542 - Init PHY func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_init_phy_params_82542");
-
-	phy->type = e1000_phy_none;
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_nvm_params_82542 - Init NVM func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-
-	DEBUGFUNC("e1000_init_nvm_params_82542");
-
-	nvm->address_bits	=  6;
-	nvm->delay_usec		= 50;
-	nvm->opcode_bits	=  3;
-	nvm->type		= e1000_nvm_eeprom_microwire;
-	nvm->word_size		= 64;
-
-	/* Function Pointers */
-	nvm->ops.read		= e1000_read_nvm_microwire;
-	nvm->ops.release	= e1000_stop_nvm;
-	nvm->ops.write		= e1000_write_nvm_microwire;
-	nvm->ops.update		= e1000_update_nvm_checksum_generic;
-	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_mac_params_82542 - Init MAC func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-
-	DEBUGFUNC("e1000_init_mac_params_82542");
-
-	/* Set media type */
-	hw->phy.media_type = e1000_media_type_fiber;
-
-	/* Set mta register count */
-	mac->mta_reg_count = 128;
-	/* Set rar entry count */
-	mac->rar_entry_count = E1000_RAR_ENTRIES;
-
-	/* Function pointers */
-
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_82542;
-	/* function id */
-	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
-	/* reset */
-	mac->ops.reset_hw = e1000_reset_hw_82542;
-	/* hw initialization */
-	mac->ops.init_hw = e1000_init_hw_82542;
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_82542;
-	/* phy/fiber/serdes setup */
-	mac->ops.setup_physical_interface =
-					e1000_setup_fiber_serdes_link_generic;
-	/* check for link */
-	mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
-	/* writing VFTA */
-	mac->ops.write_vfta = e1000_write_vfta_generic;
-	/* clearing VFTA */
-	mac->ops.clear_vfta = e1000_clear_vfta_generic;
-	/* read mac address */
-	mac->ops.read_mac_addr = e1000_read_mac_addr_82542;
-	/* set RAR */
-	mac->ops.rar_set = e1000_rar_set_82542;
-	/* turn on/off LED */
-	mac->ops.led_on = e1000_led_on_82542;
-	mac->ops.led_off = e1000_led_off_82542;
-	/* clear hardware counters */
-	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542;
-	/* link info */
-	mac->ops.get_link_up_info =
-				e1000_get_speed_and_duplex_fiber_serdes_generic;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_function_pointers_82542 - Init func ptrs.
- *  @hw: pointer to the HW structure
- *
- *  Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82542(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_82542");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_82542;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_82542;
-	hw->phy.ops.init_params = e1000_init_phy_params_82542;
-}
-
-/**
- *  e1000_get_bus_info_82542 - Obtain bus information for adapter
- *  @hw: pointer to the HW structure
- *
- *  This will obtain information about the HW bus for which the
- *  adapter is attached and stores it in the hw structure.
- **/
-STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_get_bus_info_82542");
-
-	hw->bus.type = e1000_bus_type_pci;
-	hw->bus.speed = e1000_bus_speed_unknown;
-	hw->bus.width = e1000_bus_width_unknown;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_reset_hw_82542 - Reset hardware
- *  @hw: pointer to the HW structure
- *
- *  This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw)
-{
-	struct e1000_bus_info *bus = &hw->bus;
-	s32 ret_val = E1000_SUCCESS;
-	u32 ctrl;
-
-	DEBUGFUNC("e1000_reset_hw_82542");
-
-	if (hw->revision_id == E1000_REVISION_2) {
-		DEBUGOUT("Disabling MWI on 82542 rev 2\n");
-		e1000_pci_clear_mwi(hw);
-	}
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
-	E1000_WRITE_FLUSH(hw);
-
-	/*
-	 * Delay to allow any outstanding PCI transactions to complete before
-	 * resetting the device
-	 */
-	msec_delay(10);
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n");
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
-	hw->nvm.ops.reload(hw);
-	msec_delay(2);
-
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_READ_REG(hw, E1000_ICR);
-
-	if (hw->revision_id == E1000_REVISION_2) {
-		if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-			e1000_pci_set_mwi(hw);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_hw_82542 - Initialize hardware
- *  @hw: pointer to the HW structure
- *
- *  This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542;
-	s32 ret_val = E1000_SUCCESS;
-	u32 ctrl;
-	u16 i;
-
-	DEBUGFUNC("e1000_init_hw_82542");
-
-	/* Disabling VLAN filtering */
-	E1000_WRITE_REG(hw, E1000_VET, 0);
-	mac->ops.clear_vfta(hw);
-
-	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
-	if (hw->revision_id == E1000_REVISION_2) {
-		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
-		e1000_pci_clear_mwi(hw);
-		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
-		E1000_WRITE_FLUSH(hw);
-		msec_delay(5);
-	}
-
-	/* Setup the receive address. */
-	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
-	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
-	if (hw->revision_id == E1000_REVISION_2) {
-		E1000_WRITE_REG(hw, E1000_RCTL, 0);
-		E1000_WRITE_FLUSH(hw);
-		msec_delay(1);
-		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
-			e1000_pci_set_mwi(hw);
-	}
-
-	/* Zero out the Multicast HASH table */
-	DEBUGOUT("Zeroing the MTA\n");
-	for (i = 0; i < mac->mta_reg_count; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
-	/*
-	 * Set the PCI priority bit correctly in the CTRL register.  This
-	 * determines if the adapter gives priority to receives, or if it
-	 * gives equal priority to transmits and receives.
-	 */
-	if (dev_spec->dma_fairness) {
-		ctrl = E1000_READ_REG(hw, E1000_CTRL);
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
-	}
-
-	/* Setup link and flow control */
-	ret_val = e1000_setup_link_82542(hw);
-
-	/*
-	 * Clear all of the statistics registers (clear on read).  It is
-	 * important that we do this after we have tried to establish link
-	 * because the symbol error count will increment wildly if there
-	 * is no link.
-	 */
-	e1000_clear_hw_cntrs_82542(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_setup_link_82542 - Setup flow control and link settings
- *  @hw: pointer to the HW structure
- *
- *  Determines which flow control settings to use, then configures flow
- *  control.  Calls the appropriate media-specific link configuration
- *  function.  Assuming the adapter has a valid link partner, a valid link
- *  should be established.  Assumes the hardware has previously been reset
- *  and the transmitter and receiver are not enabled.
- **/
-STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_setup_link_82542");
-
-	ret_val = e1000_set_default_fc_generic(hw);
-	if (ret_val)
-		goto out;
-
-	hw->fc.requested_mode &= ~e1000_fc_tx_pause;
-
-	if (mac->report_tx_early)
-		hw->fc.requested_mode &= ~e1000_fc_rx_pause;
-
-	/*
-	 * Save off the requested flow control mode for use later.  Depending
-	 * on the link partner's capabilities, we may or may not use this mode.
-	 */
-	hw->fc.current_mode = hw->fc.requested_mode;
-
-	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
-		  hw->fc.current_mode);
-
-	/* Call the necessary subroutine to configure the link. */
-	ret_val = mac->ops.setup_physical_interface(hw);
-	if (ret_val)
-		goto out;
-
-	/*
-	 * Initialize the flow control address, type, and PAUSE timer
-	 * registers to their default values.  This is done even if flow
-	 * control is disabled, because it does not hurt anything to
-	 * initialize these registers.
-	 */
-	DEBUGOUT("Initializing Flow Control address, type and timer regs\n");
-
-	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
-	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
-	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
-
-	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
-
-	ret_val = e1000_set_fc_watermarks_generic(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_led_on_82542 - Turn on SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  Turns the SW defined LED on.
- **/
-STATIC s32 e1000_led_on_82542(struct e1000_hw *hw)
-{
-	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGFUNC("e1000_led_on_82542");
-
-	ctrl |= E1000_CTRL_SWDPIN0;
-	ctrl |= E1000_CTRL_SWDPIO0;
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_led_off_82542 - Turn off SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  Turns the SW defined LED off.
- **/
-STATIC s32 e1000_led_off_82542(struct e1000_hw *hw)
-{
-	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGFUNC("e1000_led_off_82542");
-
-	ctrl &= ~E1000_CTRL_SWDPIN0;
-	ctrl |= E1000_CTRL_SWDPIO0;
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_rar_set_82542 - Set receive address register
- *  @hw: pointer to the HW structure
- *  @addr: pointer to the receive address
- *  @index: receive address array register
- *
- *  Sets the receive address array register at index to the address passed
- *  in by addr.
- **/
-STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index)
-{
-	u32 rar_low, rar_high;
-
-	DEBUGFUNC("e1000_rar_set_82542");
-
-	/*
-	 * HW expects these in little endian so we reverse the byte order
-	 * from network order (big endian) to little endian
-	 */
-	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
-		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
-	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
-	/* If MAC address zero, no need to set the AV bit */
-	if (rar_low || rar_high)
-		rar_high |= E1000_RAH_AV;
-
-	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
-	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
-}
-
-/**
- *  e1000_translate_register_82542 - Translate the proper register offset
- *  @reg: e1000 register to be read
- *
- *  Registers in 82542 are located in different offsets than other adapters
- *  even though they function in the same manner.  This function takes in
- *  the name of the register to read and returns the correct offset for
- *  82542 silicon.
- **/
-u32 e1000_translate_register_82542(u32 reg)
-{
-	/*
-	 * Some of the 82542 registers are located at different
-	 * offsets than they are in newer adapters.
-	 * Despite the difference in location, the registers
-	 * function in the same manner.
-	 */
-	switch (reg) {
-	case E1000_RA:
-		reg = 0x00040;
-		break;
-	case E1000_RDTR:
-		reg = 0x00108;
-		break;
-	case E1000_RDBAL(0):
-		reg = 0x00110;
-		break;
-	case E1000_RDBAH(0):
-		reg = 0x00114;
-		break;
-	case E1000_RDLEN(0):
-		reg = 0x00118;
-		break;
-	case E1000_RDH(0):
-		reg = 0x00120;
-		break;
-	case E1000_RDT(0):
-		reg = 0x00128;
-		break;
-	case E1000_RDBAL(1):
-		reg = 0x00138;
-		break;
-	case E1000_RDBAH(1):
-		reg = 0x0013C;
-		break;
-	case E1000_RDLEN(1):
-		reg = 0x00140;
-		break;
-	case E1000_RDH(1):
-		reg = 0x00148;
-		break;
-	case E1000_RDT(1):
-		reg = 0x00150;
-		break;
-	case E1000_FCRTH:
-		reg = 0x00160;
-		break;
-	case E1000_FCRTL:
-		reg = 0x00168;
-		break;
-	case E1000_MTA:
-		reg = 0x00200;
-		break;
-	case E1000_TDBAL(0):
-		reg = 0x00420;
-		break;
-	case E1000_TDBAH(0):
-		reg = 0x00424;
-		break;
-	case E1000_TDLEN(0):
-		reg = 0x00428;
-		break;
-	case E1000_TDH(0):
-		reg = 0x00430;
-		break;
-	case E1000_TDT(0):
-		reg = 0x00438;
-		break;
-	case E1000_TIDV:
-		reg = 0x00440;
-		break;
-	case E1000_VFTA:
-		reg = 0x00600;
-		break;
-	case E1000_TDFH:
-		reg = 0x08010;
-		break;
-	case E1000_TDFT:
-		reg = 0x08018;
-		break;
-	default:
-		break;
-	}
-
-	return reg;
-}
-
-/**
- *  e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters
- *  @hw: pointer to the HW structure
- *
- *  Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_clear_hw_cntrs_82542");
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	E1000_READ_REG(hw, E1000_PRC64);
-	E1000_READ_REG(hw, E1000_PRC127);
-	E1000_READ_REG(hw, E1000_PRC255);
-	E1000_READ_REG(hw, E1000_PRC511);
-	E1000_READ_REG(hw, E1000_PRC1023);
-	E1000_READ_REG(hw, E1000_PRC1522);
-	E1000_READ_REG(hw, E1000_PTC64);
-	E1000_READ_REG(hw, E1000_PTC127);
-	E1000_READ_REG(hw, E1000_PTC255);
-	E1000_READ_REG(hw, E1000_PTC511);
-	E1000_READ_REG(hw, E1000_PTC1023);
-	E1000_READ_REG(hw, E1000_PTC1522);
-}
-
-/**
- *  e1000_read_mac_addr_82542 - Read device MAC address
- *  @hw: pointer to the HW structure
- *
- *  Reads the device MAC address from the EEPROM and stores the value.
- **/
-s32 e1000_read_mac_addr_82542(struct e1000_hw *hw)
-{
-	s32  ret_val = E1000_SUCCESS;
-	u16 offset, nvm_data, i;
-
-	DEBUGFUNC("e1000_read_mac_addr");
-
-	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
-		offset = i >> 1;
-		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error\n");
-			goto out;
-		}
-		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
-		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
-	}
-
-	for (i = 0; i < ETH_ADDR_LEN; i++)
-		hw->mac.addr[i] = hw->mac.perm_addr[i];
-
-out:
-	return ret_val;
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82543.c b/lib/librte_pmd_e1000/e1000/e1000_82543.c
deleted file mode 100644
index 36335ba..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82543.c
+++ /dev/null
@@ -1,1553 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82543GC Gigabit Ethernet Controller (Fiber)
- * 82543GC Gigabit Ethernet Controller (Copper)
- * 82544EI Gigabit Ethernet Controller (Copper)
- * 82544EI Gigabit Ethernet Controller (Fiber)
- * 82544GC Gigabit Ethernet Controller (Copper)
- * 82544GC Gigabit Ethernet Controller (LOM)
- */
-
-#include "e1000_api.h"
-
-STATIC s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
-STATIC s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
-STATIC s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
-STATIC s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
-				     u16 *data);
-STATIC s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
-				      u16 data);
-STATIC s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
-STATIC s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
-STATIC s32  e1000_reset_hw_82543(struct e1000_hw *hw);
-STATIC s32  e1000_init_hw_82543(struct e1000_hw *hw);
-STATIC s32  e1000_setup_link_82543(struct e1000_hw *hw);
-STATIC s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
-STATIC s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
-STATIC s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
-STATIC s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
-STATIC s32  e1000_led_on_82543(struct e1000_hw *hw);
-STATIC s32  e1000_led_off_82543(struct e1000_hw *hw);
-STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
-				   u32 value);
-STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
-STATIC s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
-STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
-STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
-STATIC s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
-STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
-STATIC u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
-STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
-					   u16 count);
-STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
-STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
-
-/**
- *  e1000_init_phy_params_82543 - Init PHY func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_init_phy_params_82543");
-
-	if (hw->phy.media_type != e1000_media_type_copper) {
-		phy->type = e1000_phy_none;
-		goto out;
-	} else {
-		phy->ops.power_up = e1000_power_up_phy_copper;
-		phy->ops.power_down = e1000_power_down_phy_copper;
-	}
-
-	phy->addr		= 1;
-	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-	phy->reset_delay_us	= 10000;
-	phy->type		= e1000_phy_m88;
-
-	/* Function Pointers */
-	phy->ops.check_polarity	= e1000_check_polarity_m88;
-	phy->ops.commit		= e1000_phy_sw_reset_generic;
-	phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
-	phy->ops.get_cable_length = e1000_get_cable_length_m88;
-	phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
-	phy->ops.read_reg	= (hw->mac.type == e1000_82543)
-				  ? e1000_read_phy_reg_82543
-				  : e1000_read_phy_reg_m88;
-	phy->ops.reset		= (hw->mac.type == e1000_82543)
-				  ? e1000_phy_hw_reset_82543
-				  : e1000_phy_hw_reset_generic;
-	phy->ops.write_reg	= (hw->mac.type == e1000_82543)
-				  ? e1000_write_phy_reg_82543
-				  : e1000_write_phy_reg_m88;
-	phy->ops.get_info	= e1000_get_phy_info_m88;
-
-	/*
-	 * The external PHY of the 82543 can be in a funky state.
-	 * Resetting helps us read the PHY registers for acquiring
-	 * the PHY ID.
-	 */
-	if (!e1000_init_phy_disabled_82543(hw)) {
-		ret_val = phy->ops.reset(hw);
-		if (ret_val) {
-			DEBUGOUT("Resetting PHY during init failed.\n");
-			goto out;
-		}
-		msec_delay(20);
-	}
-
-	ret_val = e1000_get_phy_id(hw);
-	if (ret_val)
-		goto out;
-
-	/* Verify phy id */
-	switch (hw->mac.type) {
-	case e1000_82543:
-		if (phy->id != M88E1000_E_PHY_ID) {
-			ret_val = -E1000_ERR_PHY;
-			goto out;
-		}
-		break;
-	case e1000_82544:
-		if (phy->id != M88E1000_I_PHY_ID) {
-			ret_val = -E1000_ERR_PHY;
-			goto out;
-		}
-		break;
-	default:
-		ret_val = -E1000_ERR_PHY;
-		goto out;
-		break;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-
-	DEBUGFUNC("e1000_init_nvm_params_82543");
-
-	nvm->type		= e1000_nvm_eeprom_microwire;
-	nvm->word_size		= 64;
-	nvm->delay_usec		= 50;
-	nvm->address_bits	=  6;
-	nvm->opcode_bits	=  3;
-
-	/* Function Pointers */
-	nvm->ops.read		= e1000_read_nvm_microwire;
-	nvm->ops.update		= e1000_update_nvm_checksum_generic;
-	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
-	nvm->ops.validate	= e1000_validate_nvm_checksum_generic;
-	nvm->ops.write		= e1000_write_nvm_microwire;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_mac_params_82543 - Init MAC func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-
-	DEBUGFUNC("e1000_init_mac_params_82543");
-
-	/* Set media type */
-	switch (hw->device_id) {
-	case E1000_DEV_ID_82543GC_FIBER:
-	case E1000_DEV_ID_82544EI_FIBER:
-		hw->phy.media_type = e1000_media_type_fiber;
-		break;
-	default:
-		hw->phy.media_type = e1000_media_type_copper;
-		break;
-	}
-
-	/* Set mta register count */
-	mac->mta_reg_count = 128;
-	/* Set rar entry count */
-	mac->rar_entry_count = E1000_RAR_ENTRIES;
-
-	/* Function pointers */
-
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
-	/* function id */
-	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
-	/* reset */
-	mac->ops.reset_hw = e1000_reset_hw_82543;
-	/* hw initialization */
-	mac->ops.init_hw = e1000_init_hw_82543;
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_82543;
-	/* physical interface setup */
-	mac->ops.setup_physical_interface =
-		(hw->phy.media_type == e1000_media_type_copper)
-		 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
-	/* check for link */
-	mac->ops.check_for_link =
-		(hw->phy.media_type == e1000_media_type_copper)
-		 ? e1000_check_for_copper_link_82543
-		 : e1000_check_for_fiber_link_82543;
-	/* link info */
-	mac->ops.get_link_up_info =
-		(hw->phy.media_type == e1000_media_type_copper)
-		 ? e1000_get_speed_and_duplex_copper_generic
-		 : e1000_get_speed_and_duplex_fiber_serdes_generic;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
-	/* writing VFTA */
-	mac->ops.write_vfta = e1000_write_vfta_82543;
-	/* clearing VFTA */
-	mac->ops.clear_vfta = e1000_clear_vfta_generic;
-	/* turn on/off LED */
-	mac->ops.led_on = e1000_led_on_82543;
-	mac->ops.led_off = e1000_led_off_82543;
-	/* clear hardware counters */
-	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
-
-	/* Set tbi compatibility */
-	if ((hw->mac.type != e1000_82543) ||
-	    (hw->phy.media_type == e1000_media_type_fiber))
-		e1000_set_tbi_compatibility_82543(hw, false);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_function_pointers_82543 - Init func ptrs.
- *  @hw: pointer to the HW structure
- *
- *  Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82543(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_82543");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_82543;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
-	hw->phy.ops.init_params = e1000_init_phy_params_82543;
-}
-
-/**
- *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
- *  @hw: pointer to the HW structure
- *
- *  Returns the current status of 10-bit Interface (TBI) compatibility
- *  (enabled/disabled).
- **/
-STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
-	bool state = false;
-
-	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
-
-	if (hw->mac.type != e1000_82543) {
-		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
-		goto out;
-	}
-
-	state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
-
-out:
-	return state;
-}
-
-/**
- *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
- *  @hw: pointer to the HW structure
- *  @state: enable/disable TBI compatibility
- *
- *  Enables or disabled 10-bit Interface (TBI) compatibility.
- **/
-void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
-{
-	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
-
-	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
-
-	if (hw->mac.type != e1000_82543) {
-		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
-		goto out;
-	}
-
-	if (state)
-		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
-	else
-		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
-
-out:
-	return;
-}
-
-/**
- *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
- *  @hw: pointer to the HW structure
- *
- *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
- *  (enabled/disabled).
- **/
-bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
-	bool state = false;
-
-	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
-
-	if (hw->mac.type != e1000_82543) {
-		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
-		goto out;
-	}
-
-	state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
-
-out:
-	return state;
-}
-
-/**
- *  e1000_set_tbi_sbp_82543 - Set TBI SBP
- *  @hw: pointer to the HW structure
- *  @state: enable/disable TBI store bad packet
- *
- *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
- **/
-STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
-{
-	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
-
-	DEBUGFUNC("e1000_set_tbi_sbp_82543");
-
-	if (state && e1000_tbi_compatibility_enabled_82543(hw))
-		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
-	else
-		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
-
-	return;
-}
-
-/**
- *  e1000_init_phy_disabled_82543 - Returns init PHY status
- *  @hw: pointer to the HW structure
- *
- *  Returns the current status of whether PHY initialization is disabled.
- *  True if PHY initialization is disabled else false.
- **/
-STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
-	bool ret_val;
-
-	DEBUGFUNC("e1000_init_phy_disabled_82543");
-
-	if (hw->mac.type != e1000_82543) {
-		ret_val = false;
-		goto out;
-	}
-
-	ret_val = dev_spec->init_phy_disabled;
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
- *  @hw: pointer to the HW structure
- *  @stats: Struct containing statistic register values
- *  @frame_len: The length of the frame in question
- *  @mac_addr: The Ethernet destination address of the frame in question
- *  @max_frame_size: The maximum frame size
- *
- *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- **/
-void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
-				  struct e1000_hw_stats *stats, u32 frame_len,
-				  u8 *mac_addr, u32 max_frame_size)
-{
-	if (!(e1000_tbi_sbp_enabled_82543(hw)))
-		goto out;
-
-	/* First adjust the frame length. */
-	frame_len--;
-	/*
-	 * We need to adjust the statistics counters, since the hardware
-	 * counters overcount this packet as a CRC error and undercount
-	 * the packet as a good packet
-	 */
-	/* This packet should not be counted as a CRC error. */
-	stats->crcerrs--;
-	/* This packet does count as a Good Packet Received. */
-	stats->gprc++;
-
-	/* Adjust the Good Octets received counters */
-	stats->gorc += frame_len;
-
-	/*
-	 * Is this a broadcast or multicast?  Check broadcast first,
-	 * since the test for a multicast frame will test positive on
-	 * a broadcast frame.
-	 */
-	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
-		/* Broadcast packet */
-		stats->bprc++;
-	else if (*mac_addr & 0x01)
-		/* Multicast packet */
-		stats->mprc++;
-
-	/*
-	 * In this case, the hardware has over counted the number of
-	 * oversize frames.
-	 */
-	if ((frame_len == max_frame_size) && (stats->roc > 0))
-		stats->roc--;
-
-	/*
-	 * Adjust the bin counters when the extra byte put the frame in the
-	 * wrong bin. Remember that the frame_len was adjusted above.
-	 */
-	if (frame_len == 64) {
-		stats->prc64++;
-		stats->prc127--;
-	} else if (frame_len == 127) {
-		stats->prc127++;
-		stats->prc255--;
-	} else if (frame_len == 255) {
-		stats->prc255++;
-		stats->prc511--;
-	} else if (frame_len == 511) {
-		stats->prc511++;
-		stats->prc1023--;
-	} else if (frame_len == 1023) {
-		stats->prc1023++;
-		stats->prc1522--;
-	} else if (frame_len == 1522) {
-		stats->prc1522++;
-	}
-
-out:
-	return;
-}
-
-/**
- *  e1000_read_phy_reg_82543 - Read PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Reads the PHY at offset and stores the information read to data.
- **/
-STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	u32 mdic;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_read_phy_reg_82543");
-
-	if (offset > MAX_PHY_REG_ADDRESS) {
-		DEBUGOUT1("PHY Address %d is out of range\n", offset);
-		ret_val = -E1000_ERR_PARAM;
-		goto out;
-	}
-
-	/*
-	 * We must first send a preamble through the MDIO pin to signal the
-	 * beginning of an MII instruction.  This is done by sending 32
-	 * consecutive "1" bits.
-	 */
-	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
-	/*
-	 * Now combine the next few fields that are required for a read
-	 * operation.  We use this method instead of calling the
-	 * e1000_shift_out_mdi_bits routine five different times.  The format
-	 * of an MII read instruction consists of a shift out of 14 bits and
-	 * is defined as follows:
-	 *         <Preamble><SOF><Op Code><Phy Addr><Offset>
-	 * followed by a shift in of 18 bits.  This first two bits shifted in
-	 * are TurnAround bits used to avoid contention on the MDIO pin when a
-	 * READ operation is performed.  These two bits are thrown away
-	 * followed by a shift in of 16 bits which contains the desired data.
-	 */
-	mdic = (offset | (hw->phy.addr << 5) |
-		(PHY_OP_READ << 10) | (PHY_SOF << 12));
-
-	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
-
-	/*
-	 * Now that we've shifted out the read command to the MII, we need to
-	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
-	 * register address.
-	 */
-	*data = e1000_shift_in_mdi_bits_82543(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_write_phy_reg_82543 - Write PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be written
- *  @data: pointer to the data to be written at offset
- *
- *  Writes data to the PHY at offset.
- **/
-STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	u32 mdic;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_write_phy_reg_82543");
-
-	if (offset > MAX_PHY_REG_ADDRESS) {
-		DEBUGOUT1("PHY Address %d is out of range\n", offset);
-		ret_val = -E1000_ERR_PARAM;
-		goto out;
-	}
-
-	/*
-	 * We'll need to use the SW defined pins to shift the write command
-	 * out to the PHY. We first send a preamble to the PHY to signal the
-	 * beginning of the MII instruction.  This is done by sending 32
-	 * consecutive "1" bits.
-	 */
-	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
-	/*
-	 * Now combine the remaining required fields that will indicate a
-	 * write operation. We use this method instead of calling the
-	 * e1000_shift_out_mdi_bits routine for each field in the command. The
-	 * format of a MII write instruction is as follows:
-	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
-	 */
-	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
-		(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
-	mdic <<= 16;
-	mdic |= (u32)data;
-
-	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
- *  @hw: pointer to the HW structure
- *  @ctrl: pointer to the control register
- *
- *  Raise the management data input clock by setting the MDC bit in the control
- *  register.
- **/
-STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
-{
-	/*
-	 * Raise the clock input to the Management Data Clock (by setting the
-	 * MDC bit), and then delay a sufficient amount of time.
-	 */
-	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
-	E1000_WRITE_FLUSH(hw);
-	usec_delay(10);
-}
-
-/**
- *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
- *  @hw: pointer to the HW structure
- *  @ctrl: pointer to the control register
- *
- *  Lower the management data input clock by clearing the MDC bit in the
- *  control register.
- **/
-STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
-{
-	/*
-	 * Lower the clock input to the Management Data Clock (by clearing the
-	 * MDC bit), and then delay a sufficient amount of time.
-	 */
-	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
-	E1000_WRITE_FLUSH(hw);
-	usec_delay(10);
-}
-
-/**
- *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
- *  @hw: pointer to the HW structure
- *  @data: data to send to the PHY
- *  @count: number of bits to shift out
- *
- *  We need to shift 'count' bits out to the PHY.  So, the value in the
- *  "data" parameter will be shifted out to the PHY one bit at a time.
- *  In order to do this, "data" must be broken down into bits.
- **/
-STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
-					   u16 count)
-{
-	u32 ctrl, mask;
-
-	/*
-	 * We need to shift "count" number of bits out to the PHY.  So, the
-	 * value in the "data" parameter will be shifted out to the PHY one
-	 * bit at a time.  In order to do this, "data" must be broken down
-	 * into bits.
-	 */
-	mask = 0x01;
-	mask <<= (count - 1);
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
-	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
-	while (mask) {
-		/*
-		 * A "1" is shifted out to the PHY by setting the MDIO bit to
-		 * "1" and then raising and lowering the Management Data Clock.
-		 * A "0" is shifted out to the PHY by setting the MDIO bit to
-		 * "0" and then raising and lowering the clock.
-		 */
-		if (data & mask)
-			ctrl |= E1000_CTRL_MDIO;
-		else
-			ctrl &= ~E1000_CTRL_MDIO;
-
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-		E1000_WRITE_FLUSH(hw);
-
-		usec_delay(10);
-
-		e1000_raise_mdi_clk_82543(hw, &ctrl);
-		e1000_lower_mdi_clk_82543(hw, &ctrl);
-
-		mask >>= 1;
-	}
-}
-
-/**
- *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
- *  @hw: pointer to the HW structure
- *
- *  In order to read a register from the PHY, we need to shift 18 bits
- *  in from the PHY.  Bits are "shifted in" by raising the clock input to
- *  the PHY (setting the MDC bit), and then reading the value of the data out
- *  MDIO bit.
- **/
-STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	u16 data = 0;
-	u8 i;
-
-	/*
-	 * In order to read a register from the PHY, we need to shift in a
-	 * total of 18 bits from the PHY.  The first two bit (turnaround)
-	 * times are used to avoid contention on the MDIO pin when a read
-	 * operation is performed.  These two bits are ignored by us and
-	 * thrown away.  Bits are "shifted in" by raising the input to the
-	 * Management Data Clock (setting the MDC bit) and then reading the
-	 * value of the MDIO bit.
-	 */
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	/*
-	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
-	 * input.
-	 */
-	ctrl &= ~E1000_CTRL_MDIO_DIR;
-	ctrl &= ~E1000_CTRL_MDIO;
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-	E1000_WRITE_FLUSH(hw);
-
-	/*
-	 * Raise and lower the clock before reading in the data.  This accounts
-	 * for the turnaround bits.  The first clock occurred when we clocked
-	 * out the last bit of the Register Address.
-	 */
-	e1000_raise_mdi_clk_82543(hw, &ctrl);
-	e1000_lower_mdi_clk_82543(hw, &ctrl);
-
-	for (data = 0, i = 0; i < 16; i++) {
-		data <<= 1;
-		e1000_raise_mdi_clk_82543(hw, &ctrl);
-		ctrl = E1000_READ_REG(hw, E1000_CTRL);
-		/* Check to see if we shifted in a "1". */
-		if (ctrl & E1000_CTRL_MDIO)
-			data |= 1;
-		e1000_lower_mdi_clk_82543(hw, &ctrl);
-	}
-
-	e1000_raise_mdi_clk_82543(hw, &ctrl);
-	e1000_lower_mdi_clk_82543(hw, &ctrl);
-
-	return data;
-}
-
-/**
- *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
- *  @hw: pointer to the HW structure
- *
- *  Calls the function to force speed and duplex for the m88 PHY, and
- *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
- *  then call the function for polarity reversal workaround.
- **/
-STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
-
-	ret_val = e1000_phy_force_speed_duplex_m88(hw);
-	if (ret_val)
-		goto out;
-
-	if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
-	    E1000_ALL_10_SPEED))
-		ret_val = e1000_polarity_reversal_workaround_82543(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
- *  @hw: pointer to the HW structure
- *
- *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
- *  inadvertently.  To workaround the issue, we disable the transmitter on
- *  the PHY until we have established the link partner's link parameters.
- **/
-STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 mii_status_reg;
-	u16 i;
-	bool link;
-
-	if (!(hw->phy.ops.write_reg))
-		goto out;
-
-	/* Polarity reversal workaround for forced 10F/10H links. */
-
-	/* Disable the transmitter on the PHY */
-
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
-	if (ret_val)
-		goto out;
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
-	if (ret_val)
-		goto out;
-
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
-	if (ret_val)
-		goto out;
-
-	/*
-	 * This loop will early-out if the NO link condition has been met.
-	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
-	 */
-	for (i = PHY_FORCE_TIME; i > 0; i--) {
-		/*
-		 * Read the MII Status Register and wait for Link Status bit
-		 * to be clear.
-		 */
-
-		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
-		if (ret_val)
-			goto out;
-
-		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
-		if (ret_val)
-			goto out;
-
-		if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
-			break;
-		msec_delay_irq(100);
-	}
-
-	/* Recommended delay time after link has been lost */
-	msec_delay_irq(1000);
-
-	/* Now we will re-enable the transmitter on the PHY */
-
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
-	if (ret_val)
-		goto out;
-	msec_delay_irq(50);
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
-	if (ret_val)
-		goto out;
-	msec_delay_irq(50);
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
-	if (ret_val)
-		goto out;
-	msec_delay_irq(50);
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
-	if (ret_val)
-		goto out;
-
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
-	if (ret_val)
-		goto out;
-
-	/*
-	 * Read the MII Status Register and wait for Link Status bit
-	 * to be set.
-	 */
-	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
-	if (ret_val)
-		goto out;
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_phy_hw_reset_82543 - PHY hardware reset
- *  @hw: pointer to the HW structure
- *
- *  Sets the PHY_RESET_DIR bit in the extended device control register
- *  to put the PHY into a reset and waits for completion.  Once the reset
- *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
- *  of reset.
- **/
-STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
-{
-	u32 ctrl_ext;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_phy_hw_reset_82543");
-
-	/*
-	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
-	 * bit to put the PHY into reset...
-	 */
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
-	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	E1000_WRITE_FLUSH(hw);
-
-	msec_delay(10);
-
-	/* ...then take it out of reset. */
-	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	E1000_WRITE_FLUSH(hw);
-
-	usec_delay(150);
-
-	if (!(hw->phy.ops.get_cfg_done))
-		return E1000_SUCCESS;
-
-	ret_val = hw->phy.ops.get_cfg_done(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_reset_hw_82543 - Reset hardware
- *  @hw: pointer to the HW structure
- *
- *  This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_reset_hw_82543");
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
-	E1000_WRITE_FLUSH(hw);
-
-	e1000_set_tbi_sbp_82543(hw, false);
-
-	/*
-	 * Delay to allow any outstanding PCI transactions to complete before
-	 * resetting the device
-	 */
-	msec_delay(10);
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
-	if (hw->mac.type == e1000_82543) {
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-	} else {
-		/*
-		 * The 82544 can't ACK the 64-bit write when issuing the
-		 * reset, so use IO-mapping as a workaround.
-		 */
-		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-	}
-
-	/*
-	 * After MAC reset, force reload of NVM to restore power-on
-	 * settings to device.
-	 */
-	hw->nvm.ops.reload(hw);
-	msec_delay(2);
-
-	/* Masking off and clearing any pending interrupts */
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_READ_REG(hw, E1000_ICR);
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_hw_82543 - Initialize hardware
- *  @hw: pointer to the HW structure
- *
- *  This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
-	u32 ctrl;
-	s32 ret_val;
-	u16 i;
-
-	DEBUGFUNC("e1000_init_hw_82543");
-
-	/* Disabling VLAN filtering */
-	E1000_WRITE_REG(hw, E1000_VET, 0);
-	mac->ops.clear_vfta(hw);
-
-	/* Setup the receive address. */
-	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
-	/* Zero out the Multicast HASH table */
-	DEBUGOUT("Zeroing the MTA\n");
-	for (i = 0; i < mac->mta_reg_count; i++) {
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-		E1000_WRITE_FLUSH(hw);
-	}
-
-	/*
-	 * Set the PCI priority bit correctly in the CTRL register.  This
-	 * determines if the adapter gives priority to receives, or if it
-	 * gives equal priority to transmits and receives.
-	 */
-	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
-		ctrl = E1000_READ_REG(hw, E1000_CTRL);
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
-	}
-
-	e1000_pcix_mmrbc_workaround_generic(hw);
-
-	/* Setup link and flow control */
-	ret_val = mac->ops.setup_link(hw);
-
-	/*
-	 * Clear all of the statistics registers (clear on read).  It is
-	 * important that we do this after we have tried to establish link
-	 * because the symbol error count will increment wildly if there
-	 * is no link.
-	 */
-	e1000_clear_hw_cntrs_82543(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_setup_link_82543 - Setup flow control and link settings
- *  @hw: pointer to the HW structure
- *
- *  Read the EEPROM to determine the initial polarity value and write the
- *  extended device control register with the information before calling
- *  the generic setup link function, which does the following:
- *  Determines which flow control settings to use, then configures flow
- *  control.  Calls the appropriate media-specific link configuration
- *  function.  Assuming the adapter has a valid link partner, a valid link
- *  should be established.  Assumes the hardware has previously been reset
- *  and the transmitter and receiver are not enabled.
- **/
-STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
-{
-	u32 ctrl_ext;
-	s32  ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_setup_link_82543");
-
-	/*
-	 * Take the 4 bits from NVM word 0xF that determine the initial
-	 * polarity value for the SW controlled pins, and setup the
-	 * Extended Device Control reg with that info.
-	 * This is needed because one of the SW controlled pins is used for
-	 * signal detection.  So this should be done before phy setup.
-	 */
-	if (hw->mac.type == e1000_82543) {
-		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error\n");
-			ret_val = -E1000_ERR_NVM;
-			goto out;
-		}
-		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
-			    NVM_SWDPIO_EXT_SHIFT);
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	}
-
-	ret_val = e1000_setup_link_generic(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_setup_copper_link_82543 - Configure copper link settings
- *  @hw: pointer to the HW structure
- *
- *  Configures the link for auto-neg or forced speed and duplex.  Then we check
- *  for link, once link is established calls to configure collision distance
- *  and flow control are called.
- **/
-STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-	bool link;
-
-	DEBUGFUNC("e1000_setup_copper_link_82543");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
-	/*
-	 * With 82543, we need to force speed and duplex on the MAC
-	 * equal to what the PHY speed and duplex configuration is.
-	 * In addition, we need to perform a hardware reset on the
-	 * PHY to take it out of reset.
-	 */
-	if (hw->mac.type == e1000_82543) {
-		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-		ret_val = hw->phy.ops.reset(hw);
-		if (ret_val)
-			goto out;
-	} else {
-		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-	}
-
-	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
-	ret_val = e1000_copper_link_setup_m88(hw);
-	if (ret_val)
-		goto out;
-
-	if (hw->mac.autoneg) {
-		/*
-		 * Setup autoneg and flow control advertisement and perform
-		 * autonegotiation.
-		 */
-		ret_val = e1000_copper_link_autoneg(hw);
-		if (ret_val)
-			goto out;
-	} else {
-		/*
-		 * PHY will be set to 10H, 10F, 100H or 100F
-		 * depending on user settings.
-		 */
-		DEBUGOUT("Forcing Speed and Duplex\n");
-		ret_val = e1000_phy_force_speed_duplex_82543(hw);
-		if (ret_val) {
-			DEBUGOUT("Error Forcing Speed and Duplex\n");
-			goto out;
-		}
-	}
-
-	/*
-	 * Check link status. Wait up to 100 microseconds for link to become
-	 * valid.
-	 */
-	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
-					     &link);
-	if (ret_val)
-		goto out;
-
-
-	if (link) {
-		DEBUGOUT("Valid link established!!!\n");
-		/* Config the MAC and PHY after link is up */
-		if (hw->mac.type == e1000_82544) {
-			hw->mac.ops.config_collision_dist(hw);
-		} else {
-			ret_val = e1000_config_mac_to_phy_82543(hw);
-			if (ret_val)
-				goto out;
-		}
-		ret_val = e1000_config_fc_after_link_up_generic(hw);
-	} else {
-		DEBUGOUT("Unable to establish link!!!\n");
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_setup_fiber_link_82543 - Setup link for fiber
- *  @hw: pointer to the HW structure
- *
- *  Configures collision distance and flow control for fiber links.  Upon
- *  successful setup, poll for link.
- **/
-STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_setup_fiber_link_82543");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	/* Take the link out of reset */
-	ctrl &= ~E1000_CTRL_LRST;
-
-	hw->mac.ops.config_collision_dist(hw);
-
-	ret_val = e1000_commit_fc_settings_generic(hw);
-	if (ret_val)
-		goto out;
-
-	DEBUGOUT("Auto-negotiation enabled\n");
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-	E1000_WRITE_FLUSH(hw);
-	msec_delay(1);
-
-	/*
-	 * For these adapters, the SW definable pin 1 is cleared when the
-	 * optics detect a signal.  If we have a signal, then poll for a
-	 * "Link-Up" indication.
-	 */
-	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
-		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
-	else
-		DEBUGOUT("No signal detected\n");
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_copper_link_82543 - Check for link (Copper)
- *  @hw: pointer to the HW structure
- *
- *  Checks the phy for link, if link exists, do the following:
- *   - check for downshift
- *   - do polarity workaround (if necessary)
- *   - configure collision distance
- *   - configure flow control after link up
- *   - configure tbi compatibility
- **/
-STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 icr, rctl;
-	s32 ret_val;
-	u16 speed, duplex;
-	bool link;
-
-	DEBUGFUNC("e1000_check_for_copper_link_82543");
-
-	if (!mac->get_link_status) {
-		ret_val = E1000_SUCCESS;
-		goto out;
-	}
-
-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-	if (ret_val)
-		goto out;
-
-	if (!link)
-		goto out; /* No link detected */
-
-	mac->get_link_status = false;
-
-	e1000_check_downshift_generic(hw);
-
-	/*
-	 * If we are forcing speed/duplex, then we can return since
-	 * we have already determined whether we have link or not.
-	 */
-	if (!mac->autoneg) {
-		/*
-		 * If speed and duplex are forced to 10H or 10F, then we will
-		 * implement the polarity reversal workaround.  We disable
-		 * interrupts first, and upon returning, place the devices
-		 * interrupt state to its previous value except for the link
-		 * status change interrupt which will happened due to the
-		 * execution of this workaround.
-		 */
-		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
-			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
-			ret_val = e1000_polarity_reversal_workaround_82543(hw);
-			icr = E1000_READ_REG(hw, E1000_ICR);
-			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
-			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
-		}
-
-		ret_val = -E1000_ERR_CONFIG;
-		goto out;
-	}
-
-	/*
-	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
-	 * have Si on board that is 82544 or newer, Auto
-	 * Speed Detection takes care of MAC speed/duplex
-	 * configuration.  So we only need to configure Collision
-	 * Distance in the MAC.  Otherwise, we need to force
-	 * speed/duplex on the MAC to the current PHY speed/duplex
-	 * settings.
-	 */
-	if (mac->type == e1000_82544)
-		hw->mac.ops.config_collision_dist(hw);
-	else {
-		ret_val = e1000_config_mac_to_phy_82543(hw);
-		if (ret_val) {
-			DEBUGOUT("Error configuring MAC to PHY settings\n");
-			goto out;
-		}
-	}
-
-	/*
-	 * Configure Flow Control now that Auto-Neg has completed.
-	 * First, we need to restore the desired flow control
-	 * settings because we may have had to re-autoneg with a
-	 * different link partner.
-	 */
-	ret_val = e1000_config_fc_after_link_up_generic(hw);
-	if (ret_val)
-		DEBUGOUT("Error configuring flow control\n");
-
-	/*
-	 * At this point we know that we are on copper and we have
-	 * auto-negotiated link.  These are conditions for checking the link
-	 * partner capability register.  We use the link speed to determine if
-	 * TBI compatibility needs to be turned on or off.  If the link is not
-	 * at gigabit speed, then TBI compatibility is not needed.  If we are
-	 * at gigabit speed, we turn on TBI compatibility.
-	 */
-	if (e1000_tbi_compatibility_enabled_82543(hw)) {
-		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
-		if (ret_val) {
-			DEBUGOUT("Error getting link speed and duplex\n");
-			return ret_val;
-		}
-		if (speed != SPEED_1000) {
-			/*
-			 * If link speed is not set to gigabit speed,
-			 * we do not need to enable TBI compatibility.
-			 */
-			if (e1000_tbi_sbp_enabled_82543(hw)) {
-				/*
-				 * If we previously were in the mode,
-				 * turn it off.
-				 */
-				e1000_set_tbi_sbp_82543(hw, false);
-				rctl = E1000_READ_REG(hw, E1000_RCTL);
-				rctl &= ~E1000_RCTL_SBP;
-				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-			}
-		} else {
-			/*
-			 * If TBI compatibility is was previously off,
-			 * turn it on. For compatibility with a TBI link
-			 * partner, we will store bad packets. Some
-			 * frames have an additional byte on the end and
-			 * will look like CRC errors to to the hardware.
-			 */
-			if (!e1000_tbi_sbp_enabled_82543(hw)) {
-				e1000_set_tbi_sbp_82543(hw, true);
-				rctl = E1000_READ_REG(hw, E1000_RCTL);
-				rctl |= E1000_RCTL_SBP;
-				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-			}
-		}
-	}
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
- *  @hw: pointer to the HW structure
- *
- *  Checks for link up on the hardware.  If link is not up and we have
- *  a signal, then we need to force link up.
- **/
-STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 rxcw, ctrl, status;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_check_for_fiber_link_82543");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	status = E1000_READ_REG(hw, E1000_STATUS);
-	rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
-	/*
-	 * If we don't have link (auto-negotiation failed or link partner
-	 * cannot auto-negotiate), the cable is plugged in (we have signal),
-	 * and our link partner is not trying to auto-negotiate with us (we
-	 * are receiving idles or data), we need to force link up. We also
-	 * need to give auto-negotiation time to complete, in case the cable
-	 * was just plugged in. The autoneg_failed flag does this.
-	 */
-	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
-	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
-	    (!(status & E1000_STATUS_LU)) &&
-	    (!(rxcw & E1000_RXCW_C))) {
-		if (!mac->autoneg_failed) {
-			mac->autoneg_failed = true;
-			ret_val = 0;
-			goto out;
-		}
-		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
-		/* Disable auto-negotiation in the TXCW register */
-		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
-		/* Force link-up and also force full-duplex. */
-		ctrl = E1000_READ_REG(hw, E1000_CTRL);
-		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-		/* Configure Flow Control after forcing link up. */
-		ret_val = e1000_config_fc_after_link_up_generic(hw);
-		if (ret_val) {
-			DEBUGOUT("Error configuring flow control\n");
-			goto out;
-		}
-	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
-		/*
-		 * If we are forcing link and we are receiving /C/ ordered
-		 * sets, re-enable auto-negotiation in the TXCW register
-		 * and disable forced link in the Device Control register
-		 * in an attempt to auto-negotiate with our link partner.
-		 */
-		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
-		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
-		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
-		mac->serdes_has_link = true;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
- *  @hw: pointer to the HW structure
- *
- *  For the 82543 silicon, we need to set the MAC to match the settings
- *  of the PHY, even if the PHY is auto-negotiating.
- **/
-STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val = E1000_SUCCESS;
-	u16 phy_data;
-
-	DEBUGFUNC("e1000_config_mac_to_phy_82543");
-
-	if (!(hw->phy.ops.read_reg))
-		goto out;
-
-	/* Set the bits to force speed and duplex */
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
-	/*
-	 * Set up duplex in the Device Control and Transmit Control
-	 * registers depending on negotiated values.
-	 */
-	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-	if (ret_val)
-		goto out;
-
-	ctrl &= ~E1000_CTRL_FD;
-	if (phy_data & M88E1000_PSSR_DPLX)
-		ctrl |= E1000_CTRL_FD;
-
-	hw->mac.ops.config_collision_dist(hw);
-
-	/*
-	 * Set up speed in the Device Control register depending on
-	 * negotiated values.
-	 */
-	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
-		ctrl |= E1000_CTRL_SPD_1000;
-	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
-		ctrl |= E1000_CTRL_SPD_100;
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_write_vfta_82543 - Write value to VLAN filter table
- *  @hw: pointer to the HW structure
- *  @offset: the 32-bit offset in which to write the value to.
- *  @value: the 32-bit value to write at location offset.
- *
- *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
- *  table.
- **/
-STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
-{
-	u32 temp;
-
-	DEBUGFUNC("e1000_write_vfta_82543");
-
-	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
-		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
-		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
-		E1000_WRITE_FLUSH(hw);
-		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
-		E1000_WRITE_FLUSH(hw);
-	} else {
-		e1000_write_vfta_generic(hw, offset, value);
-	}
-}
-
-/**
- *  e1000_led_on_82543 - Turn on SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  Turns the SW defined LED on.
- **/
-STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
-{
-	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGFUNC("e1000_led_on_82543");
-
-	if (hw->mac.type == e1000_82544 &&
-	    hw->phy.media_type == e1000_media_type_copper) {
-		/* Clear SW-definable Pin 0 to turn on the LED */
-		ctrl &= ~E1000_CTRL_SWDPIN0;
-		ctrl |= E1000_CTRL_SWDPIO0;
-	} else {
-		/* Fiber 82544 and all 82543 use this method */
-		ctrl |= E1000_CTRL_SWDPIN0;
-		ctrl |= E1000_CTRL_SWDPIO0;
-	}
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_led_off_82543 - Turn off SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  Turns the SW defined LED off.
- **/
-STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
-{
-	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGFUNC("e1000_led_off_82543");
-
-	if (hw->mac.type == e1000_82544 &&
-	    hw->phy.media_type == e1000_media_type_copper) {
-		/* Set SW-definable Pin 0 to turn off the LED */
-		ctrl |= E1000_CTRL_SWDPIN0;
-		ctrl |= E1000_CTRL_SWDPIO0;
-	} else {
-		ctrl &= ~E1000_CTRL_SWDPIN0;
-		ctrl |= E1000_CTRL_SWDPIO0;
-	}
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
- *  @hw: pointer to the HW structure
- *
- *  Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	E1000_READ_REG(hw, E1000_PRC64);
-	E1000_READ_REG(hw, E1000_PRC127);
-	E1000_READ_REG(hw, E1000_PRC255);
-	E1000_READ_REG(hw, E1000_PRC511);
-	E1000_READ_REG(hw, E1000_PRC1023);
-	E1000_READ_REG(hw, E1000_PRC1522);
-	E1000_READ_REG(hw, E1000_PTC64);
-	E1000_READ_REG(hw, E1000_PTC127);
-	E1000_READ_REG(hw, E1000_PTC255);
-	E1000_READ_REG(hw, E1000_PTC511);
-	E1000_READ_REG(hw, E1000_PTC1023);
-	E1000_READ_REG(hw, E1000_PTC1522);
-
-	E1000_READ_REG(hw, E1000_ALGNERRC);
-	E1000_READ_REG(hw, E1000_RXERRC);
-	E1000_READ_REG(hw, E1000_TNCRS);
-	E1000_READ_REG(hw, E1000_CEXTERR);
-	E1000_READ_REG(hw, E1000_TSCTC);
-	E1000_READ_REG(hw, E1000_TSCTFC);
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82543.h b/lib/librte_pmd_e1000/e1000/e1000_82543.h
deleted file mode 100644
index 51056db..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82543.h
+++ /dev/null
@@ -1,56 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_82543_H_
-#define _E1000_82543_H_
-
-#define PHY_PREAMBLE		0xFFFFFFFF
-#define PHY_PREAMBLE_SIZE	32
-#define PHY_SOF			0x1
-#define PHY_OP_READ		0x2
-#define PHY_OP_WRITE		0x1
-#define PHY_TURNAROUND		0x2
-
-#define TBI_COMPAT_ENABLED	0x1 /* Global "knob" for the workaround */
-/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */
-#define TBI_SBP_ENABLED		0x2
-
-void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
-				  struct e1000_hw_stats *stats,
-				  u32 frame_len, u8 *mac_addr,
-				  u32 max_frame_size);
-void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw,
-				       bool state);
-bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw);
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82571.c b/lib/librte_pmd_e1000/e1000/e1000_82571.c
deleted file mode 100644
index 8ae1cb1..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82571.c
+++ /dev/null
@@ -1,2026 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/* 82571EB Gigabit Ethernet Controller
- * 82571EB Gigabit Ethernet Controller (Copper)
- * 82571EB Gigabit Ethernet Controller (Fiber)
- * 82571EB Dual Port Gigabit Mezzanine Adapter
- * 82571EB Quad Port Gigabit Mezzanine Adapter
- * 82571PT Gigabit PT Quad Port Server ExpressModule
- * 82572EI Gigabit Ethernet Controller (Copper)
- * 82572EI Gigabit Ethernet Controller (Fiber)
- * 82572EI Gigabit Ethernet Controller
- * 82573V Gigabit Ethernet Controller (Copper)
- * 82573E Gigabit Ethernet Controller (Copper)
- * 82573L Gigabit Ethernet Controller
- * 82574L Gigabit Network Connection
- * 82583V Gigabit Network Connection
- */
-
-#include "e1000_api.h"
-
-STATIC s32  e1000_acquire_nvm_82571(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_82571(struct e1000_hw *hw);
-STATIC s32  e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset,
-				  u16 words, u16 *data);
-STATIC s32  e1000_update_nvm_checksum_82571(struct e1000_hw *hw);
-STATIC s32  e1000_validate_nvm_checksum_82571(struct e1000_hw *hw);
-STATIC s32  e1000_get_cfg_done_82571(struct e1000_hw *hw);
-STATIC s32  e1000_set_d0_lplu_state_82571(struct e1000_hw *hw,
-					  bool active);
-STATIC s32  e1000_reset_hw_82571(struct e1000_hw *hw);
-STATIC s32  e1000_init_hw_82571(struct e1000_hw *hw);
-STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw);
-STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
-STATIC s32 e1000_led_on_82574(struct e1000_hw *hw);
-STATIC s32  e1000_setup_link_82571(struct e1000_hw *hw);
-STATIC s32  e1000_setup_copper_link_82571(struct e1000_hw *hw);
-STATIC s32  e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
-STATIC s32  e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
-STATIC s32  e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data);
-STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
-STATIC s32  e1000_get_hw_semaphore_82571(struct e1000_hw *hw);
-STATIC s32  e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
-STATIC s32  e1000_get_phy_id_82571(struct e1000_hw *hw);
-STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
-STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
-STATIC s32  e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
-STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
-STATIC s32  e1000_set_d0_lplu_state_82574(struct e1000_hw *hw,
-					  bool active);
-STATIC s32  e1000_set_d3_lplu_state_82574(struct e1000_hw *hw,
-					  bool active);
-STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
-STATIC s32  e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
-				       u16 words, u16 *data);
-STATIC s32  e1000_read_mac_addr_82571(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
-
-/**
- *  e1000_init_phy_params_82571 - Init PHY func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_init_phy_params_82571");
-
-	if (hw->phy.media_type != e1000_media_type_copper) {
-		phy->type = e1000_phy_none;
-		return E1000_SUCCESS;
-	}
-
-	phy->addr			= 1;
-	phy->autoneg_mask		= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-	phy->reset_delay_us		= 100;
-
-	phy->ops.check_reset_block	= e1000_check_reset_block_generic;
-	phy->ops.reset			= e1000_phy_hw_reset_generic;
-	phy->ops.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571;
-	phy->ops.set_d3_lplu_state	= e1000_set_d3_lplu_state_generic;
-	phy->ops.power_up		= e1000_power_up_phy_copper;
-	phy->ops.power_down		= e1000_power_down_phy_copper_82571;
-
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-		phy->type		= e1000_phy_igp_2;
-		phy->ops.get_cfg_done	= e1000_get_cfg_done_82571;
-		phy->ops.get_info	= e1000_get_phy_info_igp;
-		phy->ops.check_polarity	= e1000_check_polarity_igp;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
-		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
-		phy->ops.read_reg	= e1000_read_phy_reg_igp;
-		phy->ops.write_reg	= e1000_write_phy_reg_igp;
-		phy->ops.acquire	= e1000_get_hw_semaphore_82571;
-		phy->ops.release	= e1000_put_hw_semaphore_82571;
-		break;
-	case e1000_82573:
-		phy->type		= e1000_phy_m88;
-		phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
-		phy->ops.get_info	= e1000_get_phy_info_m88;
-		phy->ops.check_polarity	= e1000_check_polarity_m88;
-		phy->ops.commit		= e1000_phy_sw_reset_generic;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
-		phy->ops.get_cable_length = e1000_get_cable_length_m88;
-		phy->ops.read_reg	= e1000_read_phy_reg_m88;
-		phy->ops.write_reg	= e1000_write_phy_reg_m88;
-		phy->ops.acquire	= e1000_get_hw_semaphore_82571;
-		phy->ops.release	= e1000_put_hw_semaphore_82571;
-		break;
-	case e1000_82574:
-	case e1000_82583:
-		E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex);
-
-		phy->type		= e1000_phy_bm;
-		phy->ops.get_cfg_done	= e1000_get_cfg_done_generic;
-		phy->ops.get_info	= e1000_get_phy_info_m88;
-		phy->ops.check_polarity	= e1000_check_polarity_m88;
-		phy->ops.commit		= e1000_phy_sw_reset_generic;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
-		phy->ops.get_cable_length = e1000_get_cable_length_m88;
-		phy->ops.read_reg	= e1000_read_phy_reg_bm2;
-		phy->ops.write_reg	= e1000_write_phy_reg_bm2;
-		phy->ops.acquire	= e1000_get_hw_semaphore_82574;
-		phy->ops.release	= e1000_put_hw_semaphore_82574;
-		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
-		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
-		break;
-	default:
-		return -E1000_ERR_PHY;
-		break;
-	}
-
-	/* This can only be done after all function pointers are setup. */
-	ret_val = e1000_get_phy_id_82571(hw);
-	if (ret_val) {
-		DEBUGOUT("Error getting PHY ID\n");
-		return ret_val;
-	}
-
-	/* Verify phy id */
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-		if (phy->id != IGP01E1000_I_PHY_ID)
-			ret_val = -E1000_ERR_PHY;
-		break;
-	case e1000_82573:
-		if (phy->id != M88E1111_I_PHY_ID)
-			ret_val = -E1000_ERR_PHY;
-		break;
-	case e1000_82574:
-	case e1000_82583:
-		if (phy->id != BME1000_E_PHY_ID_R2)
-			ret_val = -E1000_ERR_PHY;
-		break;
-	default:
-		ret_val = -E1000_ERR_PHY;
-		break;
-	}
-
-	if (ret_val)
-		DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id);
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-	u16 size;
-
-	DEBUGFUNC("e1000_init_nvm_params_82571");
-
-	nvm->opcode_bits = 8;
-	nvm->delay_usec = 1;
-	switch (nvm->override) {
-	case e1000_nvm_override_spi_large:
-		nvm->page_size = 32;
-		nvm->address_bits = 16;
-		break;
-	case e1000_nvm_override_spi_small:
-		nvm->page_size = 8;
-		nvm->address_bits = 8;
-		break;
-	default:
-		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
-		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
-		break;
-	}
-
-	switch (hw->mac.type) {
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		if (((eecd >> 15) & 0x3) == 0x3) {
-			nvm->type = e1000_nvm_flash_hw;
-			nvm->word_size = 2048;
-			/* Autonomous Flash update bit must be cleared due
-			 * to Flash update issue.
-			 */
-			eecd &= ~E1000_EECD_AUPDEN;
-			E1000_WRITE_REG(hw, E1000_EECD, eecd);
-			break;
-		}
-		/* Fall Through */
-	default:
-		nvm->type = e1000_nvm_eeprom_spi;
-		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
-			     E1000_EECD_SIZE_EX_SHIFT);
-		/* Added to a constant, "size" becomes the left-shift value
-		 * for setting word_size.
-		 */
-		size += NVM_WORD_SIZE_BASE_SHIFT;
-
-		/* EEPROM access above 16k is unsupported */
-		if (size > 14)
-			size = 14;
-		nvm->word_size = 1 << size;
-		break;
-	}
-
-	/* Function Pointers */
-	switch (hw->mac.type) {
-	case e1000_82574:
-	case e1000_82583:
-		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
-		nvm->ops.release = e1000_put_hw_semaphore_82574;
-		break;
-	default:
-		nvm->ops.acquire = e1000_acquire_nvm_82571;
-		nvm->ops.release = e1000_release_nvm_82571;
-		break;
-	}
-	nvm->ops.read = e1000_read_nvm_eerd;
-	nvm->ops.update = e1000_update_nvm_checksum_82571;
-	nvm->ops.validate = e1000_validate_nvm_checksum_82571;
-	nvm->ops.valid_led_default = e1000_valid_led_default_82571;
-	nvm->ops.write = e1000_write_nvm_82571;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_mac_params_82571 - Init MAC func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 swsm = 0;
-	u32 swsm2 = 0;
-	bool force_clear_smbi = false;
-
-	DEBUGFUNC("e1000_init_mac_params_82571");
-
-	/* Set media type and media-dependent function pointers */
-	switch (hw->device_id) {
-	case E1000_DEV_ID_82571EB_FIBER:
-	case E1000_DEV_ID_82572EI_FIBER:
-	case E1000_DEV_ID_82571EB_QUAD_FIBER:
-		hw->phy.media_type = e1000_media_type_fiber;
-		mac->ops.setup_physical_interface =
-			e1000_setup_fiber_serdes_link_82571;
-		mac->ops.check_for_link = e1000_check_for_fiber_link_generic;
-		mac->ops.get_link_up_info =
-			e1000_get_speed_and_duplex_fiber_serdes_generic;
-		break;
-	case E1000_DEV_ID_82571EB_SERDES:
-	case E1000_DEV_ID_82571EB_SERDES_DUAL:
-	case E1000_DEV_ID_82571EB_SERDES_QUAD:
-	case E1000_DEV_ID_82572EI_SERDES:
-		hw->phy.media_type = e1000_media_type_internal_serdes;
-		mac->ops.setup_physical_interface =
-			e1000_setup_fiber_serdes_link_82571;
-		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
-		mac->ops.get_link_up_info =
-			e1000_get_speed_and_duplex_fiber_serdes_generic;
-		break;
-	default:
-		hw->phy.media_type = e1000_media_type_copper;
-		mac->ops.setup_physical_interface =
-			e1000_setup_copper_link_82571;
-		mac->ops.check_for_link = e1000_check_for_copper_link_generic;
-		mac->ops.get_link_up_info =
-			e1000_get_speed_and_duplex_copper_generic;
-		break;
-	}
-
-	/* Set mta register count */
-	mac->mta_reg_count = 128;
-	/* Set rar entry count */
-	mac->rar_entry_count = E1000_RAR_ENTRIES;
-	/* Set if part includes ASF firmware */
-	mac->asf_firmware_present = true;
-	/* Adaptive IFS supported */
-	mac->adaptive_ifs = true;
-
-	/* Function pointers */
-
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
-	/* reset */
-	mac->ops.reset_hw = e1000_reset_hw_82571;
-	/* hw initialization */
-	mac->ops.init_hw = e1000_init_hw_82571;
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_82571;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
-	/* writing VFTA */
-	mac->ops.write_vfta = e1000_write_vfta_generic;
-	/* clearing VFTA */
-	mac->ops.clear_vfta = e1000_clear_vfta_82571;
-	/* read mac address */
-	mac->ops.read_mac_addr = e1000_read_mac_addr_82571;
-	/* ID LED init */
-	mac->ops.id_led_init = e1000_id_led_init_generic;
-	/* setup LED */
-	mac->ops.setup_led = e1000_setup_led_generic;
-	/* cleanup LED */
-	mac->ops.cleanup_led = e1000_cleanup_led_generic;
-	/* turn off LED */
-	mac->ops.led_off = e1000_led_off_generic;
-	/* clear hardware counters */
-	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571;
-
-	/* MAC-specific function pointers */
-	switch (hw->mac.type) {
-	case e1000_82573:
-		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
-		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
-		mac->ops.led_on = e1000_led_on_generic;
-		mac->ops.blink_led = e1000_blink_led_generic;
-
-		/* FWSM register */
-		mac->has_fwsm = true;
-		/* ARC supported; valid only if manageability features are
-		 * enabled.
-		 */
-		mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
-					      E1000_FWSM_MODE_MASK);
-		break;
-	case e1000_82574:
-	case e1000_82583:
-		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
-		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
-		mac->ops.led_on = e1000_led_on_82574;
-		break;
-	default:
-		mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
-		mac->ops.led_on = e1000_led_on_generic;
-		mac->ops.blink_led = e1000_blink_led_generic;
-
-		/* FWSM register */
-		mac->has_fwsm = true;
-		break;
-	}
-
-	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
-	 * first NVM or PHY access. This should be done for single-port
-	 * devices, and for one port only on dual-port devices so that
-	 * for those devices we can still use the SMBI lock to synchronize
-	 * inter-port accesses to the PHY & NVM.
-	 */
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-		swsm2 = E1000_READ_REG(hw, E1000_SWSM2);
-
-		if (!(swsm2 & E1000_SWSM2_LOCK)) {
-			/* Only do this for the first interface on this card */
-			E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 |
-					E1000_SWSM2_LOCK);
-			force_clear_smbi = true;
-		} else {
-			force_clear_smbi = false;
-		}
-		break;
-	default:
-		force_clear_smbi = true;
-		break;
-	}
-
-	if (force_clear_smbi) {
-		/* Make sure SWSM.SMBI is clear */
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		if (swsm & E1000_SWSM_SMBI) {
-			/* This bit should not be set on a first interface, and
-			 * indicates that the bootagent or EFI code has
-			 * improperly left this bit enabled
-			 */
-			DEBUGOUT("Please update your 82571 Bootagent\n");
-		}
-		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI);
-	}
-
-	/* Initialze device specific counter of SMBI acquisition timeouts. */
-	 hw->dev_spec._82571.smb_counter = 0;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_function_pointers_82571 - Init func ptrs.
- *  @hw: pointer to the HW structure
- *
- *  Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82571(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_82571");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_82571;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_82571;
-	hw->phy.ops.init_params = e1000_init_phy_params_82571;
-}
-
-/**
- *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
- *  @hw: pointer to the HW structure
- *
- *  Reads the PHY registers and stores the PHY ID and possibly the PHY
- *  revision in the hardware structure.
- **/
-STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_id = 0;
-
-	DEBUGFUNC("e1000_get_phy_id_82571");
-
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-		/* The 82571 firmware may still be configuring the PHY.
-		 * In this case, we cannot access the PHY until the
-		 * configuration is done.  So we explicitly set the
-		 * PHY ID.
-		 */
-		phy->id = IGP01E1000_I_PHY_ID;
-		break;
-	case e1000_82573:
-		return e1000_get_phy_id(hw);
-		break;
-	case e1000_82574:
-	case e1000_82583:
-		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
-		if (ret_val)
-			return ret_val;
-
-		phy->id = (u32)(phy_id << 16);
-		usec_delay(20);
-		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
-		if (ret_val)
-			return ret_val;
-
-		phy->id |= (u32)(phy_id);
-		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
-		break;
-	default:
-		return -E1000_ERR_PHY;
-		break;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Acquire the HW semaphore to access the PHY or NVM
- **/
-STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
-{
-	u32 swsm;
-	s32 sw_timeout = hw->nvm.word_size + 1;
-	s32 fw_timeout = hw->nvm.word_size + 1;
-	s32 i = 0;
-
-	DEBUGFUNC("e1000_get_hw_semaphore_82571");
-
-	/* If we have timedout 3 times on trying to acquire
-	 * the inter-port SMBI semaphore, there is old code
-	 * operating on the other port, and it is not
-	 * releasing SMBI. Modify the number of times that
-	 * we try for the semaphore to interwork with this
-	 * older code.
-	 */
-	if (hw->dev_spec._82571.smb_counter > 2)
-		sw_timeout = 1;
-
-	/* Get the SW semaphore */
-	while (i < sw_timeout) {
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		if (!(swsm & E1000_SWSM_SMBI))
-			break;
-
-		usec_delay(50);
-		i++;
-	}
-
-	if (i == sw_timeout) {
-		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
-		hw->dev_spec._82571.smb_counter++;
-	}
-	/* Get the FW semaphore. */
-	for (i = 0; i < fw_timeout; i++) {
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
-
-		/* Semaphore acquired if bit latched */
-		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
-			break;
-
-		usec_delay(50);
-	}
-
-	if (i == fw_timeout) {
-		/* Release semaphores */
-		e1000_put_hw_semaphore_82571(hw);
-		DEBUGOUT("Driver can't access the NVM\n");
-		return -E1000_ERR_NVM;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Release hardware semaphore used to access the PHY or NVM
- **/
-STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
-{
-	u32 swsm;
-
-	DEBUGFUNC("e1000_put_hw_semaphore_generic");
-
-	swsm = E1000_READ_REG(hw, E1000_SWSM);
-
-	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-
-	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
-}
-
-/**
- *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Acquire the HW semaphore during reset.
- *
- **/
-STATIC s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
-{
-	u32 extcnf_ctrl;
-	s32 i = 0;
-
-	DEBUGFUNC("e1000_get_hw_semaphore_82573");
-
-	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-	do {
-		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-
-		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
-			break;
-
-		msec_delay(2);
-		i++;
-	} while (i < MDIO_OWNERSHIP_TIMEOUT);
-
-	if (i == MDIO_OWNERSHIP_TIMEOUT) {
-		/* Release semaphores */
-		e1000_put_hw_semaphore_82573(hw);
-		DEBUGOUT("Driver can't access the PHY\n");
-		return -E1000_ERR_PHY;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Release hardware semaphore used during reset.
- *
- **/
-STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
-{
-	u32 extcnf_ctrl;
-
-	DEBUGFUNC("e1000_put_hw_semaphore_82573");
-
-	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-}
-
-/**
- *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Acquire the HW semaphore to access the PHY or NVM.
- *
- **/
-STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_get_hw_semaphore_82574");
-
-	E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex);
-	ret_val = e1000_get_hw_semaphore_82573(hw);
-	if (ret_val)
-		E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
-	return ret_val;
-}
-
-/**
- *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Release hardware semaphore used to access the PHY or NVM
- *
- **/
-STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_put_hw_semaphore_82574");
-
-	e1000_put_hw_semaphore_82573(hw);
-	E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex);
-}
-
-/**
- *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
- *  @hw: pointer to the HW structure
- *  @active: true to enable LPLU, false to disable
- *
- *  Sets the LPLU D0 state according to the active flag.
- *  LPLU will not be activated unless the
- *  device autonegotiation advertisement meets standards of
- *  either 10 or 10/100 or 10/100/1000 at all duplexes.
- *  This is a function pointer entry point only called by
- *  PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
-{
-	u32 data = E1000_READ_REG(hw, E1000_POEMB);
-
-	DEBUGFUNC("e1000_set_d0_lplu_state_82574");
-
-	if (active)
-		data |= E1000_PHY_CTRL_D0A_LPLU;
-	else
-		data &= ~E1000_PHY_CTRL_D0A_LPLU;
-
-	E1000_WRITE_REG(hw, E1000_POEMB, data);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
- *  @hw: pointer to the HW structure
- *  @active: boolean used to enable/disable lplu
- *
- *  The low power link up (lplu) state is set to the power management level D3
- *  when active is true, else clear lplu for D3. LPLU
- *  is used during Dx states where the power conservation is most important.
- *  During driver activity, SmartSpeed should be enabled so performance is
- *  maintained.
- **/
-STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
-{
-	u32 data = E1000_READ_REG(hw, E1000_POEMB);
-
-	DEBUGFUNC("e1000_set_d3_lplu_state_82574");
-
-	if (!active) {
-		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
-	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
-		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
-		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
-		data |= E1000_PHY_CTRL_NOND0A_LPLU;
-	}
-
-	E1000_WRITE_REG(hw, E1000_POEMB, data);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
- *  @hw: pointer to the HW structure
- *
- *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
- *  Then for non-82573 hardware, set the EEPROM access request bit and wait
- *  for EEPROM access grant bit.  If the access grant bit is not set, release
- *  hardware semaphore.
- **/
-STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_acquire_nvm_82571");
-
-	ret_val = e1000_get_hw_semaphore_82571(hw);
-	if (ret_val)
-		return ret_val;
-
-	switch (hw->mac.type) {
-	case e1000_82573:
-		break;
-	default:
-		ret_val = e1000_acquire_nvm_generic(hw);
-		break;
-	}
-
-	if (ret_val)
-		e1000_put_hw_semaphore_82571(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-STATIC void e1000_release_nvm_82571(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_release_nvm_82571");
-
-	e1000_release_nvm_generic(hw);
-	e1000_put_hw_semaphore_82571(hw);
-}
-
-/**
- *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
- *  @hw: pointer to the HW structure
- *  @offset: offset within the EEPROM to be written to
- *  @words: number of words to write
- *  @data: 16 bit word(s) to be written to the EEPROM
- *
- *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
- *
- *  If e1000_update_nvm_checksum is not called after this function, the
- *  EEPROM will most likely contain an invalid checksum.
- **/
-STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
-				 u16 *data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_write_nvm_82571");
-
-	switch (hw->mac.type) {
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
-		break;
-	case e1000_82571:
-	case e1000_82572:
-		ret_val = e1000_write_nvm_spi(hw, offset, words, data);
-		break;
-	default:
-		ret_val = -E1000_ERR_NVM;
-		break;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
- *  up to the checksum.  Then calculates the EEPROM checksum and writes the
- *  value to the EEPROM.
- **/
-STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
-{
-	u32 eecd;
-	s32 ret_val;
-	u16 i;
-
-	DEBUGFUNC("e1000_update_nvm_checksum_82571");
-
-	ret_val = e1000_update_nvm_checksum_generic(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* If our nvm is an EEPROM, then we're done
-	 * otherwise, commit the checksum to the flash NVM.
-	 */
-	if (hw->nvm.type != e1000_nvm_flash_hw)
-		return E1000_SUCCESS;
-
-	/* Check for pending operations. */
-	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
-		msec_delay(1);
-		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
-			break;
-	}
-
-	if (i == E1000_FLASH_UPDATES)
-		return -E1000_ERR_NVM;
-
-	/* Reset the firmware if using STM opcode. */
-	if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) {
-		/* The enabling of and the actual reset must be done
-		 * in two write cycles.
-		 */
-		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE);
-		E1000_WRITE_FLUSH(hw);
-		E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET);
-	}
-
-	/* Commit the write to flash */
-	eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD;
-	E1000_WRITE_REG(hw, E1000_EECD, eecd);
-
-	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
-		msec_delay(1);
-		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD))
-			break;
-	}
-
-	if (i == E1000_FLASH_UPDATES)
-		return -E1000_ERR_NVM;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_validate_nvm_checksum_82571");
-
-	if (hw->nvm.type == e1000_nvm_flash_hw)
-		e1000_fix_nvm_checksum_82571(hw);
-
-	return e1000_validate_nvm_checksum_generic(hw);
-}
-
-/**
- *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
- *  @hw: pointer to the HW structure
- *  @offset: offset within the EEPROM to be written to
- *  @words: number of words to write
- *  @data: 16 bit word(s) to be written to the EEPROM
- *
- *  After checking for invalid values, poll the EEPROM to ensure the previous
- *  command has completed before trying to write the next word.  After write
- *  poll for completion.
- *
- *  If e1000_update_nvm_checksum is not called after this function, the
- *  EEPROM will most likely contain an invalid checksum.
- **/
-STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
-				      u16 words, u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 i, eewr = 0;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_write_nvm_eewr_82571");
-
-	/* A check for invalid values:  offset too large, too many words,
-	 * and not enough words.
-	 */
-	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		return -E1000_ERR_NVM;
-	}
-
-	for (i = 0; i < words; i++) {
-		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
-			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
-			E1000_NVM_RW_REG_START);
-
-		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
-		if (ret_val)
-			break;
-
-		E1000_WRITE_REG(hw, E1000_EEWR, eewr);
-
-		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
-		if (ret_val)
-			break;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_cfg_done_82571 - Poll for configuration done
- *  @hw: pointer to the HW structure
- *
- *  Reads the management control register for the config done bit to be set.
- **/
-STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
-{
-	s32 timeout = PHY_CFG_TIMEOUT;
-
-	DEBUGFUNC("e1000_get_cfg_done_82571");
-
-	while (timeout) {
-		if (E1000_READ_REG(hw, E1000_EEMNGCTL) &
-		    E1000_NVM_CFG_DONE_PORT_0)
-			break;
-		msec_delay(1);
-		timeout--;
-	}
-	if (!timeout) {
-		DEBUGOUT("MNG configuration cycle has not completed.\n");
-		return -E1000_ERR_RESET;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
- *  @hw: pointer to the HW structure
- *  @active: true to enable LPLU, false to disable
- *
- *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
- *  this function also disables smart speed and vice versa.  LPLU will not be
- *  activated unless the device autonegotiation advertisement meets standards
- *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
- *  pointer entry point only called by PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_set_d0_lplu_state_82571");
-
-	if (!(phy->ops.read_reg))
-		return E1000_SUCCESS;
-
-	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
-	if (ret_val)
-		return ret_val;
-
-	if (active) {
-		data |= IGP02E1000_PM_D0_LPLU;
-		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-					     data);
-		if (ret_val)
-			return ret_val;
-
-		/* When LPLU is enabled, we should disable SmartSpeed */
-		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-					    &data);
-		if (ret_val)
-			return ret_val;
-		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-					     data);
-		if (ret_val)
-			return ret_val;
-	} else {
-		data &= ~IGP02E1000_PM_D0_LPLU;
-		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-					     data);
-		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
-		 * during Dx states where the power conservation is most
-		 * important.  During driver activity we should enable
-		 * SmartSpeed, so performance is maintained.
-		 */
-		if (phy->smart_speed == e1000_smart_speed_on) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data |= IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-		} else if (phy->smart_speed == e1000_smart_speed_off) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_reset_hw_82571 - Reset hardware
- *  @hw: pointer to the HW structure
- *
- *  This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw)
-{
-	u32 ctrl, ctrl_ext, eecd, tctl;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_reset_hw_82571");
-
-	/* Prevent the PCI-E bus from sticking if there is no TLP connection
-	 * on the last TLP read/write transaction when MAC is reset.
-	 */
-	ret_val = e1000_disable_pcie_master_generic(hw);
-	if (ret_val)
-		DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	tctl = E1000_READ_REG(hw, E1000_TCTL);
-	tctl &= ~E1000_TCTL_EN;
-	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-	E1000_WRITE_FLUSH(hw);
-
-	msec_delay(10);
-
-	/* Must acquire the MDIO ownership before MAC reset.
-	 * Ownership defaults to firmware after a reset.
-	 */
-	switch (hw->mac.type) {
-	case e1000_82573:
-		ret_val = e1000_get_hw_semaphore_82573(hw);
-		break;
-	case e1000_82574:
-	case e1000_82583:
-		ret_val = e1000_get_hw_semaphore_82574(hw);
-		break;
-	default:
-		break;
-	}
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGOUT("Issuing a global reset to MAC\n");
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
-	/* Must release MDIO ownership and mutex after MAC reset. */
-	switch (hw->mac.type) {
-	case e1000_82573:
-		/* Release mutex only if the hw semaphore is acquired */
-		if (!ret_val)
-			e1000_put_hw_semaphore_82573(hw);
-		break;
-	case e1000_82574:
-	case e1000_82583:
-		/* Release mutex only if the hw semaphore is acquired */
-		if (!ret_val)
-			e1000_put_hw_semaphore_82574(hw);
-		break;
-	default:
-		break;
-	}
-
-	if (hw->nvm.type == e1000_nvm_flash_hw) {
-		usec_delay(10);
-		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-		E1000_WRITE_FLUSH(hw);
-	}
-
-	ret_val = e1000_get_auto_rd_done_generic(hw);
-	if (ret_val)
-		/* We don't want to continue accessing MAC registers. */
-		return ret_val;
-
-	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
-	 * Need to wait for Phy configuration completion before accessing
-	 * NVM and Phy.
-	 */
-
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-		/* REQ and GNT bits need to be cleared when using AUTO_RD
-		 * to access the EEPROM.
-		 */
-		eecd = E1000_READ_REG(hw, E1000_EECD);
-		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		break;
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		msec_delay(25);
-		break;
-	default:
-		break;
-	}
-
-	/* Clear any pending interrupt events. */
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_READ_REG(hw, E1000_ICR);
-
-	if (hw->mac.type == e1000_82571) {
-		/* Install any alternate MAC address into RAR0 */
-		ret_val = e1000_check_alt_mac_addr_generic(hw);
-		if (ret_val)
-			return ret_val;
-
-		e1000_set_laa_state_82571(hw, true);
-	}
-
-	/* Reinitialize the 82571 serdes link state machine */
-	if (hw->phy.media_type == e1000_media_type_internal_serdes)
-		hw->mac.serdes_link_state = e1000_serdes_link_down;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_hw_82571 - Initialize hardware
- *  @hw: pointer to the HW structure
- *
- *  This inits the hardware readying it for operation.
- **/
-STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 reg_data;
-	s32 ret_val;
-	u16 i, rar_count = mac->rar_entry_count;
-
-	DEBUGFUNC("e1000_init_hw_82571");
-
-	e1000_initialize_hw_bits_82571(hw);
-
-	/* Initialize identification LED */
-	ret_val = mac->ops.id_led_init(hw);
-	/* An error is not fatal and we should not stop init due to this */
-	if (ret_val)
-		DEBUGOUT("Error initializing identification LED\n");
-
-	/* Disabling VLAN filtering */
-	DEBUGOUT("Initializing the IEEE VLAN\n");
-	mac->ops.clear_vfta(hw);
-
-	/* Setup the receive address.
-	 * If, however, a locally administered address was assigned to the
-	 * 82571, we must reserve a RAR for it to work around an issue where
-	 * resetting one port will reload the MAC on the other port.
-	 */
-	if (e1000_get_laa_state_82571(hw))
-		rar_count--;
-	e1000_init_rx_addrs_generic(hw, rar_count);
-
-	/* Zero out the Multicast HASH table */
-	DEBUGOUT("Zeroing the MTA\n");
-	for (i = 0; i < mac->mta_reg_count; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
-	/* Setup link and flow control */
-	ret_val = mac->ops.setup_link(hw);
-
-	/* Set the transmit descriptor write-back policy */
-	reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
-	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
-		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
-
-	/* ...for both queues. */
-	switch (mac->type) {
-	case e1000_82573:
-		e1000_enable_tx_pkt_filtering_generic(hw);
-		/* fall through */
-	case e1000_82574:
-	case e1000_82583:
-		reg_data = E1000_READ_REG(hw, E1000_GCR);
-		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
-		E1000_WRITE_REG(hw, E1000_GCR, reg_data);
-		break;
-	default:
-		reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
-		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
-			    E1000_TXDCTL_FULL_TX_DESC_WB |
-			    E1000_TXDCTL_COUNT_DESC);
-		E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
-		break;
-	}
-
-	/* Clear all of the statistics registers (clear on read).  It is
-	 * important that we do this after we have tried to establish link
-	 * because the symbol error count will increment wildly if there
-	 * is no link.
-	 */
-	e1000_clear_hw_cntrs_82571(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
- *  @hw: pointer to the HW structure
- *
- *  Initializes required hardware-dependent bits needed for normal operation.
- **/
-STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
-{
-	u32 reg;
-
-	DEBUGFUNC("e1000_initialize_hw_bits_82571");
-
-	/* Transmit Descriptor Control 0 */
-	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
-	reg |= (1 << 22);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
-
-	/* Transmit Descriptor Control 1 */
-	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
-	reg |= (1 << 22);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
-
-	/* Transmit Arbitration Control 0 */
-	reg = E1000_READ_REG(hw, E1000_TARC(0));
-	reg &= ~(0xF << 27); /* 30:27 */
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
-		break;
-	case e1000_82574:
-	case e1000_82583:
-		reg |= (1 << 26);
-		break;
-	default:
-		break;
-	}
-	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
-
-	/* Transmit Arbitration Control 1 */
-	reg = E1000_READ_REG(hw, E1000_TARC(1));
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-		reg &= ~((1 << 29) | (1 << 30));
-		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
-		if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
-			reg &= ~(1 << 28);
-		else
-			reg |= (1 << 28);
-		E1000_WRITE_REG(hw, E1000_TARC(1), reg);
-		break;
-	default:
-		break;
-	}
-
-	/* Device Control */
-	switch (hw->mac.type) {
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		reg = E1000_READ_REG(hw, E1000_CTRL);
-		reg &= ~(1 << 29);
-		E1000_WRITE_REG(hw, E1000_CTRL, reg);
-		break;
-	default:
-		break;
-	}
-
-	/* Extended Device Control */
-	switch (hw->mac.type) {
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		reg &= ~(1 << 23);
-		reg |= (1 << 22);
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-		break;
-	default:
-		break;
-	}
-
-	if (hw->mac.type == e1000_82571) {
-		reg = E1000_READ_REG(hw, E1000_PBA_ECC);
-		reg |= E1000_PBA_ECC_CORR_EN;
-		E1000_WRITE_REG(hw, E1000_PBA_ECC, reg);
-	}
-
-	/* Workaround for hardware errata.
-	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
-	 */
-	if ((hw->mac.type == e1000_82571) ||
-	   (hw->mac.type == e1000_82572)) {
-		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-	}
-
-	/* Disable IPv6 extension header parsing because some malformed
-	 * IPv6 headers can hang the Rx.
-	 */
-	if (hw->mac.type <= e1000_82573) {
-		reg = E1000_READ_REG(hw, E1000_RFCTL);
-		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
-		E1000_WRITE_REG(hw, E1000_RFCTL, reg);
-	}
-
-	/* PCI-Ex Control Registers */
-	switch (hw->mac.type) {
-	case e1000_82574:
-	case e1000_82583:
-		reg = E1000_READ_REG(hw, E1000_GCR);
-		reg |= (1 << 22);
-		E1000_WRITE_REG(hw, E1000_GCR, reg);
-
-		/* Workaround for hardware errata.
-		 * apply workaround for hardware errata documented in errata
-		 * docs Fixes issue where some error prone or unreliable PCIe
-		 * completions are occurring, particularly with ASPM enabled.
-		 * Without fix, issue can cause Tx timeouts.
-		 */
-		reg = E1000_READ_REG(hw, E1000_GCR2);
-		reg |= 1;
-		E1000_WRITE_REG(hw, E1000_GCR2, reg);
-		break;
-	default:
-		break;
-	}
-
-	return;
-}
-
-/**
- *  e1000_clear_vfta_82571 - Clear VLAN filter table
- *  @hw: pointer to the HW structure
- *
- *  Clears the register array which contains the VLAN filter table by
- *  setting all the values to 0.
- **/
-STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw)
-{
-	u32 offset;
-	u32 vfta_value = 0;
-	u32 vfta_offset = 0;
-	u32 vfta_bit_in_reg = 0;
-
-	DEBUGFUNC("e1000_clear_vfta_82571");
-
-	switch (hw->mac.type) {
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		if (hw->mng_cookie.vlan_id != 0) {
-			/* The VFTA is a 4096b bit-field, each identifying
-			 * a single VLAN ID.  The following operations
-			 * determine which 32b entry (i.e. offset) into the
-			 * array we want to set the VLAN ID (i.e. bit) of
-			 * the manageability unit.
-			 */
-			vfta_offset = (hw->mng_cookie.vlan_id >>
-				       E1000_VFTA_ENTRY_SHIFT) &
-			    E1000_VFTA_ENTRY_MASK;
-			vfta_bit_in_reg =
-			    1 << (hw->mng_cookie.vlan_id &
-				  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
-		}
-		break;
-	default:
-		break;
-	}
-	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
-		/* If the offset we want to clear is the same offset of the
-		 * manageability VLAN ID, then clear all bits except that of
-		 * the manageability unit.
-		 */
-		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
-		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
-		E1000_WRITE_FLUSH(hw);
-	}
-}
-
-/**
- *  e1000_check_mng_mode_82574 - Check manageability is enabled
- *  @hw: pointer to the HW structure
- *
- *  Reads the NVM Initialization Control Word 2 and returns true
- *  (>0) if any manageability is enabled, else false (0).
- **/
-STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
-{
-	u16 data;
-
-	DEBUGFUNC("e1000_check_mng_mode_82574");
-
-	hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
-	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
-}
-
-/**
- *  e1000_led_on_82574 - Turn LED on
- *  @hw: pointer to the HW structure
- *
- *  Turn LED on.
- **/
-STATIC s32 e1000_led_on_82574(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	u32 i;
-
-	DEBUGFUNC("e1000_led_on_82574");
-
-	ctrl = hw->mac.ledctl_mode2;
-	if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) {
-		/* If no link, then turn LED on by setting the invert bit
-		 * for each LED that's "on" (0x0E) in ledctl_mode2.
-		 */
-		for (i = 0; i < 4; i++)
-			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
-			    E1000_LEDCTL_MODE_LED_ON)
-				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
-	}
-	E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_check_phy_82574 - check 82574 phy hung state
- *  @hw: pointer to the HW structure
- *
- *  Returns whether phy is hung or not
- **/
-bool e1000_check_phy_82574(struct e1000_hw *hw)
-{
-	u16 status_1kbt = 0;
-	u16 receive_errors = 0;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_check_phy_82574");
-
-	/* Read PHY Receive Error counter first, if its is max - all F's then
-	 * read the Base1000T status register If both are max then PHY is hung.
-	 */
-	ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER,
-				       &receive_errors);
-	if (ret_val)
-		return false;
-	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
-		ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS,
-					       &status_1kbt);
-		if (ret_val)
-			return false;
-		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
-		    E1000_IDLE_ERROR_COUNT_MASK)
-			return true;
-	}
-
-	return false;
-}
-
-
-/**
- *  e1000_setup_link_82571 - Setup flow control and link settings
- *  @hw: pointer to the HW structure
- *
- *  Determines which flow control settings to use, then configures flow
- *  control.  Calls the appropriate media-specific link configuration
- *  function.  Assuming the adapter has a valid link partner, a valid link
- *  should be established.  Assumes the hardware has previously been reset
- *  and the transmitter and receiver are not enabled.
- **/
-STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_setup_link_82571");
-
-	/* 82573 does not have a word in the NVM to determine
-	 * the default flow control setting, so we explicitly
-	 * set it to full.
-	 */
-	switch (hw->mac.type) {
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		if (hw->fc.requested_mode == e1000_fc_default)
-			hw->fc.requested_mode = e1000_fc_full;
-		break;
-	default:
-		break;
-	}
-
-	return e1000_setup_link_generic(hw);
-}
-
-/**
- *  e1000_setup_copper_link_82571 - Configure copper link settings
- *  @hw: pointer to the HW structure
- *
- *  Configures the link for auto-neg or forced speed and duplex.  Then we check
- *  for link, once link is established calls to configure collision distance
- *  and flow control are called.
- **/
-STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_setup_copper_link_82571");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= E1000_CTRL_SLU;
-	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	switch (hw->phy.type) {
-	case e1000_phy_m88:
-	case e1000_phy_bm:
-		ret_val = e1000_copper_link_setup_m88(hw);
-		break;
-	case e1000_phy_igp_2:
-		ret_val = e1000_copper_link_setup_igp(hw);
-		break;
-	default:
-		return -E1000_ERR_PHY;
-		break;
-	}
-
-	if (ret_val)
-		return ret_val;
-
-	return e1000_setup_copper_link_generic(hw);
-}
-
-/**
- *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
- *  @hw: pointer to the HW structure
- *
- *  Configures collision distance and flow control for fiber and serdes links.
- *  Upon successful setup, poll for link.
- **/
-STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_setup_fiber_serdes_link_82571");
-
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-		/* If SerDes loopback mode is entered, there is no form
-		 * of reset to take the adapter out of that mode.  So we
-		 * have to explicitly take the adapter out of loopback
-		 * mode.  This prevents drivers from twiddling their thumbs
-		 * if another tool failed to take it out of loopback mode.
-		 */
-		E1000_WRITE_REG(hw, E1000_SCTL,
-				E1000_SCTL_DISABLE_SERDES_LOOPBACK);
-		break;
-	default:
-		break;
-	}
-
-	return e1000_setup_fiber_serdes_link_generic(hw);
-}
-
-/**
- *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
- *  @hw: pointer to the HW structure
- *
- *  Reports the link state as up or down.
- *
- *  If autonegotiation is supported by the link partner, the link state is
- *  determined by the result of autonegotiation. This is the most likely case.
- *  If autonegotiation is not supported by the link partner, and the link
- *  has a valid signal, force the link up.
- *
- *  The link state is represented internally here by 4 states:
- *
- *  1) down
- *  2) autoneg_progress
- *  3) autoneg_complete (the link successfully autonegotiated)
- *  4) forced_up (the link has been forced up, it did not autonegotiate)
- *
- **/
-STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 rxcw;
-	u32 ctrl;
-	u32 status;
-	u32 txcw;
-	u32 i;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_check_for_serdes_link_82571");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	status = E1000_READ_REG(hw, E1000_STATUS);
-	E1000_READ_REG(hw, E1000_RXCW);
-	/* SYNCH bit and IV bit are sticky */
-	usec_delay(10);
-	rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
-	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
-		/* Receiver is synchronized with no invalid bits.  */
-		switch (mac->serdes_link_state) {
-		case e1000_serdes_link_autoneg_complete:
-			if (!(status & E1000_STATUS_LU)) {
-				/* We have lost link, retry autoneg before
-				 * reporting link failure
-				 */
-				mac->serdes_link_state =
-				    e1000_serdes_link_autoneg_progress;
-				mac->serdes_has_link = false;
-				DEBUGOUT("AN_UP     -> AN_PROG\n");
-			} else {
-				mac->serdes_has_link = true;
-			}
-			break;
-
-		case e1000_serdes_link_forced_up:
-			/* If we are receiving /C/ ordered sets, re-enable
-			 * auto-negotiation in the TXCW register and disable
-			 * forced link in the Device Control register in an
-			 * attempt to auto-negotiate with our link partner.
-			 */
-			if (rxcw & E1000_RXCW_C) {
-				/* Enable autoneg, and unforce link up */
-				E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
-				E1000_WRITE_REG(hw, E1000_CTRL,
-				    (ctrl & ~E1000_CTRL_SLU));
-				mac->serdes_link_state =
-				    e1000_serdes_link_autoneg_progress;
-				mac->serdes_has_link = false;
-				DEBUGOUT("FORCED_UP -> AN_PROG\n");
-			} else {
-				mac->serdes_has_link = true;
-			}
-			break;
-
-		case e1000_serdes_link_autoneg_progress:
-			if (rxcw & E1000_RXCW_C) {
-				/* We received /C/ ordered sets, meaning the
-				 * link partner has autonegotiated, and we can
-				 * trust the Link Up (LU) status bit.
-				 */
-				if (status & E1000_STATUS_LU) {
-					mac->serdes_link_state =
-					    e1000_serdes_link_autoneg_complete;
-					DEBUGOUT("AN_PROG   -> AN_UP\n");
-					mac->serdes_has_link = true;
-				} else {
-					/* Autoneg completed, but failed. */
-					mac->serdes_link_state =
-					    e1000_serdes_link_down;
-					DEBUGOUT("AN_PROG   -> DOWN\n");
-				}
-			} else {
-				/* The link partner did not autoneg.
-				 * Force link up and full duplex, and change
-				 * state to forced.
-				 */
-				E1000_WRITE_REG(hw, E1000_TXCW,
-				(mac->txcw & ~E1000_TXCW_ANE));
-				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
-				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-				/* Configure Flow Control after link up. */
-				ret_val =
-				    e1000_config_fc_after_link_up_generic(hw);
-				if (ret_val) {
-					DEBUGOUT("Error config flow control\n");
-					break;
-				}
-				mac->serdes_link_state =
-						e1000_serdes_link_forced_up;
-				mac->serdes_has_link = true;
-				DEBUGOUT("AN_PROG   -> FORCED_UP\n");
-			}
-			break;
-
-		case e1000_serdes_link_down:
-		default:
-			/* The link was down but the receiver has now gained
-			 * valid sync, so lets see if we can bring the link
-			 * up.
-			 */
-			E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
-			E1000_WRITE_REG(hw, E1000_CTRL, (ctrl &
-					~E1000_CTRL_SLU));
-			mac->serdes_link_state =
-					e1000_serdes_link_autoneg_progress;
-			mac->serdes_has_link = false;
-			DEBUGOUT("DOWN      -> AN_PROG\n");
-			break;
-		}
-	} else {
-		if (!(rxcw & E1000_RXCW_SYNCH)) {
-			mac->serdes_has_link = false;
-			mac->serdes_link_state = e1000_serdes_link_down;
-			DEBUGOUT("ANYSTATE  -> DOWN\n");
-		} else {
-			/* Check several times, if SYNCH bit and CONFIG
-			 * bit both are consistently 1 then simply ignore
-			 * the IV bit and restart Autoneg
-			 */
-			for (i = 0; i < AN_RETRY_COUNT; i++) {
-				usec_delay(10);
-				rxcw = E1000_READ_REG(hw, E1000_RXCW);
-				if ((rxcw & E1000_RXCW_SYNCH) &&
-				    (rxcw & E1000_RXCW_C))
-					continue;
-
-				if (rxcw & E1000_RXCW_IV) {
-					mac->serdes_has_link = false;
-					mac->serdes_link_state =
-							e1000_serdes_link_down;
-					DEBUGOUT("ANYSTATE  -> DOWN\n");
-					break;
-				}
-			}
-
-			if (i == AN_RETRY_COUNT) {
-				txcw = E1000_READ_REG(hw, E1000_TXCW);
-				txcw |= E1000_TXCW_ANE;
-				E1000_WRITE_REG(hw, E1000_TXCW, txcw);
-				mac->serdes_link_state =
-					e1000_serdes_link_autoneg_progress;
-				mac->serdes_has_link = false;
-				DEBUGOUT("ANYSTATE  -> AN_PROG\n");
-			}
-		}
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_valid_led_default_82571 - Verify a valid default LED config
- *  @hw: pointer to the HW structure
- *  @data: pointer to the NVM (EEPROM)
- *
- *  Read the EEPROM for the current default LED configuration.  If the
- *  LED configuration is not valid, set to a valid LED configuration.
- **/
-STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_valid_led_default_82571");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	switch (hw->mac.type) {
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		if (*data == ID_LED_RESERVED_F746)
-			*data = ID_LED_DEFAULT_82573;
-		break;
-	default:
-		if (*data == ID_LED_RESERVED_0000 ||
-		    *data == ID_LED_RESERVED_FFFF)
-			*data = ID_LED_DEFAULT;
-		break;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_laa_state_82571 - Get locally administered address state
- *  @hw: pointer to the HW structure
- *
- *  Retrieve and return the current locally administered address state.
- **/
-bool e1000_get_laa_state_82571(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_get_laa_state_82571");
-
-	if (hw->mac.type != e1000_82571)
-		return false;
-
-	return hw->dev_spec._82571.laa_is_present;
-}
-
-/**
- *  e1000_set_laa_state_82571 - Set locally administered address state
- *  @hw: pointer to the HW structure
- *  @state: enable/disable locally administered address
- *
- *  Enable/Disable the current locally administered address state.
- **/
-void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state)
-{
-	DEBUGFUNC("e1000_set_laa_state_82571");
-
-	if (hw->mac.type != e1000_82571)
-		return;
-
-	hw->dev_spec._82571.laa_is_present = state;
-
-	/* If workaround is activated... */
-	if (state)
-		/* Hold a copy of the LAA in RAR[14] This is done so that
-		 * between the time RAR[0] gets clobbered and the time it
-		 * gets fixed, the actual LAA is in one of the RARs and no
-		 * incoming packets directed to this port are dropped.
-		 * Eventually the LAA will be in RAR[0] and RAR[14].
-		 */
-		hw->mac.ops.rar_set(hw, hw->mac.addr,
-				    hw->mac.rar_entry_count - 1);
-	return;
-}
-
-/**
- *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Verifies that the EEPROM has completed the update.  After updating the
- *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
- *  the checksum fix is not implemented, we need to set the bit and update
- *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
- *  we need to return bad checksum.
- **/
-STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_fix_nvm_checksum_82571");
-
-	if (nvm->type != e1000_nvm_flash_hw)
-		return E1000_SUCCESS;
-
-	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
-	 * 10h-12h.  Checksum may need to be fixed.
-	 */
-	ret_val = nvm->ops.read(hw, 0x10, 1, &data);
-	if (ret_val)
-		return ret_val;
-
-	if (!(data & 0x10)) {
-		/* Read 0x23 and check bit 15.  This bit is a 1
-		 * when the checksum has already been fixed.  If
-		 * the checksum is still wrong and this bit is a
-		 * 1, we need to return bad checksum.  Otherwise,
-		 * we need to set this bit to a 1 and update the
-		 * checksum.
-		 */
-		ret_val = nvm->ops.read(hw, 0x23, 1, &data);
-		if (ret_val)
-			return ret_val;
-
-		if (!(data & 0x8000)) {
-			data |= 0x8000;
-			ret_val = nvm->ops.write(hw, 0x23, 1, &data);
-			if (ret_val)
-				return ret_val;
-			ret_val = nvm->ops.update(hw);
-			if (ret_val)
-				return ret_val;
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-
-/**
- *  e1000_read_mac_addr_82571 - Read device MAC address
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_read_mac_addr_82571");
-
-	if (hw->mac.type == e1000_82571) {
-		s32 ret_val;
-
-		/* If there's an alternate MAC address place it in RAR0
-		 * so that it will override the Si installed default perm
-		 * address.
-		 */
-		ret_val = e1000_check_alt_mac_addr_generic(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	return e1000_read_mac_addr_generic(hw);
-}
-
-/**
- * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	struct e1000_mac_info *mac = &hw->mac;
-
-	if (!phy->ops.check_reset_block)
-		return;
-
-	/* If the management interface is not enabled, then power down */
-	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
-		e1000_power_down_phy_copper(hw);
-
-	return;
-}
-
-/**
- *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
- *  @hw: pointer to the HW structure
- *
- *  Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_clear_hw_cntrs_82571");
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	E1000_READ_REG(hw, E1000_PRC64);
-	E1000_READ_REG(hw, E1000_PRC127);
-	E1000_READ_REG(hw, E1000_PRC255);
-	E1000_READ_REG(hw, E1000_PRC511);
-	E1000_READ_REG(hw, E1000_PRC1023);
-	E1000_READ_REG(hw, E1000_PRC1522);
-	E1000_READ_REG(hw, E1000_PTC64);
-	E1000_READ_REG(hw, E1000_PTC127);
-	E1000_READ_REG(hw, E1000_PTC255);
-	E1000_READ_REG(hw, E1000_PTC511);
-	E1000_READ_REG(hw, E1000_PTC1023);
-	E1000_READ_REG(hw, E1000_PTC1522);
-
-	E1000_READ_REG(hw, E1000_ALGNERRC);
-	E1000_READ_REG(hw, E1000_RXERRC);
-	E1000_READ_REG(hw, E1000_TNCRS);
-	E1000_READ_REG(hw, E1000_CEXTERR);
-	E1000_READ_REG(hw, E1000_TSCTC);
-	E1000_READ_REG(hw, E1000_TSCTFC);
-
-	E1000_READ_REG(hw, E1000_MGTPRC);
-	E1000_READ_REG(hw, E1000_MGTPDC);
-	E1000_READ_REG(hw, E1000_MGTPTC);
-
-	E1000_READ_REG(hw, E1000_IAC);
-	E1000_READ_REG(hw, E1000_ICRXOC);
-
-	E1000_READ_REG(hw, E1000_ICRXPTC);
-	E1000_READ_REG(hw, E1000_ICRXATC);
-	E1000_READ_REG(hw, E1000_ICTXPTC);
-	E1000_READ_REG(hw, E1000_ICTXATC);
-	E1000_READ_REG(hw, E1000_ICTXQEC);
-	E1000_READ_REG(hw, E1000_ICTXQMTC);
-	E1000_READ_REG(hw, E1000_ICRXDMTC);
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82571.h b/lib/librte_pmd_e1000/e1000/e1000_82571.h
deleted file mode 100644
index bdf6446..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82571.h
+++ /dev/null
@@ -1,65 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_82571_H_
-#define _E1000_82571_H_
-
-#define ID_LED_RESERVED_F746	0xF746
-#define ID_LED_DEFAULT_82573	((ID_LED_DEF1_DEF2 << 12) | \
-				 (ID_LED_OFF1_ON2  <<  8) | \
-				 (ID_LED_DEF1_DEF2 <<  4) | \
-				 (ID_LED_DEF1_DEF2))
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX	0x08000000
-#define AN_RETRY_COUNT		5 /* Autoneg Retry Count value */
-
-/* Intr Throttling - RW */
-#define E1000_EITR_82574(_n)	(0x000E8 + (0x4 * (_n)))
-
-#define E1000_EIAC_82574	0x000DC /* Ext. Interrupt Auto Clear - RW */
-#define E1000_EIAC_MASK_82574	0x01F00000
-
-#define E1000_IVAR_INT_ALLOC_VALID	0x8
-
-/* Manageability Operation Mode mask */
-#define E1000_NVM_INIT_CTRL2_MNGM	0x6000
-
-#define E1000_BASE1000T_STATUS		10
-#define E1000_IDLE_ERROR_COUNT_MASK	0xFF
-#define E1000_RECEIVE_ERROR_COUNTER	21
-#define E1000_RECEIVE_ERROR_MAX		0xFFFF
-bool e1000_check_phy_82574(struct e1000_hw *hw);
-bool e1000_get_laa_state_82571(struct e1000_hw *hw);
-void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state);
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82575.c b/lib/librte_pmd_e1000/e1000/e1000_82575.c
deleted file mode 100644
index 25fa672..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82575.c
+++ /dev/null
@@ -1,3639 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/*
- * 82575EB Gigabit Network Connection
- * 82575EB Gigabit Backplane Connection
- * 82575GB Gigabit Network Connection
- * 82576 Gigabit Network Connection
- * 82576 Quad Port Gigabit Mezzanine Adapter
- * 82580 Gigabit Network Connection
- * I350 Gigabit Network Connection
- */
-
-#include "e1000_api.h"
-#include "e1000_i210.h"
-
-STATIC s32  e1000_init_phy_params_82575(struct e1000_hw *hw);
-STATIC s32  e1000_init_mac_params_82575(struct e1000_hw *hw);
-STATIC s32  e1000_acquire_phy_82575(struct e1000_hw *hw);
-STATIC void e1000_release_phy_82575(struct e1000_hw *hw);
-STATIC s32  e1000_acquire_nvm_82575(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_82575(struct e1000_hw *hw);
-STATIC s32  e1000_check_for_link_82575(struct e1000_hw *hw);
-STATIC s32  e1000_check_for_link_media_swap(struct e1000_hw *hw);
-STATIC s32  e1000_get_cfg_done_82575(struct e1000_hw *hw);
-STATIC s32  e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
-					 u16 *duplex);
-STATIC s32  e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
-STATIC s32  e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
-					   u16 *data);
-STATIC s32  e1000_reset_hw_82575(struct e1000_hw *hw);
-STATIC s32  e1000_reset_hw_82580(struct e1000_hw *hw);
-STATIC s32  e1000_read_phy_reg_82580(struct e1000_hw *hw,
-				     u32 offset, u16 *data);
-STATIC s32  e1000_write_phy_reg_82580(struct e1000_hw *hw,
-				      u32 offset, u16 data);
-STATIC s32  e1000_set_d0_lplu_state_82580(struct e1000_hw *hw,
-					  bool active);
-STATIC s32  e1000_set_d3_lplu_state_82580(struct e1000_hw *hw,
-					  bool active);
-STATIC s32  e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
-					  bool active);
-STATIC s32  e1000_setup_copper_link_82575(struct e1000_hw *hw);
-STATIC s32  e1000_setup_serdes_link_82575(struct e1000_hw *hw);
-STATIC s32  e1000_get_media_type_82575(struct e1000_hw *hw);
-STATIC s32  e1000_set_sfp_media_type_82575(struct e1000_hw *hw);
-STATIC s32  e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data);
-STATIC s32  e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
-					    u32 offset, u16 data);
-STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
-STATIC s32  e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
-STATIC s32  e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
-						 u16 *speed, u16 *duplex);
-STATIC s32  e1000_get_phy_id_82575(struct e1000_hw *hw);
-STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
-STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw);
-STATIC s32  e1000_reset_init_script_82575(struct e1000_hw *hw);
-STATIC s32  e1000_read_mac_addr_82575(struct e1000_hw *hw);
-STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
-STATIC void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw);
-STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw);
-STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw);
-STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw);
-STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw);
-STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw);
-STATIC s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw,
-						 u16 offset);
-STATIC s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
-						   u16 offset);
-STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw);
-STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw);
-STATIC void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value);
-STATIC void e1000_clear_vfta_i350(struct e1000_hw *hw);
-
-STATIC void e1000_i2c_start(struct e1000_hw *hw);
-STATIC void e1000_i2c_stop(struct e1000_hw *hw);
-STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data);
-STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data);
-STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw);
-STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data);
-STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data);
-STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
-STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl);
-STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data);
-STATIC bool e1000_get_i2c_data(u32 *i2cctl);
-
-STATIC const u16 e1000_82580_rxpbs_table[] = {
-	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
-#define E1000_82580_RXPBS_TABLE_SIZE \
-	(sizeof(e1000_82580_rxpbs_table) / \
-	 sizeof(e1000_82580_rxpbs_table[0]))
-
-
-/**
- *  e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
- *  @hw: pointer to the HW structure
- *
- *  Called to determine if the I2C pins are being used for I2C or as an
- *  external MDIO interface since the two options are mutually exclusive.
- **/
-STATIC bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw)
-{
-	u32 reg = 0;
-	bool ext_mdio = false;
-
-	DEBUGFUNC("e1000_sgmii_uses_mdio_82575");
-
-	switch (hw->mac.type) {
-	case e1000_82575:
-	case e1000_82576:
-		reg = E1000_READ_REG(hw, E1000_MDIC);
-		ext_mdio = !!(reg & E1000_MDIC_DEST);
-		break;
-	case e1000_82580:
-	case e1000_i350:
-	case e1000_i354:
-	case e1000_i210:
-	case e1000_i211:
-		reg = E1000_READ_REG(hw, E1000_MDICNFG);
-		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
-		break;
-	default:
-		break;
-	}
-	return ext_mdio;
-}
-
-/**
- *  e1000_init_phy_params_82575 - Init PHY func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-	u32 ctrl_ext;
-
-	DEBUGFUNC("e1000_init_phy_params_82575");
-
-	phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic;
-	phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic;
-
-	if (hw->phy.media_type != e1000_media_type_copper) {
-		phy->type = e1000_phy_none;
-		goto out;
-	}
-
-	phy->ops.power_up   = e1000_power_up_phy_copper;
-	phy->ops.power_down = e1000_power_down_phy_copper_82575;
-
-	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-	phy->reset_delay_us	= 100;
-
-	phy->ops.acquire	= e1000_acquire_phy_82575;
-	phy->ops.check_reset_block = e1000_check_reset_block_generic;
-	phy->ops.commit		= e1000_phy_sw_reset_generic;
-	phy->ops.get_cfg_done	= e1000_get_cfg_done_82575;
-	phy->ops.release	= e1000_release_phy_82575;
-
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-
-	if (e1000_sgmii_active_82575(hw)) {
-		phy->ops.reset = e1000_phy_hw_reset_sgmii_82575;
-		ctrl_ext |= E1000_CTRL_I2C_ENA;
-	} else {
-		phy->ops.reset = e1000_phy_hw_reset_generic;
-		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
-	}
-
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	e1000_reset_mdicnfg_82580(hw);
-
-	if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) {
-		phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575;
-		phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575;
-	} else {
-		switch (hw->mac.type) {
-		case e1000_82580:
-		case e1000_i350:
-		case e1000_i354:
-			phy->ops.read_reg = e1000_read_phy_reg_82580;
-			phy->ops.write_reg = e1000_write_phy_reg_82580;
-			break;
-		case e1000_i210:
-		case e1000_i211:
-			phy->ops.read_reg = e1000_read_phy_reg_gs40g;
-			phy->ops.write_reg = e1000_write_phy_reg_gs40g;
-			break;
-		default:
-			phy->ops.read_reg = e1000_read_phy_reg_igp;
-			phy->ops.write_reg = e1000_write_phy_reg_igp;
-		}
-	}
-
-	/* Set phy->phy_addr and phy->id. */
-	ret_val = e1000_get_phy_id_82575(hw);
-
-	/* Verify phy id and set remaining function pointers */
-	switch (phy->id) {
-	case M88E1543_E_PHY_ID:
-	case M88E1512_E_PHY_ID:
-	case I347AT4_E_PHY_ID:
-	case M88E1112_E_PHY_ID:
-	case M88E1340M_E_PHY_ID:
-	case M88E1111_I_PHY_ID:
-		phy->type		= e1000_phy_m88;
-		phy->ops.check_polarity	= e1000_check_polarity_m88;
-		phy->ops.get_info	= e1000_get_phy_info_m88;
-		if (phy->id == I347AT4_E_PHY_ID ||
-		    phy->id == M88E1112_E_PHY_ID ||
-		    phy->id == M88E1340M_E_PHY_ID)
-			phy->ops.get_cable_length =
-					 e1000_get_cable_length_m88_gen2;
-		else if (phy->id == M88E1543_E_PHY_ID ||
-			 phy->id == M88E1512_E_PHY_ID)
-			phy->ops.get_cable_length =
-					 e1000_get_cable_length_m88_gen2;
-		else
-			phy->ops.get_cable_length = e1000_get_cable_length_m88;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
-		/* Check if this PHY is confgured for media swap. */
-		if (phy->id == M88E1112_E_PHY_ID) {
-			u16 data;
-
-			ret_val = phy->ops.write_reg(hw,
-						     E1000_M88E1112_PAGE_ADDR,
-						     2);
-			if (ret_val)
-				goto out;
-
-			ret_val = phy->ops.read_reg(hw,
-						    E1000_M88E1112_MAC_CTRL_1,
-						    &data);
-			if (ret_val)
-				goto out;
-
-			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
-			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
-			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
-			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
-				hw->mac.ops.check_for_link =
-						e1000_check_for_link_media_swap;
-		}
-		if (phy->id == M88E1512_E_PHY_ID) {
-			ret_val = e1000_initialize_M88E1512_phy(hw);
-			if (ret_val)
-				goto out;
-		}
-		break;
-	case IGP03E1000_E_PHY_ID:
-	case IGP04E1000_E_PHY_ID:
-		phy->type = e1000_phy_igp_3;
-		phy->ops.check_polarity = e1000_check_polarity_igp;
-		phy->ops.get_info = e1000_get_phy_info_igp;
-		phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
-		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
-		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
-		break;
-	case I82580_I_PHY_ID:
-	case I350_I_PHY_ID:
-		phy->type = e1000_phy_82580;
-		phy->ops.check_polarity = e1000_check_polarity_82577;
-		phy->ops.force_speed_duplex =
-					 e1000_phy_force_speed_duplex_82577;
-		phy->ops.get_cable_length = e1000_get_cable_length_82577;
-		phy->ops.get_info = e1000_get_phy_info_82577;
-		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
-		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
-		break;
-	case I210_I_PHY_ID:
-		phy->type		= e1000_phy_i210;
-		phy->ops.check_polarity	= e1000_check_polarity_m88;
-		phy->ops.get_info	= e1000_get_phy_info_m88;
-		phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2;
-		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580;
-		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
-		break;
-	default:
-		ret_val = -E1000_ERR_PHY;
-		goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_nvm_params_82575 - Init NVM func ptrs.
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_init_nvm_params_82575(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-	u16 size;
-
-	DEBUGFUNC("e1000_init_nvm_params_82575");
-
-	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
-		     E1000_EECD_SIZE_EX_SHIFT);
-	/*
-	 * Added to a constant, "size" becomes the left-shift value
-	 * for setting word_size.
-	 */
-	size += NVM_WORD_SIZE_BASE_SHIFT;
-
-	/* Just in case size is out of range, cap it to the largest
-	 * EEPROM size supported
-	 */
-	if (size > 15)
-		size = 15;
-
-	nvm->word_size = 1 << size;
-	if (hw->mac.type < e1000_i210) {
-		nvm->opcode_bits = 8;
-		nvm->delay_usec = 1;
-
-		switch (nvm->override) {
-		case e1000_nvm_override_spi_large:
-			nvm->page_size = 32;
-			nvm->address_bits = 16;
-			break;
-		case e1000_nvm_override_spi_small:
-			nvm->page_size = 8;
-			nvm->address_bits = 8;
-			break;
-		default:
-			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
-			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
-					    16 : 8;
-			break;
-		}
-		if (nvm->word_size == (1 << 15))
-			nvm->page_size = 128;
-
-		nvm->type = e1000_nvm_eeprom_spi;
-	} else {
-		nvm->type = e1000_nvm_flash_hw;
-	}
-
-	/* Function Pointers */
-	nvm->ops.acquire = e1000_acquire_nvm_82575;
-	nvm->ops.release = e1000_release_nvm_82575;
-	if (nvm->word_size < (1 << 15))
-		nvm->ops.read = e1000_read_nvm_eerd;
-	else
-		nvm->ops.read = e1000_read_nvm_spi;
-
-	nvm->ops.write = e1000_write_nvm_spi;
-	nvm->ops.validate = e1000_validate_nvm_checksum_generic;
-	nvm->ops.update = e1000_update_nvm_checksum_generic;
-	nvm->ops.valid_led_default = e1000_valid_led_default_82575;
-
-	/* override generic family function pointers for specific descendants */
-	switch (hw->mac.type) {
-	case e1000_82580:
-		nvm->ops.validate = e1000_validate_nvm_checksum_82580;
-		nvm->ops.update = e1000_update_nvm_checksum_82580;
-		break;
-	case e1000_i350:
-	case e1000_i354:
-		nvm->ops.validate = e1000_validate_nvm_checksum_i350;
-		nvm->ops.update = e1000_update_nvm_checksum_i350;
-		break;
-	default:
-		break;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_mac_params_82575 - Init MAC func ptrs.
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
-
-	DEBUGFUNC("e1000_init_mac_params_82575");
-
-	/* Derives media type */
-	e1000_get_media_type_82575(hw);
-	/* Set mta register count */
-	mac->mta_reg_count = 128;
-	/* Set uta register count */
-	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
-	/* Set rar entry count */
-	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
-	if (mac->type == e1000_82576)
-		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
-	if (mac->type == e1000_82580)
-		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
-	if (mac->type == e1000_i350 || mac->type == e1000_i354)
-		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
-
-	/* Enable EEE default settings for EEE supported devices */
-	if (mac->type >= e1000_i350)
-		dev_spec->eee_disable = false;
-
-	/* Allow a single clear of the SW semaphore on I210 and newer */
-	if (mac->type >= e1000_i210)
-		dev_spec->clear_semaphore_once = true;
-
-	/* Set if part includes ASF firmware */
-	mac->asf_firmware_present = true;
-	/* FWSM register */
-	mac->has_fwsm = true;
-	/* ARC supported; valid only if manageability features are enabled. */
-	mac->arc_subsystem_valid =
-		!!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK);
-
-	/* Function pointers */
-
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
-	/* reset */
-	if (mac->type >= e1000_82580)
-		mac->ops.reset_hw = e1000_reset_hw_82580;
-	else
-	mac->ops.reset_hw = e1000_reset_hw_82575;
-	/* hw initialization */
-	if ((mac->type == e1000_i210) || (mac->type == e1000_i211))
-		mac->ops.init_hw = e1000_init_hw_i210;
-	else
-	mac->ops.init_hw = e1000_init_hw_82575;
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_generic;
-	/* physical interface link setup */
-	mac->ops.setup_physical_interface =
-		(hw->phy.media_type == e1000_media_type_copper)
-		? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575;
-	/* physical interface shutdown */
-	mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575;
-	/* physical interface power up */
-	mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575;
-	/* check for link */
-	mac->ops.check_for_link = e1000_check_for_link_82575;
-	/* read mac address */
-	mac->ops.read_mac_addr = e1000_read_mac_addr_82575;
-	/* configure collision distance */
-	mac->ops.config_collision_dist = e1000_config_collision_dist_82575;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
-	if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) {
-		/* writing VFTA */
-		mac->ops.write_vfta = e1000_write_vfta_i350;
-		/* clearing VFTA */
-		mac->ops.clear_vfta = e1000_clear_vfta_i350;
-	} else {
-		/* writing VFTA */
-		mac->ops.write_vfta = e1000_write_vfta_generic;
-		/* clearing VFTA */
-		mac->ops.clear_vfta = e1000_clear_vfta_generic;
-	}
-	if (hw->mac.type >= e1000_82580)
-		mac->ops.validate_mdi_setting =
-				e1000_validate_mdi_setting_crossover_generic;
-	/* ID LED init */
-	mac->ops.id_led_init = e1000_id_led_init_generic;
-	/* blink LED */
-	mac->ops.blink_led = e1000_blink_led_generic;
-	/* setup LED */
-	mac->ops.setup_led = e1000_setup_led_generic;
-	/* cleanup LED */
-	mac->ops.cleanup_led = e1000_cleanup_led_generic;
-	/* turn on/off LED */
-	mac->ops.led_on = e1000_led_on_generic;
-	mac->ops.led_off = e1000_led_off_generic;
-	/* clear hardware counters */
-	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
-	/* link info */
-	mac->ops.get_link_up_info = e1000_get_link_up_info_82575;
-	/* acquire SW_FW sync */
-	mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575;
-	mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575;
-	if (mac->type >= e1000_i210) {
-		mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210;
-		mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210;
-	}
-
-	/* set lan id for port to determine which phy lock to use */
-	hw->mac.ops.set_lan_id(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_function_pointers_82575 - Init func ptrs.
- *  @hw: pointer to the HW structure
- *
- *  Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_82575(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_82575");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_82575;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_82575;
-	hw->phy.ops.init_params = e1000_init_phy_params_82575;
-	hw->mbx.ops.init_params = e1000_init_mbx_params_pf;
-}
-
-/**
- *  e1000_acquire_phy_82575 - Acquire rights to access PHY
- *  @hw: pointer to the HW structure
- *
- *  Acquire access rights to the correct PHY.
- **/
-STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw)
-{
-	u16 mask = E1000_SWFW_PHY0_SM;
-
-	DEBUGFUNC("e1000_acquire_phy_82575");
-
-	if (hw->bus.func == E1000_FUNC_1)
-		mask = E1000_SWFW_PHY1_SM;
-	else if (hw->bus.func == E1000_FUNC_2)
-		mask = E1000_SWFW_PHY2_SM;
-	else if (hw->bus.func == E1000_FUNC_3)
-		mask = E1000_SWFW_PHY3_SM;
-
-	return hw->mac.ops.acquire_swfw_sync(hw, mask);
-}
-
-/**
- *  e1000_release_phy_82575 - Release rights to access PHY
- *  @hw: pointer to the HW structure
- *
- *  A wrapper to release access rights to the correct PHY.
- **/
-STATIC void e1000_release_phy_82575(struct e1000_hw *hw)
-{
-	u16 mask = E1000_SWFW_PHY0_SM;
-
-	DEBUGFUNC("e1000_release_phy_82575");
-
-	if (hw->bus.func == E1000_FUNC_1)
-		mask = E1000_SWFW_PHY1_SM;
-	else if (hw->bus.func == E1000_FUNC_2)
-		mask = E1000_SWFW_PHY2_SM;
-	else if (hw->bus.func == E1000_FUNC_3)
-		mask = E1000_SWFW_PHY3_SM;
-
-	hw->mac.ops.release_swfw_sync(hw, mask);
-}
-
-/**
- *  e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Reads the PHY register at offset using the serial gigabit media independent
- *  interface and stores the retrieved information in data.
- **/
-STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
-					  u16 *data)
-{
-	s32 ret_val = -E1000_ERR_PARAM;
-
-	DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
-
-	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
-		DEBUGOUT1("PHY Address %u is out of range\n", offset);
-		goto out;
-	}
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		goto out;
-
-	ret_val = e1000_read_phy_reg_i2c(hw, offset, data);
-
-	hw->phy.ops.release(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Writes the data to PHY register at the offset using the serial gigabit
- *  media independent interface.
- **/
-STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
-					   u16 data)
-{
-	s32 ret_val = -E1000_ERR_PARAM;
-
-	DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
-
-	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
-		DEBUGOUT1("PHY Address %d is out of range\n", offset);
-		goto out;
-	}
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		goto out;
-
-	ret_val = e1000_write_phy_reg_i2c(hw, offset, data);
-
-	hw->phy.ops.release(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_get_phy_id_82575 - Retrieve PHY addr and id
- *  @hw: pointer to the HW structure
- *
- *  Retrieves the PHY address and ID for both PHY's which do and do not use
- *  sgmi interface.
- **/
-STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32  ret_val = E1000_SUCCESS;
-	u16 phy_id;
-	u32 ctrl_ext;
-	u32 mdic;
-
-	DEBUGFUNC("e1000_get_phy_id_82575");
-
-	/* some i354 devices need an extra read for phy id */
-	if (hw->mac.type == e1000_i354)
-		e1000_get_phy_id(hw);
-
-	/*
-	 * For SGMII PHYs, we try the list of possible addresses until
-	 * we find one that works.  For non-SGMII PHYs
-	 * (e.g. integrated copper PHYs), an address of 1 should
-	 * work.  The result of this function should mean phy->phy_addr
-	 * and phy->id are set correctly.
-	 */
-	if (!e1000_sgmii_active_82575(hw)) {
-		phy->addr = 1;
-		ret_val = e1000_get_phy_id(hw);
-		goto out;
-	}
-
-	if (e1000_sgmii_uses_mdio_82575(hw)) {
-		switch (hw->mac.type) {
-		case e1000_82575:
-		case e1000_82576:
-			mdic = E1000_READ_REG(hw, E1000_MDIC);
-			mdic &= E1000_MDIC_PHY_MASK;
-			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
-			break;
-		case e1000_82580:
-		case e1000_i350:
-		case e1000_i354:
-		case e1000_i210:
-		case e1000_i211:
-			mdic = E1000_READ_REG(hw, E1000_MDICNFG);
-			mdic &= E1000_MDICNFG_PHY_MASK;
-			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
-			break;
-		default:
-			ret_val = -E1000_ERR_PHY;
-			goto out;
-			break;
-		}
-		ret_val = e1000_get_phy_id(hw);
-		goto out;
-	}
-
-	/* Power on sgmii phy if it is disabled */
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
-			ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
-	E1000_WRITE_FLUSH(hw);
-	msec_delay(300);
-
-	/*
-	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
-	 * Therefore, we need to test 1-7
-	 */
-	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
-		ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
-		if (ret_val == E1000_SUCCESS) {
-			DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
-				  phy_id, phy->addr);
-			/*
-			 * At the time of this writing, The M88 part is
-			 * the only supported SGMII PHY product.
-			 */
-			if (phy_id == M88_VENDOR)
-				break;
-		} else {
-			DEBUGOUT1("PHY address %u was unreadable\n",
-				  phy->addr);
-		}
-	}
-
-	/* A valid PHY type couldn't be found. */
-	if (phy->addr == 8) {
-		phy->addr = 0;
-		ret_val = -E1000_ERR_PHY;
-	} else {
-		ret_val = e1000_get_phy_id(hw);
-	}
-
-	/* restore previous sfp cage power state */
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
- *  @hw: pointer to the HW structure
- *
- *  Resets the PHY using the serial gigabit media independent interface.
- **/
-STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	struct e1000_phy_info *phy = &hw->phy;
-
-	DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
-
-	/*
-	 * This isn't a true "hard" reset, but is the only reset
-	 * available to us at this time.
-	 */
-
-	DEBUGOUT("Soft resetting SGMII attached PHY...\n");
-
-	if (!(hw->phy.ops.write_reg))
-		goto out;
-
-	/*
-	 * SFP documentation requires the following to configure the SPF module
-	 * to work on SGMII.  No further documentation is given.
-	 */
-	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
-	if (ret_val)
-		goto out;
-
-	ret_val = hw->phy.ops.commit(hw);
-	if (ret_val)
-		goto out;
-
-	if (phy->id == M88E1512_E_PHY_ID)
-		ret_val = e1000_initialize_M88E1512_phy(hw);
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
- *  @hw: pointer to the HW structure
- *  @active: true to enable LPLU, false to disable
- *
- *  Sets the LPLU D0 state according to the active flag.  When
- *  activating LPLU this function also disables smart speed
- *  and vice versa.  LPLU will not be activated unless the
- *  device autonegotiation advertisement meets standards of
- *  either 10 or 10/100 or 10/100/1000 at all duplexes.
- *  This is a function pointer entry point only called by
- *  PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-	u16 data;
-
-	DEBUGFUNC("e1000_set_d0_lplu_state_82575");
-
-	if (!(hw->phy.ops.read_reg))
-		goto out;
-
-	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
-	if (ret_val)
-		goto out;
-
-	if (active) {
-		data |= IGP02E1000_PM_D0_LPLU;
-		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-					     data);
-		if (ret_val)
-			goto out;
-
-		/* When LPLU is enabled, we should disable SmartSpeed */
-		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-					    &data);
-		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-					     data);
-		if (ret_val)
-			goto out;
-	} else {
-		data &= ~IGP02E1000_PM_D0_LPLU;
-		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-					     data);
-		/*
-		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
-		 * during Dx states where the power conservation is most
-		 * important.  During driver activity we should enable
-		 * SmartSpeed, so performance is maintained.
-		 */
-		if (phy->smart_speed == e1000_smart_speed_on) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				goto out;
-
-			data |= IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				goto out;
-		} else if (phy->smart_speed == e1000_smart_speed_off) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				goto out;
-
-			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				goto out;
-		}
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
- *  @hw: pointer to the HW structure
- *  @active: true to enable LPLU, false to disable
- *
- *  Sets the LPLU D0 state according to the active flag.  When
- *  activating LPLU this function also disables smart speed
- *  and vice versa.  LPLU will not be activated unless the
- *  device autonegotiation advertisement meets standards of
- *  either 10 or 10/100 or 10/100/1000 at all duplexes.
- *  This is a function pointer entry point only called by
- *  PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-	u32 data;
-
-	DEBUGFUNC("e1000_set_d0_lplu_state_82580");
-
-	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-
-	if (active) {
-		data |= E1000_82580_PM_D0_LPLU;
-
-		/* When LPLU is enabled, we should disable SmartSpeed */
-		data &= ~E1000_82580_PM_SPD;
-	} else {
-		data &= ~E1000_82580_PM_D0_LPLU;
-
-		/*
-		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
-		 * during Dx states where the power conservation is most
-		 * important.  During driver activity we should enable
-		 * SmartSpeed, so performance is maintained.
-		 */
-		if (phy->smart_speed == e1000_smart_speed_on)
-			data |= E1000_82580_PM_SPD;
-		else if (phy->smart_speed == e1000_smart_speed_off)
-			data &= ~E1000_82580_PM_SPD;
-	}
-
-	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
-	return ret_val;
-}
-
-/**
- *  e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3
- *  @hw: pointer to the HW structure
- *  @active: boolean used to enable/disable lplu
- *
- *  Success returns 0, Failure returns 1
- *
- *  The low power link up (lplu) state is set to the power management level D3
- *  and SmartSpeed is disabled when active is true, else clear lplu for D3
- *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
- *  is used during Dx states where the power conservation is most important.
- *  During driver activity, SmartSpeed should be enabled so performance is
- *  maintained.
- **/
-s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-	u32 data;
-
-	DEBUGFUNC("e1000_set_d3_lplu_state_82580");
-
-	data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-
-	if (!active) {
-		data &= ~E1000_82580_PM_D3_LPLU;
-		/*
-		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
-		 * during Dx states where the power conservation is most
-		 * important.  During driver activity we should enable
-		 * SmartSpeed, so performance is maintained.
-		 */
-		if (phy->smart_speed == e1000_smart_speed_on)
-			data |= E1000_82580_PM_SPD;
-		else if (phy->smart_speed == e1000_smart_speed_off)
-			data &= ~E1000_82580_PM_SPD;
-	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
-		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
-		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
-		data |= E1000_82580_PM_D3_LPLU;
-		/* When LPLU is enabled, we should disable SmartSpeed */
-		data &= ~E1000_82580_PM_SPD;
-	}
-
-	E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data);
-	return ret_val;
-}
-
-/**
- *  e1000_acquire_nvm_82575 - Request for access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Acquire the necessary semaphores for exclusive access to the EEPROM.
- *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
- *  Return successful if access grant bit set, else clear the request for
- *  EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_acquire_nvm_82575");
-
-	ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-	if (ret_val)
-		goto out;
-
-	/*
-	 * Check if there is some access
-	 * error this access may hook on
-	 */
-	if (hw->mac.type == e1000_i350) {
-		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-		if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT |
-		    E1000_EECD_TIMEOUT)) {
-			/* Clear all access error flags */
-			E1000_WRITE_REG(hw, E1000_EECD, eecd |
-					E1000_EECD_ERROR_CLR);
-			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
-		}
-	}
-	if (hw->mac.type == e1000_82580) {
-		u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-		if (eecd & E1000_EECD_BLOCKED) {
-			/* Clear access error flag */
-			E1000_WRITE_REG(hw, E1000_EECD, eecd |
-					E1000_EECD_BLOCKED);
-			DEBUGOUT("Nvm bit banging access error detected and cleared.\n");
-		}
-	}
-
-
-	ret_val = e1000_acquire_nvm_generic(hw);
-	if (ret_val)
-		e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_release_nvm_82575 - Release exclusive access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
- *  then release the semaphores acquired.
- **/
-STATIC void e1000_release_nvm_82575(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_release_nvm_82575");
-
-	e1000_release_nvm_generic(hw);
-
-	e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- *  e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
- *  @hw: pointer to the HW structure
- *  @mask: specifies which semaphore to acquire
- *
- *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
- *  will also specify which port we're acquiring the lock for.
- **/
-STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
-{
-	u32 swfw_sync;
-	u32 swmask = mask;
-	u32 fwmask = mask << 16;
-	s32 ret_val = E1000_SUCCESS;
-	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
-
-	DEBUGFUNC("e1000_acquire_swfw_sync_82575");
-
-	while (i < timeout) {
-		if (e1000_get_hw_semaphore_generic(hw)) {
-			ret_val = -E1000_ERR_SWFW_SYNC;
-			goto out;
-		}
-
-		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
-		if (!(swfw_sync & (fwmask | swmask)))
-			break;
-
-		/*
-		 * Firmware currently using resource (fwmask)
-		 * or other software thread using resource (swmask)
-		 */
-		e1000_put_hw_semaphore_generic(hw);
-		msec_delay_irq(5);
-		i++;
-	}
-
-	if (i == timeout) {
-		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
-		ret_val = -E1000_ERR_SWFW_SYNC;
-		goto out;
-	}
-
-	swfw_sync |= swmask;
-	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
-	e1000_put_hw_semaphore_generic(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_release_swfw_sync_82575 - Release SW/FW semaphore
- *  @hw: pointer to the HW structure
- *  @mask: specifies which semaphore to acquire
- *
- *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
- *  will also specify which port we're releasing the lock for.
- **/
-STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
-{
-	u32 swfw_sync;
-
-	DEBUGFUNC("e1000_release_swfw_sync_82575");
-
-	while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
-		; /* Empty */
-
-	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
-	swfw_sync &= ~mask;
-	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
-	e1000_put_hw_semaphore_generic(hw);
-}
-
-/**
- *  e1000_get_cfg_done_82575 - Read config done bit
- *  @hw: pointer to the HW structure
- *
- *  Read the management control register for the config done bit for
- *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
- *  to read the config done bit, so an error is *ONLY* logged and returns
- *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
- *  would not be able to be reset or change link.
- **/
-STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw)
-{
-	s32 timeout = PHY_CFG_TIMEOUT;
-	s32 ret_val = E1000_SUCCESS;
-	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
-
-	DEBUGFUNC("e1000_get_cfg_done_82575");
-
-	if (hw->bus.func == E1000_FUNC_1)
-		mask = E1000_NVM_CFG_DONE_PORT_1;
-	else if (hw->bus.func == E1000_FUNC_2)
-		mask = E1000_NVM_CFG_DONE_PORT_2;
-	else if (hw->bus.func == E1000_FUNC_3)
-		mask = E1000_NVM_CFG_DONE_PORT_3;
-	while (timeout) {
-		if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
-			break;
-		msec_delay(1);
-		timeout--;
-	}
-	if (!timeout)
-		DEBUGOUT("MNG configuration cycle has not completed.\n");
-
-	/* If EEPROM is not marked present, init the PHY manually */
-	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
-	    (hw->phy.type == e1000_phy_igp_3))
-		e1000_phy_init_script_igp3(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_link_up_info_82575 - Get link speed/duplex info
- *  @hw: pointer to the HW structure
- *  @speed: stores the current speed
- *  @duplex: stores the current duplex
- *
- *  This is a wrapper function, if using the serial gigabit media independent
- *  interface, use PCS to retrieve the link speed and duplex information.
- *  Otherwise, use the generic function to get the link speed and duplex info.
- **/
-STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
-					u16 *duplex)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_get_link_up_info_82575");
-
-	if (hw->phy.media_type != e1000_media_type_copper)
-		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
-							       duplex);
-	else
-		ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
-								    duplex);
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_link_82575 - Check for link
- *  @hw: pointer to the HW structure
- *
- *  If sgmii is enabled, then use the pcs register to determine link, otherwise
- *  use the generic interface for determining link.
- **/
-STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 speed, duplex;
-
-	DEBUGFUNC("e1000_check_for_link_82575");
-
-	if (hw->phy.media_type != e1000_media_type_copper) {
-		ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
-							       &duplex);
-		/*
-		 * Use this flag to determine if link needs to be checked or
-		 * not.  If we have link clear the flag so that we do not
-		 * continue to check for link.
-		 */
-		hw->mac.get_link_status = !hw->mac.serdes_has_link;
-
-		/*
-		 * Configure Flow Control now that Auto-Neg has completed.
-		 * First, we need to restore the desired flow control
-		 * settings because we may have had to re-autoneg with a
-		 * different link partner.
-		 */
-		ret_val = e1000_config_fc_after_link_up_generic(hw);
-		if (ret_val)
-			DEBUGOUT("Error configuring flow control\n");
-	} else {
-		ret_val = e1000_check_for_copper_link_generic(hw);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_link_media_swap - Check which M88E1112 interface linked
- *  @hw: pointer to the HW structure
- *
- *  Poll the M88E1112 interfaces to see which interface achieved link.
- */
-STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-	u8 port = 0;
-
-	DEBUGFUNC("e1000_check_for_link_media_swap");
-
-	/* Check the copper medium. */
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
-	if (ret_val)
-		return ret_val;
-
-	if (data & E1000_M88E1112_STATUS_LINK)
-		port = E1000_MEDIA_PORT_COPPER;
-
-	/* Check the other medium. */
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
-	if (ret_val)
-		return ret_val;
-
-	/* reset page to 0 */
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
-	if (ret_val)
-		return ret_val;
-
-	if (data & E1000_M88E1112_STATUS_LINK)
-		port = E1000_MEDIA_PORT_OTHER;
-
-	/* Determine if a swap needs to happen. */
-	if (port && (hw->dev_spec._82575.media_port != port)) {
-		hw->dev_spec._82575.media_port = port;
-		hw->dev_spec._82575.media_changed = true;
-	} else {
-		ret_val = e1000_check_for_link_82575(hw);
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown
- *  @hw: pointer to the HW structure
- **/
-STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw)
-{
-	u32 reg;
-
-	DEBUGFUNC("e1000_power_up_serdes_link_82575");
-
-	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
-	    !e1000_sgmii_active_82575(hw))
-		return;
-
-	/* Enable PCS to turn on link */
-	reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
-	reg |= E1000_PCS_CFG_PCS_EN;
-	E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
-
-	/* Power up the laser */
-	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
-	/* flush the write to verify completion */
-	E1000_WRITE_FLUSH(hw);
-	msec_delay(1);
-}
-
-/**
- *  e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
- *  @hw: pointer to the HW structure
- *  @speed: stores the current speed
- *  @duplex: stores the current duplex
- *
- *  Using the physical coding sub-layer (PCS), retrieve the current speed and
- *  duplex, then store the values in the pointers provided.
- **/
-STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
-						u16 *speed, u16 *duplex)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 pcs;
-	u32 status;
-
-	DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
-
-	/*
-	 * Read the PCS Status register for link state. For non-copper mode,
-	 * the status register is not accurate. The PCS status register is
-	 * used instead.
-	 */
-	pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
-
-	/*
-	 * The link up bit determines when link is up on autoneg.
-	 */
-	if (pcs & E1000_PCS_LSTS_LINK_OK) {
-		mac->serdes_has_link = true;
-
-		/* Detect and store PCS speed */
-		if (pcs & E1000_PCS_LSTS_SPEED_1000)
-			*speed = SPEED_1000;
-		else if (pcs & E1000_PCS_LSTS_SPEED_100)
-			*speed = SPEED_100;
-		else
-			*speed = SPEED_10;
-
-		/* Detect and store PCS duplex */
-		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
-			*duplex = FULL_DUPLEX;
-		else
-			*duplex = HALF_DUPLEX;
-
-		/* Check if it is an I354 2.5Gb backplane connection. */
-		if (mac->type == e1000_i354) {
-			status = E1000_READ_REG(hw, E1000_STATUS);
-			if ((status & E1000_STATUS_2P5_SKU) &&
-			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
-				*speed = SPEED_2500;
-				*duplex = FULL_DUPLEX;
-				DEBUGOUT("2500 Mbs, ");
-				DEBUGOUT("Full Duplex\n");
-			}
-		}
-
-	} else {
-		mac->serdes_has_link = false;
-		*speed = 0;
-		*duplex = 0;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_shutdown_serdes_link_82575 - Remove link during power down
- *  @hw: pointer to the HW structure
- *
- *  In the case of serdes shut down sfp and PCS on driver unload
- *  when management pass thru is not enabled.
- **/
-void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw)
-{
-	u32 reg;
-
-	DEBUGFUNC("e1000_shutdown_serdes_link_82575");
-
-	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
-	    !e1000_sgmii_active_82575(hw))
-		return;
-
-	if (!e1000_enable_mng_pass_thru(hw)) {
-		/* Disable PCS to turn off link */
-		reg = E1000_READ_REG(hw, E1000_PCS_CFG0);
-		reg &= ~E1000_PCS_CFG_PCS_EN;
-		E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg);
-
-		/* shutdown the laser */
-		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		reg |= E1000_CTRL_EXT_SDP3_DATA;
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
-		/* flush the write to verify completion */
-		E1000_WRITE_FLUSH(hw);
-		msec_delay(1);
-	}
-
-	return;
-}
-
-/**
- *  e1000_reset_hw_82575 - Reset hardware
- *  @hw: pointer to the HW structure
- *
- *  This resets the hardware into a known state.
- **/
-STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_reset_hw_82575");
-
-	/*
-	 * Prevent the PCI-E bus from sticking if there is no TLP connection
-	 * on the last TLP read/write transaction when MAC is reset.
-	 */
-	ret_val = e1000_disable_pcie_master_generic(hw);
-	if (ret_val)
-		DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
-	/* set the completion timeout for interface */
-	ret_val = e1000_set_pcie_completion_timeout(hw);
-	if (ret_val)
-		DEBUGOUT("PCI-E Set completion timeout has failed.\n");
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
-	E1000_WRITE_FLUSH(hw);
-
-	msec_delay(10);
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	DEBUGOUT("Issuing a global reset to MAC\n");
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
-	ret_val = e1000_get_auto_rd_done_generic(hw);
-	if (ret_val) {
-		/*
-		 * When auto config read does not complete, do not
-		 * return with an error. This can happen in situations
-		 * where there is no eeprom and prevents getting link.
-		 */
-		DEBUGOUT("Auto Read Done did not complete\n");
-	}
-
-	/* If EEPROM is not present, run manual init scripts */
-	if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES))
-		e1000_reset_init_script_82575(hw);
-
-	/* Clear any pending interrupt events. */
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_READ_REG(hw, E1000_ICR);
-
-	/* Install any alternate MAC address into RAR0 */
-	ret_val = e1000_check_alt_mac_addr_generic(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_hw_82575 - Initialize hardware
- *  @hw: pointer to the HW structure
- *
- *  This inits the hardware readying it for operation.
- **/
-s32 e1000_init_hw_82575(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val;
-	u16 i, rar_count = mac->rar_entry_count;
-
-	DEBUGFUNC("e1000_init_hw_82575");
-
-	/* Initialize identification LED */
-	ret_val = mac->ops.id_led_init(hw);
-	if (ret_val) {
-		DEBUGOUT("Error initializing identification LED\n");
-		/* This is not fatal and we should not stop init due to this */
-	}
-
-	/* Disabling VLAN filtering */
-	DEBUGOUT("Initializing the IEEE VLAN\n");
-	mac->ops.clear_vfta(hw);
-
-	/* Setup the receive address */
-	e1000_init_rx_addrs_generic(hw, rar_count);
-
-	/* Zero out the Multicast HASH table */
-	DEBUGOUT("Zeroing the MTA\n");
-	for (i = 0; i < mac->mta_reg_count; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
-	/* Zero out the Unicast HASH table */
-	DEBUGOUT("Zeroing the UTA\n");
-	for (i = 0; i < mac->uta_reg_count; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0);
-
-	/* Setup link and flow control */
-	ret_val = mac->ops.setup_link(hw);
-
-	/* Set the default MTU size */
-	hw->dev_spec._82575.mtu = 1500;
-
-	/*
-	 * Clear all of the statistics registers (clear on read).  It is
-	 * important that we do this after we have tried to establish link
-	 * because the symbol error count will increment wildly if there
-	 * is no link.
-	 */
-	e1000_clear_hw_cntrs_82575(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_setup_copper_link_82575 - Configure copper link settings
- *  @hw: pointer to the HW structure
- *
- *  Configures the link for auto-neg or forced speed and duplex.  Then we check
- *  for link, once link is established calls to configure collision distance
- *  and flow control are called.
- **/
-STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-	u32 phpm_reg;
-
-	DEBUGFUNC("e1000_setup_copper_link_82575");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= E1000_CTRL_SLU;
-	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	/* Clear Go Link Disconnect bit on supported devices */
-	switch (hw->mac.type) {
-	case e1000_82580:
-	case e1000_i350:
-	case e1000_i210:
-	case e1000_i211:
-		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
-		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
-		break;
-	default:
-		break;
-	}
-
-	ret_val = e1000_setup_serdes_link_82575(hw);
-	if (ret_val)
-		goto out;
-
-	if (e1000_sgmii_active_82575(hw)) {
-		/* allow time for SFP cage time to power up phy */
-		msec_delay(300);
-
-		ret_val = hw->phy.ops.reset(hw);
-		if (ret_val) {
-			DEBUGOUT("Error resetting the PHY.\n");
-			goto out;
-		}
-	}
-	switch (hw->phy.type) {
-	case e1000_phy_i210:
-	case e1000_phy_m88:
-		switch (hw->phy.id) {
-		case I347AT4_E_PHY_ID:
-		case M88E1112_E_PHY_ID:
-		case M88E1340M_E_PHY_ID:
-		case M88E1543_E_PHY_ID:
-		case M88E1512_E_PHY_ID:
-		case I210_I_PHY_ID:
-			ret_val = e1000_copper_link_setup_m88_gen2(hw);
-			break;
-		default:
-			ret_val = e1000_copper_link_setup_m88(hw);
-			break;
-		}
-		break;
-	case e1000_phy_igp_3:
-		ret_val = e1000_copper_link_setup_igp(hw);
-		break;
-	case e1000_phy_82580:
-		ret_val = e1000_copper_link_setup_82577(hw);
-		break;
-	default:
-		ret_val = -E1000_ERR_PHY;
-		break;
-	}
-
-	if (ret_val)
-		goto out;
-
-	ret_val = e1000_setup_copper_link_generic(hw);
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_setup_serdes_link_82575 - Setup link for serdes
- *  @hw: pointer to the HW structure
- *
- *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
- *  used on copper connections where the serialized gigabit media independent
- *  interface (sgmii), or serdes fiber is being used.  Configures the link
- *  for auto-negotiation or forces speed/duplex.
- **/
-STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw)
-{
-	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
-	bool pcs_autoneg;
-	s32 ret_val = E1000_SUCCESS;
-	u16 data;
-
-	DEBUGFUNC("e1000_setup_serdes_link_82575");
-
-	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
-	    !e1000_sgmii_active_82575(hw))
-		return ret_val;
-
-	/*
-	 * On the 82575, SerDes loopback mode persists until it is
-	 * explicitly turned off or a power cycle is performed.  A read to
-	 * the register does not indicate its status.  Therefore, we ensure
-	 * loopback mode is disabled during initialization.
-	 */
-	E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
-
-	/* power on the sfp cage if present */
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
-	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl_reg |= E1000_CTRL_SLU;
-
-	/* set both sw defined pins on 82575/82576*/
-	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576)
-		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
-
-	reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
-
-	/* default pcs_autoneg to the same setting as mac autoneg */
-	pcs_autoneg = hw->mac.autoneg;
-
-	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
-	case E1000_CTRL_EXT_LINK_MODE_SGMII:
-		/* sgmii mode lets the phy handle forcing speed/duplex */
-		pcs_autoneg = true;
-		/* autoneg time out should be disabled for SGMII mode */
-		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
-		break;
-	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
-		/* disable PCS autoneg and support parallel detect only */
-		pcs_autoneg = false;
-		/* fall through to default case */
-	default:
-		if (hw->mac.type == e1000_82575 ||
-		    hw->mac.type == e1000_82576) {
-			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
-			if (ret_val) {
-				DEBUGOUT("NVM Read Error\n");
-				return ret_val;
-			}
-
-			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
-				pcs_autoneg = false;
-		}
-
-		/*
-		 * non-SGMII modes only supports a speed of 1000/Full for the
-		 * link so it is best to just force the MAC and let the pcs
-		 * link either autoneg or be forced to 1000/Full
-		 */
-		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
-			    E1000_CTRL_FD | E1000_CTRL_FRCDPX;
-
-		/* set speed of 1000/Full if speed/duplex is forced */
-		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
-		break;
-	}
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
-
-	/*
-	 * New SerDes mode allows for forcing speed or autonegotiating speed
-	 * at 1gb. Autoneg should be default set by most drivers. This is the
-	 * mode that will be compatible with older link partners and switches.
-	 * However, both are supported by the hardware and some drivers/tools.
-	 */
-	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
-		 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
-
-	if (pcs_autoneg) {
-		/* Set PCS register for autoneg */
-		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
-		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
-
-		/* Disable force flow control for autoneg */
-		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
-
-		/* Configure flow control advertisement for autoneg */
-		anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
-		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
-
-		switch (hw->fc.requested_mode) {
-		case e1000_fc_full:
-		case e1000_fc_rx_pause:
-			anadv_reg |= E1000_TXCW_ASM_DIR;
-			anadv_reg |= E1000_TXCW_PAUSE;
-			break;
-		case e1000_fc_tx_pause:
-			anadv_reg |= E1000_TXCW_ASM_DIR;
-			break;
-		default:
-			break;
-		}
-
-		E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg);
-
-		DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
-	} else {
-		/* Set PCS register for forced link */
-		reg |= E1000_PCS_LCTL_FSD;	/* Force Speed */
-
-		/* Force flow control for forced link */
-		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
-
-		DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
-	}
-
-	E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
-
-	if (!pcs_autoneg && !e1000_sgmii_active_82575(hw))
-		e1000_force_mac_fc_generic(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_media_type_82575 - derives current media type.
- *  @hw: pointer to the HW structure
- *
- *  The media type is chosen reflecting few settings.
- *  The following are taken into account:
- *  - link mode set in the current port Init Control Word #3
- *  - current link mode settings in CSR register
- *  - MDIO vs. I2C PHY control interface chosen
- *  - SFP module media type
- **/
-STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
-	s32 ret_val = E1000_SUCCESS;
-	u32 ctrl_ext = 0;
-	u32 link_mode = 0;
-
-	/* Set internal phy as default */
-	dev_spec->sgmii_active = false;
-	dev_spec->module_plugged = false;
-
-	/* Get CSR setting */
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-
-	/* extract link mode setting */
-	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
-
-	switch (link_mode) {
-	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
-		hw->phy.media_type = e1000_media_type_internal_serdes;
-		break;
-	case E1000_CTRL_EXT_LINK_MODE_GMII:
-		hw->phy.media_type = e1000_media_type_copper;
-		break;
-	case E1000_CTRL_EXT_LINK_MODE_SGMII:
-		/* Get phy control interface type set (MDIO vs. I2C)*/
-		if (e1000_sgmii_uses_mdio_82575(hw)) {
-			hw->phy.media_type = e1000_media_type_copper;
-			dev_spec->sgmii_active = true;
-			break;
-		}
-		/* fall through for I2C based SGMII */
-	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
-		/* read media type from SFP EEPROM */
-		ret_val = e1000_set_sfp_media_type_82575(hw);
-		if ((ret_val != E1000_SUCCESS) ||
-		    (hw->phy.media_type == e1000_media_type_unknown)) {
-			/*
-			 * If media type was not identified then return media
-			 * type defined by the CTRL_EXT settings.
-			 */
-			hw->phy.media_type = e1000_media_type_internal_serdes;
-
-			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
-				hw->phy.media_type = e1000_media_type_copper;
-				dev_spec->sgmii_active = true;
-			}
-
-			break;
-		}
-
-		/* do not change link mode for 100BaseFX */
-		if (dev_spec->eth_flags.e100_base_fx)
-			break;
-
-		/* change current link mode setting */
-		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
-
-		if (hw->phy.media_type == e1000_media_type_copper)
-			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
-		else
-			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
-
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
-		break;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_set_sfp_media_type_82575 - derives SFP module media type.
- *  @hw: pointer to the HW structure
- *
- *  The media type is chosen based on SFP module.
- *  compatibility flags retrieved from SFP ID EEPROM.
- **/
-STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_ERR_CONFIG;
-	u32 ctrl_ext = 0;
-	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
-	struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags;
-	u8 tranceiver_type = 0;
-	s32 timeout = 3;
-
-	/* Turn I2C interface ON and power on sfp cage */
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
-
-	E1000_WRITE_FLUSH(hw);
-
-	/* Read SFP module data */
-	while (timeout) {
-		ret_val = e1000_read_sfp_data_byte(hw,
-			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
-			&tranceiver_type);
-		if (ret_val == E1000_SUCCESS)
-			break;
-		msec_delay(100);
-		timeout--;
-	}
-	if (ret_val != E1000_SUCCESS)
-		goto out;
-
-	ret_val = e1000_read_sfp_data_byte(hw,
-			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
-			(u8 *)eth_flags);
-	if (ret_val != E1000_SUCCESS)
-		goto out;
-
-	/* Check if there is some SFP module plugged and powered */
-	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
-	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
-		dev_spec->module_plugged = true;
-		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
-			hw->phy.media_type = e1000_media_type_internal_serdes;
-		} else if (eth_flags->e100_base_fx) {
-			dev_spec->sgmii_active = true;
-			hw->phy.media_type = e1000_media_type_internal_serdes;
-		} else if (eth_flags->e1000_base_t) {
-			dev_spec->sgmii_active = true;
-			hw->phy.media_type = e1000_media_type_copper;
-		} else {
-			hw->phy.media_type = e1000_media_type_unknown;
-			DEBUGOUT("PHY module has not been recognized\n");
-			goto out;
-		}
-	} else {
-		hw->phy.media_type = e1000_media_type_unknown;
-	}
-	ret_val = E1000_SUCCESS;
-out:
-	/* Restore I2C interface setting */
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	return ret_val;
-}
-
-/**
- *  e1000_valid_led_default_82575 - Verify a valid default LED config
- *  @hw: pointer to the HW structure
- *  @data: pointer to the NVM (EEPROM)
- *
- *  Read the EEPROM for the current default LED configuration.  If the
- *  LED configuration is not valid, set to a valid LED configuration.
- **/
-STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_valid_led_default_82575");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		goto out;
-	}
-
-	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
-		switch (hw->phy.media_type) {
-		case e1000_media_type_internal_serdes:
-			*data = ID_LED_DEFAULT_82575_SERDES;
-			break;
-		case e1000_media_type_copper:
-		default:
-			*data = ID_LED_DEFAULT;
-			break;
-		}
-	}
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_sgmii_active_82575 - Return sgmii state
- *  @hw: pointer to the HW structure
- *
- *  82575 silicon has a serialized gigabit media independent interface (sgmii)
- *  which can be enabled for use in the embedded applications.  Simply
- *  return the current state of the sgmii interface.
- **/
-STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
-	return dev_spec->sgmii_active;
-}
-
-/**
- *  e1000_reset_init_script_82575 - Inits HW defaults after reset
- *  @hw: pointer to the HW structure
- *
- *  Inits recommended HW defaults after a reset when there is no EEPROM
- *  detected. This is only for the 82575.
- **/
-STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_reset_init_script_82575");
-
-	if (hw->mac.type == e1000_82575) {
-		DEBUGOUT("Running reset init script for 82575\n");
-		/* SerDes configuration via SERDESCTRL */
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15);
-
-		/* CCM configuration via CCMCTL register */
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00);
-
-		/* PCIe lanes configuration */
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81);
-
-		/* PCIe PLL Configuration */
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00);
-		e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00);
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_mac_addr_82575 - Read device MAC address
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_read_mac_addr_82575");
-
-	/*
-	 * If there's an alternate MAC address place it in RAR0
-	 * so that it will override the Si installed default perm
-	 * address.
-	 */
-	ret_val = e1000_check_alt_mac_addr_generic(hw);
-	if (ret_val)
-		goto out;
-
-	ret_val = e1000_read_mac_addr_generic(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_config_collision_dist_82575 - Configure collision distance
- *  @hw: pointer to the HW structure
- *
- *  Configures the collision distance to the default value and is used
- *  during link setup.
- **/
-STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw)
-{
-	u32 tctl_ext;
-
-	DEBUGFUNC("e1000_config_collision_dist_82575");
-
-	tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT);
-
-	tctl_ext &= ~E1000_TCTL_EXT_COLD;
-	tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT;
-
-	E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext);
-	E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-
-	if (!(phy->ops.check_reset_block))
-		return;
-
-	/* If the management interface is not enabled, then power down */
-	if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw)))
-		e1000_power_down_phy_copper(hw);
-
-	return;
-}
-
-/**
- *  e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
- *  @hw: pointer to the HW structure
- *
- *  Clears the hardware counters by reading the counter registers.
- **/
-STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_clear_hw_cntrs_82575");
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	E1000_READ_REG(hw, E1000_PRC64);
-	E1000_READ_REG(hw, E1000_PRC127);
-	E1000_READ_REG(hw, E1000_PRC255);
-	E1000_READ_REG(hw, E1000_PRC511);
-	E1000_READ_REG(hw, E1000_PRC1023);
-	E1000_READ_REG(hw, E1000_PRC1522);
-	E1000_READ_REG(hw, E1000_PTC64);
-	E1000_READ_REG(hw, E1000_PTC127);
-	E1000_READ_REG(hw, E1000_PTC255);
-	E1000_READ_REG(hw, E1000_PTC511);
-	E1000_READ_REG(hw, E1000_PTC1023);
-	E1000_READ_REG(hw, E1000_PTC1522);
-
-	E1000_READ_REG(hw, E1000_ALGNERRC);
-	E1000_READ_REG(hw, E1000_RXERRC);
-	E1000_READ_REG(hw, E1000_TNCRS);
-	E1000_READ_REG(hw, E1000_CEXTERR);
-	E1000_READ_REG(hw, E1000_TSCTC);
-	E1000_READ_REG(hw, E1000_TSCTFC);
-
-	E1000_READ_REG(hw, E1000_MGTPRC);
-	E1000_READ_REG(hw, E1000_MGTPDC);
-	E1000_READ_REG(hw, E1000_MGTPTC);
-
-	E1000_READ_REG(hw, E1000_IAC);
-	E1000_READ_REG(hw, E1000_ICRXOC);
-
-	E1000_READ_REG(hw, E1000_ICRXPTC);
-	E1000_READ_REG(hw, E1000_ICRXATC);
-	E1000_READ_REG(hw, E1000_ICTXPTC);
-	E1000_READ_REG(hw, E1000_ICTXATC);
-	E1000_READ_REG(hw, E1000_ICTXQEC);
-	E1000_READ_REG(hw, E1000_ICTXQMTC);
-	E1000_READ_REG(hw, E1000_ICRXDMTC);
-
-	E1000_READ_REG(hw, E1000_CBTMPC);
-	E1000_READ_REG(hw, E1000_HTDPMC);
-	E1000_READ_REG(hw, E1000_CBRMPC);
-	E1000_READ_REG(hw, E1000_RPTHC);
-	E1000_READ_REG(hw, E1000_HGPTC);
-	E1000_READ_REG(hw, E1000_HTCBDPC);
-	E1000_READ_REG(hw, E1000_HGORCL);
-	E1000_READ_REG(hw, E1000_HGORCH);
-	E1000_READ_REG(hw, E1000_HGOTCL);
-	E1000_READ_REG(hw, E1000_HGOTCH);
-	E1000_READ_REG(hw, E1000_LENERRS);
-
-	/* This register should not be read in copper configurations */
-	if ((hw->phy.media_type == e1000_media_type_internal_serdes) ||
-	    e1000_sgmii_active_82575(hw))
-		E1000_READ_REG(hw, E1000_SCVPC);
-}
-
-/**
- *  e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable
- *  @hw: pointer to the HW structure
- *
- *  After rx enable if managability is enabled then there is likely some
- *  bad data at the start of the fifo and possibly in the DMA fifo.  This
- *  function clears the fifos and flushes any packets that came in as rx was
- *  being enabled.
- **/
-void e1000_rx_fifo_flush_82575(struct e1000_hw *hw)
-{
-	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
-	int i, ms_wait;
-
-	DEBUGFUNC("e1000_rx_fifo_workaround_82575");
-	if (hw->mac.type != e1000_82575 ||
-	    !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN))
-		return;
-
-	/* Disable all Rx queues */
-	for (i = 0; i < 4; i++) {
-		rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i));
-		E1000_WRITE_REG(hw, E1000_RXDCTL(i),
-				rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
-	}
-	/* Poll all queues to verify they have shut down */
-	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
-		msec_delay(1);
-		rx_enabled = 0;
-		for (i = 0; i < 4; i++)
-			rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i));
-		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
-			break;
-	}
-
-	if (ms_wait == 10)
-		DEBUGOUT("Queue disable timed out after 10ms\n");
-
-	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
-	 * incoming packets are rejected.  Set enable and wait 2ms so that
-	 * any packet that was coming in as RCTL.EN was set is flushed
-	 */
-	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
-	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
-
-	rlpml = E1000_READ_REG(hw, E1000_RLPML);
-	E1000_WRITE_REG(hw, E1000_RLPML, 0);
-
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
-	temp_rctl |= E1000_RCTL_LPE;
-
-	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl);
-	E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN);
-	E1000_WRITE_FLUSH(hw);
-	msec_delay(2);
-
-	/* Enable Rx queues that were previously enabled and restore our
-	 * previous state
-	 */
-	for (i = 0; i < 4; i++)
-		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-	E1000_WRITE_FLUSH(hw);
-
-	E1000_WRITE_REG(hw, E1000_RLPML, rlpml);
-	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
-
-	/* Flush receive errors generated by workaround */
-	E1000_READ_REG(hw, E1000_ROC);
-	E1000_READ_REG(hw, E1000_RNBC);
-	E1000_READ_REG(hw, E1000_MPC);
-}
-
-/**
- *  e1000_set_pcie_completion_timeout - set pci-e completion timeout
- *  @hw: pointer to the HW structure
- *
- *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
- *  however the hardware default for these parts is 500us to 1ms which is less
- *  than the 10ms recommended by the pci-e spec.  To address this we need to
- *  increase the value to either 10ms to 200ms for capability version 1 config,
- *  or 16ms to 55ms for version 2.
- **/
-STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw)
-{
-	u32 gcr = E1000_READ_REG(hw, E1000_GCR);
-	s32 ret_val = E1000_SUCCESS;
-	u16 pcie_devctl2;
-
-	/* only take action if timeout value is defaulted to 0 */
-	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
-		goto out;
-
-	/*
-	 * if capababilities version is type 1 we can write the
-	 * timeout of 10ms to 200ms through the GCR register
-	 */
-	if (!(gcr & E1000_GCR_CAP_VER2)) {
-		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
-		goto out;
-	}
-
-	/*
-	 * for version 2 capabilities we need to write the config space
-	 * directly in order to set the completion timeout value for
-	 * 16ms to 55ms
-	 */
-	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
-					  &pcie_devctl2);
-	if (ret_val)
-		goto out;
-
-	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
-
-	ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
-					   &pcie_devctl2);
-out:
-	/* disable completion timeout resend */
-	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
-
-	E1000_WRITE_REG(hw, E1000_GCR, gcr);
-	return ret_val;
-}
-
-/**
- *  e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
- *  @hw: pointer to the hardware struct
- *  @enable: state to enter, either enabled or disabled
- *  @pf: Physical Function pool - do not set anti-spoofing for the PF
- *
- *  enables/disables L2 switch anti-spoofing functionality.
- **/
-void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
-{
-	u32 reg_val, reg_offset;
-
-	switch (hw->mac.type) {
-	case e1000_82576:
-		reg_offset = E1000_DTXSWC;
-		break;
-	case e1000_i350:
-	case e1000_i354:
-		reg_offset = E1000_TXSWC;
-		break;
-	default:
-		return;
-	}
-
-	reg_val = E1000_READ_REG(hw, reg_offset);
-	if (enable) {
-		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
-			     E1000_DTXSWC_VLAN_SPOOF_MASK);
-		/* The PF can spoof - it has to in order to
-		 * support emulation mode NICs
-		 */
-		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
-	} else {
-		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
-			     E1000_DTXSWC_VLAN_SPOOF_MASK);
-	}
-	E1000_WRITE_REG(hw, reg_offset, reg_val);
-}
-
-/**
- *  e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback
- *  @hw: pointer to the hardware struct
- *  @enable: state to enter, either enabled or disabled
- *
- *  enables/disables L2 switch loopback functionality.
- **/
-void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
-{
-	u32 dtxswc;
-
-	switch (hw->mac.type) {
-	case e1000_82576:
-		dtxswc = E1000_READ_REG(hw, E1000_DTXSWC);
-		if (enable)
-			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
-		else
-			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
-		E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc);
-		break;
-	case e1000_i350:
-	case e1000_i354:
-		dtxswc = E1000_READ_REG(hw, E1000_TXSWC);
-		if (enable)
-			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
-		else
-			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
-		E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc);
-		break;
-	default:
-		/* Currently no other hardware supports loopback */
-		break;
-	}
-
-
-}
-
-/**
- *  e1000_vmdq_set_replication_pf - enable or disable vmdq replication
- *  @hw: pointer to the hardware struct
- *  @enable: state to enter, either enabled or disabled
- *
- *  enables/disables replication of packets across multiple pools.
- **/
-void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
-{
-	u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
-
-	if (enable)
-		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
-	else
-		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
-
-	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
-}
-
-/**
- *  e1000_read_phy_reg_82580 - Read 82580 MDI control register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Reads the MDI control register in the PHY at offset and stores the
- *  information read to data.
- **/
-STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_read_phy_reg_82580");
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		goto out;
-
-	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
-
-	hw->phy.ops.release(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_write_phy_reg_82580 - Write 82580 MDI control register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write to register at offset
- *
- *  Writes data to MDI control register in the PHY at offset.
- **/
-STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_write_phy_reg_82580");
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		goto out;
-
-	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
-
-	hw->phy.ops.release(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
- *  @hw: pointer to the HW structure
- *
- *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
- *  the values found in the EEPROM.  This addresses an issue in which these
- *  bits are not restored from EEPROM after reset.
- **/
-STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u32 mdicnfg;
-	u16 nvm_data = 0;
-
-	DEBUGFUNC("e1000_reset_mdicnfg_82580");
-
-	if (hw->mac.type != e1000_82580)
-		goto out;
-	if (!e1000_sgmii_active_82575(hw))
-		goto out;
-
-	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
-				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
-				   &nvm_data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		goto out;
-	}
-
-	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
-	if (nvm_data & NVM_WORD24_EXT_MDIO)
-		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
-	if (nvm_data & NVM_WORD24_COM_MDIO)
-		mdicnfg |= E1000_MDICNFG_COM_MDIO;
-	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_reset_hw_82580 - Reset hardware
- *  @hw: pointer to the HW structure
- *
- *  This resets function or entire device (all ports, etc.)
- *  to a known state.
- **/
-STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	/* BH SW mailbox bit in SW_FW_SYNC */
-	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
-	u32 ctrl;
-	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
-
-	DEBUGFUNC("e1000_reset_hw_82580");
-
-	hw->dev_spec._82575.global_device_reset = false;
-
-	/* 82580 does not reliably do global_device_reset due to hw errata */
-	if (hw->mac.type == e1000_82580)
-		global_device_reset = false;
-
-	/* Get current control state. */
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	/*
-	 * Prevent the PCI-E bus from sticking if there is no TLP connection
-	 * on the last TLP read/write transaction when MAC is reset.
-	 */
-	ret_val = e1000_disable_pcie_master_generic(hw);
-	if (ret_val)
-		DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
-	E1000_WRITE_FLUSH(hw);
-
-	msec_delay(10);
-
-	/* Determine whether or not a global dev reset is requested */
-	if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw,
-	    swmbsw_mask))
-			global_device_reset = false;
-
-	if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) &
-	    E1000_STAT_DEV_RST_SET))
-		ctrl |= E1000_CTRL_DEV_RST;
-	else
-		ctrl |= E1000_CTRL_RST;
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-	E1000_WRITE_FLUSH(hw);
-
-	/* Add delay to insure DEV_RST has time to complete */
-	if (global_device_reset)
-		msec_delay(5);
-
-	ret_val = e1000_get_auto_rd_done_generic(hw);
-	if (ret_val) {
-		/*
-		 * When auto config read does not complete, do not
-		 * return with an error. This can happen in situations
-		 * where there is no eeprom and prevents getting link.
-		 */
-		DEBUGOUT("Auto Read Done did not complete\n");
-	}
-
-	/* clear global device reset status bit */
-	E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET);
-
-	/* Clear any pending interrupt events. */
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_READ_REG(hw, E1000_ICR);
-
-	ret_val = e1000_reset_mdicnfg_82580(hw);
-	if (ret_val)
-		DEBUGOUT("Could not reset MDICNFG based on EEPROM\n");
-
-	/* Install any alternate MAC address into RAR0 */
-	ret_val = e1000_check_alt_mac_addr_generic(hw);
-
-	/* Release semaphore */
-	if (global_device_reset)
-		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
-
-	return ret_val;
-}
-
-/**
- *  e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size
- *  @data: data received by reading RXPBS register
- *
- *  The 82580 uses a table based approach for packet buffer allocation sizes.
- *  This function converts the retrieved value into the correct table value
- *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
- *  0x0 36  72 144   1   2   4   8  16
- *  0x8 35  70 140 rsv rsv rsv rsv rsv
- */
-u16 e1000_rxpbs_adjust_82580(u32 data)
-{
-	u16 ret_val = 0;
-
-	if (data < E1000_82580_RXPBS_TABLE_SIZE)
-		ret_val = e1000_82580_rxpbs_table[data];
-
-	return ret_val;
-}
-
-/**
- *  e1000_validate_nvm_checksum_with_offset - Validate EEPROM
- *  checksum
- *  @hw: pointer to the HW structure
- *  @offset: offset in words of the checksum protected region
- *
- *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 checksum = 0;
-	u16 i, nvm_data;
-
-	DEBUGFUNC("e1000_validate_nvm_checksum_with_offset");
-
-	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
-		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error\n");
-			goto out;
-		}
-		checksum += nvm_data;
-	}
-
-	if (checksum != (u16) NVM_SUM) {
-		DEBUGOUT("NVM Checksum Invalid\n");
-		ret_val = -E1000_ERR_NVM;
-		goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_update_nvm_checksum_with_offset - Update EEPROM
- *  checksum
- *  @hw: pointer to the HW structure
- *  @offset: offset in words of the checksum protected region
- *
- *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
- *  up to the checksum.  Then calculates the EEPROM checksum and writes the
- *  value to the EEPROM.
- **/
-s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
-{
-	s32 ret_val;
-	u16 checksum = 0;
-	u16 i, nvm_data;
-
-	DEBUGFUNC("e1000_update_nvm_checksum_with_offset");
-
-	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
-		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error while updating checksum.\n");
-			goto out;
-		}
-		checksum += nvm_data;
-	}
-	checksum = (u16) NVM_SUM - checksum;
-	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
-				    &checksum);
-	if (ret_val)
-		DEBUGOUT("NVM Write Error while updating checksum.\n");
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Calculates the EEPROM section checksum by reading/adding each word of
- *  the EEPROM and then verifies that the sum of the EEPROM is
- *  equal to 0xBABA.
- **/
-STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 eeprom_regions_count = 1;
-	u16 j, nvm_data;
-	u16 nvm_offset;
-
-	DEBUGFUNC("e1000_validate_nvm_checksum_82580");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		goto out;
-	}
-
-	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
-		/* if chekcsums compatibility bit is set validate checksums
-		 * for all 4 ports. */
-		eeprom_regions_count = 4;
-	}
-
-	for (j = 0; j < eeprom_regions_count; j++) {
-		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
-		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
-								  nvm_offset);
-		if (ret_val != E1000_SUCCESS)
-			goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_update_nvm_checksum_82580 - Update EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Updates the EEPROM section checksums for all 4 ports by reading/adding
- *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
- *  checksum and writes the value to the EEPROM.
- **/
-STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 j, nvm_data;
-	u16 nvm_offset;
-
-	DEBUGFUNC("e1000_update_nvm_checksum_82580");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n");
-		goto out;
-	}
-
-	if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) {
-		/* set compatibility bit to validate checksums appropriately */
-		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
-		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
-					    &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n");
-			goto out;
-		}
-	}
-
-	for (j = 0; j < 4; j++) {
-		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
-		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
-		if (ret_val)
-			goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Calculates the EEPROM section checksum by reading/adding each word of
- *  the EEPROM and then verifies that the sum of the EEPROM is
- *  equal to 0xBABA.
- **/
-STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 j;
-	u16 nvm_offset;
-
-	DEBUGFUNC("e1000_validate_nvm_checksum_i350");
-
-	for (j = 0; j < 4; j++) {
-		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
-		ret_val = e1000_validate_nvm_checksum_with_offset(hw,
-								  nvm_offset);
-		if (ret_val != E1000_SUCCESS)
-			goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_update_nvm_checksum_i350 - Update EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Updates the EEPROM section checksums for all 4 ports by reading/adding
- *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
- *  checksum and writes the value to the EEPROM.
- **/
-STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 j;
-	u16 nvm_offset;
-
-	DEBUGFUNC("e1000_update_nvm_checksum_i350");
-
-	for (j = 0; j < 4; j++) {
-		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
-		ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset);
-		if (ret_val != E1000_SUCCESS)
-			goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  __e1000_access_emi_reg - Read/write EMI register
- *  @hw: pointer to the HW structure
- *  @addr: EMI address to program
- *  @data: pointer to value to read/write from/to the EMI address
- *  @read: boolean flag to indicate read or write
- **/
-STATIC s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address,
-				  u16 *data, bool read)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("__e1000_access_emi_reg");
-
-	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
-	if (ret_val)
-		return ret_val;
-
-	if (read)
-		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
-	else
-		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_emi_reg - Read Extended Management Interface register
- *  @hw: pointer to the HW structure
- *  @addr: EMI address to program
- *  @data: value to be read from the EMI address
- **/
-s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
-{
-	DEBUGFUNC("e1000_read_emi_reg");
-
-	return __e1000_access_emi_reg(hw, addr, data, true);
-}
-
-/**
- *  e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY
- *  @hw: pointer to the HW structure
- *
- *  Initialize Marverl 1512 to work correctly with Avoton.
- **/
-s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_initialize_M88E1512_phy");
-
-	/* Check if this is correct PHY. */
-	if (phy->id != M88E1512_E_PHY_ID)
-		goto out;
-
-	/* Switch to PHY page 0xFF. */
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
-	if (ret_val)
-		goto out;
-
-	/* Switch to PHY page 0xFB. */
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
-	if (ret_val)
-		goto out;
-
-	/* Switch to PHY page 0x12. */
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
-	if (ret_val)
-		goto out;
-
-	/* Change mode to SGMII-to-Copper */
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
-	if (ret_val)
-		goto out;
-
-	/* Return the PHY to page 0. */
-	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
-	if (ret_val)
-		goto out;
-
-	ret_val = phy->ops.commit(hw);
-	if (ret_val) {
-		DEBUGOUT("Error committing the PHY changes\n");
-		return ret_val;
-	}
-
-	msec_delay(1000);
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_set_eee_i350 - Enable/disable EEE support
- *  @hw: pointer to the HW structure
- *
- *  Enable/disable EEE based on setting in dev_spec structure.
- *
- **/
-s32 e1000_set_eee_i350(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u32 ipcnfg, eeer;
-
-	DEBUGFUNC("e1000_set_eee_i350");
-
-	if ((hw->mac.type < e1000_i350) ||
-	    (hw->phy.media_type != e1000_media_type_copper))
-		goto out;
-	ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG);
-	eeer = E1000_READ_REG(hw, E1000_EEER);
-
-	/* enable or disable per user setting */
-	if (!(hw->dev_spec._82575.eee_disable)) {
-		u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU);
-
-		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
-		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
-			 E1000_EEER_LPI_FC);
-
-		/* This bit should not be set in normal operation. */
-		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
-			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
-	} else {
-		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
-		eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
-			  E1000_EEER_LPI_FC);
-	}
-	E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg);
-	E1000_WRITE_REG(hw, E1000_EEER, eeer);
-	E1000_READ_REG(hw, E1000_IPCNFG);
-	E1000_READ_REG(hw, E1000_EEER);
-out:
-
-	return ret_val;
-}
-
-/**
- *  e1000_set_eee_i354 - Enable/disable EEE support
- *  @hw: pointer to the HW structure
- *
- *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
- *
- **/
-s32 e1000_set_eee_i354(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-	u16 phy_data;
-
-	DEBUGFUNC("e1000_set_eee_i354");
-
-	if ((hw->phy.media_type != e1000_media_type_copper) ||
-	    ((phy->id != M88E1543_E_PHY_ID) &&
-	    (phy->id != M88E1512_E_PHY_ID)))
-		goto out;
-
-	if (!hw->dev_spec._82575.eee_disable) {
-		/* Switch to PHY page 18. */
-		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
-		if (ret_val)
-			goto out;
-
-		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
-					    &phy_data);
-		if (ret_val)
-			goto out;
-
-		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
-		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
-					     phy_data);
-		if (ret_val)
-			goto out;
-
-		/* Return the PHY to page 0. */
-		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
-		if (ret_val)
-			goto out;
-
-		/* Turn on EEE advertisement. */
-		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
-					       E1000_EEE_ADV_DEV_I354,
-					       &phy_data);
-		if (ret_val)
-			goto out;
-
-		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
-			    E1000_EEE_ADV_1000_SUPPORTED;
-		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
-						E1000_EEE_ADV_DEV_I354,
-						phy_data);
-	} else {
-		/* Turn off EEE advertisement. */
-		ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
-					       E1000_EEE_ADV_DEV_I354,
-					       &phy_data);
-		if (ret_val)
-			goto out;
-
-		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
-			      E1000_EEE_ADV_1000_SUPPORTED);
-		ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
-						E1000_EEE_ADV_DEV_I354,
-						phy_data);
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_get_eee_status_i354 - Get EEE status
- *  @hw: pointer to the HW structure
- *  @status: EEE status
- *
- *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
- *  been received.
- **/
-s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-	u16 phy_data;
-
-	DEBUGFUNC("e1000_get_eee_status_i354");
-
-	/* Check if EEE is supported on this device. */
-	if ((hw->phy.media_type != e1000_media_type_copper) ||
-	    ((phy->id != M88E1543_E_PHY_ID) &&
-	    (phy->id != M88E1512_E_PHY_ID)))
-		goto out;
-
-	ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
-				       E1000_PCS_STATUS_DEV_I354,
-				       &phy_data);
-	if (ret_val)
-		goto out;
-
-	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
-			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
-
-out:
-	return ret_val;
-}
-
-/* Due to a hw errata, if the host tries to  configure the VFTA register
- * while performing queries from the BMC or DMA, then the VFTA in some
- * cases won't be written.
- */
-
-/**
- *  e1000_clear_vfta_i350 - Clear VLAN filter table
- *  @hw: pointer to the HW structure
- *
- *  Clears the register array which contains the VLAN filter table by
- *  setting all the values to 0.
- **/
-void e1000_clear_vfta_i350(struct e1000_hw *hw)
-{
-	u32 offset;
-	int i;
-
-	DEBUGFUNC("e1000_clear_vfta_350");
-
-	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
-		for (i = 0; i < 10; i++)
-			E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
-
-		E1000_WRITE_FLUSH(hw);
-	}
-}
-
-/**
- *  e1000_write_vfta_i350 - Write value to VLAN filter table
- *  @hw: pointer to the HW structure
- *  @offset: register offset in VLAN filter table
- *  @value: register value written to VLAN filter table
- *
- *  Writes value at the given offset in the register array which stores
- *  the VLAN filter table.
- **/
-void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
-{
-	int i;
-
-	DEBUGFUNC("e1000_write_vfta_350");
-
-	for (i = 0; i < 10; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
-
-	E1000_WRITE_FLUSH(hw);
-}
-
-
-/**
- *  e1000_set_i2c_bb - Enable I2C bit-bang
- *  @hw: pointer to the HW structure
- *
- *  Enable I2C bit-bang interface
- *
- **/
-s32 e1000_set_i2c_bb(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u32 ctrl_ext, i2cparams;
-
-	DEBUGFUNC("e1000_set_i2c_bb");
-
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	ctrl_ext |= E1000_CTRL_I2C_ENA;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	E1000_WRITE_FLUSH(hw);
-
-	i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS);
-	i2cparams |= E1000_I2CBB_EN;
-	i2cparams |= E1000_I2C_DATA_OE_N;
-	i2cparams |= E1000_I2C_CLK_OE_N;
-	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams);
-	E1000_WRITE_FLUSH(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_i2c_byte_generic - Reads 8 bit word over I2C
- *  @hw: pointer to hardware structure
- *  @byte_offset: byte offset to read
- *  @dev_addr: device address
- *  @data: value read
- *
- *  Performs byte read operation over I2C interface at
- *  a specified device address.
- **/
-s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
-				u8 dev_addr, u8 *data)
-{
-	s32 status = E1000_SUCCESS;
-	u32 max_retry = 10;
-	u32 retry = 1;
-	u16 swfw_mask = 0;
-
-	bool nack = true;
-
-	DEBUGFUNC("e1000_read_i2c_byte_generic");
-
-	swfw_mask = E1000_SWFW_PHY0_SM;
-
-	do {
-		if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
-		    != E1000_SUCCESS) {
-			status = E1000_ERR_SWFW_SYNC;
-			goto read_byte_out;
-		}
-
-		e1000_i2c_start(hw);
-
-		/* Device Address and write indication */
-		status = e1000_clock_out_i2c_byte(hw, dev_addr);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_get_i2c_ack(hw);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_clock_out_i2c_byte(hw, byte_offset);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_get_i2c_ack(hw);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		e1000_i2c_start(hw);
-
-		/* Device Address and read indication */
-		status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1));
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_get_i2c_ack(hw);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_clock_in_i2c_byte(hw, data);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_clock_out_i2c_bit(hw, nack);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		e1000_i2c_stop(hw);
-		break;
-
-fail:
-		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
-		msec_delay(100);
-		e1000_i2c_bus_clear(hw);
-		retry++;
-		if (retry < max_retry)
-			DEBUGOUT("I2C byte read error - Retrying.\n");
-		else
-			DEBUGOUT("I2C byte read error.\n");
-
-	} while (retry < max_retry);
-
-	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
-
-read_byte_out:
-
-	return status;
-}
-
-/**
- *  e1000_write_i2c_byte_generic - Writes 8 bit word over I2C
- *  @hw: pointer to hardware structure
- *  @byte_offset: byte offset to write
- *  @dev_addr: device address
- *  @data: value to write
- *
- *  Performs byte write operation over I2C interface at
- *  a specified device address.
- **/
-s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
-				 u8 dev_addr, u8 data)
-{
-	s32 status = E1000_SUCCESS;
-	u32 max_retry = 1;
-	u32 retry = 0;
-	u16 swfw_mask = 0;
-
-	DEBUGFUNC("e1000_write_i2c_byte_generic");
-
-	swfw_mask = E1000_SWFW_PHY0_SM;
-
-	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) {
-		status = E1000_ERR_SWFW_SYNC;
-		goto write_byte_out;
-	}
-
-	do {
-		e1000_i2c_start(hw);
-
-		status = e1000_clock_out_i2c_byte(hw, dev_addr);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_get_i2c_ack(hw);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_clock_out_i2c_byte(hw, byte_offset);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_get_i2c_ack(hw);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_clock_out_i2c_byte(hw, data);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		status = e1000_get_i2c_ack(hw);
-		if (status != E1000_SUCCESS)
-			goto fail;
-
-		e1000_i2c_stop(hw);
-		break;
-
-fail:
-		e1000_i2c_bus_clear(hw);
-		retry++;
-		if (retry < max_retry)
-			DEBUGOUT("I2C byte write error - Retrying.\n");
-		else
-			DEBUGOUT("I2C byte write error.\n");
-	} while (retry < max_retry);
-
-	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
-
-write_byte_out:
-
-	return status;
-}
-
-/**
- *  e1000_i2c_start - Sets I2C start condition
- *  @hw: pointer to hardware structure
- *
- *  Sets I2C start condition (High -> Low on SDA while SCL is High)
- **/
-STATIC void e1000_i2c_start(struct e1000_hw *hw)
-{
-	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
-	DEBUGFUNC("e1000_i2c_start");
-
-	/* Start condition must begin with data and clock high */
-	e1000_set_i2c_data(hw, &i2cctl, 1);
-	e1000_raise_i2c_clk(hw, &i2cctl);
-
-	/* Setup time for start condition (4.7us) */
-	usec_delay(E1000_I2C_T_SU_STA);
-
-	e1000_set_i2c_data(hw, &i2cctl, 0);
-
-	/* Hold time for start condition (4us) */
-	usec_delay(E1000_I2C_T_HD_STA);
-
-	e1000_lower_i2c_clk(hw, &i2cctl);
-
-	/* Minimum low period of clock is 4.7 us */
-	usec_delay(E1000_I2C_T_LOW);
-
-}
-
-/**
- *  e1000_i2c_stop - Sets I2C stop condition
- *  @hw: pointer to hardware structure
- *
- *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
- **/
-STATIC void e1000_i2c_stop(struct e1000_hw *hw)
-{
-	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
-	DEBUGFUNC("e1000_i2c_stop");
-
-	/* Stop condition must begin with data low and clock high */
-	e1000_set_i2c_data(hw, &i2cctl, 0);
-	e1000_raise_i2c_clk(hw, &i2cctl);
-
-	/* Setup time for stop condition (4us) */
-	usec_delay(E1000_I2C_T_SU_STO);
-
-	e1000_set_i2c_data(hw, &i2cctl, 1);
-
-	/* bus free time between stop and start (4.7us)*/
-	usec_delay(E1000_I2C_T_BUF);
-}
-
-/**
- *  e1000_clock_in_i2c_byte - Clocks in one byte via I2C
- *  @hw: pointer to hardware structure
- *  @data: data byte to clock in
- *
- *  Clocks in one byte data via I2C data/clock
- **/
-STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data)
-{
-	s32 i;
-	bool bit = 0;
-
-	DEBUGFUNC("e1000_clock_in_i2c_byte");
-
-	*data = 0;
-	for (i = 7; i >= 0; i--) {
-		e1000_clock_in_i2c_bit(hw, &bit);
-		*data |= bit << i;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_clock_out_i2c_byte - Clocks out one byte via I2C
- *  @hw: pointer to hardware structure
- *  @data: data byte clocked out
- *
- *  Clocks out one byte data via I2C data/clock
- **/
-STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data)
-{
-	s32 status = E1000_SUCCESS;
-	s32 i;
-	u32 i2cctl;
-	bool bit = 0;
-
-	DEBUGFUNC("e1000_clock_out_i2c_byte");
-
-	for (i = 7; i >= 0; i--) {
-		bit = (data >> i) & 0x1;
-		status = e1000_clock_out_i2c_bit(hw, bit);
-
-		if (status != E1000_SUCCESS)
-			break;
-	}
-
-	/* Release SDA line (set high) */
-	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
-	i2cctl |= E1000_I2C_DATA_OE_N;
-	E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl);
-	E1000_WRITE_FLUSH(hw);
-
-	return status;
-}
-
-/**
- *  e1000_get_i2c_ack - Polls for I2C ACK
- *  @hw: pointer to hardware structure
- *
- *  Clocks in/out one bit via I2C data/clock
- **/
-STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw)
-{
-	s32 status = E1000_SUCCESS;
-	u32 i = 0;
-	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-	u32 timeout = 10;
-	bool ack = true;
-
-	DEBUGFUNC("e1000_get_i2c_ack");
-
-	e1000_raise_i2c_clk(hw, &i2cctl);
-
-	/* Minimum high period of clock is 4us */
-	usec_delay(E1000_I2C_T_HIGH);
-
-	/* Wait until SCL returns high */
-	for (i = 0; i < timeout; i++) {
-		usec_delay(1);
-		i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-		if (i2cctl & E1000_I2C_CLK_IN)
-			break;
-	}
-	if (!(i2cctl & E1000_I2C_CLK_IN))
-		return E1000_ERR_I2C;
-
-	ack = e1000_get_i2c_data(&i2cctl);
-	if (ack) {
-		DEBUGOUT("I2C ack was not received.\n");
-		status = E1000_ERR_I2C;
-	}
-
-	e1000_lower_i2c_clk(hw, &i2cctl);
-
-	/* Minimum low period of clock is 4.7 us */
-	usec_delay(E1000_I2C_T_LOW);
-
-	return status;
-}
-
-/**
- *  e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
- *  @hw: pointer to hardware structure
- *  @data: read data value
- *
- *  Clocks in one bit via I2C data/clock
- **/
-STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data)
-{
-	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
-	DEBUGFUNC("e1000_clock_in_i2c_bit");
-
-	e1000_raise_i2c_clk(hw, &i2cctl);
-
-	/* Minimum high period of clock is 4us */
-	usec_delay(E1000_I2C_T_HIGH);
-
-	i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-	*data = e1000_get_i2c_data(&i2cctl);
-
-	e1000_lower_i2c_clk(hw, &i2cctl);
-
-	/* Minimum low period of clock is 4.7 us */
-	usec_delay(E1000_I2C_T_LOW);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
- *  @hw: pointer to hardware structure
- *  @data: data value to write
- *
- *  Clocks out one bit via I2C data/clock
- **/
-STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data)
-{
-	s32 status;
-	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-
-	DEBUGFUNC("e1000_clock_out_i2c_bit");
-
-	status = e1000_set_i2c_data(hw, &i2cctl, data);
-	if (status == E1000_SUCCESS) {
-		e1000_raise_i2c_clk(hw, &i2cctl);
-
-		/* Minimum high period of clock is 4us */
-		usec_delay(E1000_I2C_T_HIGH);
-
-		e1000_lower_i2c_clk(hw, &i2cctl);
-
-		/* Minimum low period of clock is 4.7 us.
-		 * This also takes care of the data hold time.
-		 */
-		usec_delay(E1000_I2C_T_LOW);
-	} else {
-		status = E1000_ERR_I2C;
-		DEBUGOUT1("I2C data was not set to %X\n", data);
-	}
-
-	return status;
-}
-/**
- *  e1000_raise_i2c_clk - Raises the I2C SCL clock
- *  @hw: pointer to hardware structure
- *  @i2cctl: Current value of I2CCTL register
- *
- *  Raises the I2C clock line '0'->'1'
- **/
-STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
-{
-	DEBUGFUNC("e1000_raise_i2c_clk");
-
-	*i2cctl |= E1000_I2C_CLK_OUT;
-	*i2cctl &= ~E1000_I2C_CLK_OE_N;
-	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
-	E1000_WRITE_FLUSH(hw);
-
-	/* SCL rise time (1000ns) */
-	usec_delay(E1000_I2C_T_RISE);
-}
-
-/**
- *  e1000_lower_i2c_clk - Lowers the I2C SCL clock
- *  @hw: pointer to hardware structure
- *  @i2cctl: Current value of I2CCTL register
- *
- *  Lowers the I2C clock line '1'->'0'
- **/
-STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl)
-{
-
-	DEBUGFUNC("e1000_lower_i2c_clk");
-
-	*i2cctl &= ~E1000_I2C_CLK_OUT;
-	*i2cctl &= ~E1000_I2C_CLK_OE_N;
-	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
-	E1000_WRITE_FLUSH(hw);
-
-	/* SCL fall time (300ns) */
-	usec_delay(E1000_I2C_T_FALL);
-}
-
-/**
- *  e1000_set_i2c_data - Sets the I2C data bit
- *  @hw: pointer to hardware structure
- *  @i2cctl: Current value of I2CCTL register
- *  @data: I2C data value (0 or 1) to set
- *
- *  Sets the I2C data bit
- **/
-STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data)
-{
-	s32 status = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_set_i2c_data");
-
-	if (data)
-		*i2cctl |= E1000_I2C_DATA_OUT;
-	else
-		*i2cctl &= ~E1000_I2C_DATA_OUT;
-
-	*i2cctl &= ~E1000_I2C_DATA_OE_N;
-	*i2cctl |= E1000_I2C_CLK_OE_N;
-	E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl);
-	E1000_WRITE_FLUSH(hw);
-
-	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
-	usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA);
-
-	*i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-	if (data != e1000_get_i2c_data(i2cctl)) {
-		status = E1000_ERR_I2C;
-		DEBUGOUT1("Error - I2C data was not set to %X.\n", data);
-	}
-
-	return status;
-}
-
-/**
- *  e1000_get_i2c_data - Reads the I2C SDA data bit
- *  @hw: pointer to hardware structure
- *  @i2cctl: Current value of I2CCTL register
- *
- *  Returns the I2C data bit value
- **/
-STATIC bool e1000_get_i2c_data(u32 *i2cctl)
-{
-	bool data;
-
-	DEBUGFUNC("e1000_get_i2c_data");
-
-	if (*i2cctl & E1000_I2C_DATA_IN)
-		data = 1;
-	else
-		data = 0;
-
-	return data;
-}
-
-/**
- *  e1000_i2c_bus_clear - Clears the I2C bus
- *  @hw: pointer to hardware structure
- *
- *  Clears the I2C bus by sending nine clock pulses.
- *  Used when data line is stuck low.
- **/
-void e1000_i2c_bus_clear(struct e1000_hw *hw)
-{
-	u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS);
-	u32 i;
-
-	DEBUGFUNC("e1000_i2c_bus_clear");
-
-	e1000_i2c_start(hw);
-
-	e1000_set_i2c_data(hw, &i2cctl, 1);
-
-	for (i = 0; i < 9; i++) {
-		e1000_raise_i2c_clk(hw, &i2cctl);
-
-		/* Min high period of clock is 4us */
-		usec_delay(E1000_I2C_T_HIGH);
-
-		e1000_lower_i2c_clk(hw, &i2cctl);
-
-		/* Min low period of clock is 4.7us*/
-		usec_delay(E1000_I2C_T_LOW);
-	}
-
-	e1000_i2c_start(hw);
-
-	/* Put the i2c bus back to default state */
-	e1000_i2c_stop(hw);
-}
-
diff --git a/lib/librte_pmd_e1000/e1000/e1000_82575.h b/lib/librte_pmd_e1000/e1000/e1000_82575.h
deleted file mode 100644
index 09b7bf2..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_82575.h
+++ /dev/null
@@ -1,520 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_82575_H_
-#define _E1000_82575_H_
-
-#define ID_LED_DEFAULT_82575_SERDES	((ID_LED_DEF1_DEF2 << 12) | \
-					 (ID_LED_DEF1_DEF2 <<  8) | \
-					 (ID_LED_DEF1_DEF2 <<  4) | \
-					 (ID_LED_OFF1_ON2))
-/*
- * Receive Address Register Count
- * Number of high/low register pairs in the RAR.  The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor.
- * These entries are also used for MAC-based filtering.
- */
-/*
- * For 82576, there are an additional set of RARs that begin at an offset
- * separate from the first set of RARs.
- */
-#define E1000_RAR_ENTRIES_82575	16
-#define E1000_RAR_ENTRIES_82576	24
-#define E1000_RAR_ENTRIES_82580	24
-#define E1000_RAR_ENTRIES_I350	32
-#define E1000_SW_SYNCH_MB	0x00000100
-#define E1000_STAT_DEV_RST_SET	0x00100000
-#define E1000_CTRL_DEV_RST	0x20000000
-
-#ifdef E1000_BIT_FIELDS
-struct e1000_adv_data_desc {
-	__le64 buffer_addr;    /* Address of the descriptor's data buffer */
-	union {
-		u32 data;
-		struct {
-			u32 datalen:16; /* Data buffer length */
-			u32 rsvd:4;
-			u32 dtyp:4;  /* Descriptor type */
-			u32 dcmd:8;  /* Descriptor command */
-		} config;
-	} lower;
-	union {
-		u32 data;
-		struct {
-			u32 status:4;  /* Descriptor status */
-			u32 idx:4;
-			u32 popts:6;  /* Packet Options */
-			u32 paylen:18; /* Payload length */
-		} options;
-	} upper;
-};
-
-#define E1000_TXD_DTYP_ADV_C	0x2  /* Advanced Context Descriptor */
-#define E1000_TXD_DTYP_ADV_D	0x3  /* Advanced Data Descriptor */
-#define E1000_ADV_TXD_CMD_DEXT	0x20 /* Descriptor extension (0 = legacy) */
-#define E1000_ADV_TUCMD_IPV4	0x2  /* IP Packet Type: 1=IPv4 */
-#define E1000_ADV_TUCMD_IPV6	0x0  /* IP Packet Type: 0=IPv6 */
-#define E1000_ADV_TUCMD_L4T_UDP	0x0  /* L4 Packet TYPE of UDP */
-#define E1000_ADV_TUCMD_L4T_TCP	0x4  /* L4 Packet TYPE of TCP */
-#define E1000_ADV_TUCMD_MKRREQ	0x10 /* Indicates markers are required */
-#define E1000_ADV_DCMD_EOP	0x1  /* End of Packet */
-#define E1000_ADV_DCMD_IFCS	0x2  /* Insert FCS (Ethernet CRC) */
-#define E1000_ADV_DCMD_RS	0x8  /* Report Status */
-#define E1000_ADV_DCMD_VLE	0x40 /* Add VLAN tag */
-#define E1000_ADV_DCMD_TSE	0x80 /* TCP Seg enable */
-/* Extended Device Control */
-#define E1000_CTRL_EXT_NSICR	0x00000001 /* Disable Intr Clear all on read */
-
-struct e1000_adv_context_desc {
-	union {
-		u32 ip_config;
-		struct {
-			u32 iplen:9;
-			u32 maclen:7;
-			u32 vlan_tag:16;
-		} fields;
-	} ip_setup;
-	u32 seq_num;
-	union {
-		u64 l4_config;
-		struct {
-			u32 mkrloc:9;
-			u32 tucmd:11;
-			u32 dtyp:4;
-			u32 adv:8;
-			u32 rsvd:4;
-			u32 idx:4;
-			u32 l4len:8;
-			u32 mss:16;
-		} fields;
-	} l4_setup;
-};
-#endif
-
-/* SRRCTL bit definitions */
-#define E1000_SRRCTL_BSIZEPKT_SHIFT		10 /* Shift _right_ */
-#define E1000_SRRCTL_BSIZEHDRSIZE_MASK		0x00000F00
-#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT		2  /* Shift _left_ */
-#define E1000_SRRCTL_DESCTYPE_LEGACY		0x00000000
-#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF	0x02000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT		0x04000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS	0x0A000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION	0x06000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
-#define E1000_SRRCTL_DESCTYPE_MASK		0x0E000000
-#define E1000_SRRCTL_TIMESTAMP			0x40000000
-#define E1000_SRRCTL_DROP_EN			0x80000000
-
-#define E1000_SRRCTL_BSIZEPKT_MASK		0x0000007F
-#define E1000_SRRCTL_BSIZEHDR_MASK		0x00003F00
-
-#define E1000_TX_HEAD_WB_ENABLE		0x1
-#define E1000_TX_SEQNUM_WB_ENABLE	0x2
-
-#define E1000_MRQC_ENABLE_RSS_4Q		0x00000002
-#define E1000_MRQC_ENABLE_VMDQ			0x00000003
-#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q		0x00000005
-#define E1000_MRQC_RSS_FIELD_IPV4_UDP		0x00400000
-#define E1000_MRQC_RSS_FIELD_IPV6_UDP		0x00800000
-#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX	0x01000000
-#define E1000_MRQC_ENABLE_RSS_8Q		0x00000002
-
-#define E1000_VMRCTL_MIRROR_PORT_SHIFT		8
-#define E1000_VMRCTL_MIRROR_DSTPORT_MASK	(7 << \
-						 E1000_VMRCTL_MIRROR_PORT_SHIFT)
-#define E1000_VMRCTL_POOL_MIRROR_ENABLE		(1 << 0)
-#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE	(1 << 1)
-#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE	(1 << 2)
-
-#define E1000_EICR_TX_QUEUE ( \
-	E1000_EICR_TX_QUEUE0 |    \
-	E1000_EICR_TX_QUEUE1 |    \
-	E1000_EICR_TX_QUEUE2 |    \
-	E1000_EICR_TX_QUEUE3)
-
-#define E1000_EICR_RX_QUEUE ( \
-	E1000_EICR_RX_QUEUE0 |    \
-	E1000_EICR_RX_QUEUE1 |    \
-	E1000_EICR_RX_QUEUE2 |    \
-	E1000_EICR_RX_QUEUE3)
-
-#define E1000_EIMS_RX_QUEUE	E1000_EICR_RX_QUEUE
-#define E1000_EIMS_TX_QUEUE	E1000_EICR_TX_QUEUE
-
-#define EIMS_ENABLE_MASK ( \
-	E1000_EIMS_RX_QUEUE  | \
-	E1000_EIMS_TX_QUEUE  | \
-	E1000_EIMS_TCP_TIMER | \
-	E1000_EIMS_OTHER)
-
-/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
-#define E1000_IMIR_PORT_IM_EN	0x00010000  /* TCP port enable */
-#define E1000_IMIR_PORT_BP	0x00020000  /* TCP port check bypass */
-#define E1000_IMIREXT_SIZE_BP	0x00001000  /* Packet size bypass */
-#define E1000_IMIREXT_CTRL_URG	0x00002000  /* Check URG bit in header */
-#define E1000_IMIREXT_CTRL_ACK	0x00004000  /* Check ACK bit in header */
-#define E1000_IMIREXT_CTRL_PSH	0x00008000  /* Check PSH bit in header */
-#define E1000_IMIREXT_CTRL_RST	0x00010000  /* Check RST bit in header */
-#define E1000_IMIREXT_CTRL_SYN	0x00020000  /* Check SYN bit in header */
-#define E1000_IMIREXT_CTRL_FIN	0x00040000  /* Check FIN bit in header */
-#define E1000_IMIREXT_CTRL_BP	0x00080000  /* Bypass check of ctrl bits */
-
-/* Receive Descriptor - Advanced */
-union e1000_adv_rx_desc {
-	struct {
-		__le64 pkt_addr; /* Packet buffer address */
-		__le64 hdr_addr; /* Header buffer address */
-	} read;
-	struct {
-		struct {
-			union {
-				__le32 data;
-				struct {
-					__le16 pkt_info; /*RSS type, Pkt type*/
-					/* Split Header, header buffer len */
-					__le16 hdr_info;
-				} hs_rss;
-			} lo_dword;
-			union {
-				__le32 rss; /* RSS Hash */
-				struct {
-					__le16 ip_id; /* IP id */
-					__le16 csum; /* Packet Checksum */
-				} csum_ip;
-			} hi_dword;
-		} lower;
-		struct {
-			__le32 status_error; /* ext status/error */
-			__le16 length; /* Packet length */
-			__le16 vlan; /* VLAN tag */
-		} upper;
-	} wb;  /* writeback */
-};
-
-#define E1000_RXDADV_RSSTYPE_MASK	0x0000000F
-#define E1000_RXDADV_RSSTYPE_SHIFT	12
-#define E1000_RXDADV_HDRBUFLEN_MASK	0x7FE0
-#define E1000_RXDADV_HDRBUFLEN_SHIFT	5
-#define E1000_RXDADV_SPLITHEADER_EN	0x00001000
-#define E1000_RXDADV_SPH		0x8000
-#define E1000_RXDADV_STAT_TS		0x10000 /* Pkt was time stamped */
-#define E1000_RXDADV_STAT_TSIP		0x08000 /* timestamp in packet */
-#define E1000_RXDADV_ERR_HBO		0x00800000
-
-/* RSS Hash results */
-#define E1000_RXDADV_RSSTYPE_NONE	0x00000000
-#define E1000_RXDADV_RSSTYPE_IPV4_TCP	0x00000001
-#define E1000_RXDADV_RSSTYPE_IPV4	0x00000002
-#define E1000_RXDADV_RSSTYPE_IPV6_TCP	0x00000003
-#define E1000_RXDADV_RSSTYPE_IPV6_EX	0x00000004
-#define E1000_RXDADV_RSSTYPE_IPV6	0x00000005
-#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
-#define E1000_RXDADV_RSSTYPE_IPV4_UDP	0x00000007
-#define E1000_RXDADV_RSSTYPE_IPV6_UDP	0x00000008
-#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
-
-/* RSS Packet Types as indicated in the receive descriptor */
-#define E1000_RXDADV_PKTTYPE_ILMASK	0x000000F0
-#define E1000_RXDADV_PKTTYPE_TLMASK	0x00000F00
-#define E1000_RXDADV_PKTTYPE_NONE	0x00000000
-#define E1000_RXDADV_PKTTYPE_IPV4	0x00000010 /* IPV4 hdr present */
-#define E1000_RXDADV_PKTTYPE_IPV4_EX	0x00000020 /* IPV4 hdr + extensions */
-#define E1000_RXDADV_PKTTYPE_IPV6	0x00000040 /* IPV6 hdr present */
-#define E1000_RXDADV_PKTTYPE_IPV6_EX	0x00000080 /* IPV6 hdr + extensions */
-#define E1000_RXDADV_PKTTYPE_TCP	0x00000100 /* TCP hdr present */
-#define E1000_RXDADV_PKTTYPE_UDP	0x00000200 /* UDP hdr present */
-#define E1000_RXDADV_PKTTYPE_SCTP	0x00000400 /* SCTP hdr present */
-#define E1000_RXDADV_PKTTYPE_NFS	0x00000800 /* NFS hdr present */
-
-#define E1000_RXDADV_PKTTYPE_IPSEC_ESP	0x00001000 /* IPSec ESP */
-#define E1000_RXDADV_PKTTYPE_IPSEC_AH	0x00002000 /* IPSec AH */
-#define E1000_RXDADV_PKTTYPE_LINKSEC	0x00004000 /* LinkSec Encap */
-#define E1000_RXDADV_PKTTYPE_ETQF	0x00008000 /* PKTTYPE is ETQF index */
-#define E1000_RXDADV_PKTTYPE_ETQF_MASK	0x00000070 /* ETQF has 8 indices */
-#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT	4 /* Right-shift 4 bits */
-
-/* LinkSec results */
-/* Security Processing bit Indication */
-#define E1000_RXDADV_LNKSEC_STATUS_SECP		0x00020000
-#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK	0x18000000
-#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH	0x08000000
-#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR	0x10000000
-#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG	0x18000000
-
-#define E1000_RXDADV_IPSEC_STATUS_SECP			0x00020000
-#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK		0x18000000
-#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL	0x08000000
-#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH		0x10000000
-#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED	0x18000000
-
-/* Transmit Descriptor - Advanced */
-union e1000_adv_tx_desc {
-	struct {
-		__le64 buffer_addr;    /* Address of descriptor's data buf */
-		__le32 cmd_type_len;
-		__le32 olinfo_status;
-	} read;
-	struct {
-		__le64 rsvd;       /* Reserved */
-		__le32 nxtseq_seed;
-		__le32 status;
-	} wb;
-};
-
-/* Adv Transmit Descriptor Config Masks */
-#define E1000_ADVTXD_DTYP_CTXT	0x00200000 /* Advanced Context Descriptor */
-#define E1000_ADVTXD_DTYP_DATA	0x00300000 /* Advanced Data Descriptor */
-#define E1000_ADVTXD_DCMD_EOP	0x01000000 /* End of Packet */
-#define E1000_ADVTXD_DCMD_IFCS	0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADVTXD_DCMD_RS	0x08000000 /* Report Status */
-#define E1000_ADVTXD_DCMD_DDTYP_ISCSI	0x10000000 /* DDP hdr type or iSCSI */
-#define E1000_ADVTXD_DCMD_DEXT	0x20000000 /* Descriptor extension (1=Adv) */
-#define E1000_ADVTXD_DCMD_VLE	0x40000000 /* VLAN pkt enable */
-#define E1000_ADVTXD_DCMD_TSE	0x80000000 /* TCP Seg enable */
-#define E1000_ADVTXD_MAC_LINKSEC	0x00040000 /* Apply LinkSec on pkt */
-#define E1000_ADVTXD_MAC_TSTAMP		0x00080000 /* IEEE1588 Timestamp pkt */
-#define E1000_ADVTXD_STAT_SN_CRC	0x00000002 /* NXTSEQ/SEED prsnt in WB */
-#define E1000_ADVTXD_IDX_SHIFT		4  /* Adv desc Index shift */
-#define E1000_ADVTXD_POPTS_ISCO_1ST	0x00000000 /* 1st TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_MDL	0x00000800 /* Middle TSO of iSCSI PDU */
-#define E1000_ADVTXD_POPTS_ISCO_LAST	0x00001000 /* Last TSO of iSCSI PDU */
-/* 1st & Last TSO-full iSCSI PDU*/
-#define E1000_ADVTXD_POPTS_ISCO_FULL	0x00001800
-#define E1000_ADVTXD_POPTS_IPSEC	0x00000400 /* IPSec offload request */
-#define E1000_ADVTXD_PAYLEN_SHIFT	14 /* Adv desc PAYLEN shift */
-
-/* Context descriptors */
-struct e1000_adv_tx_context_desc {
-	__le32 vlan_macip_lens;
-	__le32 seqnum_seed;
-	__le32 type_tucmd_mlhl;
-	__le32 mss_l4len_idx;
-};
-
-#define E1000_ADVTXD_MACLEN_SHIFT	9  /* Adv ctxt desc mac len shift */
-#define E1000_ADVTXD_VLAN_SHIFT		16  /* Adv ctxt vlan tag shift */
-#define E1000_ADVTXD_TUCMD_IPV4		0x00000400  /* IP Packet Type: 1=IPv4 */
-#define E1000_ADVTXD_TUCMD_IPV6		0x00000000  /* IP Packet Type: 0=IPv6 */
-#define E1000_ADVTXD_TUCMD_L4T_UDP	0x00000000  /* L4 Packet TYPE of UDP */
-#define E1000_ADVTXD_TUCMD_L4T_TCP	0x00000800  /* L4 Packet TYPE of TCP */
-#define E1000_ADVTXD_TUCMD_L4T_SCTP	0x00001000  /* L4 Packet TYPE of SCTP */
-#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP	0x00002000 /* IPSec Type ESP */
-/* IPSec Encrypt Enable for ESP */
-#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN	0x00004000
-/* Req requires Markers and CRC */
-#define E1000_ADVTXD_TUCMD_MKRREQ	0x00002000
-#define E1000_ADVTXD_L4LEN_SHIFT	8  /* Adv ctxt L4LEN shift */
-#define E1000_ADVTXD_MSS_SHIFT		16  /* Adv ctxt MSS shift */
-/* Adv ctxt IPSec SA IDX mask */
-#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK	0x000000FF
-/* Adv ctxt IPSec ESP len mask */
-#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK		0x000000FF
-
-/* Additional Transmit Descriptor Control definitions */
-#define E1000_TXDCTL_QUEUE_ENABLE	0x02000000 /* Ena specific Tx Queue */
-#define E1000_TXDCTL_SWFLSH		0x04000000 /* Tx Desc. wbk flushing */
-/* Tx Queue Arbitration Priority 0=low, 1=high */
-#define E1000_TXDCTL_PRIORITY		0x08000000
-
-/* Additional Receive Descriptor Control definitions */
-#define E1000_RXDCTL_QUEUE_ENABLE	0x02000000 /* Ena specific Rx Queue */
-#define E1000_RXDCTL_SWFLSH		0x04000000 /* Rx Desc. wbk flushing */
-
-/* Direct Cache Access (DCA) definitions */
-#define E1000_DCA_CTRL_DCA_ENABLE	0x00000000 /* DCA Enable */
-#define E1000_DCA_CTRL_DCA_DISABLE	0x00000001 /* DCA Disable */
-
-#define E1000_DCA_CTRL_DCA_MODE_CB1	0x00 /* DCA Mode CB1 */
-#define E1000_DCA_CTRL_DCA_MODE_CB2	0x02 /* DCA Mode CB2 */
-
-#define E1000_DCA_RXCTRL_CPUID_MASK	0x0000001F /* Rx CPUID Mask */
-#define E1000_DCA_RXCTRL_DESC_DCA_EN	(1 << 5) /* DCA Rx Desc enable */
-#define E1000_DCA_RXCTRL_HEAD_DCA_EN	(1 << 6) /* DCA Rx Desc header ena */
-#define E1000_DCA_RXCTRL_DATA_DCA_EN	(1 << 7) /* DCA Rx Desc payload ena */
-#define E1000_DCA_RXCTRL_DESC_RRO_EN	(1 << 9) /* DCA Rx Desc Relax Order */
-
-#define E1000_DCA_TXCTRL_CPUID_MASK	0x0000001F /* Tx CPUID Mask */
-#define E1000_DCA_TXCTRL_DESC_DCA_EN	(1 << 5) /* DCA Tx Desc enable */
-#define E1000_DCA_TXCTRL_DESC_RRO_EN	(1 << 9) /* Tx rd Desc Relax Order */
-#define E1000_DCA_TXCTRL_TX_WB_RO_EN	(1 << 11) /* Tx Desc writeback RO bit */
-#define E1000_DCA_TXCTRL_DATA_RRO_EN	(1 << 13) /* Tx rd data Relax Order */
-
-#define E1000_DCA_TXCTRL_CPUID_MASK_82576	0xFF000000 /* Tx CPUID Mask */
-#define E1000_DCA_RXCTRL_CPUID_MASK_82576	0xFF000000 /* Rx CPUID Mask */
-#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576	24 /* Tx CPUID */
-#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576	24 /* Rx CPUID */
-
-/* Additional interrupt register bit definitions */
-#define E1000_ICR_LSECPNS	0x00000020 /* PN threshold - server */
-#define E1000_IMS_LSECPNS	E1000_ICR_LSECPNS /* PN threshold - server */
-#define E1000_ICS_LSECPNS	E1000_ICR_LSECPNS /* PN threshold - server */
-
-/* ETQF register bit definitions */
-#define E1000_ETQF_FILTER_ENABLE	(1 << 26)
-#define E1000_ETQF_IMM_INT		(1 << 29)
-#define E1000_ETQF_1588			(1 << 30)
-#define E1000_ETQF_QUEUE_ENABLE		(1 << 31)
-/*
- * ETQF filter list: one static filter per filter consumer. This is
- *                   to avoid filter collisions later. Add new filters
- *                   here!!
- *
- * Current filters:
- *    EAPOL 802.1x (0x888e): Filter 0
- */
-#define E1000_ETQF_FILTER_EAPOL		0
-
-#define E1000_FTQF_VF_BP		0x00008000
-#define E1000_FTQF_1588_TIME_STAMP	0x08000000
-#define E1000_FTQF_MASK			0xF0000000
-#define E1000_FTQF_MASK_PROTO_BP	0x10000000
-#define E1000_FTQF_MASK_SOURCE_ADDR_BP	0x20000000
-#define E1000_FTQF_MASK_DEST_ADDR_BP	0x40000000
-#define E1000_FTQF_MASK_SOURCE_PORT_BP	0x80000000
-
-#define E1000_NVM_APME_82575		0x0400
-#define MAX_NUM_VFS			7
-
-#define E1000_DTXSWC_MAC_SPOOF_MASK	0x000000FF /* Per VF MAC spoof cntrl */
-#define E1000_DTXSWC_VLAN_SPOOF_MASK	0x0000FF00 /* Per VF VLAN spoof cntrl */
-#define E1000_DTXSWC_LLE_MASK		0x00FF0000 /* Per VF Local LB enables */
-#define E1000_DTXSWC_VLAN_SPOOF_SHIFT	8
-#define E1000_DTXSWC_LLE_SHIFT		16
-#define E1000_DTXSWC_VMDQ_LOOPBACK_EN	(1 << 31)  /* global VF LB enable */
-
-/* Easy defines for setting default pool, would normally be left a zero */
-#define E1000_VT_CTL_DEFAULT_POOL_SHIFT	7
-#define E1000_VT_CTL_DEFAULT_POOL_MASK	(0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT)
-
-/* Other useful VMD_CTL register defines */
-#define E1000_VT_CTL_IGNORE_MAC		(1 << 28)
-#define E1000_VT_CTL_DISABLE_DEF_POOL	(1 << 29)
-#define E1000_VT_CTL_VM_REPL_EN		(1 << 30)
-
-/* Per VM Offload register setup */
-#define E1000_VMOLR_RLPML_MASK	0x00003FFF /* Long Packet Maximum Length mask */
-#define E1000_VMOLR_LPE		0x00010000 /* Accept Long packet */
-#define E1000_VMOLR_RSSE	0x00020000 /* Enable RSS */
-#define E1000_VMOLR_AUPE	0x01000000 /* Accept untagged packets */
-#define E1000_VMOLR_ROMPE	0x02000000 /* Accept overflow multicast */
-#define E1000_VMOLR_ROPE	0x04000000 /* Accept overflow unicast */
-#define E1000_VMOLR_BAM		0x08000000 /* Accept Broadcast packets */
-#define E1000_VMOLR_MPME	0x10000000 /* Multicast promiscuous mode */
-#define E1000_VMOLR_STRVLAN	0x40000000 /* Vlan stripping enable */
-#define E1000_VMOLR_STRCRC	0x80000000 /* CRC stripping enable */
-
-#define E1000_VMOLR_VPE		0x00800000 /* VLAN promiscuous enable */
-#define E1000_VMOLR_UPE		0x20000000 /* Unicast promisuous enable */
-#define E1000_DVMOLR_HIDVLAN	0x20000000 /* Vlan hiding enable */
-#define E1000_DVMOLR_STRVLAN	0x40000000 /* Vlan stripping enable */
-#define E1000_DVMOLR_STRCRC	0x80000000 /* CRC stripping enable */
-
-#define E1000_PBRWAC_WALPB	0x00000007 /* Wrap around event on LAN Rx PB */
-#define E1000_PBRWAC_PBE	0x00000008 /* Rx packet buffer empty */
-
-#define E1000_VLVF_ARRAY_SIZE		32
-#define E1000_VLVF_VLANID_MASK		0x00000FFF
-#define E1000_VLVF_POOLSEL_SHIFT	12
-#define E1000_VLVF_POOLSEL_MASK		(0xFF << E1000_VLVF_POOLSEL_SHIFT)
-#define E1000_VLVF_LVLAN		0x00100000
-#define E1000_VLVF_VLANID_ENABLE	0x80000000
-
-#define E1000_VMVIR_VLANA_DEFAULT	0x40000000 /* Always use default VLAN */
-#define E1000_VMVIR_VLANA_NEVER		0x80000000 /* Never insert VLAN tag */
-
-#define E1000_VF_INIT_TIMEOUT	200 /* Number of retries to clear RSTI */
-
-#define E1000_IOVCTL		0x05BBC
-#define E1000_IOVCTL_REUSE_VFQ	0x00000001
-
-#define E1000_RPLOLR_STRVLAN	0x40000000
-#define E1000_RPLOLR_STRCRC	0x80000000
-
-#define E1000_TCTL_EXT_COLD	0x000FFC00
-#define E1000_TCTL_EXT_COLD_SHIFT	10
-
-#define E1000_DTXCTL_8023LL	0x0004
-#define E1000_DTXCTL_VLAN_ADDED	0x0008
-#define E1000_DTXCTL_OOS_ENABLE	0x0010
-#define E1000_DTXCTL_MDP_EN	0x0020
-#define E1000_DTXCTL_SPOOF_INT	0x0040
-
-#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT	(1 << 14)
-
-#define ALL_QUEUES		0xFFFF
-
-/* Rx packet buffer size defines */
-#define E1000_RXPBS_SIZE_MASK_82576	0x0000007F
-void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable);
-void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf);
-void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable);
-s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
-s32  e1000_init_hw_82575(struct e1000_hw *hw);
-
-enum e1000_promisc_type {
-	e1000_promisc_disabled = 0,   /* all promisc modes disabled */
-	e1000_promisc_unicast = 1,    /* unicast promiscuous enabled */
-	e1000_promisc_multicast = 2,  /* multicast promiscuous enabled */
-	e1000_promisc_enabled = 3,    /* both uni and multicast promisc */
-	e1000_num_promisc_types
-};
-
-void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
-void e1000_rlpml_set_vf(struct e1000_hw *, u16);
-s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type);
-u16 e1000_rxpbs_adjust_82580(u32 data);
-s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data);
-s32 e1000_set_eee_i350(struct e1000_hw *);
-s32 e1000_set_eee_i354(struct e1000_hw *);
-s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *);
-s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw);
-
-/* I2C SDA and SCL timing parameters for standard mode */
-#define E1000_I2C_T_HD_STA	4
-#define E1000_I2C_T_LOW		5
-#define E1000_I2C_T_HIGH	4
-#define E1000_I2C_T_SU_STA	5
-#define E1000_I2C_T_HD_DATA	5
-#define E1000_I2C_T_SU_DATA	1
-#define E1000_I2C_T_RISE	1
-#define E1000_I2C_T_FALL	1
-#define E1000_I2C_T_SU_STO	4
-#define E1000_I2C_T_BUF		5
-
-s32 e1000_set_i2c_bb(struct e1000_hw *hw);
-s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
-				u8 dev_addr, u8 *data);
-s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset,
-				 u8 dev_addr, u8 data);
-void e1000_i2c_bus_clear(struct e1000_hw *hw);
-#endif /* _E1000_82575_H_ */
diff --git a/lib/librte_pmd_e1000/e1000/e1000_api.c b/lib/librte_pmd_e1000/e1000/e1000_api.c
deleted file mode 100644
index a064565..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_api.c
+++ /dev/null
@@ -1,1357 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-/**
- *  e1000_init_mac_params - Initialize MAC function pointers
- *  @hw: pointer to the HW structure
- *
- *  This function initializes the function pointers for the MAC
- *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_mac_params(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-
-	if (hw->mac.ops.init_params) {
-		ret_val = hw->mac.ops.init_params(hw);
-		if (ret_val) {
-			DEBUGOUT("MAC Initialization Error\n");
-			goto out;
-		}
-	} else {
-		DEBUGOUT("mac.init_mac_params was NULL\n");
-		ret_val = -E1000_ERR_CONFIG;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_nvm_params - Initialize NVM function pointers
- *  @hw: pointer to the HW structure
- *
- *  This function initializes the function pointers for the NVM
- *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_nvm_params(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-
-	if (hw->nvm.ops.init_params) {
-		ret_val = hw->nvm.ops.init_params(hw);
-		if (ret_val) {
-			DEBUGOUT("NVM Initialization Error\n");
-			goto out;
-		}
-	} else {
-		DEBUGOUT("nvm.init_nvm_params was NULL\n");
-		ret_val = -E1000_ERR_CONFIG;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_phy_params - Initialize PHY function pointers
- *  @hw: pointer to the HW structure
- *
- *  This function initializes the function pointers for the PHY
- *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_phy_params(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-
-	if (hw->phy.ops.init_params) {
-		ret_val = hw->phy.ops.init_params(hw);
-		if (ret_val) {
-			DEBUGOUT("PHY Initialization Error\n");
-			goto out;
-		}
-	} else {
-		DEBUGOUT("phy.init_phy_params was NULL\n");
-		ret_val =  -E1000_ERR_CONFIG;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_mbx_params - Initialize mailbox function pointers
- *  @hw: pointer to the HW structure
- *
- *  This function initializes the function pointers for the PHY
- *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
- **/
-s32 e1000_init_mbx_params(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-
-	if (hw->mbx.ops.init_params) {
-		ret_val = hw->mbx.ops.init_params(hw);
-		if (ret_val) {
-			DEBUGOUT("Mailbox Initialization Error\n");
-			goto out;
-		}
-	} else {
-		DEBUGOUT("mbx.init_mbx_params was NULL\n");
-		ret_val =  -E1000_ERR_CONFIG;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_set_mac_type - Sets MAC type
- *  @hw: pointer to the HW structure
- *
- *  This function sets the mac type of the adapter based on the
- *  device ID stored in the hw structure.
- *  MUST BE FIRST FUNCTION CALLED (explicitly or through
- *  e1000_setup_init_funcs()).
- **/
-s32 e1000_set_mac_type(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_set_mac_type");
-
-	switch (hw->device_id) {
-	case E1000_DEV_ID_82542:
-		mac->type = e1000_82542;
-		break;
-	case E1000_DEV_ID_82543GC_FIBER:
-	case E1000_DEV_ID_82543GC_COPPER:
-		mac->type = e1000_82543;
-		break;
-	case E1000_DEV_ID_82544EI_COPPER:
-	case E1000_DEV_ID_82544EI_FIBER:
-	case E1000_DEV_ID_82544GC_COPPER:
-	case E1000_DEV_ID_82544GC_LOM:
-		mac->type = e1000_82544;
-		break;
-	case E1000_DEV_ID_82540EM:
-	case E1000_DEV_ID_82540EM_LOM:
-	case E1000_DEV_ID_82540EP:
-	case E1000_DEV_ID_82540EP_LOM:
-	case E1000_DEV_ID_82540EP_LP:
-		mac->type = e1000_82540;
-		break;
-	case E1000_DEV_ID_82545EM_COPPER:
-	case E1000_DEV_ID_82545EM_FIBER:
-		mac->type = e1000_82545;
-		break;
-	case E1000_DEV_ID_82545GM_COPPER:
-	case E1000_DEV_ID_82545GM_FIBER:
-	case E1000_DEV_ID_82545GM_SERDES:
-		mac->type = e1000_82545_rev_3;
-		break;
-	case E1000_DEV_ID_82546EB_COPPER:
-	case E1000_DEV_ID_82546EB_FIBER:
-	case E1000_DEV_ID_82546EB_QUAD_COPPER:
-		mac->type = e1000_82546;
-		break;
-	case E1000_DEV_ID_82546GB_COPPER:
-	case E1000_DEV_ID_82546GB_FIBER:
-	case E1000_DEV_ID_82546GB_SERDES:
-	case E1000_DEV_ID_82546GB_PCIE:
-	case E1000_DEV_ID_82546GB_QUAD_COPPER:
-	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
-		mac->type = e1000_82546_rev_3;
-		break;
-	case E1000_DEV_ID_82541EI:
-	case E1000_DEV_ID_82541EI_MOBILE:
-	case E1000_DEV_ID_82541ER_LOM:
-		mac->type = e1000_82541;
-		break;
-	case E1000_DEV_ID_82541ER:
-	case E1000_DEV_ID_82541GI:
-	case E1000_DEV_ID_82541GI_LF:
-	case E1000_DEV_ID_82541GI_MOBILE:
-		mac->type = e1000_82541_rev_2;
-		break;
-	case E1000_DEV_ID_82547EI:
-	case E1000_DEV_ID_82547EI_MOBILE:
-		mac->type = e1000_82547;
-		break;
-	case E1000_DEV_ID_82547GI:
-		mac->type = e1000_82547_rev_2;
-		break;
-	case E1000_DEV_ID_82571EB_COPPER:
-	case E1000_DEV_ID_82571EB_FIBER:
-	case E1000_DEV_ID_82571EB_SERDES:
-	case E1000_DEV_ID_82571EB_SERDES_DUAL:
-	case E1000_DEV_ID_82571EB_SERDES_QUAD:
-	case E1000_DEV_ID_82571EB_QUAD_COPPER:
-	case E1000_DEV_ID_82571PT_QUAD_COPPER:
-	case E1000_DEV_ID_82571EB_QUAD_FIBER:
-	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
-		mac->type = e1000_82571;
-		break;
-	case E1000_DEV_ID_82572EI:
-	case E1000_DEV_ID_82572EI_COPPER:
-	case E1000_DEV_ID_82572EI_FIBER:
-	case E1000_DEV_ID_82572EI_SERDES:
-		mac->type = e1000_82572;
-		break;
-	case E1000_DEV_ID_82573E:
-	case E1000_DEV_ID_82573E_IAMT:
-	case E1000_DEV_ID_82573L:
-		mac->type = e1000_82573;
-		break;
-	case E1000_DEV_ID_82574L:
-	case E1000_DEV_ID_82574LA:
-		mac->type = e1000_82574;
-		break;
-	case E1000_DEV_ID_82583V:
-		mac->type = e1000_82583;
-		break;
-	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
-	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
-	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
-		mac->type = e1000_80003es2lan;
-		break;
-	case E1000_DEV_ID_ICH8_IFE:
-	case E1000_DEV_ID_ICH8_IFE_GT:
-	case E1000_DEV_ID_ICH8_IFE_G:
-	case E1000_DEV_ID_ICH8_IGP_M:
-	case E1000_DEV_ID_ICH8_IGP_M_AMT:
-	case E1000_DEV_ID_ICH8_IGP_AMT:
-	case E1000_DEV_ID_ICH8_IGP_C:
-	case E1000_DEV_ID_ICH8_82567V_3:
-		mac->type = e1000_ich8lan;
-		break;
-	case E1000_DEV_ID_ICH9_IFE:
-	case E1000_DEV_ID_ICH9_IFE_GT:
-	case E1000_DEV_ID_ICH9_IFE_G:
-	case E1000_DEV_ID_ICH9_IGP_M:
-	case E1000_DEV_ID_ICH9_IGP_M_AMT:
-	case E1000_DEV_ID_ICH9_IGP_M_V:
-	case E1000_DEV_ID_ICH9_IGP_AMT:
-	case E1000_DEV_ID_ICH9_BM:
-	case E1000_DEV_ID_ICH9_IGP_C:
-	case E1000_DEV_ID_ICH10_R_BM_LM:
-	case E1000_DEV_ID_ICH10_R_BM_LF:
-	case E1000_DEV_ID_ICH10_R_BM_V:
-		mac->type = e1000_ich9lan;
-		break;
-	case E1000_DEV_ID_ICH10_D_BM_LM:
-	case E1000_DEV_ID_ICH10_D_BM_LF:
-	case E1000_DEV_ID_ICH10_D_BM_V:
-		mac->type = e1000_ich10lan;
-		break;
-	case E1000_DEV_ID_PCH_D_HV_DM:
-	case E1000_DEV_ID_PCH_D_HV_DC:
-	case E1000_DEV_ID_PCH_M_HV_LM:
-	case E1000_DEV_ID_PCH_M_HV_LC:
-		mac->type = e1000_pchlan;
-		break;
-	case E1000_DEV_ID_PCH2_LV_LM:
-	case E1000_DEV_ID_PCH2_LV_V:
-		mac->type = e1000_pch2lan;
-		break;
-	case E1000_DEV_ID_PCH_LPT_I217_LM:
-	case E1000_DEV_ID_PCH_LPT_I217_V:
-	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
-	case E1000_DEV_ID_PCH_LPTLP_I218_V:
-		mac->type = e1000_pch_lpt;
-		break;
-	case E1000_DEV_ID_82575EB_COPPER:
-	case E1000_DEV_ID_82575EB_FIBER_SERDES:
-	case E1000_DEV_ID_82575GB_QUAD_COPPER:
-		mac->type = e1000_82575;
-		break;
-	case E1000_DEV_ID_82576:
-	case E1000_DEV_ID_82576_FIBER:
-	case E1000_DEV_ID_82576_SERDES:
-	case E1000_DEV_ID_82576_QUAD_COPPER:
-	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
-	case E1000_DEV_ID_82576_NS:
-	case E1000_DEV_ID_82576_NS_SERDES:
-	case E1000_DEV_ID_82576_SERDES_QUAD:
-		mac->type = e1000_82576;
-		break;
-	case E1000_DEV_ID_82580_COPPER:
-	case E1000_DEV_ID_82580_FIBER:
-	case E1000_DEV_ID_82580_SERDES:
-	case E1000_DEV_ID_82580_SGMII:
-	case E1000_DEV_ID_82580_COPPER_DUAL:
-	case E1000_DEV_ID_82580_QUAD_FIBER:
-	case E1000_DEV_ID_DH89XXCC_SGMII:
-	case E1000_DEV_ID_DH89XXCC_SERDES:
-	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
-	case E1000_DEV_ID_DH89XXCC_SFP:
-		mac->type = e1000_82580;
-		break;
-	case E1000_DEV_ID_I350_COPPER:
-	case E1000_DEV_ID_I350_FIBER:
-	case E1000_DEV_ID_I350_SERDES:
-	case E1000_DEV_ID_I350_SGMII:
-	case E1000_DEV_ID_I350_DA4:
-		mac->type = e1000_i350;
-		break;
-	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
-	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
-	case E1000_DEV_ID_I210_COPPER:
-	case E1000_DEV_ID_I210_COPPER_OEM1:
-	case E1000_DEV_ID_I210_COPPER_IT:
-	case E1000_DEV_ID_I210_FIBER:
-	case E1000_DEV_ID_I210_SERDES:
-	case E1000_DEV_ID_I210_SGMII:
-		mac->type = e1000_i210;
-		break;
-	case E1000_DEV_ID_I211_COPPER:
-		mac->type = e1000_i211;
-		break;
-	case E1000_DEV_ID_82576_VF:
-	case E1000_DEV_ID_82576_VF_HV:
-		mac->type = e1000_vfadapt;
-		break;
-	case E1000_DEV_ID_I350_VF:
-	case E1000_DEV_ID_I350_VF_HV:
-		mac->type = e1000_vfadapt_i350;
-		break;
-
-	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
-	case E1000_DEV_ID_I354_SGMII:
-	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
-		mac->type = e1000_i354;
-		break;
-	default:
-		/* Should never have loaded on this device */
-		ret_val = -E1000_ERR_MAC_INIT;
-		break;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_setup_init_funcs - Initializes function pointers
- *  @hw: pointer to the HW structure
- *  @init_device: true will initialize the rest of the function pointers
- *		  getting the device ready for use.  false will only set
- *		  MAC type and the function pointers for the other init
- *		  functions.  Passing false will not generate any hardware
- *		  reads or writes.
- *
- *  This function must be called by a driver in order to use the rest
- *  of the 'shared' code files. Called by drivers only.
- **/
-s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
-{
-	s32 ret_val;
-
-	/* Can't do much good without knowing the MAC type. */
-	ret_val = e1000_set_mac_type(hw);
-	if (ret_val) {
-		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
-		goto out;
-	}
-
-	if (!hw->hw_addr) {
-		DEBUGOUT("ERROR: Registers not mapped\n");
-		ret_val = -E1000_ERR_CONFIG;
-		goto out;
-	}
-
-	/*
-	 * Init function pointers to generic implementations. We do this first
-	 * allowing a driver module to override it afterward.
-	 */
-	e1000_init_mac_ops_generic(hw);
-	e1000_init_phy_ops_generic(hw);
-	e1000_init_nvm_ops_generic(hw);
-	e1000_init_mbx_ops_generic(hw);
-
-	/*
-	 * Set up the init function pointers. These are functions within the
-	 * adapter family file that sets up function pointers for the rest of
-	 * the functions in that family.
-	 */
-	switch (hw->mac.type) {
-	case e1000_82542:
-		e1000_init_function_pointers_82542(hw);
-		break;
-	case e1000_82543:
-	case e1000_82544:
-		e1000_init_function_pointers_82543(hw);
-		break;
-	case e1000_82540:
-	case e1000_82545:
-	case e1000_82545_rev_3:
-	case e1000_82546:
-	case e1000_82546_rev_3:
-		e1000_init_function_pointers_82540(hw);
-		break;
-	case e1000_82541:
-	case e1000_82541_rev_2:
-	case e1000_82547:
-	case e1000_82547_rev_2:
-		e1000_init_function_pointers_82541(hw);
-		break;
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-		e1000_init_function_pointers_82571(hw);
-		break;
-	case e1000_80003es2lan:
-		e1000_init_function_pointers_80003es2lan(hw);
-		break;
-	case e1000_ich8lan:
-	case e1000_ich9lan:
-	case e1000_ich10lan:
-	case e1000_pchlan:
-	case e1000_pch2lan:
-	case e1000_pch_lpt:
-		e1000_init_function_pointers_ich8lan(hw);
-		break;
-	case e1000_82575:
-	case e1000_82576:
-	case e1000_82580:
-	case e1000_i350:
-	case e1000_i354:
-		e1000_init_function_pointers_82575(hw);
-		break;
-	case e1000_i210:
-	case e1000_i211:
-		e1000_init_function_pointers_i210(hw);
-		break;
-	case e1000_vfadapt:
-		e1000_init_function_pointers_vf(hw);
-		break;
-	case e1000_vfadapt_i350:
-		e1000_init_function_pointers_vf(hw);
-		break;
-	default:
-		DEBUGOUT("Hardware not supported\n");
-		ret_val = -E1000_ERR_CONFIG;
-		break;
-	}
-
-	/*
-	 * Initialize the rest of the function pointers. These require some
-	 * register reads/writes in some cases.
-	 */
-	if (!(ret_val) && init_device) {
-		ret_val = e1000_init_mac_params(hw);
-		if (ret_val)
-			goto out;
-
-		ret_val = e1000_init_nvm_params(hw);
-		if (ret_val)
-			goto out;
-
-		ret_val = e1000_init_phy_params(hw);
-		if (ret_val)
-			goto out;
-
-		ret_val = e1000_init_mbx_params(hw);
-		if (ret_val)
-			goto out;
-	}
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_get_bus_info - Obtain bus information for adapter
- *  @hw: pointer to the HW structure
- *
- *  This will obtain information about the HW bus for which the
- *  adapter is attached and stores it in the hw structure. This is a
- *  function pointer entry point called by drivers.
- **/
-s32 e1000_get_bus_info(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.get_bus_info)
-		return hw->mac.ops.get_bus_info(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_clear_vfta - Clear VLAN filter table
- *  @hw: pointer to the HW structure
- *
- *  This clears the VLAN filter table on the adapter. This is a function
- *  pointer entry point called by drivers.
- **/
-void e1000_clear_vfta(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.clear_vfta)
-		hw->mac.ops.clear_vfta(hw);
-}
-
-/**
- *  e1000_write_vfta - Write value to VLAN filter table
- *  @hw: pointer to the HW structure
- *  @offset: the 32-bit offset in which to write the value to.
- *  @value: the 32-bit value to write at location offset.
- *
- *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
- *  table. This is a function pointer entry point called by drivers.
- **/
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
-{
-	if (hw->mac.ops.write_vfta)
-		hw->mac.ops.write_vfta(hw, offset, value);
-}
-
-/**
- *  e1000_update_mc_addr_list - Update Multicast addresses
- *  @hw: pointer to the HW structure
- *  @mc_addr_list: array of multicast addresses to program
- *  @mc_addr_count: number of multicast addresses to program
- *
- *  Updates the Multicast Table Array.
- *  The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
-			       u32 mc_addr_count)
-{
-	if (hw->mac.ops.update_mc_addr_list)
-		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
-						mc_addr_count);
-}
-
-/**
- *  e1000_force_mac_fc - Force MAC flow control
- *  @hw: pointer to the HW structure
- *
- *  Force the MAC's flow control settings. Currently no func pointer exists
- *  and all implementations are handled in the generic version of this
- *  function.
- **/
-s32 e1000_force_mac_fc(struct e1000_hw *hw)
-{
-	return e1000_force_mac_fc_generic(hw);
-}
-
-/**
- *  e1000_check_for_link - Check/Store link connection
- *  @hw: pointer to the HW structure
- *
- *  This checks the link condition of the adapter and stores the
- *  results in the hw->mac structure. This is a function pointer entry
- *  point called by drivers.
- **/
-s32 e1000_check_for_link(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.check_for_link)
-		return hw->mac.ops.check_for_link(hw);
-
-	return -E1000_ERR_CONFIG;
-}
-
-/**
- *  e1000_check_mng_mode - Check management mode
- *  @hw: pointer to the HW structure
- *
- *  This checks if the adapter has manageability enabled.
- *  This is a function pointer entry point called by drivers.
- **/
-bool e1000_check_mng_mode(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.check_mng_mode)
-		return hw->mac.ops.check_mng_mode(hw);
-
-	return false;
-}
-
-/**
- *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
- *  @hw: pointer to the HW structure
- *  @buffer: pointer to the host interface
- *  @length: size of the buffer
- *
- *  Writes the DHCP information to the host interface.
- **/
-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
-{
-	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
-}
-
-/**
- *  e1000_reset_hw - Reset hardware
- *  @hw: pointer to the HW structure
- *
- *  This resets the hardware into a known state. This is a function pointer
- *  entry point called by drivers.
- **/
-s32 e1000_reset_hw(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.reset_hw)
-		return hw->mac.ops.reset_hw(hw);
-
-	return -E1000_ERR_CONFIG;
-}
-
-/**
- *  e1000_init_hw - Initialize hardware
- *  @hw: pointer to the HW structure
- *
- *  This inits the hardware readying it for operation. This is a function
- *  pointer entry point called by drivers.
- **/
-s32 e1000_init_hw(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.init_hw)
-		return hw->mac.ops.init_hw(hw);
-
-	return -E1000_ERR_CONFIG;
-}
-
-/**
- *  e1000_setup_link - Configures link and flow control
- *  @hw: pointer to the HW structure
- *
- *  This configures link and flow control settings for the adapter. This
- *  is a function pointer entry point called by drivers. While modules can
- *  also call this, they probably call their own version of this function.
- **/
-s32 e1000_setup_link(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.setup_link)
-		return hw->mac.ops.setup_link(hw);
-
-	return -E1000_ERR_CONFIG;
-}
-
-/**
- *  e1000_get_speed_and_duplex - Returns current speed and duplex
- *  @hw: pointer to the HW structure
- *  @speed: pointer to a 16-bit value to store the speed
- *  @duplex: pointer to a 16-bit value to store the duplex.
- *
- *  This returns the speed and duplex of the adapter in the two 'out'
- *  variables passed in. This is a function pointer entry point called
- *  by drivers.
- **/
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
-{
-	if (hw->mac.ops.get_link_up_info)
-		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
-
-	return -E1000_ERR_CONFIG;
-}
-
-/**
- *  e1000_setup_led - Configures SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  This prepares the SW controllable LED for use and saves the current state
- *  of the LED so it can be later restored. This is a function pointer entry
- *  point called by drivers.
- **/
-s32 e1000_setup_led(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.setup_led)
-		return hw->mac.ops.setup_led(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_cleanup_led - Restores SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  This restores the SW controllable LED to the value saved off by
- *  e1000_setup_led. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_cleanup_led(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.cleanup_led)
-		return hw->mac.ops.cleanup_led(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_blink_led - Blink SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  This starts the adapter LED blinking. Request the LED to be setup first
- *  and cleaned up after. This is a function pointer entry point called by
- *  drivers.
- **/
-s32 e1000_blink_led(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.blink_led)
-		return hw->mac.ops.blink_led(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_id_led_init - store LED configurations in SW
- *  @hw: pointer to the HW structure
- *
- *  Initializes the LED config in SW. This is a function pointer entry point
- *  called by drivers.
- **/
-s32 e1000_id_led_init(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.id_led_init)
-		return hw->mac.ops.id_led_init(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_led_on - Turn on SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  Turns the SW defined LED on. This is a function pointer entry point
- *  called by drivers.
- **/
-s32 e1000_led_on(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.led_on)
-		return hw->mac.ops.led_on(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_led_off - Turn off SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  Turns the SW defined LED off. This is a function pointer entry point
- *  called by drivers.
- **/
-s32 e1000_led_off(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.led_off)
-		return hw->mac.ops.led_off(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_reset_adaptive - Reset adaptive IFS
- *  @hw: pointer to the HW structure
- *
- *  Resets the adaptive IFS. Currently no func pointer exists and all
- *  implementations are handled in the generic version of this function.
- **/
-void e1000_reset_adaptive(struct e1000_hw *hw)
-{
-	e1000_reset_adaptive_generic(hw);
-}
-
-/**
- *  e1000_update_adaptive - Update adaptive IFS
- *  @hw: pointer to the HW structure
- *
- *  Updates adapter IFS. Currently no func pointer exists and all
- *  implementations are handled in the generic version of this function.
- **/
-void e1000_update_adaptive(struct e1000_hw *hw)
-{
-	e1000_update_adaptive_generic(hw);
-}
-
-/**
- *  e1000_disable_pcie_master - Disable PCI-Express master access
- *  @hw: pointer to the HW structure
- *
- *  Disables PCI-Express master access and verifies there are no pending
- *  requests. Currently no func pointer exists and all implementations are
- *  handled in the generic version of this function.
- **/
-s32 e1000_disable_pcie_master(struct e1000_hw *hw)
-{
-	return e1000_disable_pcie_master_generic(hw);
-}
-
-/**
- *  e1000_config_collision_dist - Configure collision distance
- *  @hw: pointer to the HW structure
- *
- *  Configures the collision distance to the default value and is used
- *  during link setup.
- **/
-void e1000_config_collision_dist(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.config_collision_dist)
-		hw->mac.ops.config_collision_dist(hw);
-}
-
-/**
- *  e1000_rar_set - Sets a receive address register
- *  @hw: pointer to the HW structure
- *  @addr: address to set the RAR to
- *  @index: the RAR to set
- *
- *  Sets a Receive Address Register (RAR) to the specified address.
- **/
-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
-{
-	if (hw->mac.ops.rar_set)
-		hw->mac.ops.rar_set(hw, addr, index);
-}
-
-/**
- *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
- *  @hw: pointer to the HW structure
- *
- *  Ensures that the MDI/MDIX SW state is valid.
- **/
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.validate_mdi_setting)
-		return hw->mac.ops.validate_mdi_setting(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_hash_mc_addr - Determines address location in multicast table
- *  @hw: pointer to the HW structure
- *  @mc_addr: Multicast address to hash.
- *
- *  This hashes an address to determine its location in the multicast
- *  table. Currently no func pointer exists and all implementations
- *  are handled in the generic version of this function.
- **/
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
-{
-	return e1000_hash_mc_addr_generic(hw, mc_addr);
-}
-
-/**
- *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
- *  @hw: pointer to the HW structure
- *
- *  Enables packet filtering on transmit packets if manageability is enabled
- *  and host interface is enabled.
- *  Currently no func pointer exists and all implementations are handled in the
- *  generic version of this function.
- **/
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
-{
-	return e1000_enable_tx_pkt_filtering_generic(hw);
-}
-
-/**
- *  e1000_mng_host_if_write - Writes to the manageability host interface
- *  @hw: pointer to the HW structure
- *  @buffer: pointer to the host interface buffer
- *  @length: size of the buffer
- *  @offset: location in the buffer to write to
- *  @sum: sum of the data (not checksum)
- *
- *  This function writes the buffer content at the offset given on the host if.
- *  It also does alignment considerations to do the writes in most efficient
- *  way.  Also fills up the sum of the buffer in *buffer parameter.
- **/
-s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
-			    u16 offset, u8 *sum)
-{
-	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
-}
-
-/**
- *  e1000_mng_write_cmd_header - Writes manageability command header
- *  @hw: pointer to the HW structure
- *  @hdr: pointer to the host interface command header
- *
- *  Writes the command header after does the checksum calculation.
- **/
-s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
-			       struct e1000_host_mng_command_header *hdr)
-{
-	return e1000_mng_write_cmd_header_generic(hw, hdr);
-}
-
-/**
- *  e1000_mng_enable_host_if - Checks host interface is enabled
- *  @hw: pointer to the HW structure
- *
- *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- *  This function checks whether the HOST IF is enabled for command operation
- *  and also checks whether the previous command is completed.  It busy waits
- *  in case of previous command is not completed.
- **/
-s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
-{
-	return e1000_mng_enable_host_if_generic(hw);
-}
-
-/**
- *  e1000_check_reset_block - Verifies PHY can be reset
- *  @hw: pointer to the HW structure
- *
- *  Checks if the PHY is in a state that can be reset or if manageability
- *  has it tied up. This is a function pointer entry point called by drivers.
- **/
-s32 e1000_check_reset_block(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.check_reset_block)
-		return hw->phy.ops.check_reset_block(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_phy_reg - Reads PHY register
- *  @hw: pointer to the HW structure
- *  @offset: the register to read
- *  @data: the buffer to store the 16-bit read.
- *
- *  Reads the PHY register and returns the value in data.
- *  This is a function pointer entry point called by drivers.
- **/
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	if (hw->phy.ops.read_reg)
-		return hw->phy.ops.read_reg(hw, offset, data);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_phy_reg - Writes PHY register
- *  @hw: pointer to the HW structure
- *  @offset: the register to write
- *  @data: the value to write.
- *
- *  Writes the PHY register at offset with the value in data.
- *  This is a function pointer entry point called by drivers.
- **/
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	if (hw->phy.ops.write_reg)
-		return hw->phy.ops.write_reg(hw, offset, data);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_release_phy - Generic release PHY
- *  @hw: pointer to the HW structure
- *
- *  Return if silicon family does not require a semaphore when accessing the
- *  PHY.
- **/
-void e1000_release_phy(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.release)
-		hw->phy.ops.release(hw);
-}
-
-/**
- *  e1000_acquire_phy - Generic acquire PHY
- *  @hw: pointer to the HW structure
- *
- *  Return success if silicon family does not require a semaphore when
- *  accessing the PHY.
- **/
-s32 e1000_acquire_phy(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.acquire)
-		return hw->phy.ops.acquire(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_cfg_on_link_up - Configure PHY upon link up
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.cfg_on_link_up)
-		return hw->phy.ops.cfg_on_link_up(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_kmrn_reg - Reads register using Kumeran interface
- *  @hw: pointer to the HW structure
- *  @offset: the register to read
- *  @data: the location to store the 16-bit value read.
- *
- *  Reads a register out of the Kumeran interface. Currently no func pointer
- *  exists and all implementations are handled in the generic version of
- *  this function.
- **/
-s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	return e1000_read_kmrn_reg_generic(hw, offset, data);
-}
-
-/**
- *  e1000_write_kmrn_reg - Writes register using Kumeran interface
- *  @hw: pointer to the HW structure
- *  @offset: the register to write
- *  @data: the value to write.
- *
- *  Writes a register to the Kumeran interface. Currently no func pointer
- *  exists and all implementations are handled in the generic version of
- *  this function.
- **/
-s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	return e1000_write_kmrn_reg_generic(hw, offset, data);
-}
-
-/**
- *  e1000_get_cable_length - Retrieves cable length estimation
- *  @hw: pointer to the HW structure
- *
- *  This function estimates the cable length and stores them in
- *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
- *  entry point called by drivers.
- **/
-s32 e1000_get_cable_length(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.get_cable_length)
-		return hw->phy.ops.get_cable_length(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_phy_info - Retrieves PHY information from registers
- *  @hw: pointer to the HW structure
- *
- *  This function gets some information from various PHY registers and
- *  populates hw->phy values with it. This is a function pointer entry
- *  point called by drivers.
- **/
-s32 e1000_get_phy_info(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.get_info)
-		return hw->phy.ops.get_info(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_phy_hw_reset - Hard PHY reset
- *  @hw: pointer to the HW structure
- *
- *  Performs a hard PHY reset. This is a function pointer entry point called
- *  by drivers.
- **/
-s32 e1000_phy_hw_reset(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.reset)
-		return hw->phy.ops.reset(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_phy_commit - Soft PHY reset
- *  @hw: pointer to the HW structure
- *
- *  Performs a soft PHY reset on those that apply. This is a function pointer
- *  entry point called by drivers.
- **/
-s32 e1000_phy_commit(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.commit)
-		return hw->phy.ops.commit(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_set_d0_lplu_state - Sets low power link up state for D0
- *  @hw: pointer to the HW structure
- *  @active: boolean used to enable/disable lplu
- *
- *  Success returns 0, Failure returns 1
- *
- *  The low power link up (lplu) state is set to the power management level D0
- *  and SmartSpeed is disabled when active is true, else clear lplu for D0
- *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
- *  is used during Dx states where the power conservation is most important.
- *  During driver activity, SmartSpeed should be enabled so performance is
- *  maintained.  This is a function pointer entry point called by drivers.
- **/
-s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
-{
-	if (hw->phy.ops.set_d0_lplu_state)
-		return hw->phy.ops.set_d0_lplu_state(hw, active);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_set_d3_lplu_state - Sets low power link up state for D3
- *  @hw: pointer to the HW structure
- *  @active: boolean used to enable/disable lplu
- *
- *  Success returns 0, Failure returns 1
- *
- *  The low power link up (lplu) state is set to the power management level D3
- *  and SmartSpeed is disabled when active is true, else clear lplu for D3
- *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
- *  is used during Dx states where the power conservation is most important.
- *  During driver activity, SmartSpeed should be enabled so performance is
- *  maintained.  This is a function pointer entry point called by drivers.
- **/
-s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
-{
-	if (hw->phy.ops.set_d3_lplu_state)
-		return hw->phy.ops.set_d3_lplu_state(hw, active);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_mac_addr - Reads MAC address
- *  @hw: pointer to the HW structure
- *
- *  Reads the MAC address out of the adapter and stores it in the HW structure.
- *  Currently no func pointer exists and all implementations are handled in the
- *  generic version of this function.
- **/
-s32 e1000_read_mac_addr(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.read_mac_addr)
-		return hw->mac.ops.read_mac_addr(hw);
-
-	return e1000_read_mac_addr_generic(hw);
-}
-
-/**
- *  e1000_read_pba_string - Read device part number string
- *  @hw: pointer to the HW structure
- *  @pba_num: pointer to device part number
- *  @pba_num_size: size of part number buffer
- *
- *  Reads the product board assembly (PBA) number from the EEPROM and stores
- *  the value in pba_num.
- *  Currently no func pointer exists and all implementations are handled in the
- *  generic version of this function.
- **/
-s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
-{
-	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
-}
-
-/**
- *  e1000_read_pba_length - Read device part number string length
- *  @hw: pointer to the HW structure
- *  @pba_num_size: size of part number buffer
- *
- *  Reads the product board assembly (PBA) number length from the EEPROM and
- *  stores the value in pba_num.
- *  Currently no func pointer exists and all implementations are handled in the
- *  generic version of this function.
- **/
-s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
-{
-	return e1000_read_pba_length_generic(hw, pba_num_size);
-}
-
-/**
- *  e1000_read_pba_num - Read device part number
- *  @hw: pointer to the HW structure
- *  @pba_num: pointer to device part number
- *
- *  Reads the product board assembly (PBA) number from the EEPROM and stores
- *  the value in pba_num.
- *  Currently no func pointer exists and all implementations are handled in the
- *  generic version of this function.
- **/
-s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
-{
-	return e1000_read_pba_num_generic(hw, pba_num);
-}
-
-/**
- *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
- *  @hw: pointer to the HW structure
- *
- *  Validates the NVM checksum is correct. This is a function pointer entry
- *  point called by drivers.
- **/
-s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
-{
-	if (hw->nvm.ops.validate)
-		return hw->nvm.ops.validate(hw);
-
-	return -E1000_ERR_CONFIG;
-}
-
-/**
- *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
- *  @hw: pointer to the HW structure
- *
- *  Updates the NVM checksum. Currently no func pointer exists and all
- *  implementations are handled in the generic version of this function.
- **/
-s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
-{
-	if (hw->nvm.ops.update)
-		return hw->nvm.ops.update(hw);
-
-	return -E1000_ERR_CONFIG;
-}
-
-/**
- *  e1000_reload_nvm - Reloads EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- *  extended control register.
- **/
-void e1000_reload_nvm(struct e1000_hw *hw)
-{
-	if (hw->nvm.ops.reload)
-		hw->nvm.ops.reload(hw);
-}
-
-/**
- *  e1000_read_nvm - Reads NVM (EEPROM)
- *  @hw: pointer to the HW structure
- *  @offset: the word offset to read
- *  @words: number of 16-bit words to read
- *  @data: pointer to the properly sized buffer for the data.
- *
- *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
- *  pointer entry point called by drivers.
- **/
-s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-	if (hw->nvm.ops.read)
-		return hw->nvm.ops.read(hw, offset, words, data);
-
-	return -E1000_ERR_CONFIG;
-}
-
-/**
- *  e1000_write_nvm - Writes to NVM (EEPROM)
- *  @hw: pointer to the HW structure
- *  @offset: the word offset to read
- *  @words: number of 16-bit words to write
- *  @data: pointer to the properly sized buffer for the data.
- *
- *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
- *  pointer entry point called by drivers.
- **/
-s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-	if (hw->nvm.ops.write)
-		return hw->nvm.ops.write(hw, offset, words, data);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
- *  @hw: pointer to the HW structure
- *  @reg: 32bit register offset
- *  @offset: the register to write
- *  @data: the value to write.
- *
- *  Writes the PHY register at offset with the value in data.
- *  This is a function pointer entry point called by drivers.
- **/
-s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
-			      u8 data)
-{
-	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
-}
-
-/**
- * e1000_power_up_phy - Restores link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * The phy may be powered down to save power, to turn off link when the
- * driver is unloaded, or wake on lan is not enabled (among others).
- **/
-void e1000_power_up_phy(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.power_up)
-		hw->phy.ops.power_up(hw);
-
-	e1000_setup_link(hw);
-}
-
-/**
- * e1000_power_down_phy - Power down PHY
- * @hw: pointer to the HW structure
- *
- * The phy may be powered down to save power, to turn off link when the
- * driver is unloaded, or wake on lan is not enabled (among others).
- **/
-void e1000_power_down_phy(struct e1000_hw *hw)
-{
-	if (hw->phy.ops.power_down)
-		hw->phy.ops.power_down(hw);
-}
-
-/**
- *  e1000_power_up_fiber_serdes_link - Power up serdes link
- *  @hw: pointer to the HW structure
- *
- *  Power on the optics and PCS.
- **/
-void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.power_up_serdes)
-		hw->mac.ops.power_up_serdes(hw);
-}
-
-/**
- *  e1000_shutdown_fiber_serdes_link - Remove link during power down
- *  @hw: pointer to the HW structure
- *
- *  Shutdown the optics and PCS on driver unload.
- **/
-void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
-{
-	if (hw->mac.ops.shutdown_serdes)
-		hw->mac.ops.shutdown_serdes(hw);
-}
-
diff --git a/lib/librte_pmd_e1000/e1000/e1000_api.h b/lib/librte_pmd_e1000/e1000/e1000_api.h
deleted file mode 100644
index 02b16da..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_api.h
+++ /dev/null
@@ -1,167 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_API_H_
-#define _E1000_API_H_
-
-#include "e1000_hw.h"
-
-extern void e1000_init_function_pointers_82542(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82543(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82540(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82571(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82541(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
-extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_vf(struct e1000_hw *hw);
-extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw);
-extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw);
-extern void e1000_init_function_pointers_i210(struct e1000_hw *hw);
-
-s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr);
-s32 e1000_set_mac_type(struct e1000_hw *hw);
-s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
-s32 e1000_init_mac_params(struct e1000_hw *hw);
-s32 e1000_init_nvm_params(struct e1000_hw *hw);
-s32 e1000_init_phy_params(struct e1000_hw *hw);
-s32 e1000_init_mbx_params(struct e1000_hw *hw);
-s32 e1000_get_bus_info(struct e1000_hw *hw);
-void e1000_clear_vfta(struct e1000_hw *hw);
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
-s32 e1000_force_mac_fc(struct e1000_hw *hw);
-s32 e1000_check_for_link(struct e1000_hw *hw);
-s32 e1000_reset_hw(struct e1000_hw *hw);
-s32 e1000_init_hw(struct e1000_hw *hw);
-s32 e1000_setup_link(struct e1000_hw *hw);
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex);
-s32 e1000_disable_pcie_master(struct e1000_hw *hw);
-void e1000_config_collision_dist(struct e1000_hw *hw);
-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
-void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
-			       u32 mc_addr_count);
-s32 e1000_setup_led(struct e1000_hw *hw);
-s32 e1000_cleanup_led(struct e1000_hw *hw);
-s32 e1000_check_reset_block(struct e1000_hw *hw);
-s32 e1000_blink_led(struct e1000_hw *hw);
-s32 e1000_led_on(struct e1000_hw *hw);
-s32 e1000_led_off(struct e1000_hw *hw);
-s32 e1000_id_led_init(struct e1000_hw *hw);
-void e1000_reset_adaptive(struct e1000_hw *hw);
-void e1000_update_adaptive(struct e1000_hw *hw);
-s32 e1000_get_cable_length(struct e1000_hw *hw);
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
-			      u8 data);
-s32 e1000_get_phy_info(struct e1000_hw *hw);
-void e1000_release_phy(struct e1000_hw *hw);
-s32 e1000_acquire_phy(struct e1000_hw *hw);
-s32 e1000_cfg_on_link_up(struct e1000_hw *hw);
-s32 e1000_phy_hw_reset(struct e1000_hw *hw);
-s32 e1000_phy_commit(struct e1000_hw *hw);
-void e1000_power_up_phy(struct e1000_hw *hw);
-void e1000_power_down_phy(struct e1000_hw *hw);
-s32 e1000_read_mac_addr(struct e1000_hw *hw);
-s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
-s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size);
-s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size);
-void e1000_reload_nvm(struct e1000_hw *hw);
-s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
-s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
-s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
-bool e1000_check_mng_mode(struct e1000_hw *hw);
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
-s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
-s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
-			    u16 offset, u8 *sum);
-s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
-			       struct e1000_host_mng_command_header *hdr);
-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
-u32  e1000_translate_register_82542(u32 reg);
-
-
-
-/*
- * TBI_ACCEPT macro definition:
- *
- * This macro requires:
- *      adapter = a pointer to struct e1000_hw
- *      status = the 8 bit status field of the Rx descriptor with EOP set
- *      error = the 8 bit error field of the Rx descriptor with EOP set
- *      length = the sum of all the length fields of the Rx descriptors that
- *               make up the current frame
- *      last_byte = the last byte of the frame DMAed by the hardware
- *      max_frame_length = the maximum frame length we want to accept.
- *      min_frame_length = the minimum frame length we want to accept.
- *
- * This macro is a conditional that should be used in the interrupt
- * handler's Rx processing routine when RxErrors have been detected.
- *
- * Typical use:
- *  ...
- *  if (TBI_ACCEPT) {
- *      accept_frame = true;
- *      e1000_tbi_adjust_stats(adapter, MacAddress);
- *      frame_length--;
- *  } else {
- *      accept_frame = false;
- *  }
- *  ...
- */
-
-/* The carrier extension symbol, as received by the NIC. */
-#define CARRIER_EXTENSION   0x0F
-
-#define TBI_ACCEPT(a, status, errors, length, last_byte, \
-		   min_frame_size, max_frame_size) \
-	(e1000_tbi_sbp_enabled_82543(a) && \
-	 (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
-	 ((last_byte) == CARRIER_EXTENSION) && \
-	 (((status) & E1000_RXD_STAT_VP) ? \
-	  (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
-	  ((length) <= (max_frame_size + 1))) : \
-	  (((length) > min_frame_size) && \
-	  ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
-
-#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b))
-#define E1000_DIVIDE_ROUND_UP(a, b)	(((a) + (b) - 1) / (b)) /* ceil(a/b) */
-#endif /* _E1000_API_H_ */
diff --git a/lib/librte_pmd_e1000/e1000/e1000_defines.h b/lib/librte_pmd_e1000/e1000/e1000_defines.h
deleted file mode 100644
index 278c507..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_defines.h
+++ /dev/null
@@ -1,1498 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_DEFINES_H_
-#define _E1000_DEFINES_H_
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE  8
-#define REQ_RX_DESCRIPTOR_MULTIPLE  8
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME		0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN	0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS	0x00000004 /* PME Status */
-#define E1000_WUC_APMPME	0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_PHY_WAKE	0x00000100 /* if PHY supports wakeup */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC	0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG	0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX	0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC	0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC	0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP	0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4	0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_FLX0		0x00010000 /* Flexible Filter 0 Enable */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC		E1000_WUFC_LNKC
-#define E1000_WUS_MAG		E1000_WUFC_MAG
-#define E1000_WUS_EX		E1000_WUFC_EX
-#define E1000_WUS_MC		E1000_WUFC_MC
-#define E1000_WUS_BC		E1000_WUFC_BC
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_LPCD		0x00000004 /* LCD Power Cycle Done */
-#define E1000_CTRL_EXT_SDP4_DATA	0x00000010 /* SW Definable Pin 4 data */
-#define E1000_CTRL_EXT_SDP6_DATA	0x00000040 /* SW Definable Pin 6 data */
-#define E1000_CTRL_EXT_SDP3_DATA	0x00000080 /* SW Definable Pin 3 data */
-/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
-#define E1000_CTRL_EXT_SDP4_DIR	0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR	0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP3_DIR	0x00000800 /* Direction of SDP3 0=in 1=out */
-#define E1000_CTRL_EXT_FORCE_SMBUS	0x00000800 /* Force SMBus mode */
-#define E1000_CTRL_EXT_EE_RST	0x00002000 /* Reinitialize from EEPROM */
-/* Physical Func Reset Done Indication */
-#define E1000_CTRL_EXT_PFRSTD	0x00004000
-#define E1000_CTRL_EXT_SDLPE	0X00040000  /* SerDes Low Power Enable */
-#define E1000_CTRL_EXT_SPD_BYPS	0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS	0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_DMA_DYN_CLK_EN	0x00080000 /* DMA Dynamic Clk Gating */
-#define E1000_CTRL_EXT_LINK_MODE_MASK	0x00C00000
-/* Offset of the link mode field in Ctrl Ext register */
-#define E1000_CTRL_EXT_LINK_MODE_OFFSET	22
-#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX	0x00400000
-#define E1000_CTRL_EXT_LINK_MODE_GMII	0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES	0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_SGMII	0x00800000
-#define E1000_CTRL_EXT_EIAME		0x01000000
-#define E1000_CTRL_EXT_IRCA		0x00000001
-#define E1000_CTRL_EXT_DRV_LOAD		0x10000000 /* Drv loaded bit for FW */
-#define E1000_CTRL_EXT_IAME		0x08000000 /* Int ACK Auto-mask */
-#define E1000_CTRL_EXT_PBA_CLR		0x80000000 /* PBA Clear */
-#define E1000_CTRL_EXT_LSECCK		0x00001000
-#define E1000_CTRL_EXT_PHYPDEN		0x00100000
-#define E1000_I2CCMD_REG_ADDR_SHIFT	16
-#define E1000_I2CCMD_PHY_ADDR_SHIFT	24
-#define E1000_I2CCMD_OPCODE_READ	0x08000000
-#define E1000_I2CCMD_OPCODE_WRITE	0x00000000
-#define E1000_I2CCMD_READY		0x20000000
-#define E1000_I2CCMD_ERROR		0x80000000
-#define E1000_I2CCMD_SFP_DATA_ADDR(a)	(0x0000 + (a))
-#define E1000_I2CCMD_SFP_DIAG_ADDR(a)	(0x0100 + (a))
-#define E1000_MAX_SGMII_PHY_REG_ADDR	255
-#define E1000_I2CCMD_PHY_TIMEOUT	200
-#define E1000_IVAR_VALID	0x80
-#define E1000_GPIE_NSICR	0x00000001
-#define E1000_GPIE_MSIX_MODE	0x00000010
-#define E1000_GPIE_EIAME	0x40000000
-#define E1000_GPIE_PBA		0x80000000
-
-/* Receive Descriptor bit definitions */
-#define E1000_RXD_STAT_DD	0x01    /* Descriptor Done */
-#define E1000_RXD_STAT_EOP	0x02    /* End of Packet */
-#define E1000_RXD_STAT_IXSM	0x04    /* Ignore checksum */
-#define E1000_RXD_STAT_VP	0x08    /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS	0x10    /* UDP xsum calculated */
-#define E1000_RXD_STAT_TCPCS	0x20    /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS	0x40    /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF	0x80    /* passed in-exact filter */
-#define E1000_RXD_STAT_IPIDV	0x200   /* IP identification valid */
-#define E1000_RXD_STAT_UDPV	0x400   /* Valid UDP checksum */
-#define E1000_RXD_STAT_DYNINT	0x800   /* Pkt caused INT via DYNINT */
-#define E1000_RXD_ERR_CE	0x01    /* CRC Error */
-#define E1000_RXD_ERR_SE	0x02    /* Symbol Error */
-#define E1000_RXD_ERR_SEQ	0x04    /* Sequence Error */
-#define E1000_RXD_ERR_CXE	0x10    /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE	0x20    /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE	0x40    /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE	0x80    /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK	0x0FFF  /* VLAN ID is in lower 12 bits */
-
-#define E1000_RXDEXT_STATERR_TST	0x00000100 /* Time Stamp taken */
-#define E1000_RXDEXT_STATERR_LB		0x00040000
-#define E1000_RXDEXT_STATERR_CE		0x01000000
-#define E1000_RXDEXT_STATERR_SE		0x02000000
-#define E1000_RXDEXT_STATERR_SEQ	0x04000000
-#define E1000_RXDEXT_STATERR_CXE	0x10000000
-#define E1000_RXDEXT_STATERR_TCPE	0x20000000
-#define E1000_RXDEXT_STATERR_IPE	0x40000000
-#define E1000_RXDEXT_STATERR_RXE	0x80000000
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
-	E1000_RXD_ERR_CE  |		\
-	E1000_RXD_ERR_SE  |		\
-	E1000_RXD_ERR_SEQ |		\
-	E1000_RXD_ERR_CXE |		\
-	E1000_RXD_ERR_RXE)
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
-	E1000_RXDEXT_STATERR_CE  |	\
-	E1000_RXDEXT_STATERR_SE  |	\
-	E1000_RXDEXT_STATERR_SEQ |	\
-	E1000_RXDEXT_STATERR_CXE |	\
-	E1000_RXDEXT_STATERR_RXE)
-
-#if !defined(EXTERNAL_RELEASE) || defined(E1000E_MQ)
-#define E1000_MRQC_ENABLE_RSS_2Q		0x00000001
-#endif /* !EXTERNAL_RELEASE || E1000E_MQ */
-#define E1000_MRQC_RSS_FIELD_MASK		0xFFFF0000
-#define E1000_MRQC_RSS_FIELD_IPV4_TCP		0x00010000
-#define E1000_MRQC_RSS_FIELD_IPV4		0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX	0x00040000
-#define E1000_MRQC_RSS_FIELD_IPV6		0x00100000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP		0x00200000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP		0x00008000
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN	0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN	0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_ARP_EN	0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_RCV_TCO_EN	0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE	0x00040000 /* Block phy resets */
-/* Enable MAC address filtering */
-#define E1000_MANC_EN_MAC_ADDR_FILTER	0x00100000
-/* Enable MNG packets to host memory */
-#define E1000_MANC_EN_MNG2HOST		0x00200000
-
-#define E1000_MANC2H_PORT_623		0x00000020 /* Port 0x26f */
-#define E1000_MANC2H_PORT_664		0x00000040 /* Port 0x298 */
-#define E1000_MDEF_PORT_623		0x00000800 /* Port 0x26f */
-#define E1000_MDEF_PORT_664		0x00000400 /* Port 0x298 */
-
-/* Receive Control */
-#define E1000_RCTL_RST		0x00000001 /* Software reset */
-#define E1000_RCTL_EN		0x00000002 /* enable */
-#define E1000_RCTL_SBP		0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE		0x00000008 /* unicast promisc enable */
-#define E1000_RCTL_MPE		0x00000010 /* multicast promisc enable */
-#define E1000_RCTL_LPE		0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO	0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC	0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_TCVR	0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_PS	0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF	0x00000000 /* Rx desc min thresh size */
-#define E1000_RCTL_MO_SHIFT	12 /* multicast offset shift */
-#define E1000_RCTL_MO_3		0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_BAM		0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048	0x00000000 /* Rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024	0x00010000 /* Rx buffer size 1024 */
-#define E1000_RCTL_SZ_512	0x00020000 /* Rx buffer size 512 */
-#define E1000_RCTL_SZ_256	0x00030000 /* Rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384	0x00010000 /* Rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192	0x00020000 /* Rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096	0x00030000 /* Rx buffer size 4096 */
-#define E1000_RCTL_VFE		0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN	0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI		0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF		0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF		0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX		0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC	0x04000000 /* Strip Ethernet CRC */
-
-/* Use byte values for the following shift parameters
- * Usage:
- *     psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- *		  E1000_PSRCTL_BSIZE0_MASK) |
- *		((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- *		  E1000_PSRCTL_BSIZE1_MASK) |
- *		((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- *		  E1000_PSRCTL_BSIZE2_MASK) |
- *		((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- *		  E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256],  default=256
- *       value1 = [1024..64512], default=4096
- *       value2 = [0..64512],    default=4096
- *       value3 = [0..64512],    default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK	0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK	0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK	0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK	0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT	7    /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT	2    /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT	6    /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT	14   /* Shift _left_ 14 */
-
-/* SWFW_SYNC Definitions */
-#define E1000_SWFW_EEP_SM	0x01
-#define E1000_SWFW_PHY0_SM	0x02
-#define E1000_SWFW_PHY1_SM	0x04
-#define E1000_SWFW_CSR_SM	0x08
-#define E1000_SWFW_PHY2_SM	0x20
-#define E1000_SWFW_PHY3_SM	0x40
-#define E1000_SWFW_SW_MNG_SM	0x400
-
-/* Device Control */
-#define E1000_CTRL_FD		0x00000001  /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_PRIOR	0x00000004  /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */
-#define E1000_CTRL_LRST		0x00000008  /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_ASDE		0x00000020  /* Auto-speed detect enable */
-#define E1000_CTRL_SLU		0x00000040  /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS		0x00000080  /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL	0x00000300  /* Speed Select Mask */
-#define E1000_CTRL_SPD_10	0x00000000  /* Force 10Mb */
-#define E1000_CTRL_SPD_100	0x00000100  /* Force 100Mb */
-#define E1000_CTRL_SPD_1000	0x00000200  /* Force 1Gb */
-#define E1000_CTRL_FRCSPD	0x00000800  /* Force Speed */
-#define E1000_CTRL_FRCDPX	0x00001000  /* Force Duplex */
-#define E1000_CTRL_LANPHYPC_OVERRIDE	0x00010000 /* SW control of LANPHYPC */
-#define E1000_CTRL_LANPHYPC_VALUE	0x00020000 /* SW value of LANPHYPC */
-#define E1000_CTRL_MEHE		0x00080000 /* Memory Error Handling Enable */
-#define E1000_CTRL_SWDPIN0	0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1	0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2	0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_ADVD3WUC	0x00100000 /* D3 WUC */
-#define E1000_CTRL_EN_PHY_PWR_MGMT	0x00200000 /* PHY PM enable */
-#define E1000_CTRL_SWDPIN3	0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0	0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO2	0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3	0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST		0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE		0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE		0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_VME		0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST	0x80000000 /* PHY Reset */
-#define E1000_CTRL_I2C_ENA	0x02000000 /* I2C enable */
-
-#define E1000_CTRL_MDIO_DIR		E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO			E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR		E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC			E1000_CTRL_SWDPIN3
-
-#define E1000_CONNSW_ENRGSRC		0x4
-#define E1000_CONNSW_PHYSD		0x400
-#define E1000_CONNSW_PHY_PDN		0x800
-#define E1000_CONNSW_SERDESD		0x200
-#define E1000_CONNSW_AUTOSENSE_CONF	0x2
-#define E1000_CONNSW_AUTOSENSE_EN	0x1
-#define E1000_PCS_CFG_PCS_EN		8
-#define E1000_PCS_LCTL_FLV_LINK_UP	1
-#define E1000_PCS_LCTL_FSV_10		0
-#define E1000_PCS_LCTL_FSV_100		2
-#define E1000_PCS_LCTL_FSV_1000		4
-#define E1000_PCS_LCTL_FDV_FULL		8
-#define E1000_PCS_LCTL_FSD		0x10
-#define E1000_PCS_LCTL_FORCE_LINK	0x20
-#define E1000_PCS_LCTL_FORCE_FCTRL	0x80
-#define E1000_PCS_LCTL_AN_ENABLE	0x10000
-#define E1000_PCS_LCTL_AN_RESTART	0x20000
-#define E1000_PCS_LCTL_AN_TIMEOUT	0x40000
-#define E1000_ENABLE_SERDES_LOOPBACK	0x0410
-
-#define E1000_PCS_LSTS_LINK_OK		1
-#define E1000_PCS_LSTS_SPEED_100	2
-#define E1000_PCS_LSTS_SPEED_1000	4
-#define E1000_PCS_LSTS_DUPLEX_FULL	8
-#define E1000_PCS_LSTS_SYNK_OK		0x10
-#define E1000_PCS_LSTS_AN_COMPLETE	0x10000
-
-/* Device Status */
-#define E1000_STATUS_FD			0x00000001 /* Duplex 0=half 1=full */
-#define E1000_STATUS_LU			0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK		0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT		2
-#define E1000_STATUS_FUNC_1		0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF		0x00000010 /* transmission paused */
-#define E1000_STATUS_SPEED_MASK	0x000000C0
-#define E1000_STATUS_SPEED_10		0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100		0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000		0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE	0x00000200 /* Lan Init Compltn by NVM */
-#define E1000_STATUS_PHYRA		0x00000400 /* PHY Reset Asserted */
-#define E1000_STATUS_GIO_MASTER_ENABLE	0x00080000 /* Master request status */
-#define E1000_STATUS_PCI66		0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64		0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_2P5_SKU		0x00001000 /* Val of 2.5GBE SKU strap */
-#define E1000_STATUS_2P5_SKU_OVER	0x00002000 /* Val of 2.5GBE SKU Over */
-#define E1000_STATUS_PCIX_MODE		0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED		0x0000C000 /* PCI-X bus speed */
-
-/* Constants used to interpret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66	0x00000000 /* PCI-X bus spd 50-66MHz */
-#define E1000_STATUS_PCIX_SPEED_100	0x00004000 /* PCI-X bus spd 66-100MHz */
-#define E1000_STATUS_PCIX_SPEED_133	0x00008000 /* PCI-X bus spd 100-133MHz*/
-
-#define SPEED_10	10
-#define SPEED_100	100
-#define SPEED_1000	1000
-#define SPEED_2500	2500
-#define HALF_DUPLEX	1
-#define FULL_DUPLEX	2
-
-#define PHY_FORCE_TIME	20
-
-#define ADVERTISE_10_HALF		0x0001
-#define ADVERTISE_10_FULL		0x0002
-#define ADVERTISE_100_HALF		0x0004
-#define ADVERTISE_100_FULL		0x0008
-#define ADVERTISE_1000_HALF		0x0010 /* Not used, just FYI */
-#define ADVERTISE_1000_FULL		0x0020
-
-/* 1000/H is not supported, nor spec-compliant. */
-#define E1000_ALL_SPEED_DUPLEX	( \
-	ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
-	ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
-#define E1000_ALL_NOT_GIG	( \
-	ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \
-	ADVERTISE_100_FULL)
-#define E1000_ALL_100_SPEED	(ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_10_SPEED	(ADVERTISE_10_HALF | ADVERTISE_10_FULL)
-#define E1000_ALL_HALF_DUPLEX	(ADVERTISE_10_HALF | ADVERTISE_100_HALF)
-
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT		E1000_ALL_SPEED_DUPLEX
-
-/* LED Control */
-#define E1000_PHY_LED0_MODE_MASK	0x00000007
-#define E1000_PHY_LED0_IVRT		0x00000008
-#define E1000_PHY_LED0_MASK		0x0000001F
-
-#define E1000_LEDCTL_LED0_MODE_MASK	0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT	0
-#define E1000_LEDCTL_LED0_IVRT		0x00000040
-#define E1000_LEDCTL_LED0_BLINK		0x00000080
-
-#define E1000_LEDCTL_MODE_LINK_UP	0x2
-#define E1000_LEDCTL_MODE_LED_ON	0xE
-#define E1000_LEDCTL_MODE_LED_OFF	0xF
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D	0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C	0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM	0x01       /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM	0x02       /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP	0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS	0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC	0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS	0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS	0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT	0x20000000 /* Desc extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE	0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE	0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD	0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC	0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC	0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU	0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP	0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP	0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE	0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC	0x00000004 /* Tx Underrun */
-#define E1000_TXD_EXTCMD_TSTAMP	0x00000010 /* IEEE1588 Timestamp packet */
-
-/* Transmit Control */
-#define E1000_TCTL_EN		0x00000002 /* enable Tx */
-#define E1000_TCTL_PSP		0x00000008 /* pad short packets */
-#define E1000_TCTL_CT		0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD		0x003ff000 /* collision distance */
-#define E1000_TCTL_RTLC		0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_MULR		0x10000000 /* Multiple request support */
-
-/* Transmit Arbitration Count */
-#define E1000_TARC0_ENABLE	0x00000400 /* Enable Tx Queue 0 */
-
-/* SerDes Control */
-#define E1000_SCTL_DISABLE_SERDES_LOOPBACK	0x0400
-#define E1000_SCTL_ENABLE_SERDES_LOOPBACK	0x0410
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_IPOFL	0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL	0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_CRCOFL	0x00000800 /* CRC32 offload enable */
-#define E1000_RXCSUM_IPPCSE	0x00001000 /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD	0x00002000 /* packet checksum disabled */
-
-/* Header split receive */
-#define E1000_RFCTL_NFSW_DIS		0x00000040
-#define E1000_RFCTL_NFSR_DIS		0x00000080
-#define E1000_RFCTL_ACK_DIS		0x00001000
-#define E1000_RFCTL_EXTEN		0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS		0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS	0x00020000
-#define E1000_RFCTL_LEF			0x00040000
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD	15
-#define E1000_CT_SHIFT			4
-#define E1000_COLLISION_DISTANCE	63
-#define E1000_COLD_SHIFT		12
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT		10
-#define DEFAULT_82543_TIPG_IPGT_FIBER	9
-#define DEFAULT_82543_TIPG_IPGT_COPPER	8
-
-#define E1000_TIPG_IPGT_MASK		0x000003FF
-
-#define DEFAULT_82542_TIPG_IPGR1	2
-#define DEFAULT_82543_TIPG_IPGR1	8
-#define E1000_TIPG_IPGR1_SHIFT		10
-
-#define DEFAULT_82542_TIPG_IPGR2	10
-#define DEFAULT_82543_TIPG_IPGR2	6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2	7
-#define E1000_TIPG_IPGR2_SHIFT		20
-
-/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE		0x8100  /* 802.3ac packet */
-
-#define ETHERNET_FCS_SIZE		4
-#define MAX_JUMBO_FRAME_SIZE		0x3F00
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP	0x00000020
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE	0x00000001
-#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE	0x00000008
-#define E1000_EXTCNF_CTRL_SWFLAG		0x00000020
-#define E1000_EXTCNF_CTRL_GATE_PHY_CFG		0x00000080
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK	0x00FF0000
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT	16
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK	0x0FFF0000
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT	16
-
-#define E1000_PHY_CTRL_D0A_LPLU			0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU		0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE	0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE		0x00000040
-
-#define E1000_KABGTXD_BGSQLBIAS			0x00050000
-
-/* Low Power IDLE Control */
-#define E1000_LPIC_LPIET_SHIFT		24	/* Low Power Idle Entry Time */
-
-/* PBA constants */
-#define E1000_PBA_8K		0x0008    /* 8KB */
-#define E1000_PBA_10K		0x000A    /* 10KB */
-#define E1000_PBA_12K		0x000C    /* 12KB */
-#define E1000_PBA_14K		0x000E    /* 14KB */
-#define E1000_PBA_16K		0x0010    /* 16KB */
-#define E1000_PBA_18K		0x0012
-#define E1000_PBA_20K		0x0014
-#define E1000_PBA_22K		0x0016
-#define E1000_PBA_24K		0x0018
-#define E1000_PBA_26K		0x001A
-#define E1000_PBA_30K		0x001E
-#define E1000_PBA_32K		0x0020
-#define E1000_PBA_34K		0x0022
-#define E1000_PBA_35K		0x0023
-#define E1000_PBA_38K		0x0026
-#define E1000_PBA_40K		0x0028
-#define E1000_PBA_48K		0x0030    /* 48KB */
-#define E1000_PBA_64K		0x0040    /* 64KB */
-
-#define E1000_PBA_RXA_MASK	0xFFFF
-
-#define E1000_PBS_16K		E1000_PBA_16K
-
-/* Uncorrectable/correctable ECC Error counts and enable bits */
-#define E1000_PBECCSTS_CORR_ERR_CNT_MASK	0x000000FF
-#define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK	0x0000FF00
-#define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT	8
-#define E1000_PBECCSTS_ECC_ENABLE		0x00010000
-
-#define IFS_MAX			80
-#define IFS_MIN			40
-#define IFS_RATIO		4
-#define IFS_STEP		10
-#define MIN_NUM_XMITS		1000
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI		0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI	0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_DRV_LOAD	0x00000008 /* Driver Loaded Bit */
-
-#define E1000_SWSM2_LOCK	0x00000002 /* Secondary driver semaphore bit */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW		0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE		0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC		0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ		0x00000008 /* Rx sequence error */
-#define E1000_ICR_RXDMT0	0x00000010 /* Rx desc min. threshold (0) */
-#define E1000_ICR_RXO		0x00000040 /* Rx overrun */
-#define E1000_ICR_RXT0		0x00000080 /* Rx timer intr (ring 0) */
-#define E1000_ICR_VMMB		0x00000100 /* VM MB event */
-#define E1000_ICR_RXCFG		0x00000400 /* Rx /c/ ordered set */
-#define E1000_ICR_GPI_EN0	0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1	0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2	0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3	0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW	0x00008000
-#define E1000_ICR_MNG		0x00040000 /* Manageability event */
-#define E1000_ICR_ECCER		0x00400000 /* Uncorrectable ECC Error */
-#define E1000_ICR_TS		0x00080000 /* Time Sync Interrupt */
-#define E1000_ICR_DRSTA		0x40000000 /* Device Reset Asserted */
-/* If this bit asserted, the driver should claim the interrupt */
-#define E1000_ICR_INT_ASSERTED	0x80000000
-#define E1000_ICR_DOUTSYNC	0x10000000 /* NIC DMA out of sync */
-#define E1000_ICR_RXQ0		0x00100000 /* Rx Queue 0 Interrupt */
-#define E1000_ICR_RXQ1		0x00200000 /* Rx Queue 1 Interrupt */
-#define E1000_ICR_TXQ0		0x00400000 /* Tx Queue 0 Interrupt */
-#define E1000_ICR_TXQ1		0x00800000 /* Tx Queue 1 Interrupt */
-#define E1000_ICR_OTHER		0x01000000 /* Other Interrupts */
-#define E1000_ICR_FER		0x00400000 /* Fatal Error */
-
-#define E1000_ICR_THS		0x00800000 /* ICR.THS: Thermal Sensor Event*/
-#define E1000_ICR_MDDET		0x10000000 /* Malicious Driver Detect */
-
-/* PBA ECC Register */
-#define E1000_PBA_ECC_COUNTER_MASK	0xFFF00000 /* ECC counter mask */
-#define E1000_PBA_ECC_COUNTER_SHIFT	20 /* ECC counter shift value */
-#define E1000_PBA_ECC_CORR_EN	0x00000001 /* Enable ECC error correction */
-#define E1000_PBA_ECC_STAT_CLR	0x00000002 /* Clear ECC error counter */
-#define E1000_PBA_ECC_INT_EN	0x00000004 /* Enable ICR bit 5 on ECC error */
-
-/* Extended Interrupt Cause Read */
-#define E1000_EICR_RX_QUEUE0	0x00000001 /* Rx Queue 0 Interrupt */
-#define E1000_EICR_RX_QUEUE1	0x00000002 /* Rx Queue 1 Interrupt */
-#define E1000_EICR_RX_QUEUE2	0x00000004 /* Rx Queue 2 Interrupt */
-#define E1000_EICR_RX_QUEUE3	0x00000008 /* Rx Queue 3 Interrupt */
-#define E1000_EICR_TX_QUEUE0	0x00000100 /* Tx Queue 0 Interrupt */
-#define E1000_EICR_TX_QUEUE1	0x00000200 /* Tx Queue 1 Interrupt */
-#define E1000_EICR_TX_QUEUE2	0x00000400 /* Tx Queue 2 Interrupt */
-#define E1000_EICR_TX_QUEUE3	0x00000800 /* Tx Queue 3 Interrupt */
-#define E1000_EICR_TCP_TIMER	0x40000000 /* TCP Timer */
-#define E1000_EICR_OTHER	0x80000000 /* Interrupt Cause Active */
-/* TCP Timer */
-#define E1000_TCPTIMER_KS	0x00000100 /* KickStart */
-#define E1000_TCPTIMER_COUNT_ENABLE	0x00000200 /* Count Enable */
-#define E1000_TCPTIMER_COUNT_FINISH	0x00000400 /* Count finish */
-#define E1000_TCPTIMER_LOOP	0x00000800 /* Loop */
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register.  Each bit is documented below:
- *   o RXT0   = Receiver Timer Interrupt (ring 0)
- *   o TXDW   = Transmit Descriptor Written Back
- *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- *   o RXSEQ  = Receive Sequence Error
- *   o LSC    = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
-	E1000_IMS_RXT0   |    \
-	E1000_IMS_TXDW   |    \
-	E1000_IMS_RXDMT0 |    \
-	E1000_IMS_RXSEQ  |    \
-	E1000_IMS_LSC)
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW		E1000_ICR_TXDW    /* Tx desc written back */
-#define E1000_IMS_TXQE		E1000_ICR_TXQE    /* Transmit Queue empty */
-#define E1000_IMS_LSC		E1000_ICR_LSC     /* Link Status Change */
-#define E1000_IMS_VMMB		E1000_ICR_VMMB    /* Mail box activity */
-#define E1000_IMS_RXSEQ		E1000_ICR_RXSEQ   /* Rx sequence error */
-#define E1000_IMS_RXDMT0	E1000_ICR_RXDMT0  /* Rx desc min. threshold */
-#define E1000_IMS_RXO		E1000_ICR_RXO     /* Rx overrun */
-#define E1000_IMS_RXT0		E1000_ICR_RXT0    /* Rx timer intr */
-#define E1000_IMS_TXD_LOW	E1000_ICR_TXD_LOW
-#define E1000_IMS_ECCER		E1000_ICR_ECCER   /* Uncorrectable ECC Error */
-#define E1000_IMS_TS		E1000_ICR_TS      /* Time Sync Interrupt */
-#define E1000_IMS_DRSTA		E1000_ICR_DRSTA   /* Device Reset Asserted */
-#define E1000_IMS_DOUTSYNC	E1000_ICR_DOUTSYNC /* NIC DMA out of sync */
-#define E1000_IMS_RXQ0		E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
-#define E1000_IMS_RXQ1		E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
-#define E1000_IMS_TXQ0		E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
-#define E1000_IMS_TXQ1		E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
-#define E1000_IMS_OTHER		E1000_ICR_OTHER /* Other Interrupts */
-#define E1000_IMS_FER		E1000_ICR_FER /* Fatal Error */
-
-#define E1000_IMS_THS		E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/
-#define E1000_IMS_MDDET		E1000_ICR_MDDET /* Malicious Driver Detect */
-/* Extended Interrupt Mask Set */
-#define E1000_EIMS_RX_QUEUE0	E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
-#define E1000_EIMS_RX_QUEUE1	E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
-#define E1000_EIMS_RX_QUEUE2	E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
-#define E1000_EIMS_RX_QUEUE3	E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
-#define E1000_EIMS_TX_QUEUE0	E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
-#define E1000_EIMS_TX_QUEUE1	E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
-#define E1000_EIMS_TX_QUEUE2	E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
-#define E1000_EIMS_TX_QUEUE3	E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
-#define E1000_EIMS_TCP_TIMER	E1000_EICR_TCP_TIMER /* TCP Timer */
-#define E1000_EIMS_OTHER	E1000_EICR_OTHER   /* Interrupt Cause Active */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_LSC		E1000_ICR_LSC       /* Link Status Change */
-#define E1000_ICS_RXSEQ		E1000_ICR_RXSEQ     /* Rx sequence error */
-#define E1000_ICS_RXDMT0	E1000_ICR_RXDMT0    /* Rx desc min. threshold */
-
-/* Extended Interrupt Cause Set */
-#define E1000_EICS_RX_QUEUE0	E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
-#define E1000_EICS_RX_QUEUE1	E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
-#define E1000_EICS_RX_QUEUE2	E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
-#define E1000_EICS_RX_QUEUE3	E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
-#define E1000_EICS_TX_QUEUE0	E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
-#define E1000_EICS_TX_QUEUE1	E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
-#define E1000_EICS_TX_QUEUE2	E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
-#define E1000_EICS_TX_QUEUE3	E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
-#define E1000_EICS_TCP_TIMER	E1000_EICR_TCP_TIMER /* TCP Timer */
-#define E1000_EICS_OTHER	E1000_EICR_OTHER   /* Interrupt Cause Active */
-
-#define E1000_EITR_ITR_INT_MASK	0x0000FFFF
-/* E1000_EITR_CNT_IGNR is only for 82576 and newer */
-#define E1000_EITR_CNT_IGNR	0x80000000 /* Don't reset counters on write */
-#define E1000_EITR_INTERVAL 0x00007FFC
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH	0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH	0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH	0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN	0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_FULL_TX_DESC_WB	0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
-/* Enable the counting of descriptors still to be processed. */
-#define E1000_TXDCTL_COUNT_DESC	0x00400000
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW	0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH	0x00000100
-#define FLOW_CONTROL_TYPE		0x8808
-
-/* 802.1q VLAN Packet Size */
-#define VLAN_TAG_SIZE			4    /* 802.3ac tag (not DMA'd) */
-#define E1000_VLAN_FILTER_TBL_SIZE	128  /* VLAN Filter Table (4096 bits) */
-
-/* Receive Address
- * Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor.
- * Technically, we have 16 spots.  However, we reserve one of these spots
- * (RAR[15]) for our directed address used by controllers with
- * manageability enabled, allowing us room for 15 multicast addresses.
- */
-#define E1000_RAR_ENTRIES	15
-#define E1000_RAH_AV		0x80000000 /* Receive descriptor valid */
-#define E1000_RAL_MAC_ADDR_LEN	4
-#define E1000_RAH_MAC_ADDR_LEN	2
-#define E1000_RAH_QUEUE_MASK_82575	0x000C0000
-#define E1000_RAH_POOL_1	0x00040000
-
-/* Error Codes */
-#define E1000_SUCCESS			0
-#define E1000_ERR_NVM			1
-#define E1000_ERR_PHY			2
-#define E1000_ERR_CONFIG		3
-#define E1000_ERR_PARAM			4
-#define E1000_ERR_MAC_INIT		5
-#define E1000_ERR_PHY_TYPE		6
-#define E1000_ERR_RESET			9
-#define E1000_ERR_MASTER_REQUESTS_PENDING	10
-#define E1000_ERR_HOST_INTERFACE_COMMAND	11
-#define E1000_BLK_PHY_RESET		12
-#define E1000_ERR_SWFW_SYNC		13
-#define E1000_NOT_IMPLEMENTED		14
-#define E1000_ERR_MBX			15
-#define E1000_ERR_INVALID_ARGUMENT	16
-#define E1000_ERR_NO_SPACE		17
-#define E1000_ERR_NVM_PBA_SECTION	18
-#define E1000_ERR_I2C			19
-#define E1000_ERR_INVM_VALUE_NOT_FOUND	20
-
-/* Loop limit on how long we wait for auto-negotiation to complete */
-#define FIBER_LINK_UP_LIMIT		50
-#define COPPER_LINK_UP_LIMIT		10
-#define PHY_AUTO_NEG_LIMIT		45
-#define PHY_FORCE_LIMIT			20
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT		800
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT			100
-/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
-#define MDIO_OWNERSHIP_TIMEOUT		10
-/* Number of milliseconds for NVM auto read done after MAC reset. */
-#define AUTO_READ_DONE_TIMEOUT		10
-
-/* Flow Control */
-#define E1000_FCRTH_RTH		0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTL_RTL		0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE	0x80000000 /* Enable XON frame transmission */
-
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD		0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_PAUSE	0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR	0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK	0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_ANE		0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW		0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_IV		0x08000000 /* Receive config invalid */
-#define E1000_RXCW_C		0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH	0x40000000 /* Receive config synch */
-
-#define E1000_TSYNCTXCTL_VALID		0x00000001 /* Tx timestamp valid */
-#define E1000_TSYNCTXCTL_ENABLED	0x00000010 /* enable Tx timestamping */
-
-#define E1000_TSYNCRXCTL_VALID		0x00000001 /* Rx timestamp valid */
-#define E1000_TSYNCRXCTL_TYPE_MASK	0x0000000E /* Rx type mask */
-#define E1000_TSYNCRXCTL_TYPE_L2_V2	0x00
-#define E1000_TSYNCRXCTL_TYPE_L4_V1	0x02
-#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2	0x04
-#define E1000_TSYNCRXCTL_TYPE_ALL	0x08
-#define E1000_TSYNCRXCTL_TYPE_EVENT_V2	0x0A
-#define E1000_TSYNCRXCTL_ENABLED	0x00000010 /* enable Rx timestamping */
-#define E1000_TSYNCRXCTL_SYSCFI		0x00000020 /* Sys clock frequency */
-
-#define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE	0x00000000
-#define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE	0x00010000
-
-#define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE	0x00000000
-#define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE	0x01000000
-
-#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK		0x000000FF
-#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE		0x00
-#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE	0x01
-#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE	0x02
-#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE	0x03
-#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE	0x04
-
-#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK		0x00000F00
-#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE		0x0000
-#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE	0x0100
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE	0x0200
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE	0x0300
-#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE	0x0800
-#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE	0x0900
-#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00
-#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE	0x0B00
-#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE	0x0C00
-#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE	0x0D00
-
-#define E1000_TIMINCA_16NS_SHIFT	24
-#define E1000_TIMINCA_INCPERIOD_SHIFT	24
-#define E1000_TIMINCA_INCVALUE_MASK	0x00FFFFFF
-
-#define E1000_TSICR_TXTS		0x00000002
-#define E1000_TSIM_TXTS			0x00000002
-/* TUPLE Filtering Configuration */
-#define E1000_TTQF_DISABLE_MASK		0xF0008000 /* TTQF Disable Mask */
-#define E1000_TTQF_QUEUE_ENABLE		0x100   /* TTQF Queue Enable Bit */
-#define E1000_TTQF_PROTOCOL_MASK	0xFF    /* TTQF Protocol Mask */
-/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */
-#define E1000_TTQF_PROTOCOL_TCP		0x0
-/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
-#define E1000_TTQF_PROTOCOL_UDP		0x1
-/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */
-#define E1000_TTQF_PROTOCOL_SCTP	0x2
-#define E1000_TTQF_PROTOCOL_SHIFT	5       /* TTQF Protocol Shift */
-#define E1000_TTQF_QUEUE_SHIFT		16      /* TTQF Queue Shfit */
-#define E1000_TTQF_RX_QUEUE_MASK	0x70000 /* TTQF Queue Mask */
-#define E1000_TTQF_MASK_ENABLE		0x10000000 /* TTQF Mask Enable Bit */
-#define E1000_IMIR_CLEAR_MASK		0xF001FFFF /* IMIR Reg Clear Mask */
-#define E1000_IMIR_PORT_BYPASS		0x20000 /* IMIR Port Bypass Bit */
-#define E1000_IMIR_PRIORITY_SHIFT	29 /* IMIR Priority Shift */
-#define E1000_IMIREXT_CLEAR_MASK	0x7FFFF /* IMIREXT Reg Clear Mask */
-
-#define E1000_MDICNFG_EXT_MDIO		0x80000000 /* MDI ext/int destination */
-#define E1000_MDICNFG_COM_MDIO		0x40000000 /* MDI shared w/ lan 0 */
-#define E1000_MDICNFG_PHY_MASK		0x03E00000
-#define E1000_MDICNFG_PHY_SHIFT		21
-
-#define E1000_MEDIA_PORT_COPPER			1
-#define E1000_MEDIA_PORT_OTHER			2
-#define E1000_M88E1112_AUTO_COPPER_SGMII	0x2
-#define E1000_M88E1112_AUTO_COPPER_BASEX	0x3
-#define E1000_M88E1112_STATUS_LINK		0x0004 /* Interface Link Bit */
-#define E1000_M88E1112_MAC_CTRL_1		0x10
-#define E1000_M88E1112_MAC_CTRL_1_MODE_MASK	0x0380 /* Mode Select */
-#define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT	7
-#define E1000_M88E1112_PAGE_ADDR		0x16
-#define E1000_M88E1112_STATUS			0x01
-
-#define E1000_THSTAT_LOW_EVENT		0x20000000 /* Low thermal threshold */
-#define E1000_THSTAT_MID_EVENT		0x00200000 /* Mid thermal threshold */
-#define E1000_THSTAT_HIGH_EVENT		0x00002000 /* High thermal threshold */
-#define E1000_THSTAT_PWR_DOWN		0x00000001 /* Power Down Event */
-#define E1000_THSTAT_LINK_THROTTLE	0x00000002 /* Link Spd Throttle Event */
-
-/* I350 EEE defines */
-#define E1000_IPCNFG_EEE_1G_AN		0x00000008 /* IPCNFG EEE Ena 1G AN */
-#define E1000_IPCNFG_EEE_100M_AN	0x00000004 /* IPCNFG EEE Ena 100M AN */
-#define E1000_EEER_TX_LPI_EN		0x00010000 /* EEER Tx LPI Enable */
-#define E1000_EEER_RX_LPI_EN		0x00020000 /* EEER Rx LPI Enable */
-#define E1000_EEER_LPI_FC		0x00040000 /* EEER Ena on Flow Cntrl */
-/* EEE status */
-#define E1000_EEER_EEE_NEG		0x20000000 /* EEE capability nego */
-#define E1000_EEER_RX_LPI_STATUS	0x40000000 /* Rx in LPI state */
-#define E1000_EEER_TX_LPI_STATUS	0x80000000 /* Tx in LPI state */
-#define E1000_EEE_LP_ADV_ADDR_I350	0x040F     /* EEE LP Advertisement */
-#define E1000_M88E1543_PAGE_ADDR	0x16       /* Page Offset Register */
-#define E1000_M88E1543_EEE_CTRL_1	0x0
-#define E1000_M88E1543_EEE_CTRL_1_MS	0x0001     /* EEE Master/Slave */
-#define E1000_EEE_ADV_DEV_I354		7
-#define E1000_EEE_ADV_ADDR_I354		60
-#define E1000_EEE_ADV_100_SUPPORTED	(1 << 1)   /* 100BaseTx EEE Supported */
-#define E1000_EEE_ADV_1000_SUPPORTED	(1 << 2)   /* 1000BaseT EEE Supported */
-#define E1000_PCS_STATUS_DEV_I354	3
-#define E1000_PCS_STATUS_ADDR_I354	1
-#define E1000_PCS_STATUS_RX_LPI_RCVD	0x0400
-#define E1000_PCS_STATUS_TX_LPI_RCVD	0x0800
-#define E1000_M88E1512_CFG_REG_1	0x0010
-#define E1000_M88E1512_CFG_REG_2	0x0011
-#define E1000_M88E1512_CFG_REG_3	0x0007
-#define E1000_M88E1512_MODE		0x0014
-#define E1000_EEE_SU_LPI_CLK_STP	0x00800000 /* EEE LPI Clock Stop */
-#define E1000_EEE_LP_ADV_DEV_I210	7          /* EEE LP Adv Device */
-#define E1000_EEE_LP_ADV_ADDR_I210	61         /* EEE LP Adv Register */
-/* PCI Express Control */
-#define E1000_GCR_RXD_NO_SNOOP		0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP	0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP	0x00000004
-#define E1000_GCR_TXD_NO_SNOOP		0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP	0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP	0x00000020
-#define E1000_GCR_CMPL_TMOUT_MASK	0x0000F000
-#define E1000_GCR_CMPL_TMOUT_10ms	0x00001000
-#define E1000_GCR_CMPL_TMOUT_RESEND	0x00010000
-#define E1000_GCR_CAP_VER2		0x00040000
-
-#define PCIE_NO_SNOOP_ALL	(E1000_GCR_RXD_NO_SNOOP | \
-				 E1000_GCR_RXDSCW_NO_SNOOP | \
-				 E1000_GCR_RXDSCR_NO_SNOOP | \
-				 E1000_GCR_TXD_NO_SNOOP    | \
-				 E1000_GCR_TXDSCW_NO_SNOOP | \
-				 E1000_GCR_TXDSCR_NO_SNOOP)
-
-#define E1000_MMDAC_FUNC_DATA	0x4000 /* Data, no post increment */
-
-/* mPHY address control and data registers */
-#define E1000_MPHY_ADDR_CTL		0x0024 /* Address Control Reg */
-#define E1000_MPHY_ADDR_CTL_OFFSET_MASK	0xFFFF0000
-#define E1000_MPHY_DATA			0x0E10 /* Data Register */
-
-/* AFE CSR Offset for PCS CLK */
-#define E1000_MPHY_PCS_CLK_REG_OFFSET	0x0004
-/* Override for near end digital loopback. */
-#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN	0x10
-
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB	0x0040  /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE	0x0080  /* Collision test enable */
-#define MII_CR_FULL_DUPLEX	0x0100  /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG	0x0200  /* Restart auto negotiation */
-#define MII_CR_ISOLATE		0x0400  /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN	0x0800  /* Power down */
-#define MII_CR_AUTO_NEG_EN	0x1000  /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB	0x2000  /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK		0x4000  /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET		0x8000  /* 0 = normal, 1 = PHY reset */
-#define MII_CR_SPEED_1000	0x0040
-#define MII_CR_SPEED_100	0x2000
-#define MII_CR_SPEED_10		0x0000
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS	0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT	0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS	0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS	0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT	0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE	0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS	0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS	0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS	0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS	0x0800 /* 10T   Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS	0x1000 /* 10T   Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS	0x2000 /* 100X  Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS	0x4000 /* 100X  Full Duplex Capable */
-#define MII_SR_100T4_CAPS	0x8000 /* 100T4 Capable */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD	0x0001   /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS	0x0020   /* 10T   Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS	0x0040   /* 10T   Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS	0x0080   /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS	0x0100   /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS	0x0200   /* 100T4 Capable */
-#define NWAY_AR_PAUSE		0x0400   /* Pause operation desired */
-#define NWAY_AR_ASM_DIR		0x0800   /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT	0x2000   /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE	0x8000   /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD	0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS		0x0020 /* LP 10T Half Dplx Capable */
-#define NWAY_LPAR_10T_FD_CAPS		0x0040 /* LP 10T Full Dplx Capable */
-#define NWAY_LPAR_100TX_HD_CAPS		0x0080 /* LP 100TX Half Dplx Capable */
-#define NWAY_LPAR_100TX_FD_CAPS		0x0100 /* LP 100TX Full Dplx Capable */
-#define NWAY_LPAR_100T4_CAPS		0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE			0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR		0x0800 /* LP Asym Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT		0x2000 /* LP detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE		0x4000 /* LP rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE		0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS		0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD		0x0002 /* LP 10T Half Dplx Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS		0x0004 /* LP 10T Full Dplx Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS	0x0008 /* LP 100TX Half Dplx Capable */
-#define NWAY_ER_PAR_DETECT_FAULT	0x0010 /* LP 100TX Full Dplx Capable */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE	0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS	0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS	0x0200 /* Advertise 1000T FD capability  */
-/* 1=Repeater/switch device port 0=DTE device */
-#define CR_1000T_REPEATER_DTE	0x0400
-/* 1=Configure PHY as Master 0=Configure PHY as Slave */
-#define CR_1000T_MS_VALUE	0x0800
-/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */
-#define CR_1000T_MS_ENABLE	0x1000
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1	0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2	0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3	0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4	0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT		0x00FF /* Num idle err since last rd */
-#define SR_1000T_ASYM_PAUSE_DIR		0x0100 /* LP asym pause direction bit */
-#define SR_1000T_LP_HD_CAPS		0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS		0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS	0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS	0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES		0x4000 /* 1=Local Tx Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT	0x8000 /* Master/Slave config fault */
-
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT	5
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CONTROL		0x00 /* Control Register */
-#define PHY_STATUS		0x01 /* Status Register */
-#define PHY_ID1			0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2			0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV		0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY		0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP		0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX	0x07 /* Next Page Tx */
-#define PHY_LP_NEXT_PAGE	0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL		0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS	0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS		0x0F /* Extended Status Reg */
-
-#define PHY_CONTROL_LB		0x4000 /* PHY Loopback bit */
-
-/* NVM Control */
-#define E1000_EECD_SK		0x00000001 /* NVM Clock */
-#define E1000_EECD_CS		0x00000002 /* NVM Chip Select */
-#define E1000_EECD_DI		0x00000004 /* NVM Data In */
-#define E1000_EECD_DO		0x00000008 /* NVM Data Out */
-#define E1000_EECD_REQ		0x00000040 /* NVM Access Request */
-#define E1000_EECD_GNT		0x00000080 /* NVM Access Grant */
-#define E1000_EECD_PRES		0x00000100 /* NVM Present */
-#define E1000_EECD_SIZE		0x00000200 /* NVM Size (0=64 word 1=256 word) */
-#define E1000_EECD_BLOCKED	0x00008000 /* Bit banging access blocked flag */
-#define E1000_EECD_ABORT	0x00010000 /* NVM operation aborted flag */
-#define E1000_EECD_TIMEOUT	0x00020000 /* NVM read operation timeout flag */
-#define E1000_EECD_ERROR_CLR	0x00040000 /* NVM error status clear bit */
-/* NVM Addressing bits based on type 0=small, 1=large */
-#define E1000_EECD_ADDR_BITS	0x00000400
-#define E1000_EECD_TYPE		0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_NVM_GRANT_ATTEMPTS
-#define E1000_NVM_GRANT_ATTEMPTS	1000 /* NVM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD		0x00000200  /* NVM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK		0x00007800  /* NVM Size */
-#define E1000_EECD_SIZE_EX_SHIFT	11
-#define E1000_EECD_FLUPD		0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN		0x00100000 /* Ena Auto FLASH update */
-#define E1000_EECD_SEC1VAL		0x00400000 /* Sector One Valid */
-#define E1000_EECD_SEC1VAL_VALID_MASK	(E1000_EECD_AUTO_RD | E1000_EECD_PRES)
-#define E1000_EECD_FLUPD_I210		0x00800000 /* Update FLASH */
-#define E1000_EECD_FLUDONE_I210		0x04000000 /* Update FLASH done */
-#define E1000_EECD_FLASH_DETECTED_I210	0x00080000 /* FLASH detected */
-#define E1000_EECD_SEC1VAL_I210		0x02000000 /* Sector One Valid */
-#define E1000_FLUDONE_ATTEMPTS		20000
-#define E1000_EERD_EEWR_MAX_COUNT	512 /* buffered EEPROM words rw */
-#define E1000_I210_FIFO_SEL_RX		0x00
-#define E1000_I210_FIFO_SEL_TX_QAV(_i)	(0x02 + (_i))
-#define E1000_I210_FIFO_SEL_TX_LEGACY	E1000_I210_FIFO_SEL_TX_QAV(0)
-#define E1000_I210_FIFO_SEL_BMC2OS_TX	0x06
-#define E1000_I210_FIFO_SEL_BMC2OS_RX	0x01
-
-#define E1000_I210_FLASH_SECTOR_SIZE	0x1000 /* 4KB FLASH sector unit size */
-/* Secure FLASH mode requires removing MSb */
-#define E1000_I210_FW_PTR_MASK		0x7FFF
-/* Firmware code revision field word offset*/
-#define E1000_I210_FW_VER_OFFSET	328
-
-#define E1000_NVM_RW_REG_DATA	16  /* Offset to data in NVM read/write regs */
-#define E1000_NVM_RW_REG_DONE	2   /* Offset to READ/WRITE done bit */
-#define E1000_NVM_RW_REG_START	1   /* Start operation */
-#define E1000_NVM_RW_ADDR_SHIFT	2   /* Shift to the address bits */
-#define E1000_NVM_POLL_WRITE	1   /* Flag for polling for write complete */
-#define E1000_NVM_POLL_READ	0   /* Flag for polling for read complete */
-#define E1000_FLASH_UPDATES	2000
-
-/* NVM Word Offsets */
-#define NVM_COMPAT			0x0003
-#define NVM_ID_LED_SETTINGS		0x0004
-#define NVM_VERSION			0x0005
-#define NVM_SERDES_AMPLITUDE		0x0006 /* SERDES output amplitude */
-#define NVM_PHY_CLASS_WORD		0x0007
-#define E1000_I210_NVM_FW_MODULE_PTR	0x0010
-#define E1000_I350_NVM_FW_MODULE_PTR	0x0051
-#define NVM_FUTURE_INIT_WORD1		0x0019
-#define NVM_ETRACK_WORD			0x0042
-#define NVM_ETRACK_HIWORD		0x0043
-#define NVM_COMB_VER_OFF		0x0083
-#define NVM_COMB_VER_PTR		0x003d
-
-/* NVM version defines */
-#define NVM_MAJOR_MASK			0xF000
-#define NVM_MINOR_MASK			0x0FF0
-#define NVM_IMAGE_ID_MASK		0x000F
-#define NVM_COMB_VER_MASK		0x00FF
-#define NVM_MAJOR_SHIFT			12
-#define NVM_MINOR_SHIFT			4
-#define NVM_COMB_VER_SHFT		8
-#define NVM_VER_INVALID			0xFFFF
-#define NVM_ETRACK_SHIFT		16
-#define NVM_ETRACK_VALID		0x8000
-#define NVM_NEW_DEC_MASK		0x0F00
-#define NVM_HEX_CONV			16
-#define NVM_HEX_TENS			10
-
-/* FW version defines */
-/* Offset of "Loader patch ptr" in Firmware Header */
-#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET	0x01
-/* Patch generation hour & minutes */
-#define E1000_I350_NVM_FW_VER_WORD1_OFFSET		0x04
-/* Patch generation month & day */
-#define E1000_I350_NVM_FW_VER_WORD2_OFFSET		0x05
-/* Patch generation year */
-#define E1000_I350_NVM_FW_VER_WORD3_OFFSET		0x06
-/* Patch major & minor numbers */
-#define E1000_I350_NVM_FW_VER_WORD4_OFFSET		0x07
-
-#define NVM_MAC_ADDR			0x0000
-#define NVM_SUB_DEV_ID			0x000B
-#define NVM_SUB_VEN_ID			0x000C
-#define NVM_DEV_ID			0x000D
-#define NVM_VEN_ID			0x000E
-#define NVM_INIT_CTRL_2			0x000F
-#define NVM_INIT_CTRL_4			0x0013
-#define NVM_LED_1_CFG			0x001C
-#define NVM_LED_0_2_CFG			0x001F
-
-#define NVM_COMPAT_VALID_CSUM		0x0001
-#define NVM_FUTURE_INIT_WORD1_VALID_CSUM	0x0040
-
-#define NVM_INIT_CONTROL2_REG		0x000F
-#define NVM_INIT_CONTROL3_PORT_B	0x0014
-#define NVM_INIT_3GIO_3			0x001A
-#define NVM_SWDEF_PINS_CTRL_PORT_0	0x0020
-#define NVM_INIT_CONTROL3_PORT_A	0x0024
-#define NVM_CFG				0x0012
-#define NVM_ALT_MAC_ADDR_PTR		0x0037
-#define NVM_CHECKSUM_REG		0x003F
-#define NVM_COMPATIBILITY_REG_3		0x0003
-#define NVM_COMPATIBILITY_BIT_MASK	0x8000
-
-#define E1000_NVM_CFG_DONE_PORT_0	0x040000 /* MNG config cycle done */
-#define E1000_NVM_CFG_DONE_PORT_1	0x080000 /* ...for second port */
-#define E1000_NVM_CFG_DONE_PORT_2	0x100000 /* ...for third port */
-#define E1000_NVM_CFG_DONE_PORT_3	0x200000 /* ...for fourth port */
-
-#define NVM_82580_LAN_FUNC_OFFSET(a)	((a) ? (0x40 + (0x40 * (a))) : 0)
-
-/* Mask bits for fields in Word 0x24 of the NVM */
-#define NVM_WORD24_COM_MDIO		0x0008 /* MDIO interface shared */
-#define NVM_WORD24_EXT_MDIO		0x0004 /* MDIO accesses routed extrnl */
-/* Offset of Link Mode bits for 82575/82576 */
-#define NVM_WORD24_LNK_MODE_OFFSET	8
-/* Offset of Link Mode bits for 82580 up */
-#define NVM_WORD24_82580_LNK_MODE_OFFSET	4
-
-
-/* Mask bits for fields in Word 0x0f of the NVM */
-#define NVM_WORD0F_PAUSE_MASK		0x3000
-#define NVM_WORD0F_PAUSE		0x1000
-#define NVM_WORD0F_ASM_DIR		0x2000
-#define NVM_WORD0F_SWPDIO_EXT_MASK	0x00F0
-
-/* Mask bits for fields in Word 0x1a of the NVM */
-#define NVM_WORD1A_ASPM_MASK		0x000C
-
-/* Mask bits for fields in Word 0x03 of the EEPROM */
-#define NVM_COMPAT_LOM			0x0800
-
-/* length of string needed to store PBA number */
-#define E1000_PBANUM_LENGTH		11
-
-/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
-#define NVM_SUM				0xBABA
-
-/* PBA (printed board assembly) number words */
-#define NVM_PBA_OFFSET_0		8
-#define NVM_PBA_OFFSET_1		9
-#define NVM_PBA_PTR_GUARD		0xFAFA
-#define NVM_RESERVED_WORD		0xFFFF
-#define NVM_PHY_CLASS_A			0x8000
-#define NVM_SERDES_AMPLITUDE_MASK	0x000F
-#define NVM_SIZE_MASK			0x1C00
-#define NVM_SIZE_SHIFT			10
-#define NVM_WORD_SIZE_BASE_SHIFT	6
-#define NVM_SWDPIO_EXT_SHIFT		4
-
-/* NVM Commands - Microwire */
-#define NVM_READ_OPCODE_MICROWIRE	0x6  /* NVM read opcode */
-#define NVM_WRITE_OPCODE_MICROWIRE	0x5  /* NVM write opcode */
-#define NVM_ERASE_OPCODE_MICROWIRE	0x7  /* NVM erase opcode */
-#define NVM_EWEN_OPCODE_MICROWIRE	0x13 /* NVM erase/write enable */
-#define NVM_EWDS_OPCODE_MICROWIRE	0x10 /* NVM erase/write disable */
-
-/* NVM Commands - SPI */
-#define NVM_MAX_RETRY_SPI	5000 /* Max wait of 5ms, for RDY signal */
-#define NVM_READ_OPCODE_SPI	0x03 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_SPI	0x02 /* NVM write opcode */
-#define NVM_A8_OPCODE_SPI	0x08 /* opcode bit-3 = address bit-8 */
-#define NVM_WREN_OPCODE_SPI	0x06 /* NVM set Write Enable latch */
-#define NVM_RDSR_OPCODE_SPI	0x05 /* NVM read Status register */
-
-/* SPI NVM Status Register */
-#define NVM_STATUS_RDY_SPI	0x01
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000	0x0000
-#define ID_LED_RESERVED_FFFF	0xFFFF
-#define ID_LED_DEFAULT		((ID_LED_OFF1_ON2  << 12) | \
-				 (ID_LED_OFF1_OFF2 <<  8) | \
-				 (ID_LED_DEF1_DEF2 <<  4) | \
-				 (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2	0x1
-#define ID_LED_DEF1_ON2		0x2
-#define ID_LED_DEF1_OFF2	0x3
-#define ID_LED_ON1_DEF2		0x4
-#define ID_LED_ON1_ON2		0x5
-#define ID_LED_ON1_OFF2		0x6
-#define ID_LED_OFF1_DEF2	0x7
-#define ID_LED_OFF1_ON2		0x8
-#define ID_LED_OFF1_OFF2	0x9
-
-#define IGP_ACTIVITY_LED_MASK	0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE	0x0300
-#define IGP_LED3_MODE		0x07000000
-
-/* PCI/PCI-X/PCI-EX Config space */
-#define PCIX_COMMAND_REGISTER		0xE6
-#define PCIX_STATUS_REGISTER_LO		0xE8
-#define PCIX_STATUS_REGISTER_HI		0xEA
-#define PCI_HEADER_TYPE_REGISTER	0x0E
-#define PCIE_LINK_STATUS		0x12
-#define PCIE_DEVICE_CONTROL2		0x28
-
-#define PCIX_COMMAND_MMRBC_MASK		0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT	0x2
-#define PCIX_STATUS_HI_MMRBC_MASK	0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT	0x5
-#define PCIX_STATUS_HI_MMRBC_4K		0x3
-#define PCIX_STATUS_HI_MMRBC_2K		0x2
-#define PCIX_STATUS_LO_FUNC_MASK	0x7
-#define PCI_HEADER_TYPE_MULTIFUNC	0x80
-#define PCIE_LINK_WIDTH_MASK		0x3F0
-#define PCIE_LINK_WIDTH_SHIFT		4
-#define PCIE_LINK_SPEED_MASK		0x0F
-#define PCIE_LINK_SPEED_2500		0x01
-#define PCIE_LINK_SPEED_5000		0x02
-#define PCIE_DEVICE_CONTROL2_16ms	0x0005
-
-#ifndef ETH_ADDR_LEN
-#define ETH_ADDR_LEN			6
-#endif
-
-#define PHY_REVISION_MASK		0xFFFFFFF0
-#define MAX_PHY_REG_ADDRESS		0x1F  /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG		0xF
-
-/* Bit definitions for valid PHY IDs.
- * I = Integrated
- * E = External
- */
-#define M88E1000_E_PHY_ID	0x01410C50
-#define M88E1000_I_PHY_ID	0x01410C30
-#define M88E1011_I_PHY_ID	0x01410C20
-#define IGP01E1000_I_PHY_ID	0x02A80380
-#define M88E1111_I_PHY_ID	0x01410CC0
-#define M88E1543_E_PHY_ID	0x01410EA0
-#define M88E1512_E_PHY_ID	0x01410DD0
-#define M88E1112_E_PHY_ID	0x01410C90
-#define I347AT4_E_PHY_ID	0x01410DC0
-#define M88E1340M_E_PHY_ID	0x01410DF0
-#define GG82563_E_PHY_ID	0x01410CA0
-#define IGP03E1000_E_PHY_ID	0x02A80390
-#define IFE_E_PHY_ID		0x02A80330
-#define IFE_PLUS_E_PHY_ID	0x02A80320
-#define IFE_C_E_PHY_ID		0x02A80310
-#define BME1000_E_PHY_ID	0x01410CB0
-#define BME1000_E_PHY_ID_R2	0x01410CB1
-#define I82577_E_PHY_ID		0x01540050
-#define I82578_E_PHY_ID		0x004DD040
-#define I82579_E_PHY_ID		0x01540090
-#define I217_E_PHY_ID		0x015400A0
-#define I82580_I_PHY_ID		0x015403A0
-#define I350_I_PHY_ID		0x015403B0
-#define I210_I_PHY_ID		0x01410C00
-#define IGP04E1000_E_PHY_ID	0x02A80391
-#define M88_VENDOR		0x0141
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL		0x10  /* PHY Specific Control Reg */
-#define M88E1000_PHY_SPEC_STATUS	0x11  /* PHY Specific Status Reg */
-#define M88E1000_EXT_PHY_SPEC_CTRL	0x14  /* Extended PHY Specific Cntrl */
-#define M88E1000_RX_ERR_CNTR		0x15  /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL		0x1A  /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT	0x1D  /* Reg 29 for pg number setting */
-#define M88E1000_PHY_GEN_CONTROL	0x1E  /* meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8	0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11	0x800 /* improved BER performance */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_POLARITY_REVERSAL	0x0002 /* 1=Polarity Reverse enabled */
-/* MDI Crossover Mode bits 6:5 Manual MDI configuration */
-#define M88E1000_PSCR_MDI_MANUAL_MODE	0x0000
-#define M88E1000_PSCR_MDIX_MANUAL_MODE	0x0020  /* Manual MDIX configuration */
-/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
-#define M88E1000_PSCR_AUTO_X_1000T	0x0040
-/* Auto crossover enabled all speeds */
-#define M88E1000_PSCR_AUTO_X_MODE	0x0060
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX	0x0800 /* 1=Assert CRS on Tx */
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_REV_POLARITY	0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT		0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX		0x0040 /* 1=MDIX; 0=MDI */
-/* 0 = <50M
- * 1 = 50-80M
- * 2 = 80-110M
- * 3 = 110-140M
- * 4 = >140M
- */
-#define M88E1000_PSSR_CABLE_LENGTH	0x0380
-#define M88E1000_PSSR_LINK		0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED	0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_DPLX		0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED		0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_100MBS		0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS		0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT	7
-
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master
- */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK	0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X	0x0000
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave
- */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK	0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X	0x0100
-#define M88E1000_EPSCR_TX_CLK_25	0x0070 /* 25  MHz TX_CLK */
-
-/* Intel I347AT4 Registers */
-#define I347AT4_PCDL		0x10 /* PHY Cable Diagnostics Length */
-#define I347AT4_PCDC		0x15 /* PHY Cable Diagnostics Control */
-#define I347AT4_PAGE_SELECT	0x16
-
-/* I347AT4 Extended PHY Specific Control Register */
-
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master
- */
-#define I347AT4_PSCR_DOWNSHIFT_ENABLE	0x0800
-#define I347AT4_PSCR_DOWNSHIFT_MASK	0x7000
-#define I347AT4_PSCR_DOWNSHIFT_1X	0x0000
-#define I347AT4_PSCR_DOWNSHIFT_2X	0x1000
-#define I347AT4_PSCR_DOWNSHIFT_3X	0x2000
-#define I347AT4_PSCR_DOWNSHIFT_4X	0x3000
-#define I347AT4_PSCR_DOWNSHIFT_5X	0x4000
-#define I347AT4_PSCR_DOWNSHIFT_6X	0x5000
-#define I347AT4_PSCR_DOWNSHIFT_7X	0x6000
-#define I347AT4_PSCR_DOWNSHIFT_8X	0x7000
-
-/* I347AT4 PHY Cable Diagnostics Control */
-#define I347AT4_PCDC_CABLE_LENGTH_UNIT	0x0400 /* 0=cm 1=meters */
-
-/* M88E1112 only registers */
-#define M88E1112_VCT_DSP_DISTANCE	0x001A
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK	0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X	0x0800
-
-#define I82578_EPSCR_DOWNSHIFT_ENABLE		0x0020
-#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK	0x001C
-
-/* BME1000 PHY Specific Control Register */
-#define BME1000_PSCR_ENABLE_DOWNSHIFT	0x0800 /* 1 = enable downshift */
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT	5
-#define GG82563_REG(page, reg)	\
-	(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG	30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL		GG82563_REG(0, 16) /* PHY Spec Cntrl */
-#define GG82563_PHY_PAGE_SELECT		GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2		GG82563_REG(0, 26) /* PHY Spec Cntrl2 */
-#define GG82563_PHY_PAGE_SELECT_ALT	GG82563_REG(0, 29) /* Alt Page Select */
-
-/* MAC Specific Control Register */
-#define GG82563_PHY_MAC_SPEC_CTRL	GG82563_REG(2, 21)
-
-#define GG82563_PHY_DSP_DISTANCE	GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-/* Kumeran Mode Control */
-#define GG82563_PHY_KMRN_MODE_CTRL	GG82563_REG(193, 16)
-#define GG82563_PHY_PWR_MGMT_CTRL	GG82563_REG(193, 20) /* Pwr Mgt Ctrl */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_INBAND_CTRL		GG82563_REG(194, 18) /* Inband Ctrl */
-
-/* MDI Control */
-#define E1000_MDIC_REG_MASK	0x001F0000
-#define E1000_MDIC_REG_SHIFT	16
-#define E1000_MDIC_PHY_MASK	0x03E00000
-#define E1000_MDIC_PHY_SHIFT	21
-#define E1000_MDIC_OP_WRITE	0x04000000
-#define E1000_MDIC_OP_READ	0x08000000
-#define E1000_MDIC_READY	0x10000000
-#define E1000_MDIC_ERROR	0x40000000
-#define E1000_MDIC_DEST		0x80000000
-
-/* SerDes Control */
-#define E1000_GEN_CTL_READY		0x80000000
-#define E1000_GEN_CTL_ADDRESS_SHIFT	8
-#define E1000_GEN_POLL_TIMEOUT		640
-
-/* LinkSec register fields */
-#define E1000_LSECTXCAP_SUM_MASK	0x00FF0000
-#define E1000_LSECTXCAP_SUM_SHIFT	16
-#define E1000_LSECRXCAP_SUM_MASK	0x00FF0000
-#define E1000_LSECRXCAP_SUM_SHIFT	16
-
-#define E1000_LSECTXCTRL_EN_MASK	0x00000003
-#define E1000_LSECTXCTRL_DISABLE	0x0
-#define E1000_LSECTXCTRL_AUTH		0x1
-#define E1000_LSECTXCTRL_AUTH_ENCRYPT	0x2
-#define E1000_LSECTXCTRL_AISCI		0x00000020
-#define E1000_LSECTXCTRL_PNTHRSH_MASK	0xFFFFFF00
-#define E1000_LSECTXCTRL_RSV_MASK	0x000000D8
-
-#define E1000_LSECRXCTRL_EN_MASK	0x0000000C
-#define E1000_LSECRXCTRL_EN_SHIFT	2
-#define E1000_LSECRXCTRL_DISABLE	0x0
-#define E1000_LSECRXCTRL_CHECK		0x1
-#define E1000_LSECRXCTRL_STRICT		0x2
-#define E1000_LSECRXCTRL_DROP		0x3
-#define E1000_LSECRXCTRL_PLSH		0x00000040
-#define E1000_LSECRXCTRL_RP		0x00000080
-#define E1000_LSECRXCTRL_RSV_MASK	0xFFFFFF33
-
-/* Tx Rate-Scheduler Config fields */
-#define E1000_RTTBCNRC_RS_ENA		0x80000000
-#define E1000_RTTBCNRC_RF_DEC_MASK	0x00003FFF
-#define E1000_RTTBCNRC_RF_INT_SHIFT	14
-#define E1000_RTTBCNRC_RF_INT_MASK	\
-	(E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT)
-
-/* DMA Coalescing register fields */
-/* DMA Coalescing Watchdog Timer */
-#define E1000_DMACR_DMACWT_MASK		0x00003FFF
-/* DMA Coalescing Rx Threshold */
-#define E1000_DMACR_DMACTHR_MASK	0x00FF0000
-#define E1000_DMACR_DMACTHR_SHIFT	16
-/* Lx when no PCIe transactions */
-#define E1000_DMACR_DMAC_LX_MASK	0x30000000
-#define E1000_DMACR_DMAC_LX_SHIFT	28
-#define E1000_DMACR_DMAC_EN		0x80000000 /* Enable DMA Coalescing */
-/* DMA Coalescing BMC-to-OS Watchdog Enable */
-#define E1000_DMACR_DC_BMC2OSW_EN	0x00008000
-
-/* DMA Coalescing Transmit Threshold */
-#define E1000_DMCTXTH_DMCTTHR_MASK	0x00000FFF
-
-#define E1000_DMCTLX_TTLX_MASK		0x00000FFF /* Time to LX request */
-
-/* Rx Traffic Rate Threshold */
-#define E1000_DMCRTRH_UTRESH_MASK	0x0007FFFF
-/* Rx packet rate in current window */
-#define E1000_DMCRTRH_LRPRCW		0x80000000
-
-/* DMA Coal Rx Traffic Current Count */
-#define E1000_DMCCNT_CCOUNT_MASK	0x01FFFFFF
-
-/* Flow ctrl Rx Threshold High val */
-#define E1000_FCRTC_RTH_COAL_MASK	0x0003FFF0
-#define E1000_FCRTC_RTH_COAL_SHIFT	4
-/* Lx power decision based on DMA coal */
-#define E1000_PCIEMISC_LX_DECISION	0x00000080
-
-#define E1000_RXPBS_CFG_TS_EN		0x80000000 /* Timestamp in Rx buffer */
-#define E1000_RXPBS_SIZE_I210_MASK	0x0000003F /* Rx packet buffer size */
-#define E1000_TXPB0S_SIZE_I210_MASK	0x0000003F /* Tx packet buffer 0 size */
-
-/* Proxy Filter Control */
-#define E1000_PROXYFC_D0		0x00000001 /* Enable offload in D0 */
-#define E1000_PROXYFC_EX		0x00000004 /* Directed exact proxy */
-#define E1000_PROXYFC_MC		0x00000008 /* Directed MC Proxy */
-#define E1000_PROXYFC_BC		0x00000010 /* Broadcast Proxy Enable */
-#define E1000_PROXYFC_ARP_DIRECTED	0x00000020 /* Directed ARP Proxy Ena */
-#define E1000_PROXYFC_IPV4		0x00000040 /* Directed IPv4 Enable */
-#define E1000_PROXYFC_IPV6		0x00000080 /* Directed IPv6 Enable */
-#define E1000_PROXYFC_NS		0x00000200 /* IPv6 Neighbor Solicitation */
-#define E1000_PROXYFC_ARP		0x00000800 /* ARP Request Proxy Ena */
-/* Proxy Status */
-#define E1000_PROXYS_CLEAR		0xFFFFFFFF /* Clear */
-
-/* Firmware Status */
-#define E1000_FWSTS_FWRI		0x80000000 /* FW Reset Indication */
-/* VF Control */
-#define E1000_VTCTRL_RST		0x04000000 /* Reset VF */
-
-#define E1000_STATUS_LAN_ID_MASK	0x00000000C /* Mask for Lan ID field */
-/* Lan ID bit field offset in status register */
-#define E1000_STATUS_LAN_ID_OFFSET	2
-#define E1000_VFTA_ENTRIES		128
-#ifndef E1000_UNUSEDARG
-#define E1000_UNUSEDARG
-#endif /* E1000_UNUSEDARG */
-#ifndef ERROR_REPORT
-#define ERROR_REPORT(fmt)	do { } while (0)
-#endif /* ERROR_REPORT */
-#endif /* _E1000_DEFINES_H_ */
diff --git a/lib/librte_pmd_e1000/e1000/e1000_hw.h b/lib/librte_pmd_e1000/e1000/e1000_hw.h
deleted file mode 100644
index 4dd92a3..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_hw.h
+++ /dev/null
@@ -1,1026 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_HW_H_
-#define _E1000_HW_H_
-
-#include "e1000_osdep.h"
-#include "e1000_regs.h"
-#include "e1000_defines.h"
-
-struct e1000_hw;
-
-#define E1000_DEV_ID_82542			0x1000
-#define E1000_DEV_ID_82543GC_FIBER		0x1001
-#define E1000_DEV_ID_82543GC_COPPER		0x1004
-#define E1000_DEV_ID_82544EI_COPPER		0x1008
-#define E1000_DEV_ID_82544EI_FIBER		0x1009
-#define E1000_DEV_ID_82544GC_COPPER		0x100C
-#define E1000_DEV_ID_82544GC_LOM		0x100D
-#define E1000_DEV_ID_82540EM			0x100E
-#define E1000_DEV_ID_82540EM_LOM		0x1015
-#define E1000_DEV_ID_82540EP_LOM		0x1016
-#define E1000_DEV_ID_82540EP			0x1017
-#define E1000_DEV_ID_82540EP_LP			0x101E
-#define E1000_DEV_ID_82545EM_COPPER		0x100F
-#define E1000_DEV_ID_82545EM_FIBER		0x1011
-#define E1000_DEV_ID_82545GM_COPPER		0x1026
-#define E1000_DEV_ID_82545GM_FIBER		0x1027
-#define E1000_DEV_ID_82545GM_SERDES		0x1028
-#define E1000_DEV_ID_82546EB_COPPER		0x1010
-#define E1000_DEV_ID_82546EB_FIBER		0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER	0x101D
-#define E1000_DEV_ID_82546GB_COPPER		0x1079
-#define E1000_DEV_ID_82546GB_FIBER		0x107A
-#define E1000_DEV_ID_82546GB_SERDES		0x107B
-#define E1000_DEV_ID_82546GB_PCIE		0x108A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER	0x1099
-#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3	0x10B5
-#define E1000_DEV_ID_82541EI			0x1013
-#define E1000_DEV_ID_82541EI_MOBILE		0x1018
-#define E1000_DEV_ID_82541ER_LOM		0x1014
-#define E1000_DEV_ID_82541ER			0x1078
-#define E1000_DEV_ID_82541GI			0x1076
-#define E1000_DEV_ID_82541GI_LF			0x107C
-#define E1000_DEV_ID_82541GI_MOBILE		0x1077
-#define E1000_DEV_ID_82547EI			0x1019
-#define E1000_DEV_ID_82547EI_MOBILE		0x101A
-#define E1000_DEV_ID_82547GI			0x1075
-#define E1000_DEV_ID_82571EB_COPPER		0x105E
-#define E1000_DEV_ID_82571EB_FIBER		0x105F
-#define E1000_DEV_ID_82571EB_SERDES		0x1060
-#define E1000_DEV_ID_82571EB_SERDES_DUAL	0x10D9
-#define E1000_DEV_ID_82571EB_SERDES_QUAD	0x10DA
-#define E1000_DEV_ID_82571EB_QUAD_COPPER	0x10A4
-#define E1000_DEV_ID_82571PT_QUAD_COPPER	0x10D5
-#define E1000_DEV_ID_82571EB_QUAD_FIBER		0x10A5
-#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP	0x10BC
-#define E1000_DEV_ID_82572EI_COPPER		0x107D
-#define E1000_DEV_ID_82572EI_FIBER		0x107E
-#define E1000_DEV_ID_82572EI_SERDES		0x107F
-#define E1000_DEV_ID_82572EI			0x10B9
-#define E1000_DEV_ID_82573E			0x108B
-#define E1000_DEV_ID_82573E_IAMT		0x108C
-#define E1000_DEV_ID_82573L			0x109A
-#define E1000_DEV_ID_82574L			0x10D3
-#define E1000_DEV_ID_82574LA			0x10F6
-#define E1000_DEV_ID_82583V			0x150C
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT	0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT	0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT	0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT	0x10BB
-#define E1000_DEV_ID_ICH8_82567V_3		0x1501
-#define E1000_DEV_ID_ICH8_IGP_M_AMT		0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT		0x104A
-#define E1000_DEV_ID_ICH8_IGP_C			0x104B
-#define E1000_DEV_ID_ICH8_IFE			0x104C
-#define E1000_DEV_ID_ICH8_IFE_GT		0x10C4
-#define E1000_DEV_ID_ICH8_IFE_G			0x10C5
-#define E1000_DEV_ID_ICH8_IGP_M			0x104D
-#define E1000_DEV_ID_ICH9_IGP_M			0x10BF
-#define E1000_DEV_ID_ICH9_IGP_M_AMT		0x10F5
-#define E1000_DEV_ID_ICH9_IGP_M_V		0x10CB
-#define E1000_DEV_ID_ICH9_IGP_AMT		0x10BD
-#define E1000_DEV_ID_ICH9_BM			0x10E5
-#define E1000_DEV_ID_ICH9_IGP_C			0x294C
-#define E1000_DEV_ID_ICH9_IFE			0x10C0
-#define E1000_DEV_ID_ICH9_IFE_GT		0x10C3
-#define E1000_DEV_ID_ICH9_IFE_G			0x10C2
-#define E1000_DEV_ID_ICH10_R_BM_LM		0x10CC
-#define E1000_DEV_ID_ICH10_R_BM_LF		0x10CD
-#define E1000_DEV_ID_ICH10_R_BM_V		0x10CE
-#define E1000_DEV_ID_ICH10_D_BM_LM		0x10DE
-#define E1000_DEV_ID_ICH10_D_BM_LF		0x10DF
-#define E1000_DEV_ID_ICH10_D_BM_V		0x1525
-#define E1000_DEV_ID_PCH_M_HV_LM		0x10EA
-#define E1000_DEV_ID_PCH_M_HV_LC		0x10EB
-#define E1000_DEV_ID_PCH_D_HV_DM		0x10EF
-#define E1000_DEV_ID_PCH_D_HV_DC		0x10F0
-#define E1000_DEV_ID_PCH2_LV_LM			0x1502
-#define E1000_DEV_ID_PCH2_LV_V			0x1503
-#define E1000_DEV_ID_PCH_LPT_I217_LM		0x153A
-#define E1000_DEV_ID_PCH_LPT_I217_V		0x153B
-#define E1000_DEV_ID_PCH_LPTLP_I218_LM		0x155A
-#define E1000_DEV_ID_PCH_LPTLP_I218_V		0x1559
-#define E1000_DEV_ID_82576			0x10C9
-#define E1000_DEV_ID_82576_FIBER		0x10E6
-#define E1000_DEV_ID_82576_SERDES		0x10E7
-#define E1000_DEV_ID_82576_QUAD_COPPER		0x10E8
-#define E1000_DEV_ID_82576_QUAD_COPPER_ET2	0x1526
-#define E1000_DEV_ID_82576_NS			0x150A
-#define E1000_DEV_ID_82576_NS_SERDES		0x1518
-#define E1000_DEV_ID_82576_SERDES_QUAD		0x150D
-#define E1000_DEV_ID_82576_VF			0x10CA
-#define E1000_DEV_ID_82576_VF_HV		0x152D
-#define E1000_DEV_ID_I350_VF			0x1520
-#define E1000_DEV_ID_I350_VF_HV			0x152F
-#define E1000_DEV_ID_82575EB_COPPER		0x10A7
-#define E1000_DEV_ID_82575EB_FIBER_SERDES	0x10A9
-#define E1000_DEV_ID_82575GB_QUAD_COPPER	0x10D6
-#define E1000_DEV_ID_82580_COPPER		0x150E
-#define E1000_DEV_ID_82580_FIBER		0x150F
-#define E1000_DEV_ID_82580_SERDES		0x1510
-#define E1000_DEV_ID_82580_SGMII		0x1511
-#define E1000_DEV_ID_82580_COPPER_DUAL		0x1516
-#define E1000_DEV_ID_82580_QUAD_FIBER		0x1527
-#define E1000_DEV_ID_I350_COPPER		0x1521
-#define E1000_DEV_ID_I350_FIBER			0x1522
-#define E1000_DEV_ID_I350_SERDES		0x1523
-#define E1000_DEV_ID_I350_SGMII			0x1524
-#define E1000_DEV_ID_I350_DA4			0x1546
-#define E1000_DEV_ID_I210_COPPER		0x1533
-#define E1000_DEV_ID_I210_COPPER_OEM1		0x1534
-#define E1000_DEV_ID_I210_COPPER_IT		0x1535
-#define E1000_DEV_ID_I210_FIBER			0x1536
-#define E1000_DEV_ID_I210_SERDES		0x1537
-#define E1000_DEV_ID_I210_SGMII			0x1538
-#define E1000_DEV_ID_I210_COPPER_FLASHLESS	0x157B
-#define E1000_DEV_ID_I210_SERDES_FLASHLESS	0x157C
-#define E1000_DEV_ID_I211_COPPER		0x1539
-#define E1000_DEV_ID_I354_BACKPLANE_1GBPS	0x1F40
-#define E1000_DEV_ID_I354_SGMII			0x1F41
-#define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS	0x1F45
-#define E1000_DEV_ID_DH89XXCC_SGMII		0x0438
-#define E1000_DEV_ID_DH89XXCC_SERDES		0x043A
-#define E1000_DEV_ID_DH89XXCC_BACKPLANE		0x043C
-#define E1000_DEV_ID_DH89XXCC_SFP		0x0440
-
-#define E1000_REVISION_0	0
-#define E1000_REVISION_1	1
-#define E1000_REVISION_2	2
-#define E1000_REVISION_3	3
-#define E1000_REVISION_4	4
-
-#define E1000_FUNC_0		0
-#define E1000_FUNC_1		1
-#define E1000_FUNC_2		2
-#define E1000_FUNC_3		3
-
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0	0
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1	3
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2	6
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3	9
-
-enum e1000_mac_type {
-	e1000_undefined = 0,
-	e1000_82542,
-	e1000_82543,
-	e1000_82544,
-	e1000_82540,
-	e1000_82545,
-	e1000_82545_rev_3,
-	e1000_82546,
-	e1000_82546_rev_3,
-	e1000_82541,
-	e1000_82541_rev_2,
-	e1000_82547,
-	e1000_82547_rev_2,
-	e1000_82571,
-	e1000_82572,
-	e1000_82573,
-	e1000_82574,
-	e1000_82583,
-	e1000_80003es2lan,
-	e1000_ich8lan,
-	e1000_ich9lan,
-	e1000_ich10lan,
-	e1000_pchlan,
-	e1000_pch2lan,
-	e1000_pch_lpt,
-	e1000_82575,
-	e1000_82576,
-	e1000_82580,
-	e1000_i350,
-	e1000_i354,
-	e1000_i210,
-	e1000_i211,
-	e1000_vfadapt,
-	e1000_vfadapt_i350,
-	e1000_num_macs  /* List is 1-based, so subtract 1 for true count. */
-};
-
-enum e1000_media_type {
-	e1000_media_type_unknown = 0,
-	e1000_media_type_copper = 1,
-	e1000_media_type_fiber = 2,
-	e1000_media_type_internal_serdes = 3,
-	e1000_num_media_types
-};
-
-enum e1000_nvm_type {
-	e1000_nvm_unknown = 0,
-	e1000_nvm_none,
-	e1000_nvm_eeprom_spi,
-	e1000_nvm_eeprom_microwire,
-	e1000_nvm_flash_hw,
-	e1000_nvm_invm,
-	e1000_nvm_flash_sw
-};
-
-enum e1000_nvm_override {
-	e1000_nvm_override_none = 0,
-	e1000_nvm_override_spi_small,
-	e1000_nvm_override_spi_large,
-	e1000_nvm_override_microwire_small,
-	e1000_nvm_override_microwire_large
-};
-
-enum e1000_phy_type {
-	e1000_phy_unknown = 0,
-	e1000_phy_none,
-	e1000_phy_m88,
-	e1000_phy_igp,
-	e1000_phy_igp_2,
-	e1000_phy_gg82563,
-	e1000_phy_igp_3,
-	e1000_phy_ife,
-	e1000_phy_bm,
-	e1000_phy_82578,
-	e1000_phy_82577,
-	e1000_phy_82579,
-	e1000_phy_i217,
-	e1000_phy_82580,
-	e1000_phy_vf,
-	e1000_phy_i210,
-};
-
-enum e1000_bus_type {
-	e1000_bus_type_unknown = 0,
-	e1000_bus_type_pci,
-	e1000_bus_type_pcix,
-	e1000_bus_type_pci_express,
-	e1000_bus_type_reserved
-};
-
-enum e1000_bus_speed {
-	e1000_bus_speed_unknown = 0,
-	e1000_bus_speed_33,
-	e1000_bus_speed_66,
-	e1000_bus_speed_100,
-	e1000_bus_speed_120,
-	e1000_bus_speed_133,
-	e1000_bus_speed_2500,
-	e1000_bus_speed_5000,
-	e1000_bus_speed_reserved
-};
-
-enum e1000_bus_width {
-	e1000_bus_width_unknown = 0,
-	e1000_bus_width_pcie_x1,
-	e1000_bus_width_pcie_x2,
-	e1000_bus_width_pcie_x4 = 4,
-	e1000_bus_width_pcie_x8 = 8,
-	e1000_bus_width_32,
-	e1000_bus_width_64,
-	e1000_bus_width_reserved
-};
-
-enum e1000_1000t_rx_status {
-	e1000_1000t_rx_status_not_ok = 0,
-	e1000_1000t_rx_status_ok,
-	e1000_1000t_rx_status_undefined = 0xFF
-};
-
-enum e1000_rev_polarity {
-	e1000_rev_polarity_normal = 0,
-	e1000_rev_polarity_reversed,
-	e1000_rev_polarity_undefined = 0xFF
-};
-
-enum e1000_fc_mode {
-	e1000_fc_none = 0,
-	e1000_fc_rx_pause,
-	e1000_fc_tx_pause,
-	e1000_fc_full,
-	e1000_fc_default = 0xFF
-};
-
-enum e1000_ffe_config {
-	e1000_ffe_config_enabled = 0,
-	e1000_ffe_config_active,
-	e1000_ffe_config_blocked
-};
-
-enum e1000_dsp_config {
-	e1000_dsp_config_disabled = 0,
-	e1000_dsp_config_enabled,
-	e1000_dsp_config_activated,
-	e1000_dsp_config_undefined = 0xFF
-};
-
-enum e1000_ms_type {
-	e1000_ms_hw_default = 0,
-	e1000_ms_force_master,
-	e1000_ms_force_slave,
-	e1000_ms_auto
-};
-
-enum e1000_smart_speed {
-	e1000_smart_speed_default = 0,
-	e1000_smart_speed_on,
-	e1000_smart_speed_off
-};
-
-enum e1000_serdes_link_state {
-	e1000_serdes_link_down = 0,
-	e1000_serdes_link_autoneg_progress,
-	e1000_serdes_link_autoneg_complete,
-	e1000_serdes_link_forced_up
-};
-
-#define __le16 u16
-#define __le32 u32
-#define __le64 u64
-/* Receive Descriptor */
-struct e1000_rx_desc {
-	__le64 buffer_addr; /* Address of the descriptor's data buffer */
-	__le16 length;      /* Length of data DMAed into data buffer */
-	__le16 csum; /* Packet checksum */
-	u8  status;  /* Descriptor status */
-	u8  errors;  /* Descriptor Errors */
-	__le16 special;
-};
-
-/* Receive Descriptor - Extended */
-union e1000_rx_desc_extended {
-	struct {
-		__le64 buffer_addr;
-		__le64 reserved;
-	} read;
-	struct {
-		struct {
-			__le32 mrq; /* Multiple Rx Queues */
-			union {
-				__le32 rss; /* RSS Hash */
-				struct {
-					__le16 ip_id;  /* IP id */
-					__le16 csum;   /* Packet Checksum */
-				} csum_ip;
-			} hi_dword;
-		} lower;
-		struct {
-			__le32 status_error;  /* ext status/error */
-			__le16 length;
-			__le16 vlan; /* VLAN tag */
-		} upper;
-	} wb;  /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-
-/* Number of packet split data buffers (not including the header buffer) */
-#define PS_PAGE_BUFFERS	(MAX_PS_BUFFERS - 1)
-
-/* Receive Descriptor - Packet Split */
-union e1000_rx_desc_packet_split {
-	struct {
-		/* one buffer for protocol header(s), three data buffers */
-		__le64 buffer_addr[MAX_PS_BUFFERS];
-	} read;
-	struct {
-		struct {
-			__le32 mrq;  /* Multiple Rx Queues */
-			union {
-				__le32 rss; /* RSS Hash */
-				struct {
-					__le16 ip_id;    /* IP id */
-					__le16 csum;     /* Packet Checksum */
-				} csum_ip;
-			} hi_dword;
-		} lower;
-		struct {
-			__le32 status_error;  /* ext status/error */
-			__le16 length0;  /* length of buffer 0 */
-			__le16 vlan;  /* VLAN tag */
-		} middle;
-		struct {
-			__le16 header_status;
-			/* length of buffers 1-3 */
-			__le16 length[PS_PAGE_BUFFERS];
-		} upper;
-		__le64 reserved;
-	} wb; /* writeback */
-};
-
-/* Transmit Descriptor */
-struct e1000_tx_desc {
-	__le64 buffer_addr;   /* Address of the descriptor's data buffer */
-	union {
-		__le32 data;
-		struct {
-			__le16 length;  /* Data buffer length */
-			u8 cso;  /* Checksum offset */
-			u8 cmd;  /* Descriptor control */
-		} flags;
-	} lower;
-	union {
-		__le32 data;
-		struct {
-			u8 status; /* Descriptor status */
-			u8 css;  /* Checksum start */
-			__le16 special;
-		} fields;
-	} upper;
-};
-
-/* Offload Context Descriptor */
-struct e1000_context_desc {
-	union {
-		__le32 ip_config;
-		struct {
-			u8 ipcss;  /* IP checksum start */
-			u8 ipcso;  /* IP checksum offset */
-			__le16 ipcse;  /* IP checksum end */
-		} ip_fields;
-	} lower_setup;
-	union {
-		__le32 tcp_config;
-		struct {
-			u8 tucss;  /* TCP checksum start */
-			u8 tucso;  /* TCP checksum offset */
-			__le16 tucse;  /* TCP checksum end */
-		} tcp_fields;
-	} upper_setup;
-	__le32 cmd_and_length;
-	union {
-		__le32 data;
-		struct {
-			u8 status;  /* Descriptor status */
-			u8 hdr_len;  /* Header length */
-			__le16 mss;  /* Maximum segment size */
-		} fields;
-	} tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct e1000_data_desc {
-	__le64 buffer_addr;  /* Address of the descriptor's buffer address */
-	union {
-		__le32 data;
-		struct {
-			__le16 length;  /* Data buffer length */
-			u8 typ_len_ext;
-			u8 cmd;
-		} flags;
-	} lower;
-	union {
-		__le32 data;
-		struct {
-			u8 status;  /* Descriptor status */
-			u8 popts;  /* Packet Options */
-			__le16 special;
-		} fields;
-	} upper;
-};
-
-/* Statistics counters collected by the MAC */
-struct e1000_hw_stats {
-	u64 crcerrs;
-	u64 algnerrc;
-	u64 symerrs;
-	u64 rxerrc;
-	u64 mpc;
-	u64 scc;
-	u64 ecol;
-	u64 mcc;
-	u64 latecol;
-	u64 colc;
-	u64 dc;
-	u64 tncrs;
-	u64 sec;
-	u64 cexterr;
-	u64 rlec;
-	u64 xonrxc;
-	u64 xontxc;
-	u64 xoffrxc;
-	u64 xofftxc;
-	u64 fcruc;
-	u64 prc64;
-	u64 prc127;
-	u64 prc255;
-	u64 prc511;
-	u64 prc1023;
-	u64 prc1522;
-	u64 gprc;
-	u64 bprc;
-	u64 mprc;
-	u64 gptc;
-	u64 gorc;
-	u64 gotc;
-	u64 rnbc;
-	u64 ruc;
-	u64 rfc;
-	u64 roc;
-	u64 rjc;
-	u64 mgprc;
-	u64 mgpdc;
-	u64 mgptc;
-	u64 tor;
-	u64 tot;
-	u64 tpr;
-	u64 tpt;
-	u64 ptc64;
-	u64 ptc127;
-	u64 ptc255;
-	u64 ptc511;
-	u64 ptc1023;
-	u64 ptc1522;
-	u64 mptc;
-	u64 bptc;
-	u64 tsctc;
-	u64 tsctfc;
-	u64 iac;
-	u64 icrxptc;
-	u64 icrxatc;
-	u64 ictxptc;
-	u64 ictxatc;
-	u64 ictxqec;
-	u64 ictxqmtc;
-	u64 icrxdmtc;
-	u64 icrxoc;
-	u64 cbtmpc;
-	u64 htdpmc;
-	u64 cbrdpc;
-	u64 cbrmpc;
-	u64 rpthc;
-	u64 hgptc;
-	u64 htcbdpc;
-	u64 hgorc;
-	u64 hgotc;
-	u64 lenerrs;
-	u64 scvpc;
-	u64 hrmpc;
-	u64 doosync;
-	u64 o2bgptc;
-	u64 o2bspc;
-	u64 b2ospc;
-	u64 b2ogprc;
-};
-
-struct e1000_vf_stats {
-	u64 base_gprc;
-	u64 base_gptc;
-	u64 base_gorc;
-	u64 base_gotc;
-	u64 base_mprc;
-	u64 base_gotlbc;
-	u64 base_gptlbc;
-	u64 base_gorlbc;
-	u64 base_gprlbc;
-
-	u32 last_gprc;
-	u32 last_gptc;
-	u32 last_gorc;
-	u32 last_gotc;
-	u32 last_mprc;
-	u32 last_gotlbc;
-	u32 last_gptlbc;
-	u32 last_gorlbc;
-	u32 last_gprlbc;
-
-	u64 gprc;
-	u64 gptc;
-	u64 gorc;
-	u64 gotc;
-	u64 mprc;
-	u64 gotlbc;
-	u64 gptlbc;
-	u64 gorlbc;
-	u64 gprlbc;
-};
-
-struct e1000_phy_stats {
-	u32 idle_errors;
-	u32 receive_errors;
-};
-
-struct e1000_host_mng_dhcp_cookie {
-	u32 signature;
-	u8  status;
-	u8  reserved0;
-	u16 vlan_id;
-	u32 reserved1;
-	u16 reserved2;
-	u8  reserved3;
-	u8  checksum;
-};
-
-/* Host Interface "Rev 1" */
-struct e1000_host_command_header {
-	u8 command_id;
-	u8 command_length;
-	u8 command_options;
-	u8 checksum;
-};
-
-#define E1000_HI_MAX_DATA_LENGTH	252
-struct e1000_host_command_info {
-	struct e1000_host_command_header command_header;
-	u8 command_data[E1000_HI_MAX_DATA_LENGTH];
-};
-
-/* Host Interface "Rev 2" */
-struct e1000_host_mng_command_header {
-	u8  command_id;
-	u8  checksum;
-	u16 reserved1;
-	u16 reserved2;
-	u16 command_length;
-};
-
-#define E1000_HI_MAX_MNG_DATA_LENGTH	0x6F8
-struct e1000_host_mng_command_info {
-	struct e1000_host_mng_command_header command_header;
-	u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
-};
-
-#include "e1000_mac.h"
-#include "e1000_phy.h"
-#include "e1000_nvm.h"
-#include "e1000_manage.h"
-#include "e1000_mbx.h"
-
-/* Function pointers for the MAC. */
-struct e1000_mac_operations {
-	s32  (*init_params)(struct e1000_hw *);
-	s32  (*id_led_init)(struct e1000_hw *);
-	s32  (*blink_led)(struct e1000_hw *);
-	bool (*check_mng_mode)(struct e1000_hw *);
-	s32  (*check_for_link)(struct e1000_hw *);
-	s32  (*cleanup_led)(struct e1000_hw *);
-	void (*clear_hw_cntrs)(struct e1000_hw *);
-	void (*clear_vfta)(struct e1000_hw *);
-	s32  (*get_bus_info)(struct e1000_hw *);
-	void (*set_lan_id)(struct e1000_hw *);
-	s32  (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
-	s32  (*led_on)(struct e1000_hw *);
-	s32  (*led_off)(struct e1000_hw *);
-	void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
-	s32  (*reset_hw)(struct e1000_hw *);
-	s32  (*init_hw)(struct e1000_hw *);
-	void (*shutdown_serdes)(struct e1000_hw *);
-	void (*power_up_serdes)(struct e1000_hw *);
-	s32  (*setup_link)(struct e1000_hw *);
-	s32  (*setup_physical_interface)(struct e1000_hw *);
-	s32  (*setup_led)(struct e1000_hw *);
-	void (*write_vfta)(struct e1000_hw *, u32, u32);
-	void (*config_collision_dist)(struct e1000_hw *);
-	void (*rar_set)(struct e1000_hw *, u8*, u32);
-	s32  (*read_mac_addr)(struct e1000_hw *);
-	s32  (*validate_mdi_setting)(struct e1000_hw *);
-	s32  (*acquire_swfw_sync)(struct e1000_hw *, u16);
-	void (*release_swfw_sync)(struct e1000_hw *, u16);
-};
-
-/* When to use various PHY register access functions:
- *
- *                 Func   Caller
- *   Function      Does   Does    When to use
- *   ~~~~~~~~~~~~  ~~~~~  ~~~~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *   X_reg         L,P,A  n/a     for simple PHY reg accesses
- *   X_reg_locked  P,A    L       for multiple accesses of different regs
- *                                on different pages
- *   X_reg_page    A      L,P     for multiple accesses of different regs
- *                                on the same page
- *
- * Where X=[read|write], L=locking, P=sets page, A=register access
- *
- */
-struct e1000_phy_operations {
-	s32  (*init_params)(struct e1000_hw *);
-	s32  (*acquire)(struct e1000_hw *);
-	s32  (*cfg_on_link_up)(struct e1000_hw *);
-	s32  (*check_polarity)(struct e1000_hw *);
-	s32  (*check_reset_block)(struct e1000_hw *);
-	s32  (*commit)(struct e1000_hw *);
-	s32  (*force_speed_duplex)(struct e1000_hw *);
-	s32  (*get_cfg_done)(struct e1000_hw *hw);
-	s32  (*get_cable_length)(struct e1000_hw *);
-	s32  (*get_info)(struct e1000_hw *);
-	s32  (*set_page)(struct e1000_hw *, u16);
-	s32  (*read_reg)(struct e1000_hw *, u32, u16 *);
-	s32  (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
-	s32  (*read_reg_page)(struct e1000_hw *, u32, u16 *);
-	void (*release)(struct e1000_hw *);
-	s32  (*reset)(struct e1000_hw *);
-	s32  (*set_d0_lplu_state)(struct e1000_hw *, bool);
-	s32  (*set_d3_lplu_state)(struct e1000_hw *, bool);
-	s32  (*write_reg)(struct e1000_hw *, u32, u16);
-	s32  (*write_reg_locked)(struct e1000_hw *, u32, u16);
-	s32  (*write_reg_page)(struct e1000_hw *, u32, u16);
-	void (*power_up)(struct e1000_hw *);
-	void (*power_down)(struct e1000_hw *);
-	s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *);
-	s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8);
-};
-
-/* Function pointers for the NVM. */
-struct e1000_nvm_operations {
-	s32  (*init_params)(struct e1000_hw *);
-	s32  (*acquire)(struct e1000_hw *);
-	s32  (*read)(struct e1000_hw *, u16, u16, u16 *);
-	void (*release)(struct e1000_hw *);
-	void (*reload)(struct e1000_hw *);
-	s32  (*update)(struct e1000_hw *);
-	s32  (*valid_led_default)(struct e1000_hw *, u16 *);
-	s32  (*validate)(struct e1000_hw *);
-	s32  (*write)(struct e1000_hw *, u16, u16, u16 *);
-};
-
-struct e1000_mac_info {
-	struct e1000_mac_operations ops;
-	u8 addr[ETH_ADDR_LEN];
-	u8 perm_addr[ETH_ADDR_LEN];
-
-	enum e1000_mac_type type;
-
-	u32 collision_delta;
-	u32 ledctl_default;
-	u32 ledctl_mode1;
-	u32 ledctl_mode2;
-	u32 mc_filter_type;
-	u32 tx_packet_delta;
-	u32 txcw;
-
-	u16 current_ifs_val;
-	u16 ifs_max_val;
-	u16 ifs_min_val;
-	u16 ifs_ratio;
-	u16 ifs_step_size;
-	u16 mta_reg_count;
-	u16 uta_reg_count;
-
-	/* Maximum size of the MTA register table in all supported adapters */
-	#define MAX_MTA_REG 128
-	u32 mta_shadow[MAX_MTA_REG];
-	u16 rar_entry_count;
-
-	u8  forced_speed_duplex;
-
-	bool adaptive_ifs;
-	bool has_fwsm;
-	bool arc_subsystem_valid;
-	bool asf_firmware_present;
-	bool autoneg;
-	bool autoneg_failed;
-	bool get_link_status;
-	bool in_ifs_mode;
-	bool report_tx_early;
-	enum e1000_serdes_link_state serdes_link_state;
-	bool serdes_has_link;
-	bool tx_pkt_filtering;
-};
-
-struct e1000_phy_info {
-	struct e1000_phy_operations ops;
-	enum e1000_phy_type type;
-
-	enum e1000_1000t_rx_status local_rx;
-	enum e1000_1000t_rx_status remote_rx;
-	enum e1000_ms_type ms_type;
-	enum e1000_ms_type original_ms_type;
-	enum e1000_rev_polarity cable_polarity;
-	enum e1000_smart_speed smart_speed;
-
-	u32 addr;
-	u32 id;
-	u32 reset_delay_us; /* in usec */
-	u32 revision;
-
-	enum e1000_media_type media_type;
-
-	u16 autoneg_advertised;
-	u16 autoneg_mask;
-	u16 cable_length;
-	u16 max_cable_length;
-	u16 min_cable_length;
-
-	u8 mdix;
-
-	bool disable_polarity_correction;
-	bool is_mdix;
-	bool polarity_correction;
-	bool speed_downgraded;
-	bool autoneg_wait_to_complete;
-};
-
-struct e1000_nvm_info {
-	struct e1000_nvm_operations ops;
-	enum e1000_nvm_type type;
-	enum e1000_nvm_override override;
-
-	u32 flash_bank_size;
-	u32 flash_base_addr;
-
-	u16 word_size;
-	u16 delay_usec;
-	u16 address_bits;
-	u16 opcode_bits;
-	u16 page_size;
-};
-
-struct e1000_bus_info {
-	enum e1000_bus_type type;
-	enum e1000_bus_speed speed;
-	enum e1000_bus_width width;
-
-	u16 func;
-	u16 pci_cmd_word;
-};
-
-struct e1000_fc_info {
-	u32 high_water;  /* Flow control high-water mark */
-	u32 low_water;  /* Flow control low-water mark */
-	u16 pause_time;  /* Flow control pause timer */
-	u16 refresh_time;  /* Flow control refresh timer */
-	bool send_xon;  /* Flow control send XON */
-	bool strict_ieee;  /* Strict IEEE mode */
-	enum e1000_fc_mode current_mode;  /* FC mode in effect */
-	enum e1000_fc_mode requested_mode;  /* FC mode requested by caller */
-};
-
-struct e1000_mbx_operations {
-	s32 (*init_params)(struct e1000_hw *hw);
-	s32 (*read)(struct e1000_hw *, u32 *, u16,  u16);
-	s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
-	s32 (*read_posted)(struct e1000_hw *, u32 *, u16,  u16);
-	s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
-	s32 (*check_for_msg)(struct e1000_hw *, u16);
-	s32 (*check_for_ack)(struct e1000_hw *, u16);
-	s32 (*check_for_rst)(struct e1000_hw *, u16);
-};
-
-struct e1000_mbx_stats {
-	u32 msgs_tx;
-	u32 msgs_rx;
-
-	u32 acks;
-	u32 reqs;
-	u32 rsts;
-};
-
-struct e1000_mbx_info {
-	struct e1000_mbx_operations ops;
-	struct e1000_mbx_stats stats;
-	u32 timeout;
-	u32 usec_delay;
-	u16 size;
-};
-
-struct e1000_dev_spec_82541 {
-	enum e1000_dsp_config dsp_config;
-	enum e1000_ffe_config ffe_config;
-	u16 spd_default;
-	bool phy_init_script;
-};
-
-struct e1000_dev_spec_82542 {
-	bool dma_fairness;
-};
-
-struct e1000_dev_spec_82543 {
-	u32  tbi_compatibility;
-	bool dma_fairness;
-	bool init_phy_disabled;
-};
-
-struct e1000_dev_spec_82571 {
-	bool laa_is_present;
-	u32 smb_counter;
-	E1000_MUTEX swflag_mutex;
-};
-
-struct e1000_dev_spec_80003es2lan {
-	bool  mdic_wa_enable;
-};
-
-struct e1000_shadow_ram {
-	u16  value;
-	bool modified;
-};
-
-#define E1000_SHADOW_RAM_WORDS		2048
-
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
-/* I218 PHY Ultra Low Power (ULP) states */
-enum e1000_ulp_state {
-	e1000_ulp_state_unknown,
-	e1000_ulp_state_off,
-	e1000_ulp_state_on,
-};
-
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
-struct e1000_dev_spec_ich8lan {
-	bool kmrn_lock_loss_workaround_enabled;
-	struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS];
-	E1000_MUTEX nvm_mutex;
-	E1000_MUTEX swflag_mutex;
-	bool nvm_k1_enabled;
-	bool eee_disable;
-	u16 eee_lp_ability;
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
-	enum e1000_ulp_state ulp_state;
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
-	u16 lat_enc;
-	u16 max_ltr_enc;
-	bool smbus_disable;
-};
-
-struct e1000_dev_spec_82575 {
-	bool sgmii_active;
-	bool global_device_reset;
-	bool eee_disable;
-	bool module_plugged;
-	bool clear_semaphore_once;
-	u32 mtu;
-	struct sfp_e1000_flags eth_flags;
-	u8 media_port;
-	bool media_changed;
-};
-
-struct e1000_dev_spec_vf {
-	u32 vf_number;
-	u32 v2p_mailbox;
-};
-
-struct e1000_hw {
-	void *back;
-
-	u8 *hw_addr;
-	u8 *flash_address;
-	unsigned long io_base;
-
-	struct e1000_mac_info  mac;
-	struct e1000_fc_info   fc;
-	struct e1000_phy_info  phy;
-	struct e1000_nvm_info  nvm;
-	struct e1000_bus_info  bus;
-	struct e1000_mbx_info mbx;
-	struct e1000_host_mng_dhcp_cookie mng_cookie;
-
-	union {
-		struct e1000_dev_spec_82541 _82541;
-		struct e1000_dev_spec_82542 _82542;
-		struct e1000_dev_spec_82543 _82543;
-		struct e1000_dev_spec_82571 _82571;
-		struct e1000_dev_spec_80003es2lan _80003es2lan;
-		struct e1000_dev_spec_ich8lan ich8lan;
-		struct e1000_dev_spec_82575 _82575;
-		struct e1000_dev_spec_vf vf;
-	} dev_spec;
-
-	u16 device_id;
-	u16 subsystem_vendor_id;
-	u16 subsystem_device_id;
-	u16 vendor_id;
-
-	u8  revision_id;
-};
-
-#include "e1000_82541.h"
-#include "e1000_82543.h"
-#include "e1000_82571.h"
-#include "e1000_80003es2lan.h"
-#include "e1000_ich8lan.h"
-#include "e1000_82575.h"
-#include "e1000_i210.h"
-
-/* These functions must be implemented by drivers */
-void e1000_pci_clear_mwi(struct e1000_hw *hw);
-void e1000_pci_set_mwi(struct e1000_hw *hw);
-s32  e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-s32  e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_i210.c b/lib/librte_pmd_e1000/e1000/e1000_i210.c
deleted file mode 100644
index 1f5600d..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_i210.c
+++ /dev/null
@@ -1,1000 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-
-STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_i210(struct e1000_hw *hw);
-STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
-STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
-				u16 *data);
-STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
-STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
-
-/**
- *  e1000_acquire_nvm_i210 - Request for access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Acquire the necessary semaphores for exclusive access to the EEPROM.
- *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
- *  Return successful if access grant bit set, else clear the request for
- *  EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_acquire_nvm_i210");
-
-	ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
-
-	return ret_val;
-}
-
-/**
- *  e1000_release_nvm_i210 - Release exclusive access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
- *  then release the semaphores acquired.
- **/
-STATIC void e1000_release_nvm_i210(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_release_nvm_i210");
-
-	e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- *  e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
- *  @hw: pointer to the HW structure
- *  @mask: specifies which semaphore to acquire
- *
- *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
- *  will also specify which port we're acquiring the lock for.
- **/
-s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
-{
-	u32 swfw_sync;
-	u32 swmask = mask;
-	u32 fwmask = mask << 16;
-	s32 ret_val = E1000_SUCCESS;
-	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
-
-	DEBUGFUNC("e1000_acquire_swfw_sync_i210");
-
-	while (i < timeout) {
-		if (e1000_get_hw_semaphore_i210(hw)) {
-			ret_val = -E1000_ERR_SWFW_SYNC;
-			goto out;
-		}
-
-		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
-		if (!(swfw_sync & (fwmask | swmask)))
-			break;
-
-		/*
-		 * Firmware currently using resource (fwmask)
-		 * or other software thread using resource (swmask)
-		 */
-		e1000_put_hw_semaphore_generic(hw);
-		msec_delay_irq(5);
-		i++;
-	}
-
-	if (i == timeout) {
-		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
-		ret_val = -E1000_ERR_SWFW_SYNC;
-		goto out;
-	}
-
-	swfw_sync |= swmask;
-	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
-	e1000_put_hw_semaphore_generic(hw);
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_release_swfw_sync_i210 - Release SW/FW semaphore
- *  @hw: pointer to the HW structure
- *  @mask: specifies which semaphore to acquire
- *
- *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
- *  will also specify which port we're releasing the lock for.
- **/
-void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
-{
-	u32 swfw_sync;
-
-	DEBUGFUNC("e1000_release_swfw_sync_i210");
-
-	while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
-		; /* Empty */
-
-	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
-	swfw_sync &= ~mask;
-	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
-
-	e1000_put_hw_semaphore_generic(hw);
-}
-
-/**
- *  e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Acquire the HW semaphore to access the PHY or NVM
- **/
-STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
-{
-	u32 swsm;
-	s32 timeout = hw->nvm.word_size + 1;
-	s32 i = 0;
-
-	DEBUGFUNC("e1000_get_hw_semaphore_i210");
-
-	/* Get the SW semaphore */
-	while (i < timeout) {
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		if (!(swsm & E1000_SWSM_SMBI))
-			break;
-
-		usec_delay(50);
-		i++;
-	}
-
-	if (i == timeout) {
-		/* In rare circumstances, the SW semaphore may already be held
-		 * unintentionally. Clear the semaphore once before giving up.
-		 */
-		if (hw->dev_spec._82575.clear_semaphore_once) {
-			hw->dev_spec._82575.clear_semaphore_once = false;
-			e1000_put_hw_semaphore_generic(hw);
-			for (i = 0; i < timeout; i++) {
-				swsm = E1000_READ_REG(hw, E1000_SWSM);
-				if (!(swsm & E1000_SWSM_SMBI))
-					break;
-
-				usec_delay(50);
-			}
-		}
-
-		/* If we do not have the semaphore here, we have to give up. */
-		if (i == timeout) {
-			DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
-			return -E1000_ERR_NVM;
-		}
-	}
-
-	/* Get the FW semaphore. */
-	for (i = 0; i < timeout; i++) {
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
-
-		/* Semaphore acquired if bit latched */
-		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
-			break;
-
-		usec_delay(50);
-	}
-
-	if (i == timeout) {
-		/* Release semaphores */
-		e1000_put_hw_semaphore_generic(hw);
-		DEBUGOUT("Driver can't access the NVM\n");
-		return -E1000_ERR_NVM;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
- *  @hw: pointer to the HW structure
- *  @offset: offset of word in the Shadow Ram to read
- *  @words: number of words to read
- *  @data: word read from the Shadow Ram
- *
- *  Reads a 16 bit word from the Shadow Ram using the EERD register.
- *  Uses necessary synchronization semaphores.
- **/
-s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
-			     u16 *data)
-{
-	s32 status = E1000_SUCCESS;
-	u16 i, count;
-
-	DEBUGFUNC("e1000_read_nvm_srrd_i210");
-
-	/* We cannot hold synchronization semaphores for too long,
-	 * because of forceful takeover procedure. However it is more efficient
-	 * to read in bursts than synchronizing access for each word. */
-	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
-		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
-			E1000_EERD_EEWR_MAX_COUNT : (words - i);
-		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
-			status = e1000_read_nvm_eerd(hw, offset, count,
-						     data + i);
-			hw->nvm.ops.release(hw);
-		} else {
-			status = E1000_ERR_SWFW_SYNC;
-		}
-
-		if (status != E1000_SUCCESS)
-			break;
-	}
-
-	return status;
-}
-
-/**
- *  e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
- *  @hw: pointer to the HW structure
- *  @offset: offset within the Shadow RAM to be written to
- *  @words: number of words to write
- *  @data: 16 bit word(s) to be written to the Shadow RAM
- *
- *  Writes data to Shadow RAM at offset using EEWR register.
- *
- *  If e1000_update_nvm_checksum is not called after this function , the
- *  data will not be committed to FLASH and also Shadow RAM will most likely
- *  contain an invalid checksum.
- *
- *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
- *  partially written.
- **/
-s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
-			      u16 *data)
-{
-	s32 status = E1000_SUCCESS;
-	u16 i, count;
-
-	DEBUGFUNC("e1000_write_nvm_srwr_i210");
-
-	/* We cannot hold synchronization semaphores for too long,
-	 * because of forceful takeover procedure. However it is more efficient
-	 * to write in bursts than synchronizing access for each word. */
-	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
-		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
-			E1000_EERD_EEWR_MAX_COUNT : (words - i);
-		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
-			status = e1000_write_nvm_srwr(hw, offset, count,
-						      data + i);
-			hw->nvm.ops.release(hw);
-		} else {
-			status = E1000_ERR_SWFW_SYNC;
-		}
-
-		if (status != E1000_SUCCESS)
-			break;
-	}
-
-	return status;
-}
-
-/**
- *  e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
- *  @hw: pointer to the HW structure
- *  @offset: offset within the Shadow Ram to be written to
- *  @words: number of words to write
- *  @data: 16 bit word(s) to be written to the Shadow Ram
- *
- *  Writes data to Shadow Ram at offset using EEWR register.
- *
- *  If e1000_update_nvm_checksum is not called after this function , the
- *  Shadow Ram will most likely contain an invalid checksum.
- **/
-STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
-				u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 i, k, eewr = 0;
-	u32 attempts = 100000;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_write_nvm_srwr");
-
-	/*
-	 * A check for invalid values:  offset too large, too many words,
-	 * too many words for the offset, and not enough words.
-	 */
-	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		ret_val = -E1000_ERR_NVM;
-		goto out;
-	}
-
-	for (i = 0; i < words; i++) {
-		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
-			(data[i] << E1000_NVM_RW_REG_DATA) |
-			E1000_NVM_RW_REG_START;
-
-		E1000_WRITE_REG(hw, E1000_SRWR, eewr);
-
-		for (k = 0; k < attempts; k++) {
-			if (E1000_NVM_RW_REG_DONE &
-			    E1000_READ_REG(hw, E1000_SRWR)) {
-				ret_val = E1000_SUCCESS;
-				break;
-			}
-			usec_delay(5);
-		}
-
-		if (ret_val != E1000_SUCCESS) {
-			DEBUGOUT("Shadow RAM write EEWR timed out\n");
-			break;
-		}
-	}
-
-out:
-	return ret_val;
-}
-
-/** e1000_read_invm_word_i210 - Reads OTP
- *  @hw: pointer to the HW structure
- *  @address: the word address (aka eeprom offset) to read
- *  @data: pointer to the data read
- *
- *  Reads 16-bit words from the OTP. Return error when the word is not
- *  stored in OTP.
- **/
-STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
-{
-	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
-	u32 invm_dword;
-	u16 i;
-	u8 record_type, word_address;
-
-	DEBUGFUNC("e1000_read_invm_word_i210");
-
-	for (i = 0; i < E1000_INVM_SIZE; i++) {
-		invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
-		/* Get record type */
-		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
-		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
-			break;
-		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
-			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
-		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
-			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
-		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
-			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
-			if (word_address == address) {
-				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
-				DEBUGOUT2("Read INVM Word 0x%02x = %x",
-					  address, *data);
-				status = E1000_SUCCESS;
-				break;
-			}
-		}
-	}
-	if (status != E1000_SUCCESS)
-		DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
-	return status;
-}
-
-/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
- *  @hw: pointer to the HW structure
- *  @address: the word address (aka eeprom offset) to read
- *  @data: pointer to the data read
- *
- *  Wrapper function to return data formerly found in the NVM.
- **/
-STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
-				u16 E1000_UNUSEDARG words, u16 *data)
-{
-	s32 ret_val = E1000_SUCCESS;
-	UNREFERENCED_1PARAMETER(words);
-
-	DEBUGFUNC("e1000_read_invm_i210");
-
-	/* Only the MAC addr is required to be present in the iNVM */
-	switch (offset) {
-	case NVM_MAC_ADDR:
-		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
-		ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
-						     &data[1]);
-		ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
-						     &data[2]);
-		if (ret_val != E1000_SUCCESS)
-			DEBUGOUT("MAC Addr not found in iNVM\n");
-		break;
-	case NVM_INIT_CTRL_2:
-		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
-		if (ret_val != E1000_SUCCESS) {
-			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
-			ret_val = E1000_SUCCESS;
-		}
-		break;
-	case NVM_INIT_CTRL_4:
-		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
-		if (ret_val != E1000_SUCCESS) {
-			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
-			ret_val = E1000_SUCCESS;
-		}
-		break;
-	case NVM_LED_1_CFG:
-		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
-		if (ret_val != E1000_SUCCESS) {
-			*data = NVM_LED_1_CFG_DEFAULT_I211;
-			ret_val = E1000_SUCCESS;
-		}
-		break;
-	case NVM_LED_0_2_CFG:
-		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
-		if (ret_val != E1000_SUCCESS) {
-			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
-			ret_val = E1000_SUCCESS;
-		}
-		break;
-	case NVM_ID_LED_SETTINGS:
-		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
-		if (ret_val != E1000_SUCCESS) {
-			*data = ID_LED_RESERVED_FFFF;
-			ret_val = E1000_SUCCESS;
-		}
-		break;
-	case NVM_SUB_DEV_ID:
-		*data = hw->subsystem_device_id;
-		break;
-	case NVM_SUB_VEN_ID:
-		*data = hw->subsystem_vendor_id;
-		break;
-	case NVM_DEV_ID:
-		*data = hw->device_id;
-		break;
-	case NVM_VEN_ID:
-		*data = hw->vendor_id;
-		break;
-	default:
-		DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
-		*data = NVM_RESERVED_WORD;
-		break;
-	}
-	return ret_val;
-}
-
-/**
- *  e1000_read_invm_version - Reads iNVM version and image type
- *  @hw: pointer to the HW structure
- *  @invm_ver: version structure for the version read
- *
- *  Reads iNVM version and image type.
- **/
-s32 e1000_read_invm_version(struct e1000_hw *hw,
-			    struct e1000_fw_version *invm_ver)
-{
-	u32 *record = NULL;
-	u32 *next_record = NULL;
-	u32 i = 0;
-	u32 invm_dword = 0;
-	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
-					     E1000_INVM_RECORD_SIZE_IN_BYTES);
-	u32 buffer[E1000_INVM_SIZE];
-	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
-	u16 version = 0;
-
-	DEBUGFUNC("e1000_read_invm_version");
-
-	/* Read iNVM memory */
-	for (i = 0; i < E1000_INVM_SIZE; i++) {
-		invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
-		buffer[i] = invm_dword;
-	}
-
-	/* Read version number */
-	for (i = 1; i < invm_blocks; i++) {
-		record = &buffer[invm_blocks - i];
-		next_record = &buffer[invm_blocks - i + 1];
-
-		/* Check if we have first version location used */
-		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
-			version = 0;
-			status = E1000_SUCCESS;
-			break;
-		}
-		/* Check if we have second version location used */
-		else if ((i == 1) &&
-			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
-			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
-			status = E1000_SUCCESS;
-			break;
-		}
-		/*
-		 * Check if we have odd version location
-		 * used and it is the last one used
-		 */
-		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
-			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
-			 (i != 1))) {
-			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
-				  >> 13;
-			status = E1000_SUCCESS;
-			break;
-		}
-		/*
-		 * Check if we have even version location
-		 * used and it is the last one used
-		 */
-		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
-			 ((*record & 0x3) == 0)) {
-			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
-			status = E1000_SUCCESS;
-			break;
-		}
-	}
-
-	if (status == E1000_SUCCESS) {
-		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
-					>> E1000_INVM_MAJOR_SHIFT;
-		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
-	}
-	/* Read Image Type */
-	for (i = 1; i < invm_blocks; i++) {
-		record = &buffer[invm_blocks - i];
-		next_record = &buffer[invm_blocks - i + 1];
-
-		/* Check if we have image type in first location used */
-		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
-			invm_ver->invm_img_type = 0;
-			status = E1000_SUCCESS;
-			break;
-		}
-		/* Check if we have image type in first location used */
-		else if ((((*record & 0x3) == 0) &&
-			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
-			 ((((*record & 0x3) != 0) && (i != 1)))) {
-			invm_ver->invm_img_type =
-				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
-			status = E1000_SUCCESS;
-			break;
-		}
-	}
-	return status;
-}
-
-/**
- *  e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
-{
-	s32 status = E1000_SUCCESS;
-	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
-
-	DEBUGFUNC("e1000_validate_nvm_checksum_i210");
-
-	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
-
-		/*
-		 * Replace the read function with semaphore grabbing with
-		 * the one that skips this for a while.
-		 * We have semaphore taken already here.
-		 */
-		read_op_ptr = hw->nvm.ops.read;
-		hw->nvm.ops.read = e1000_read_nvm_eerd;
-
-		status = e1000_validate_nvm_checksum_generic(hw);
-
-		/* Revert original read operation. */
-		hw->nvm.ops.read = read_op_ptr;
-
-		hw->nvm.ops.release(hw);
-	} else {
-		status = E1000_ERR_SWFW_SYNC;
-	}
-
-	return status;
-}
-
-
-/**
- *  e1000_update_nvm_checksum_i210 - Update EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
- *  up to the checksum.  Then calculates the EEPROM checksum and writes the
- *  value to the EEPROM. Next commit EEPROM data onto the Flash.
- **/
-s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 checksum = 0;
-	u16 i, nvm_data;
-
-	DEBUGFUNC("e1000_update_nvm_checksum_i210");
-
-	/*
-	 * Read the first word from the EEPROM. If this times out or fails, do
-	 * not continue or we could be in for a very long wait while every
-	 * EEPROM read fails
-	 */
-	ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
-	if (ret_val != E1000_SUCCESS) {
-		DEBUGOUT("EEPROM read failed\n");
-		goto out;
-	}
-
-	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
-		/*
-		 * Do not use hw->nvm.ops.write, hw->nvm.ops.read
-		 * because we do not want to take the synchronization
-		 * semaphores twice here.
-		 */
-
-		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
-			ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
-			if (ret_val) {
-				hw->nvm.ops.release(hw);
-				DEBUGOUT("NVM Read Error while updating checksum.\n");
-				goto out;
-			}
-			checksum += nvm_data;
-		}
-		checksum = (u16) NVM_SUM - checksum;
-		ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
-						&checksum);
-		if (ret_val != E1000_SUCCESS) {
-			hw->nvm.ops.release(hw);
-			DEBUGOUT("NVM Write Error while updating checksum.\n");
-			goto out;
-		}
-
-		hw->nvm.ops.release(hw);
-
-		ret_val = e1000_update_flash_i210(hw);
-	} else {
-		ret_val = E1000_ERR_SWFW_SYNC;
-	}
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_get_flash_presence_i210 - Check if flash device is detected.
- *  @hw: pointer to the HW structure
- *
- **/
-bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
-{
-	u32 eec = 0;
-	bool ret_val = false;
-
-	DEBUGFUNC("e1000_get_flash_presence_i210");
-
-	eec = E1000_READ_REG(hw, E1000_EECD);
-
-	if (eec & E1000_EECD_FLASH_DETECTED_I210)
-		ret_val = true;
-
-	return ret_val;
-}
-
-/**
- *  e1000_update_flash_i210 - Commit EEPROM to the flash
- *  @hw: pointer to the HW structure
- *
- **/
-s32 e1000_update_flash_i210(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u32 flup;
-
-	DEBUGFUNC("e1000_update_flash_i210");
-
-	ret_val = e1000_pool_flash_update_done_i210(hw);
-	if (ret_val == -E1000_ERR_NVM) {
-		DEBUGOUT("Flash update time out\n");
-		goto out;
-	}
-
-	flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
-	E1000_WRITE_REG(hw, E1000_EECD, flup);
-
-	ret_val = e1000_pool_flash_update_done_i210(hw);
-	if (ret_val == E1000_SUCCESS)
-		DEBUGOUT("Flash update complete\n");
-	else
-		DEBUGOUT("Flash update time out\n");
-
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
- *  @hw: pointer to the HW structure
- *
- **/
-s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
-{
-	s32 ret_val = -E1000_ERR_NVM;
-	u32 i, reg;
-
-	DEBUGFUNC("e1000_pool_flash_update_done_i210");
-
-	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
-		reg = E1000_READ_REG(hw, E1000_EECD);
-		if (reg & E1000_EECD_FLUDONE_I210) {
-			ret_val = E1000_SUCCESS;
-			break;
-		}
-		usec_delay(5);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
- *  @hw: pointer to the HW structure
- *
- *  Initialize the i210/i211 NVM parameters and function pointers.
- **/
-STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	struct e1000_nvm_info *nvm = &hw->nvm;
-
-	DEBUGFUNC("e1000_init_nvm_params_i210");
-
-	ret_val = e1000_init_nvm_params_82575(hw);
-	nvm->ops.acquire = e1000_acquire_nvm_i210;
-	nvm->ops.release = e1000_release_nvm_i210;
-	nvm->ops.valid_led_default = e1000_valid_led_default_i210;
-	if (e1000_get_flash_presence_i210(hw)) {
-		hw->nvm.type = e1000_nvm_flash_hw;
-		nvm->ops.read    = e1000_read_nvm_srrd_i210;
-		nvm->ops.write   = e1000_write_nvm_srwr_i210;
-		nvm->ops.validate = e1000_validate_nvm_checksum_i210;
-		nvm->ops.update   = e1000_update_nvm_checksum_i210;
-	} else {
-		hw->nvm.type = e1000_nvm_invm;
-		nvm->ops.read     = e1000_read_invm_i210;
-		nvm->ops.write    = e1000_null_write_nvm;
-		nvm->ops.validate = e1000_null_ops_generic;
-		nvm->ops.update   = e1000_null_ops_generic;
-	}
-	return ret_val;
-}
-
-/**
- *  e1000_init_function_pointers_i210 - Init func ptrs.
- *  @hw: pointer to the HW structure
- *
- *  Called to initialize all function pointers and parameters.
- **/
-void e1000_init_function_pointers_i210(struct e1000_hw *hw)
-{
-	e1000_init_function_pointers_82575(hw);
-	hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
-
-	return;
-}
-
-/**
- *  e1000_valid_led_default_i210 - Verify a valid default LED config
- *  @hw: pointer to the HW structure
- *  @data: pointer to the NVM (EEPROM)
- *
- *  Read the EEPROM for the current default LED configuration.  If the
- *  LED configuration is not valid, set to a valid LED configuration.
- **/
-STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_valid_led_default_i210");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		goto out;
-	}
-
-	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
-		switch (hw->phy.media_type) {
-		case e1000_media_type_internal_serdes:
-			*data = ID_LED_DEFAULT_I210_SERDES;
-			break;
-		case e1000_media_type_copper:
-		default:
-			*data = ID_LED_DEFAULT_I210;
-			break;
-		}
-	}
-out:
-	return ret_val;
-}
-
-/**
- *  __e1000_access_xmdio_reg - Read/write XMDIO register
- *  @hw: pointer to the HW structure
- *  @address: XMDIO address to program
- *  @dev_addr: device address to program
- *  @data: pointer to value to read/write from/to the XMDIO address
- *  @read: boolean flag to indicate read or write
- **/
-STATIC s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
-				    u8 dev_addr, u16 *data, bool read)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("__e1000_access_xmdio_reg");
-
-	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
-							 dev_addr);
-	if (ret_val)
-		return ret_val;
-
-	if (read)
-		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
-	else
-		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
-	if (ret_val)
-		return ret_val;
-
-	/* Recalibrate the device back to 0 */
-	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
-	if (ret_val)
-		return ret_val;
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_xmdio_reg - Read XMDIO register
- *  @hw: pointer to the HW structure
- *  @addr: XMDIO address to program
- *  @dev_addr: device address to program
- *  @data: value to be read from the EMI address
- **/
-s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
-{
-	DEBUGFUNC("e1000_read_xmdio_reg");
-
-	return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true);
-}
-
-/**
- *  e1000_write_xmdio_reg - Write XMDIO register
- *  @hw: pointer to the HW structure
- *  @addr: XMDIO address to program
- *  @dev_addr: device address to program
- *  @data: value to be written to the XMDIO address
- **/
-s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
-{
-	DEBUGFUNC("e1000_read_xmdio_reg");
-
-	return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false);
-}
-
-/**
- * e1000_pll_workaround_i210
- * @hw: pointer to the HW structure
- *
- * Works around an errata in the PLL circuit where it occasionally
- * provides the wrong clock frequency after power up.
- **/
-STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u32 wuc, mdicnfg, ctrl_ext, reg_val;
-	u16 nvm_word, phy_word, pci_word, tmp_nvm;
-	int i;
-
-	/* Get and set needed register values */
-	wuc = E1000_READ_REG(hw, E1000_WUC);
-	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
-	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
-	E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
-
-	/* Get data from NVM, or set default */
-	ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
-					    &nvm_word);
-	if (ret_val != E1000_SUCCESS)
-		nvm_word = E1000_INVM_DEFAULT_AL;
-	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
-	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
-		/* check current state */
-		hw->phy.ops.read_reg(hw, (E1000_PHY_PLL_FREQ_PAGE |
-				     E1000_PHY_PLL_FREQ_REG), &phy_word);
-		if ((phy_word & E1000_PHY_PLL_UNCONF)
-		    != E1000_PHY_PLL_UNCONF) {
-			ret_val = E1000_SUCCESS;
-			break;
-		} else {
-			ret_val = -E1000_ERR_PHY;
-		}
-		hw->phy.ops.reset(hw);
-		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
-		E1000_WRITE_REG(hw, E1000_WUC, 0);
-		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
-		E1000_WRITE_REG(hw, E1000_EEARBC, reg_val);
-
-		e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
-		pci_word |= E1000_PCI_PMCSR_D3;
-		e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
-		msec_delay(1);
-		pci_word &= ~E1000_PCI_PMCSR_D3;
-		e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
-		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
-		E1000_WRITE_REG(hw, E1000_EEARBC, reg_val);
-
-		/* restore WUC register */
-		E1000_WRITE_REG(hw, E1000_WUC, wuc);
-	}
-	/* restore MDICNFG setting */
-	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
-	return ret_val;
-}
-
-/**
- *  e1000_init_hw_i210 - Init hw for I210/I211
- *  @hw: pointer to the HW structure
- *
- *  Called to initialize hw for i210 hw family.
- **/
-s32 e1000_init_hw_i210(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_init_hw_i210");
-	if ((hw->mac.type >= e1000_i210) &&
-	    !(e1000_get_flash_presence_i210(hw))) {
-		ret_val = e1000_pll_workaround_i210(hw);
-		if (ret_val != E1000_SUCCESS)
-			return ret_val;
-	}
-	ret_val = e1000_init_hw_82575(hw);
-	return ret_val;
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_i210.h b/lib/librte_pmd_e1000/e1000/e1000_i210.h
deleted file mode 100644
index f2bd43b..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_i210.h
+++ /dev/null
@@ -1,110 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_I210_H_
-#define _E1000_I210_H_
-
-bool e1000_get_flash_presence_i210(struct e1000_hw *hw);
-s32 e1000_update_flash_i210(struct e1000_hw *hw);
-s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw);
-s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw);
-s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset,
-			      u16 words, u16 *data);
-s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset,
-			     u16 words, u16 *data);
-s32 e1000_read_invm_version(struct e1000_hw *hw,
-			    struct e1000_fw_version *invm_ver);
-s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
-void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask);
-s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr,
-			 u16 *data);
-s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr,
-			  u16 data);
-s32 e1000_init_hw_i210(struct e1000_hw *hw);
-
-#define E1000_STM_OPCODE		0xDB00
-#define E1000_EEPROM_FLASH_SIZE_WORD	0x11
-
-#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \
-	(u8)((invm_dword) & 0x7)
-#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \
-	(u8)(((invm_dword) & 0x0000FE00) >> 9)
-#define INVM_DWORD_TO_WORD_DATA(invm_dword) \
-	(u16)(((invm_dword) & 0xFFFF0000) >> 16)
-
-enum E1000_INVM_STRUCTURE_TYPE {
-	E1000_INVM_UNINITIALIZED_STRUCTURE		= 0x00,
-	E1000_INVM_WORD_AUTOLOAD_STRUCTURE		= 0x01,
-	E1000_INVM_CSR_AUTOLOAD_STRUCTURE		= 0x02,
-	E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE	= 0x03,
-	E1000_INVM_RSA_KEY_SHA256_STRUCTURE		= 0x04,
-	E1000_INVM_INVALIDATED_STRUCTURE		= 0x0F,
-};
-
-#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS	8
-#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS	1
-#define E1000_INVM_ULT_BYTES_SIZE	8
-#define E1000_INVM_RECORD_SIZE_IN_BYTES	4
-#define E1000_INVM_VER_FIELD_ONE	0x1FF8
-#define E1000_INVM_VER_FIELD_TWO	0x7FE000
-#define E1000_INVM_IMGTYPE_FIELD	0x1F800000
-
-#define E1000_INVM_MAJOR_MASK	0x3F0
-#define E1000_INVM_MINOR_MASK	0xF
-#define E1000_INVM_MAJOR_SHIFT	4
-
-#define ID_LED_DEFAULT_I210		((ID_LED_OFF1_ON2  << 8) | \
-					 (ID_LED_DEF1_DEF2 <<  4) | \
-					 (ID_LED_OFF1_OFF2))
-#define ID_LED_DEFAULT_I210_SERDES	((ID_LED_DEF1_DEF2 << 8) | \
-					 (ID_LED_DEF1_DEF2 <<  4) | \
-					 (ID_LED_OFF1_ON2))
-
-/* NVM offset defaults for I211 devices */
-#define NVM_INIT_CTRL_2_DEFAULT_I211	0X7243
-#define NVM_INIT_CTRL_4_DEFAULT_I211	0x00C1
-#define NVM_LED_1_CFG_DEFAULT_I211	0x0184
-#define NVM_LED_0_2_CFG_DEFAULT_I211	0x200C
-
-/* PLL Defines */
-#define E1000_PCI_PMCSR			0x44
-#define E1000_PCI_PMCSR_D3		0x03
-#define E1000_MAX_PLL_TRIES		5
-#define E1000_PHY_PLL_UNCONF		0xFF
-#define E1000_PHY_PLL_FREQ_PAGE		0xFC0000
-#define E1000_PHY_PLL_FREQ_REG		0x000E
-#define E1000_INVM_DEFAULT_AL		0x202F
-#define E1000_INVM_AUTOLOAD		0x0A
-#define E1000_INVM_PLL_WO_VAL		0x0010
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_ich8lan.c b/lib/librte_pmd_e1000/e1000/e1000_ich8lan.c
deleted file mode 100644
index 3b1627b..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_ich8lan.c
+++ /dev/null
@@ -1,5260 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-/* 82562G 10/100 Network Connection
- * 82562G-2 10/100 Network Connection
- * 82562GT 10/100 Network Connection
- * 82562GT-2 10/100 Network Connection
- * 82562V 10/100 Network Connection
- * 82562V-2 10/100 Network Connection
- * 82566DC-2 Gigabit Network Connection
- * 82566DC Gigabit Network Connection
- * 82566DM-2 Gigabit Network Connection
- * 82566DM Gigabit Network Connection
- * 82566MC Gigabit Network Connection
- * 82566MM Gigabit Network Connection
- * 82567LM Gigabit Network Connection
- * 82567LF Gigabit Network Connection
- * 82567V Gigabit Network Connection
- * 82567LM-2 Gigabit Network Connection
- * 82567LF-2 Gigabit Network Connection
- * 82567V-2 Gigabit Network Connection
- * 82567LF-3 Gigabit Network Connection
- * 82567LM-3 Gigabit Network Connection
- * 82567LM-4 Gigabit Network Connection
- * 82577LM Gigabit Network Connection
- * 82577LC Gigabit Network Connection
- * 82578DM Gigabit Network Connection
- * 82578DC Gigabit Network Connection
- * 82579LM Gigabit Network Connection
- * 82579V Gigabit Network Connection
- * Ethernet Connection I217-LM
- * Ethernet Connection I217-V
- * Ethernet Connection I218-V
- * Ethernet Connection I218-LM
- */
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
-STATIC s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
-STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
-STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
-STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
-STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
-STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
-STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
-STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
-#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
-STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
-					      u8 *mc_addr_list,
-					      u32 mc_addr_count);
-#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
-STATIC s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
-STATIC s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
-					    bool active);
-STATIC s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
-					    bool active);
-STATIC s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
-				   u16 words, u16 *data);
-STATIC s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
-				    u16 words, u16 *data);
-STATIC s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
-					    u16 *data);
-STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
-STATIC s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
-STATIC s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
-					   u16 *speed, u16 *duplex);
-STATIC s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
-STATIC s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
-STATIC s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
-STATIC s32  e1000_led_on_pchlan(struct e1000_hw *hw);
-STATIC s32  e1000_led_off_pchlan(struct e1000_hw *hw);
-STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
-STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
-STATIC s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
-					  u32 offset, u8 *data);
-STATIC s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
-					  u8 size, u16 *data);
-STATIC s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
-					  u32 offset, u16 *data);
-STATIC s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
-						 u32 offset, u8 byte);
-STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
-STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
-STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
-STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
-STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
-
-/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
-/* Offset 04h HSFSTS */
-union ich8_hws_flash_status {
-	struct ich8_hsfsts {
-		u16 flcdone:1; /* bit 0 Flash Cycle Done */
-		u16 flcerr:1; /* bit 1 Flash Cycle Error */
-		u16 dael:1; /* bit 2 Direct Access error Log */
-		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
-		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
-		u16 reserved1:2; /* bit 13:6 Reserved */
-		u16 reserved2:6; /* bit 13:6 Reserved */
-		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
-		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
-	} hsf_status;
-	u16 regval;
-};
-
-/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
-/* Offset 06h FLCTL */
-union ich8_hws_flash_ctrl {
-	struct ich8_hsflctl {
-		u16 flcgo:1;   /* 0 Flash Cycle Go */
-		u16 flcycle:2;   /* 2:1 Flash Cycle */
-		u16 reserved:5;   /* 7:3 Reserved  */
-		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
-		u16 flockdn:6;   /* 15:10 Reserved */
-	} hsf_ctrl;
-	u16 regval;
-};
-
-/* ICH Flash Region Access Permissions */
-union ich8_hws_flash_regacc {
-	struct ich8_flracc {
-		u32 grra:8; /* 0:7 GbE region Read Access */
-		u32 grwa:8; /* 8:15 GbE region Write Access */
-		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
-		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
-	} hsf_flregacc;
-	u16 regval;
-};
-
-/**
- *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
- *  @hw: pointer to the HW structure
- *
- *  Test access to the PHY registers by reading the PHY ID registers.  If
- *  the PHY ID is already known (e.g. resume path) compare it with known ID,
- *  otherwise assume the read PHY ID is correct if it is valid.
- *
- *  Assumes the sw/fw/hw semaphore is already acquired.
- **/
-STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
-{
-	u16 phy_reg = 0;
-	u32 phy_id = 0;
-	s32 ret_val = 0;
-	u16 retry_count;
-	u32 mac_reg = 0;
-
-	for (retry_count = 0; retry_count < 2; retry_count++) {
-		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
-		if (ret_val || (phy_reg == 0xFFFF))
-			continue;
-		phy_id = (u32)(phy_reg << 16);
-
-		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
-		if (ret_val || (phy_reg == 0xFFFF)) {
-			phy_id = 0;
-			continue;
-		}
-		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
-		break;
-	}
-
-	if (hw->phy.id) {
-		if  (hw->phy.id == phy_id)
-			goto out;
-	} else if (phy_id) {
-		hw->phy.id = phy_id;
-		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
-		goto out;
-	}
-
-	/* In case the PHY needs to be in mdio slow mode,
-	 * set slow mode and try to get the PHY id again.
-	 */
-	if (hw->mac.type < e1000_pch_lpt) {
-		hw->phy.ops.release(hw);
-		ret_val = e1000_set_mdio_slow_mode_hv(hw);
-		if (!ret_val)
-			ret_val = e1000_get_phy_id(hw);
-		hw->phy.ops.acquire(hw);
-	}
-
-	if (ret_val)
-		return false;
-out:
-	if (hw->mac.type == e1000_pch_lpt) {
-		/* Unforce SMBus mode in PHY */
-		hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
-		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
-		hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
-
-		/* Unforce SMBus mode in MAC */
-		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-	}
-
-	return true;
-}
-
-/**
- *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
- *  @hw: pointer to the HW structure
- *
- *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
- *  used to reset the PHY to a quiescent state when necessary.
- **/
-STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
-{
-	u32 mac_reg;
-
-	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
-
-	/* Set Phy Config Counter to 50msec */
-	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
-	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
-	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
-	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
-
-	/* Toggle LANPHYPC Value bit */
-	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
-	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
-	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
-	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
-	E1000_WRITE_FLUSH(hw);
-	usec_delay(10);
-	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
-	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
-	E1000_WRITE_FLUSH(hw);
-
-	if (hw->mac.type < e1000_pch_lpt) {
-		msec_delay(50);
-	} else {
-		u16 count = 20;
-
-		do {
-			msec_delay(5);
-		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
-			   E1000_CTRL_EXT_LPCD) && count--);
-
-		msec_delay(30);
-	}
-}
-
-/**
- *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
- *  @hw: pointer to the HW structure
- *
- *  Workarounds/flow necessary for PHY initialization during driver load
- *  and resume paths.
- **/
-STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
-{
-	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
-
-	/* Gate automatic PHY configuration by hardware on managed and
-	 * non-managed 82579 and newer adapters.
-	 */
-	e1000_gate_hw_phy_config_ich8lan(hw, true);
-
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
-	/* It is not possible to be certain of the current state of ULP
-	 * so forcibly disable it.
-	 */
-	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
-
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val) {
-		DEBUGOUT("Failed to initialize PHY flow\n");
-		goto out;
-	}
-
-	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
-	 * inaccessible and resetting the PHY is not blocked, toggle the
-	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
-	 */
-	switch (hw->mac.type) {
-	case e1000_pch_lpt:
-		if (e1000_phy_is_accessible_pchlan(hw))
-			break;
-
-		/* Before toggling LANPHYPC, see if PHY is accessible by
-		 * forcing MAC to SMBus mode first.
-		 */
-		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
-		/* Wait 50 milliseconds for MAC to finish any retries
-		 * that it might be trying to perform from previous
-		 * attempts to acknowledge any phy read requests.
-		 */
-		 msec_delay(50);
-
-		/* fall-through */
-	case e1000_pch2lan:
-		if (e1000_phy_is_accessible_pchlan(hw))
-			break;
-
-		/* fall-through */
-	case e1000_pchlan:
-		if ((hw->mac.type == e1000_pchlan) &&
-		    (fwsm & E1000_ICH_FWSM_FW_VALID))
-			break;
-
-		if (hw->phy.ops.check_reset_block(hw)) {
-			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
-			ret_val = -E1000_ERR_PHY;
-			break;
-		}
-
-		/* Toggle LANPHYPC Value bit */
-		e1000_toggle_lanphypc_pch_lpt(hw);
-		if (hw->mac.type >= e1000_pch_lpt) {
-			if (e1000_phy_is_accessible_pchlan(hw))
-				break;
-
-			/* Toggling LANPHYPC brings the PHY out of SMBus mode
-			 * so ensure that the MAC is also out of SMBus mode
-			 */
-			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
-			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
-			if (e1000_phy_is_accessible_pchlan(hw))
-				break;
-
-			ret_val = -E1000_ERR_PHY;
-		}
-		break;
-	default:
-		break;
-	}
-
-	hw->phy.ops.release(hw);
-	if (!ret_val) {
-
-		/* Check to see if able to reset PHY.  Print error if not */
-		if (hw->phy.ops.check_reset_block(hw)) {
-			ERROR_REPORT("Reset blocked by ME\n");
-			goto out;
-		}
-
-		/* Reset the PHY before any access to it.  Doing so, ensures
-		 * that the PHY is in a known good state before we read/write
-		 * PHY registers.  The generic reset is sufficient here,
-		 * because we haven't determined the PHY type yet.
-		 */
-		ret_val = e1000_phy_hw_reset_generic(hw);
-		if (ret_val)
-			goto out;
-
-		/* On a successful reset, possibly need to wait for the PHY
-		 * to quiesce to an accessible state before returning control
-		 * to the calling function.  If the PHY does not quiesce, then
-		 * return E1000E_BLK_PHY_RESET, as this is the condition that
-		 *  the PHY is in.
-		 */
-		ret_val = hw->phy.ops.check_reset_block(hw);
-		if (ret_val)
-			ERROR_REPORT("ME blocked access to PHY after reset\n");
-	}
-
-out:
-	/* Ungate automatic PHY configuration on non-managed 82579 */
-	if ((hw->mac.type == e1000_pch2lan) &&
-	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
-		msec_delay(10);
-		e1000_gate_hw_phy_config_ich8lan(hw, false);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
- *  @hw: pointer to the HW structure
- *
- *  Initialize family-specific PHY parameters and function pointers.
- **/
-STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_init_phy_params_pchlan");
-
-	phy->addr		= 1;
-	phy->reset_delay_us	= 100;
-
-	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
-	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
-	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
-	phy->ops.set_page	= e1000_set_page_igp;
-	phy->ops.read_reg	= e1000_read_phy_reg_hv;
-	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
-	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
-	phy->ops.release	= e1000_release_swflag_ich8lan;
-	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
-	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
-	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
-	phy->ops.write_reg	= e1000_write_phy_reg_hv;
-	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
-	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
-	phy->ops.power_up	= e1000_power_up_phy_copper;
-	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
-	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
-	phy->id = e1000_phy_unknown;
-
-	ret_val = e1000_init_phy_workarounds_pchlan(hw);
-	if (ret_val)
-		return ret_val;
-
-	if (phy->id == e1000_phy_unknown)
-		switch (hw->mac.type) {
-		default:
-			ret_val = e1000_get_phy_id(hw);
-			if (ret_val)
-				return ret_val;
-			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
-				break;
-			/* fall-through */
-		case e1000_pch2lan:
-		case e1000_pch_lpt:
-			/* In case the PHY needs to be in mdio slow mode,
-			 * set slow mode and try to get the PHY id again.
-			 */
-			ret_val = e1000_set_mdio_slow_mode_hv(hw);
-			if (ret_val)
-				return ret_val;
-			ret_val = e1000_get_phy_id(hw);
-			if (ret_val)
-				return ret_val;
-			break;
-		}
-	phy->type = e1000_get_phy_type_from_id(phy->id);
-
-	switch (phy->type) {
-	case e1000_phy_82577:
-	case e1000_phy_82579:
-	case e1000_phy_i217:
-		phy->ops.check_polarity = e1000_check_polarity_82577;
-		phy->ops.force_speed_duplex =
-			e1000_phy_force_speed_duplex_82577;
-		phy->ops.get_cable_length = e1000_get_cable_length_82577;
-		phy->ops.get_info = e1000_get_phy_info_82577;
-		phy->ops.commit = e1000_phy_sw_reset_generic;
-		break;
-	case e1000_phy_82578:
-		phy->ops.check_polarity = e1000_check_polarity_m88;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
-		phy->ops.get_cable_length = e1000_get_cable_length_m88;
-		phy->ops.get_info = e1000_get_phy_info_m88;
-		break;
-	default:
-		ret_val = -E1000_ERR_PHY;
-		break;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
- *  @hw: pointer to the HW structure
- *
- *  Initialize family-specific PHY parameters and function pointers.
- **/
-STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 i = 0;
-
-	DEBUGFUNC("e1000_init_phy_params_ich8lan");
-
-	phy->addr		= 1;
-	phy->reset_delay_us	= 100;
-
-	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
-	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
-	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
-	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
-	phy->ops.read_reg	= e1000_read_phy_reg_igp;
-	phy->ops.release	= e1000_release_swflag_ich8lan;
-	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
-	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
-	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
-	phy->ops.write_reg	= e1000_write_phy_reg_igp;
-	phy->ops.power_up	= e1000_power_up_phy_copper;
-	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
-
-	/* We may need to do this twice - once for IGP and if that fails,
-	 * we'll set BM func pointers and try again
-	 */
-	ret_val = e1000_determine_phy_address(hw);
-	if (ret_val) {
-		phy->ops.write_reg = e1000_write_phy_reg_bm;
-		phy->ops.read_reg  = e1000_read_phy_reg_bm;
-		ret_val = e1000_determine_phy_address(hw);
-		if (ret_val) {
-			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
-			return ret_val;
-		}
-	}
-
-	phy->id = 0;
-	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
-	       (i++ < 100)) {
-		msec_delay(1);
-		ret_val = e1000_get_phy_id(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Verify phy id */
-	switch (phy->id) {
-	case IGP03E1000_E_PHY_ID:
-		phy->type = e1000_phy_igp_3;
-		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
-		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
-		phy->ops.get_info = e1000_get_phy_info_igp;
-		phy->ops.check_polarity = e1000_check_polarity_igp;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
-		break;
-	case IFE_E_PHY_ID:
-	case IFE_PLUS_E_PHY_ID:
-	case IFE_C_E_PHY_ID:
-		phy->type = e1000_phy_ife;
-		phy->autoneg_mask = E1000_ALL_NOT_GIG;
-		phy->ops.get_info = e1000_get_phy_info_ife;
-		phy->ops.check_polarity = e1000_check_polarity_ife;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
-		break;
-	case BME1000_E_PHY_ID:
-		phy->type = e1000_phy_bm;
-		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-		phy->ops.read_reg = e1000_read_phy_reg_bm;
-		phy->ops.write_reg = e1000_write_phy_reg_bm;
-		phy->ops.commit = e1000_phy_sw_reset_generic;
-		phy->ops.get_info = e1000_get_phy_info_m88;
-		phy->ops.check_polarity = e1000_check_polarity_m88;
-		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
-		break;
-	default:
-		return -E1000_ERR_PHY;
-		break;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
- *  @hw: pointer to the HW structure
- *
- *  Initialize family-specific NVM parameters and function
- *  pointers.
- **/
-STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-	u32 gfpreg, sector_base_addr, sector_end_addr;
-	u16 i;
-
-	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
-
-	/* Can't read flash registers if the register set isn't mapped. */
-	nvm->type = e1000_nvm_flash_sw;
-	if (!hw->flash_address) {
-		DEBUGOUT("ERROR: Flash registers not mapped\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
-
-	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
-	 * Add 1 to sector_end_addr since this sector is included in
-	 * the overall size.
-	 */
-	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
-	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
-
-	/* flash_base_addr is byte-aligned */
-	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
-
-	/* find total size of the NVM, then cut in half since the total
-	 * size represents two separate NVM banks.
-	 */
-	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
-				<< FLASH_SECTOR_ADDR_SHIFT);
-	nvm->flash_bank_size /= 2;
-	/* Adjust to word count */
-	nvm->flash_bank_size /= sizeof(u16);
-
-	nvm->word_size = E1000_SHADOW_RAM_WORDS;
-
-	/* Clear shadow ram */
-	for (i = 0; i < nvm->word_size; i++) {
-		dev_spec->shadow_ram[i].modified = false;
-		dev_spec->shadow_ram[i].value    = 0xFFFF;
-	}
-
-	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
-	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
-
-	/* Function Pointers */
-	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
-	nvm->ops.release	= e1000_release_nvm_ich8lan;
-	nvm->ops.read		= e1000_read_nvm_ich8lan;
-	nvm->ops.update		= e1000_update_nvm_checksum_ich8lan;
-	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
-	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
-	nvm->ops.write		= e1000_write_nvm_ich8lan;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
- *  @hw: pointer to the HW structure
- *
- *  Initialize family-specific MAC parameters and function
- *  pointers.
- **/
-STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
-	u16 pci_cfg;
-#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
-
-	DEBUGFUNC("e1000_init_mac_params_ich8lan");
-
-	/* Set media type function pointer */
-	hw->phy.media_type = e1000_media_type_copper;
-
-	/* Set mta register count */
-	mac->mta_reg_count = 32;
-	/* Set rar entry count */
-	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
-	if (mac->type == e1000_ich8lan)
-		mac->rar_entry_count--;
-	/* Set if part includes ASF firmware */
-	mac->asf_firmware_present = true;
-	/* FWSM register */
-	mac->has_fwsm = true;
-	/* ARC subsystem not supported */
-	mac->arc_subsystem_valid = false;
-	/* Adaptive IFS supported */
-	mac->adaptive_ifs = true;
-
-	/* Function pointers */
-
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
-	/* function id */
-	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
-	/* reset */
-	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
-	/* hw initialization */
-	mac->ops.init_hw = e1000_init_hw_ich8lan;
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_ich8lan;
-	/* physical interface setup */
-	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
-	/* check for link */
-	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
-	/* link info */
-	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
-	/* clear hardware counters */
-	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
-
-	/* LED and other operations */
-	switch (mac->type) {
-	case e1000_ich8lan:
-	case e1000_ich9lan:
-	case e1000_ich10lan:
-		/* check management mode */
-		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
-		/* ID LED init */
-		mac->ops.id_led_init = e1000_id_led_init_generic;
-		/* blink LED */
-		mac->ops.blink_led = e1000_blink_led_generic;
-		/* setup LED */
-		mac->ops.setup_led = e1000_setup_led_generic;
-		/* cleanup LED */
-		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
-		/* turn on/off LED */
-		mac->ops.led_on = e1000_led_on_ich8lan;
-		mac->ops.led_off = e1000_led_off_ich8lan;
-		break;
-	case e1000_pch2lan:
-		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
-		mac->ops.rar_set = e1000_rar_set_pch2lan;
-		/* fall-through */
-	case e1000_pch_lpt:
-#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
-		/* multicast address update for pch2 */
-		mac->ops.update_mc_addr_list =
-			e1000_update_mc_addr_list_pch2lan;
-#endif
-	case e1000_pchlan:
-#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
-		/* save PCH revision_id */
-		e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
-		hw->revision_id = (u8)(pci_cfg &= 0x000F);
-#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
-		/* check management mode */
-		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
-		/* ID LED init */
-		mac->ops.id_led_init = e1000_id_led_init_pchlan;
-		/* setup LED */
-		mac->ops.setup_led = e1000_setup_led_pchlan;
-		/* cleanup LED */
-		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
-		/* turn on/off LED */
-		mac->ops.led_on = e1000_led_on_pchlan;
-		mac->ops.led_off = e1000_led_off_pchlan;
-		break;
-	default:
-		break;
-	}
-
-	if (mac->type == e1000_pch_lpt) {
-		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
-		mac->ops.rar_set = e1000_rar_set_pch_lpt;
-		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
-	}
-
-	/* Enable PCS Lock-loss workaround for ICH8 */
-	if (mac->type == e1000_ich8lan)
-		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  __e1000_access_emi_reg_locked - Read/write EMI register
- *  @hw: pointer to the HW structure
- *  @addr: EMI address to program
- *  @data: pointer to value to read/write from/to the EMI address
- *  @read: boolean flag to indicate read or write
- *
- *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
- **/
-STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
-					 u16 *data, bool read)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("__e1000_access_emi_reg_locked");
-
-	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
-	if (ret_val)
-		return ret_val;
-
-	if (read)
-		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
-						      data);
-	else
-		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
-						       *data);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_emi_reg_locked - Read Extended Management Interface register
- *  @hw: pointer to the HW structure
- *  @addr: EMI address to program
- *  @data: value to be read from the EMI address
- *
- *  Assumes the SW/FW/HW Semaphore is already acquired.
- **/
-s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
-{
-	DEBUGFUNC("e1000_read_emi_reg_locked");
-
-	return __e1000_access_emi_reg_locked(hw, addr, data, true);
-}
-
-/**
- *  e1000_write_emi_reg_locked - Write Extended Management Interface register
- *  @hw: pointer to the HW structure
- *  @addr: EMI address to program
- *  @data: value to be written to the EMI address
- *
- *  Assumes the SW/FW/HW Semaphore is already acquired.
- **/
-s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
-{
-	DEBUGFUNC("e1000_read_emi_reg_locked");
-
-	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
-}
-
-/**
- *  e1000_set_eee_pchlan - Enable/disable EEE support
- *  @hw: pointer to the HW structure
- *
- *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
- *  the link and the EEE capabilities of the link partner.  The LPI Control
- *  register bits will remain set only if/when link is up.
- *
- *  EEE LPI must not be asserted earlier than one second after link is up.
- *  On 82579, EEE LPI should not be enabled until such time otherwise there
- *  can be link issues with some switches.  Other devices can have EEE LPI
- *  enabled immediately upon link up since they have a timer in hardware which
- *  prevents LPI from being asserted too early.
- **/
-s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-	s32 ret_val;
-	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
-
-	DEBUGFUNC("e1000_set_eee_pchlan");
-
-	switch (hw->phy.type) {
-	case e1000_phy_82579:
-		lpa = I82579_EEE_LP_ABILITY;
-		pcs_status = I82579_EEE_PCS_STATUS;
-		adv_addr = I82579_EEE_ADVERTISEMENT;
-		break;
-	case e1000_phy_i217:
-		lpa = I217_EEE_LP_ABILITY;
-		pcs_status = I217_EEE_PCS_STATUS;
-		adv_addr = I217_EEE_ADVERTISEMENT;
-		break;
-	default:
-		return E1000_SUCCESS;
-	}
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
-	if (ret_val)
-		goto release;
-
-	/* Clear bits that enable EEE in various speeds */
-	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
-
-	/* Enable EEE if not disabled by user */
-	if (!dev_spec->eee_disable) {
-		/* Save off link partner's EEE ability */
-		ret_val = e1000_read_emi_reg_locked(hw, lpa,
-						    &dev_spec->eee_lp_ability);
-		if (ret_val)
-			goto release;
-
-		/* Read EEE advertisement */
-		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
-		if (ret_val)
-			goto release;
-
-		/* Enable EEE only for speeds in which the link partner is
-		 * EEE capable and for which we advertise EEE.
-		 */
-		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
-			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
-
-		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
-			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
-			if (data & NWAY_LPAR_100TX_FD_CAPS)
-				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
-			else
-				/* EEE is not supported in 100Half, so ignore
-				 * partner's EEE in 100 ability if full-duplex
-				 * is not advertised.
-				 */
-				dev_spec->eee_lp_ability &=
-				    ~I82579_EEE_100_SUPPORTED;
-		}
-	}
-
-	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
-	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
-	if (ret_val)
-		goto release;
-
-	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
-release:
-	hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
- *  @hw:   pointer to the HW structure
- *  @link: link up bool flag
- *
- *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
- *  preventing further DMA write requests.  Workaround the issue by disabling
- *  the de-assertion of the clock request when in 1Gpbs mode.
- *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
- *  speeds in order to avoid Tx hangs.
- **/
-STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
-{
-	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
-	u32 status = E1000_READ_REG(hw, E1000_STATUS);
-	s32 ret_val = E1000_SUCCESS;
-	u16 reg;
-
-	if (link && (status & E1000_STATUS_SPEED_1000)) {
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-
-		ret_val =
-		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
-					       &reg);
-		if (ret_val)
-			goto release;
-
-		ret_val =
-		    e1000_write_kmrn_reg_locked(hw,
-						E1000_KMRNCTRLSTA_K1_CONFIG,
-						reg &
-						~E1000_KMRNCTRLSTA_K1_ENABLE);
-		if (ret_val)
-			goto release;
-
-		usec_delay(10);
-
-		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
-				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
-
-		ret_val =
-		    e1000_write_kmrn_reg_locked(hw,
-						E1000_KMRNCTRLSTA_K1_CONFIG,
-						reg);
-release:
-		hw->phy.ops.release(hw);
-	} else {
-		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
-		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
-
-		if (!link || ((status & E1000_STATUS_SPEED_100) &&
-			      (status & E1000_STATUS_FD)))
-			goto update_fextnvm6;
-
-		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
-		if (ret_val)
-			return ret_val;
-
-		/* Clear link status transmit timeout */
-		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
-
-		if (status & E1000_STATUS_SPEED_100) {
-			/* Set inband Tx timeout to 5x10us for 100Half */
-			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
-
-			/* Do not extend the K1 entry latency for 100Half */
-			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
-		} else {
-			/* Set inband Tx timeout to 50x10us for 10Full/Half */
-			reg |= 50 <<
-			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
-
-			/* Extend the K1 entry latency for 10 Mbps */
-			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
-		}
-
-		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
-		if (ret_val)
-			return ret_val;
-
-update_fextnvm6:
-		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
-	}
-
-	return ret_val;
-}
-
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
-/**
- *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
- *  @hw: pointer to the HW structure
- *  @to_sx: boolean indicating a system power state transition to Sx
- *
- *  When link is down, configure ULP mode to significantly reduce the power
- *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
- *  ME firmware to start the ULP configuration.  If not on an ME enabled
- *  system, configure the ULP mode by software.
- */
-s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
-{
-	u32 mac_reg;
-	s32 ret_val = E1000_SUCCESS;
-	u16 phy_reg;
-
-	if ((hw->mac.type < e1000_pch_lpt) ||
-	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
-	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
-	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
-		return 0;
-
-	if (!to_sx) {
-		int i = 0;
-
-		/* Poll up to 5 seconds for Cable Disconnected indication */
-		while (!(E1000_READ_REG(hw, E1000_FEXT) &
-			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
-			/* Bail if link is re-acquired */
-			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
-				return -E1000_ERR_PHY;
-
-			if (i++ == 100)
-				break;
-
-			msec_delay(50);
-		}
-		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
-			  (E1000_READ_REG(hw, E1000_FEXT) &
-			   E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
-			  i * 50);
-	}
-
-	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
-		/* Request ME configure ULP mode in the PHY */
-		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
-		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
-		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
-
-		goto out;
-	}
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		goto out;
-
-	/* During S0 Idle keep the phy in PCI-E mode */
-	if (hw->dev_spec.ich8lan.smbus_disable)
-		goto skip_smbus;
-
-	/* Force SMBus mode in PHY */
-	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
-	if (ret_val)
-		goto release;
-	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
-	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
-
-	/* Force SMBus mode in MAC */
-	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
-skip_smbus:
-	if (!to_sx) {
-		/* Change the 'Link Status Change' interrupt to trigger
-		 * on 'Cable Status Change'
-		 */
-		ret_val = e1000_read_kmrn_reg_locked(hw,
-						     E1000_KMRNCTRLSTA_OP_MODES,
-						     &phy_reg);
-		if (ret_val)
-			goto release;
-		phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
-		e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
-					    phy_reg);
-	}
-
-	/* Set Inband ULP Exit, Reset to SMBus mode and
-	 * Disable SMBus Release on PERST# in PHY
-	 */
-	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
-	if (ret_val)
-		goto release;
-	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
-		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
-	if (to_sx) {
-		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
-			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
-
-		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
-	} else {
-		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
-	}
-	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
-
-	/* Set Disable SMBus Release on PERST# in MAC */
-	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
-	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
-	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
-
-	/* Commit ULP changes in PHY by starting auto ULP configuration */
-	phy_reg |= I218_ULP_CONFIG1_START;
-	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
-
-	if (!to_sx) {
-		/* Disable Tx so that the MAC doesn't send any (buffered)
-		 * packets to the PHY.
-		 */
-		mac_reg = E1000_READ_REG(hw, E1000_TCTL);
-		mac_reg &= ~E1000_TCTL_EN;
-		E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
-	}
-release:
-	hw->phy.ops.release(hw);
-out:
-	if (ret_val)
-		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
-	else
-		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
-
-	return ret_val;
-}
-
-/**
- *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
- *  @hw: pointer to the HW structure
- *  @force: boolean indicating whether or not to force disabling ULP
- *
- *  Un-configure ULP mode when link is up, the system is transitioned from
- *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
- *  system, poll for an indication from ME that ULP has been un-configured.
- *  If not on an ME enabled system, un-configure the ULP mode by software.
- *
- *  During nominal operation, this function is called when link is acquired
- *  to disable ULP mode (force=false); otherwise, for example when unloading
- *  the driver or during Sx->S0 transitions, this is called with force=true
- *  to forcibly disable ULP.
-
- *  When the cable is plugged in while the device is in D0, a Cable Status
- *  Change interrupt is generated which causes this function to be called
- *  to partially disable ULP mode and restart autonegotiation.  This function
- *  is then called again due to the resulting Link Status Change interrupt
- *  to finish cleaning up after the ULP flow.
- */
-s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u32 mac_reg;
-	u16 phy_reg;
-	int i = 0;
-
-	if ((hw->mac.type < e1000_pch_lpt) ||
-	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
-	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
-	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
-		return 0;
-
-	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
-		if (force) {
-			/* Request ME un-configure ULP mode in the PHY */
-			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
-			mac_reg &= ~E1000_H2ME_ULP;
-			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
-			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
-		}
-
-		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
-		while (E1000_READ_REG(hw, E1000_FWSM) &
-		       E1000_FWSM_ULP_CFG_DONE) {
-			if (i++ == 10) {
-				ret_val = -E1000_ERR_PHY;
-				goto out;
-			}
-
-			msec_delay(10);
-		}
-		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
-
-		if (force) {
-			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
-			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
-			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
-		} else {
-			/* Clear H2ME.ULP after ME ULP configuration */
-			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
-			mac_reg &= ~E1000_H2ME_ULP;
-			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
-
-			/* Restore link speed advertisements and restart
-			 * Auto-negotiation
-			 */
-			ret_val = e1000_phy_setup_autoneg(hw);
-			if (ret_val)
-				goto out;
-
-			ret_val = e1000_oem_bits_config_ich8lan(hw, true);
-		}
-
-		goto out;
-	}
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		goto out;
-
-	/* Revert the change to the 'Link Status Change'
-	 * interrupt to trigger on 'Cable Status Change'
-	 */
-	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
-					     &phy_reg);
-	if (ret_val)
-		goto release;
-	phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
-	e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg);
-
-	if (force)
-		/* Toggle LANPHYPC Value bit */
-		e1000_toggle_lanphypc_pch_lpt(hw);
-
-	/* Unforce SMBus mode in PHY */
-	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
-	if (ret_val) {
-		/* The MAC might be in PCIe mode, so temporarily force to
-		 * SMBus mode in order to access the PHY.
-		 */
-		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
-		msec_delay(50);
-
-		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
-						       &phy_reg);
-		if (ret_val)
-			goto release;
-	}
-	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
-	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
-
-	/* Unforce SMBus mode in MAC */
-	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
-
-	/* When ULP mode was previously entered, K1 was disabled by the
-	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
-	 */
-	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
-	if (ret_val)
-		goto release;
-	phy_reg |= HV_PM_CTRL_K1_ENABLE;
-	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
-
-	/* Clear ULP enabled configuration */
-	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
-	if (ret_val)
-		goto release;
-	/* CSC interrupt received due to ULP Indication */
-	if ((phy_reg & I218_ULP_CONFIG1_IND) || force) {
-		phy_reg &= ~(I218_ULP_CONFIG1_IND |
-			     I218_ULP_CONFIG1_STICKY_ULP |
-			     I218_ULP_CONFIG1_RESET_TO_SMBUS |
-			     I218_ULP_CONFIG1_WOL_HOST |
-			     I218_ULP_CONFIG1_INBAND_EXIT |
-			     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
-		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
-
-		/* Commit ULP changes by starting auto ULP configuration */
-		phy_reg |= I218_ULP_CONFIG1_START;
-		e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
-
-		/* Clear Disable SMBus Release on PERST# in MAC */
-		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
-		mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
-		E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
-
-		if (!force) {
-			hw->phy.ops.release(hw);
-
-			if (hw->mac.autoneg)
-				e1000_phy_setup_autoneg(hw);
-
-			e1000_sw_lcd_config_ich8lan(hw);
-
-			e1000_oem_bits_config_ich8lan(hw, true);
-
-			/* Set ULP state to unknown and return non-zero to
-			 * indicate no link (yet) and re-enter on the next LSC
-			 * to finish disabling ULP flow.
-			 */
-			hw->dev_spec.ich8lan.ulp_state =
-			    e1000_ulp_state_unknown;
-
-			return 1;
-		}
-	}
-
-	/* Re-enable Tx */
-	mac_reg = E1000_READ_REG(hw, E1000_TCTL);
-	mac_reg |= E1000_TCTL_EN;
-	E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
-
-release:
-	hw->phy.ops.release(hw);
-	if (force) {
-		hw->phy.ops.reset(hw);
-		msec_delay(50);
-	}
-out:
-	if (ret_val)
-		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
-	else
-		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
-
-	return ret_val;
-}
-
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
-/**
- *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
- *  @hw: pointer to the HW structure
- *
- *  Checks to see of the link status of the hardware has changed.  If a
- *  change in link status has been detected, then we read the PHY registers
- *  to get the current speed/duplex if link exists.
- **/
-STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val;
-	bool link = false;
-	u16 phy_reg;
-
-	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
-
-	/* We only want to go out to the PHY registers to see if Auto-Neg
-	 * has completed and/or if our link status has changed.  The
-	 * get_link_status flag is set upon receiving a Link Status
-	 * Change or Rx Sequence Error interrupt.
-	 */
-	if (!mac->get_link_status)
-		return E1000_SUCCESS;
-
-	if ((hw->mac.type < e1000_pch_lpt) ||
-	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
-	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) {
-		/* First we want to see if the MII Status Register reports
-		 * link.  If so, then we want to get the current speed/duplex
-		 * of the PHY.
-		 */
-		ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-		if (ret_val)
-			return ret_val;
-	} else {
-		/* Check the MAC's STATUS register to determine link state
-		 * since the PHY could be inaccessible while in ULP mode.
-		 */
-		link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
-		if (link)
-			ret_val = e1000_disable_ulp_lpt_lp(hw, false);
-		else
-			ret_val = e1000_enable_ulp_lpt_lp(hw, false);
-
-		if (ret_val)
-			return ret_val;
-	}
-
-	if (hw->mac.type == e1000_pchlan) {
-		ret_val = e1000_k1_gig_workaround_hv(hw, link);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* When connected at 10Mbps half-duplex, some parts are excessively
-	 * aggressive resulting in many collisions. To avoid this, increase
-	 * the IPG and reduce Rx latency in the PHY.
-	 */
-	if (((hw->mac.type == e1000_pch2lan) ||
-	     (hw->mac.type == e1000_pch_lpt)) && link) {
-		u32 reg;
-		reg = E1000_READ_REG(hw, E1000_STATUS);
-		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
-			u16 emi_addr;
-
-			reg = E1000_READ_REG(hw, E1000_TIPG);
-			reg &= ~E1000_TIPG_IPGT_MASK;
-			reg |= 0xFF;
-			E1000_WRITE_REG(hw, E1000_TIPG, reg);
-
-			/* Reduce Rx latency in analog PHY */
-			ret_val = hw->phy.ops.acquire(hw);
-			if (ret_val)
-				return ret_val;
-
-			if (hw->mac.type == e1000_pch2lan)
-				emi_addr = I82579_RX_CONFIG;
-			else
-				emi_addr = I217_RX_CONFIG;
-			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
-
-			hw->phy.ops.release(hw);
-
-			if (ret_val)
-				return ret_val;
-		}
-	}
-
-	/* Work-around I218 hang issue */
-	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
-	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
-		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Clear link partner's EEE ability */
-	hw->dev_spec.ich8lan.eee_lp_ability = 0;
-
-	if (!link)
-		return E1000_SUCCESS; /* No link detected */
-
-	mac->get_link_status = false;
-
-	switch (hw->mac.type) {
-	case e1000_pch2lan:
-		ret_val = e1000_k1_workaround_lv(hw);
-		if (ret_val)
-			return ret_val;
-		/* fall-thru */
-	case e1000_pchlan:
-		if (hw->phy.type == e1000_phy_82578) {
-			ret_val = e1000_link_stall_workaround_hv(hw);
-			if (ret_val)
-				return ret_val;
-		}
-
-		/* Workaround for PCHx parts in half-duplex:
-		 * Set the number of preambles removed from the packet
-		 * when it is passed from the PHY to the MAC to prevent
-		 * the MAC from misinterpreting the packet type.
-		 */
-		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
-		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
-
-		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
-		    E1000_STATUS_FD)
-			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
-
-		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
-		break;
-	default:
-		break;
-	}
-
-	/* Check if there was DownShift, must be checked
-	 * immediately after link-up
-	 */
-	e1000_check_downshift_generic(hw);
-
-	/* Enable/Disable EEE after link up */
-	if (hw->phy.type > e1000_phy_82579) {
-		ret_val = e1000_set_eee_pchlan(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* If we are forcing speed/duplex, then we simply return since
-	 * we have already determined whether we have link or not.
-	 */
-	if (!mac->autoneg)
-		return -E1000_ERR_CONFIG;
-
-	/* Auto-Neg is enabled.  Auto Speed Detection takes care
-	 * of MAC speed/duplex configuration.  So we only need to
-	 * configure Collision Distance in the MAC.
-	 */
-	mac->ops.config_collision_dist(hw);
-
-	/* Configure Flow Control now that Auto-Neg has completed.
-	 * First, we need to restore the desired flow control
-	 * settings because we may have had to re-autoneg with a
-	 * different link partner.
-	 */
-	ret_val = e1000_config_fc_after_link_up_generic(hw);
-	if (ret_val)
-		DEBUGOUT("Error configuring flow control\n");
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
- *  @hw: pointer to the HW structure
- *
- *  Initialize family-specific function pointers for PHY, MAC, and NVM.
- **/
-void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
-	switch (hw->mac.type) {
-	case e1000_ich8lan:
-	case e1000_ich9lan:
-	case e1000_ich10lan:
-		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
-		break;
-	case e1000_pchlan:
-	case e1000_pch2lan:
-	case e1000_pch_lpt:
-		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
-		break;
-	default:
-		break;
-	}
-}
-
-/**
- *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
- *  @hw: pointer to the HW structure
- *
- *  Acquires the mutex for performing NVM operations.
- **/
-STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
-
-	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_release_nvm_ich8lan - Release NVM mutex
- *  @hw: pointer to the HW structure
- *
- *  Releases the mutex used while performing NVM operations.
- **/
-STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_release_nvm_ich8lan");
-
-	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
-
-	return;
-}
-
-/**
- *  e1000_acquire_swflag_ich8lan - Acquire software control flag
- *  @hw: pointer to the HW structure
- *
- *  Acquires the software control flag for performing PHY and select
- *  MAC CSR accesses.
- **/
-STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
-{
-	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
-
-	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
-
-	while (timeout) {
-		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
-			break;
-
-		msec_delay_irq(1);
-		timeout--;
-	}
-
-	if (!timeout) {
-		DEBUGOUT("SW has already locked the resource.\n");
-		ret_val = -E1000_ERR_CONFIG;
-		goto out;
-	}
-
-	timeout = SW_FLAG_TIMEOUT;
-
-	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
-	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-
-	while (timeout) {
-		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
-			break;
-
-		msec_delay_irq(1);
-		timeout--;
-	}
-
-	if (!timeout) {
-		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
-			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
-		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
-		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-		ret_val = -E1000_ERR_CONFIG;
-		goto out;
-	}
-
-out:
-	if (ret_val)
-		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
-
-	return ret_val;
-}
-
-/**
- *  e1000_release_swflag_ich8lan - Release software control flag
- *  @hw: pointer to the HW structure
- *
- *  Releases the software control flag for performing PHY and select
- *  MAC CSR accesses.
- **/
-STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
-{
-	u32 extcnf_ctrl;
-
-	DEBUGFUNC("e1000_release_swflag_ich8lan");
-
-	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-
-	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
-		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
-		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-	} else {
-		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
-	}
-
-	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
-
-	return;
-}
-
-/**
- *  e1000_check_mng_mode_ich8lan - Checks management mode
- *  @hw: pointer to the HW structure
- *
- *  This checks if the adapter has any manageability enabled.
- *  This is a function pointer entry point only called by read/write
- *  routines for the PHY and NVM parts.
- **/
-STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
-{
-	u32 fwsm;
-
-	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
-
-	fwsm = E1000_READ_REG(hw, E1000_FWSM);
-
-	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
-	       ((fwsm & E1000_FWSM_MODE_MASK) ==
-		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
-}
-
-/**
- *  e1000_check_mng_mode_pchlan - Checks management mode
- *  @hw: pointer to the HW structure
- *
- *  This checks if the adapter has iAMT enabled.
- *  This is a function pointer entry point only called by read/write
- *  routines for the PHY and NVM parts.
- **/
-STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
-{
-	u32 fwsm;
-
-	DEBUGFUNC("e1000_check_mng_mode_pchlan");
-
-	fwsm = E1000_READ_REG(hw, E1000_FWSM);
-
-	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
-	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
-}
-
-/**
- *  e1000_rar_set_pch2lan - Set receive address register
- *  @hw: pointer to the HW structure
- *  @addr: pointer to the receive address
- *  @index: receive address array register
- *
- *  Sets the receive address array register at index to the address passed
- *  in by addr.  For 82579, RAR[0] is the base address register that is to
- *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
- *  Use SHRA[0-3] in place of those reserved for ME.
- **/
-STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
-{
-	u32 rar_low, rar_high;
-
-	DEBUGFUNC("e1000_rar_set_pch2lan");
-
-	/* HW expects these in little endian so we reverse the byte order
-	 * from network order (big endian) to little endian
-	 */
-	rar_low = ((u32) addr[0] |
-		   ((u32) addr[1] << 8) |
-		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
-	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
-	/* If MAC address zero, no need to set the AV bit */
-	if (rar_low || rar_high)
-		rar_high |= E1000_RAH_AV;
-
-	if (index == 0) {
-		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
-		E1000_WRITE_FLUSH(hw);
-		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
-		E1000_WRITE_FLUSH(hw);
-		return;
-	}
-
-	/* RAR[1-6] are owned by manageability.  Skip those and program the
-	 * next address into the SHRA register array.
-	 */
-	if (index < (u32) (hw->mac.rar_entry_count)) {
-		s32 ret_val;
-
-		ret_val = e1000_acquire_swflag_ich8lan(hw);
-		if (ret_val)
-			goto out;
-
-		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
-		E1000_WRITE_FLUSH(hw);
-		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
-		E1000_WRITE_FLUSH(hw);
-
-		e1000_release_swflag_ich8lan(hw);
-
-		/* verify the register updates */
-		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
-		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
-			return;
-
-		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
-			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
-	}
-
-out:
-	DEBUGOUT1("Failed to write receive address at index %d\n", index);
-}
-
-/**
- *  e1000_rar_set_pch_lpt - Set receive address registers
- *  @hw: pointer to the HW structure
- *  @addr: pointer to the receive address
- *  @index: receive address array register
- *
- *  Sets the receive address register array at index to the address passed
- *  in by addr. For LPT, RAR[0] is the base address register that is to
- *  contain the MAC address. SHRA[0-10] are the shared receive address
- *  registers that are shared between the Host and manageability engine (ME).
- **/
-STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
-{
-	u32 rar_low, rar_high;
-	u32 wlock_mac;
-
-	DEBUGFUNC("e1000_rar_set_pch_lpt");
-
-	/* HW expects these in little endian so we reverse the byte order
-	 * from network order (big endian) to little endian
-	 */
-	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
-		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
-	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
-	/* If MAC address zero, no need to set the AV bit */
-	if (rar_low || rar_high)
-		rar_high |= E1000_RAH_AV;
-
-	if (index == 0) {
-		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
-		E1000_WRITE_FLUSH(hw);
-		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
-		E1000_WRITE_FLUSH(hw);
-		return;
-	}
-
-	/* The manageability engine (ME) can lock certain SHRAR registers that
-	 * it is using - those registers are unavailable for use.
-	 */
-	if (index < hw->mac.rar_entry_count) {
-		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
-			    E1000_FWSM_WLOCK_MAC_MASK;
-		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
-
-		/* Check if all SHRAR registers are locked */
-		if (wlock_mac == 1)
-			goto out;
-
-		if ((wlock_mac == 0) || (index <= wlock_mac)) {
-			s32 ret_val;
-
-			ret_val = e1000_acquire_swflag_ich8lan(hw);
-
-			if (ret_val)
-				goto out;
-
-			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
-					rar_low);
-			E1000_WRITE_FLUSH(hw);
-			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
-					rar_high);
-			E1000_WRITE_FLUSH(hw);
-
-			e1000_release_swflag_ich8lan(hw);
-
-			/* verify the register updates */
-			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
-			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
-				return;
-		}
-	}
-
-out:
-	DEBUGOUT1("Failed to write receive address at index %d\n", index);
-}
-
-#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
-/**
- *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
- *  @hw: pointer to the HW structure
- *  @mc_addr_list: array of multicast addresses to program
- *  @mc_addr_count: number of multicast addresses to program
- *
- *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
- *  The caller must have a packed mc_addr_list of multicast addresses.
- **/
-STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
-					      u8 *mc_addr_list,
-					      u32 mc_addr_count)
-{
-	u16 phy_reg = 0;
-	int i;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
-
-	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return;
-
-	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-	if (ret_val)
-		goto release;
-
-	for (i = 0; i < hw->mac.mta_reg_count; i++) {
-		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
-					   (u16)(hw->mac.mta_shadow[i] &
-						 0xFFFF));
-		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
-					   (u16)((hw->mac.mta_shadow[i] >> 16) &
-						 0xFFFF));
-	}
-
-	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
-release:
-	hw->phy.ops.release(hw);
-}
-
-#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
-/**
- *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
- *  @hw: pointer to the HW structure
- *
- *  Checks if firmware is blocking the reset of the PHY.
- *  This is a function pointer entry point only called by
- *  reset routines.
- **/
-STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
-{
-	u32 fwsm;
-	bool blocked = false;
-	int i = 0;
-
-	DEBUGFUNC("e1000_check_reset_block_ich8lan");
-
-	do {
-		fwsm = E1000_READ_REG(hw, E1000_FWSM);
-		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
-			blocked = true;
-			msec_delay(10);
-			continue;
-		}
-		blocked = false;
-	} while (blocked && (i++ < 10));
-	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
- *  @hw: pointer to the HW structure
- *
- *  Assumes semaphore already acquired.
- *
- **/
-STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw)
-{
-	u16 phy_data;
-	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
-	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
-		E1000_STRAP_SMT_FREQ_SHIFT;
-	s32 ret_val;
-
-	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
-
-	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	phy_data &= ~HV_SMB_ADDR_MASK;
-	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
-	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
-
-	if (hw->phy.type == e1000_phy_i217) {
-		/* Restore SMBus frequency */
-		if (freq--) {
-			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
-			phy_data |= (freq & (1 << 0)) <<
-				HV_SMB_ADDR_FREQ_LOW_SHIFT;
-			phy_data |= (freq & (1 << 1)) <<
-				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
-		} else {
-			DEBUGOUT("Unsupported SMB frequency in PHY\n");
-		}
-	}
-
-	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
-}
-
-/**
- *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
- *  @hw:   pointer to the HW structure
- *
- *  SW should configure the LCD from the NVM extended configuration region
- *  as a workaround for certain parts.
- **/
-STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
-	s32 ret_val = E1000_SUCCESS;
-	u16 word_addr, reg_data, reg_addr, phy_page = 0;
-
-	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
-
-	/* Initialize the PHY from the NVM on ICH platforms.  This
-	 * is needed due to an issue where the NVM configuration is
-	 * not properly autoloaded after power transitions.
-	 * Therefore, after each PHY reset, we will load the
-	 * configuration data out of the NVM manually.
-	 */
-	switch (hw->mac.type) {
-	case e1000_ich8lan:
-		if (phy->type != e1000_phy_igp_3)
-			return ret_val;
-
-		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
-		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
-			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
-			break;
-		}
-		/* Fall-thru */
-	case e1000_pchlan:
-	case e1000_pch2lan:
-	case e1000_pch_lpt:
-		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
-		break;
-	default:
-		return ret_val;
-	}
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	data = E1000_READ_REG(hw, E1000_FEXTNVM);
-	if (!(data & sw_cfg_mask))
-		goto release;
-
-	/* Make sure HW does not configure LCD from PHY
-	 * extended configuration before SW configuration
-	 */
-	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-	if ((hw->mac.type < e1000_pch2lan) &&
-	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
-			goto release;
-
-	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
-	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
-	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
-	if (!cnf_size)
-		goto release;
-
-	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
-	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
-
-	if (((hw->mac.type == e1000_pchlan) &&
-	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
-	    (hw->mac.type > e1000_pchlan)) {
-		/* HW configures the SMBus address and LEDs when the
-		 * OEM and LCD Write Enable bits are set in the NVM.
-		 * When both NVM bits are cleared, SW will configure
-		 * them instead.
-		 */
-		ret_val = e1000_write_smbus_addr(hw);
-		if (ret_val)
-			goto release;
-
-		data = E1000_READ_REG(hw, E1000_LEDCTL);
-		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
-							(u16)data);
-		if (ret_val)
-			goto release;
-	}
-
-	/* Configure LCD from extended configuration region. */
-
-	/* cnf_base_addr is in DWORD */
-	word_addr = (u16)(cnf_base_addr << 1);
-
-	for (i = 0; i < cnf_size; i++) {
-		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
-					   &reg_data);
-		if (ret_val)
-			goto release;
-
-		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
-					   1, &reg_addr);
-		if (ret_val)
-			goto release;
-
-		/* Save off the PHY page for future writes. */
-		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
-			phy_page = reg_data;
-			continue;
-		}
-
-		reg_addr &= PHY_REG_MASK;
-		reg_addr |= phy_page;
-
-		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
-						    reg_data);
-		if (ret_val)
-			goto release;
-	}
-
-release:
-	hw->phy.ops.release(hw);
-	return ret_val;
-}
-
-/**
- *  e1000_k1_gig_workaround_hv - K1 Si workaround
- *  @hw:   pointer to the HW structure
- *  @link: link up bool flag
- *
- *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
- *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
- *  If link is down, the function will restore the default K1 setting located
- *  in the NVM.
- **/
-STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 status_reg = 0;
-	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
-
-	DEBUGFUNC("e1000_k1_gig_workaround_hv");
-
-	if (hw->mac.type != e1000_pchlan)
-		return E1000_SUCCESS;
-
-	/* Wrap the whole flow with the sw flag */
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
-	if (link) {
-		if (hw->phy.type == e1000_phy_82578) {
-			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
-							      &status_reg);
-			if (ret_val)
-				goto release;
-
-			status_reg &= (BM_CS_STATUS_LINK_UP |
-				       BM_CS_STATUS_RESOLVED |
-				       BM_CS_STATUS_SPEED_MASK);
-
-			if (status_reg == (BM_CS_STATUS_LINK_UP |
-					   BM_CS_STATUS_RESOLVED |
-					   BM_CS_STATUS_SPEED_1000))
-				k1_enable = false;
-		}
-
-		if (hw->phy.type == e1000_phy_82577) {
-			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
-							      &status_reg);
-			if (ret_val)
-				goto release;
-
-			status_reg &= (HV_M_STATUS_LINK_UP |
-				       HV_M_STATUS_AUTONEG_COMPLETE |
-				       HV_M_STATUS_SPEED_MASK);
-
-			if (status_reg == (HV_M_STATUS_LINK_UP |
-					   HV_M_STATUS_AUTONEG_COMPLETE |
-					   HV_M_STATUS_SPEED_1000))
-				k1_enable = false;
-		}
-
-		/* Link stall fix for link up */
-		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
-						       0x0100);
-		if (ret_val)
-			goto release;
-
-	} else {
-		/* Link stall fix for link down */
-		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
-						       0x4100);
-		if (ret_val)
-			goto release;
-	}
-
-	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
-
-release:
-	hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_configure_k1_ich8lan - Configure K1 power state
- *  @hw: pointer to the HW structure
- *  @enable: K1 state to configure
- *
- *  Configure the K1 power state based on the provided parameter.
- *  Assumes semaphore already acquired.
- *
- *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- **/
-s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
-{
-	s32 ret_val;
-	u32 ctrl_reg = 0;
-	u32 ctrl_ext = 0;
-	u32 reg = 0;
-	u16 kmrn_reg = 0;
-
-	DEBUGFUNC("e1000_configure_k1_ich8lan");
-
-	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
-					     &kmrn_reg);
-	if (ret_val)
-		return ret_val;
-
-	if (k1_enable)
-		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
-	else
-		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
-
-	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
-					      kmrn_reg);
-	if (ret_val)
-		return ret_val;
-
-	usec_delay(20);
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
-
-	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
-	reg |= E1000_CTRL_FRCSPD;
-	E1000_WRITE_REG(hw, E1000_CTRL, reg);
-
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
-	E1000_WRITE_FLUSH(hw);
-	usec_delay(20);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	E1000_WRITE_FLUSH(hw);
-	usec_delay(20);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
- *  @hw:       pointer to the HW structure
- *  @d0_state: boolean if entering d0 or d3 device state
- *
- *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
- *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
- *  in NVM determines whether HW should configure LPLU and Gbe Disable.
- **/
-STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
-{
-	s32 ret_val = 0;
-	u32 mac_reg;
-	u16 oem_reg;
-
-	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
-
-	if (hw->mac.type < e1000_pchlan)
-		return ret_val;
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	if (hw->mac.type == e1000_pchlan) {
-		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
-			goto release;
-	}
-
-	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
-	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
-		goto release;
-
-	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
-
-	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
-	if (ret_val)
-		goto release;
-
-	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
-
-	if (d0_state) {
-		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
-			oem_reg |= HV_OEM_BITS_GBE_DIS;
-
-		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
-			oem_reg |= HV_OEM_BITS_LPLU;
-	} else {
-		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
-		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
-			oem_reg |= HV_OEM_BITS_GBE_DIS;
-
-		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
-		    E1000_PHY_CTRL_NOND0A_LPLU))
-			oem_reg |= HV_OEM_BITS_LPLU;
-	}
-
-	/* Set Restart auto-neg to activate the bits */
-	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
-	    !hw->phy.ops.check_reset_block(hw))
-		oem_reg |= HV_OEM_BITS_RESTART_AN;
-
-	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
-
-release:
-	hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-
-/**
- *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
- *  @hw:   pointer to the HW structure
- **/
-STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
-
-	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
-	if (ret_val)
-		return ret_val;
-
-	data |= HV_KMRN_MDIO_SLOW;
-
-	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
-
-	return ret_val;
-}
-
-/**
- *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
- *  done after every PHY reset.
- **/
-STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 phy_data;
-
-	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
-
-	if (hw->mac.type != e1000_pchlan)
-		return E1000_SUCCESS;
-
-	/* Set MDIO slow mode before any other MDIO access */
-	if (hw->phy.type == e1000_phy_82577) {
-		ret_val = e1000_set_mdio_slow_mode_hv(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	if (((hw->phy.type == e1000_phy_82577) &&
-	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
-	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
-		/* Disable generation of early preamble */
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
-		if (ret_val)
-			return ret_val;
-
-		/* Preamble tuning for SSC */
-		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
-						0xA204);
-		if (ret_val)
-			return ret_val;
-	}
-
-	if (hw->phy.type == e1000_phy_82578) {
-		/* Return registers to default by doing a soft reset then
-		 * writing 0x3140 to the control register.
-		 */
-		if (hw->phy.revision < 2) {
-			e1000_phy_sw_reset_generic(hw);
-			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
-							0x3140);
-		}
-	}
-
-	/* Select page 0 */
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	hw->phy.addr = 1;
-	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
-	hw->phy.ops.release(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Configure the K1 Si workaround during phy reset assuming there is
-	 * link so that it disables K1 if link is in 1Gbps.
-	 */
-	ret_val = e1000_k1_gig_workaround_hv(hw, true);
-	if (ret_val)
-		return ret_val;
-
-	/* Workaround for link disconnects on a busy hub in half duplex */
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
-	if (ret_val)
-		goto release;
-	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
-					       phy_data & 0x00FF);
-	if (ret_val)
-		goto release;
-
-	/* set MSE higher to enable link to stay up when noise is high */
-	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
-release:
-	hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
- *  @hw:   pointer to the HW structure
- **/
-void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
-{
-	u32 mac_reg;
-	u16 i, phy_reg = 0;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return;
-	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-	if (ret_val)
-		goto release;
-
-	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
-	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
-		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
-		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
-					   (u16)(mac_reg & 0xFFFF));
-		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
-					   (u16)((mac_reg >> 16) & 0xFFFF));
-
-		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
-		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
-					   (u16)(mac_reg & 0xFFFF));
-		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
-					   (u16)((mac_reg & E1000_RAH_AV)
-						 >> 16));
-	}
-
-	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
-release:
-	hw->phy.ops.release(hw);
-}
-
-#ifndef CRC32_OS_SUPPORT
-STATIC u32 e1000_calc_rx_da_crc(u8 mac[])
-{
-	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
-	u32 i, j, mask, crc;
-
-	DEBUGFUNC("e1000_calc_rx_da_crc");
-
-	crc = 0xffffffff;
-	for (i = 0; i < 6; i++) {
-		crc = crc ^ mac[i];
-		for (j = 8; j > 0; j--) {
-			mask = (crc & 1) * (-1);
-			crc = (crc >> 1) ^ (poly & mask);
-		}
-	}
-	return ~crc;
-}
-
-#endif /* CRC32_OS_SUPPORT */
-/**
- *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
- *  with 82579 PHY
- *  @hw: pointer to the HW structure
- *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
- **/
-s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 phy_reg, data;
-	u32 mac_reg;
-	u16 i;
-
-	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
-
-	if (hw->mac.type < e1000_pch2lan)
-		return E1000_SUCCESS;
-
-	/* disable Rx path while enabling/disabling workaround */
-	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
-	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
-					phy_reg | (1 << 14));
-	if (ret_val)
-		return ret_val;
-
-	if (enable) {
-		/* Write Rx addresses (rar_entry_count for RAL/H, and
-		 * SHRAL/H) and initial CRC values to the MAC
-		 */
-		for (i = 0; i < hw->mac.rar_entry_count; i++) {
-			u8 mac_addr[ETH_ADDR_LEN] = {0};
-			u32 addr_high, addr_low;
-
-			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
-			if (!(addr_high & E1000_RAH_AV))
-				continue;
-			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
-			mac_addr[0] = (addr_low & 0xFF);
-			mac_addr[1] = ((addr_low >> 8) & 0xFF);
-			mac_addr[2] = ((addr_low >> 16) & 0xFF);
-			mac_addr[3] = ((addr_low >> 24) & 0xFF);
-			mac_addr[4] = (addr_high & 0xFF);
-			mac_addr[5] = ((addr_high >> 8) & 0xFF);
-
-#ifndef CRC32_OS_SUPPORT
-			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
-					e1000_calc_rx_da_crc(mac_addr));
-#else /* CRC32_OS_SUPPORT */
-			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
-					E1000_CRC32(ETH_ADDR_LEN, mac_addr));
-#endif /* CRC32_OS_SUPPORT */
-		}
-
-		/* Write Rx addresses to the PHY */
-		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
-
-		/* Enable jumbo frame workaround in the MAC */
-		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
-		mac_reg &= ~(1 << 14);
-		mac_reg |= (7 << 15);
-		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
-
-		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
-		mac_reg |= E1000_RCTL_SECRC;
-		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
-
-		ret_val = e1000_read_kmrn_reg_generic(hw,
-						E1000_KMRNCTRLSTA_CTRL_OFFSET,
-						&data);
-		if (ret_val)
-			return ret_val;
-		ret_val = e1000_write_kmrn_reg_generic(hw,
-						E1000_KMRNCTRLSTA_CTRL_OFFSET,
-						data | (1 << 0));
-		if (ret_val)
-			return ret_val;
-		ret_val = e1000_read_kmrn_reg_generic(hw,
-						E1000_KMRNCTRLSTA_HD_CTRL,
-						&data);
-		if (ret_val)
-			return ret_val;
-		data &= ~(0xF << 8);
-		data |= (0xB << 8);
-		ret_val = e1000_write_kmrn_reg_generic(hw,
-						E1000_KMRNCTRLSTA_HD_CTRL,
-						data);
-		if (ret_val)
-			return ret_val;
-
-		/* Enable jumbo frame workaround in the PHY */
-		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
-		data &= ~(0x7F << 5);
-		data |= (0x37 << 5);
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
-		if (ret_val)
-			return ret_val;
-		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
-		data &= ~(1 << 13);
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
-		if (ret_val)
-			return ret_val;
-		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
-		data &= ~(0x3FF << 2);
-		data |= (0x1A << 2);
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
-		if (ret_val)
-			return ret_val;
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
-		if (ret_val)
-			return ret_val;
-		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
-		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
-						(1 << 10));
-		if (ret_val)
-			return ret_val;
-	} else {
-		/* Write MAC register values back to h/w defaults */
-		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
-		mac_reg &= ~(0xF << 14);
-		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
-
-		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
-		mac_reg &= ~E1000_RCTL_SECRC;
-		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
-
-		ret_val = e1000_read_kmrn_reg_generic(hw,
-						E1000_KMRNCTRLSTA_CTRL_OFFSET,
-						&data);
-		if (ret_val)
-			return ret_val;
-		ret_val = e1000_write_kmrn_reg_generic(hw,
-						E1000_KMRNCTRLSTA_CTRL_OFFSET,
-						data & ~(1 << 0));
-		if (ret_val)
-			return ret_val;
-		ret_val = e1000_read_kmrn_reg_generic(hw,
-						E1000_KMRNCTRLSTA_HD_CTRL,
-						&data);
-		if (ret_val)
-			return ret_val;
-		data &= ~(0xF << 8);
-		data |= (0xB << 8);
-		ret_val = e1000_write_kmrn_reg_generic(hw,
-						E1000_KMRNCTRLSTA_HD_CTRL,
-						data);
-		if (ret_val)
-			return ret_val;
-
-		/* Write PHY register values back to h/w defaults */
-		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
-		data &= ~(0x7F << 5);
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
-		if (ret_val)
-			return ret_val;
-		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
-		data |= (1 << 13);
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
-		if (ret_val)
-			return ret_val;
-		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
-		data &= ~(0x3FF << 2);
-		data |= (0x8 << 2);
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
-		if (ret_val)
-			return ret_val;
-		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
-		if (ret_val)
-			return ret_val;
-		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
-		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
-						~(1 << 10));
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* re-enable Rx path after enabling/disabling workaround */
-	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
-				     ~(1 << 14));
-}
-
-/**
- *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
- *  done after every PHY reset.
- **/
-STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
-
-	if (hw->mac.type != e1000_pch2lan)
-		return E1000_SUCCESS;
-
-	/* Set MDIO slow mode before any other MDIO access */
-	ret_val = e1000_set_mdio_slow_mode_hv(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-	/* set MSE higher to enable link to stay up when noise is high */
-	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
-	if (ret_val)
-		goto release;
-	/* drop link after 5 times MSE threshold was reached */
-	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
-release:
-	hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_k1_gig_workaround_lv - K1 Si workaround
- *  @hw:   pointer to the HW structure
- *
- *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
- *  Disable K1 for 1000 and 100 speeds
- **/
-STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 status_reg = 0;
-
-	DEBUGFUNC("e1000_k1_workaround_lv");
-
-	if (hw->mac.type != e1000_pch2lan)
-		return E1000_SUCCESS;
-
-	/* Set K1 beacon duration based on 10Mbs speed */
-	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
-	if (ret_val)
-		return ret_val;
-
-	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
-	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
-		if (status_reg &
-		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
-			u16 pm_phy_reg;
-
-			/* LV 1G/100 Packet drop issue wa  */
-			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
-						       &pm_phy_reg);
-			if (ret_val)
-				return ret_val;
-			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
-			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
-							pm_phy_reg);
-			if (ret_val)
-				return ret_val;
-		} else {
-			u32 mac_reg;
-			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
-			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
-			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
-			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
-		}
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
- *  @hw:   pointer to the HW structure
- *  @gate: boolean set to true to gate, false to ungate
- *
- *  Gate/ungate the automatic PHY configuration via hardware; perform
- *  the configuration via software instead.
- **/
-STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
-{
-	u32 extcnf_ctrl;
-
-	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
-
-	if (hw->mac.type < e1000_pch2lan)
-		return;
-
-	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
-
-	if (gate)
-		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
-	else
-		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
-
-	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
-}
-
-/**
- *  e1000_lan_init_done_ich8lan - Check for PHY config completion
- *  @hw: pointer to the HW structure
- *
- *  Check the appropriate indication the MAC has finished configuring the
- *  PHY after a software reset.
- **/
-STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
-{
-	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
-
-	DEBUGFUNC("e1000_lan_init_done_ich8lan");
-
-	/* Wait for basic configuration completes before proceeding */
-	do {
-		data = E1000_READ_REG(hw, E1000_STATUS);
-		data &= E1000_STATUS_LAN_INIT_DONE;
-		usec_delay(100);
-	} while ((!data) && --loop);
-
-	/* If basic configuration is incomplete before the above loop
-	 * count reaches 0, loading the configuration from NVM will
-	 * leave the PHY in a bad state possibly resulting in no link.
-	 */
-	if (loop == 0)
-		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
-
-	/* Clear the Init Done bit for the next init event */
-	data = E1000_READ_REG(hw, E1000_STATUS);
-	data &= ~E1000_STATUS_LAN_INIT_DONE;
-	E1000_WRITE_REG(hw, E1000_STATUS, data);
-}
-
-/**
- *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 reg;
-
-	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
-
-	if (hw->phy.ops.check_reset_block(hw))
-		return E1000_SUCCESS;
-
-	/* Allow time for h/w to get to quiescent state after reset */
-	msec_delay(10);
-
-	/* Perform any necessary post-reset workarounds */
-	switch (hw->mac.type) {
-	case e1000_pchlan:
-		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
-		if (ret_val)
-			return ret_val;
-		break;
-	case e1000_pch2lan:
-		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
-		if (ret_val)
-			return ret_val;
-		break;
-	default:
-		break;
-	}
-
-	/* Clear the host wakeup bit after lcd reset */
-	if (hw->mac.type >= e1000_pchlan) {
-		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
-		reg &= ~BM_WUC_HOST_WU_BIT;
-		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
-	}
-
-	/* Configure the LCD with the extended configuration region in NVM */
-	ret_val = e1000_sw_lcd_config_ich8lan(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Configure the LCD with the OEM bits in NVM */
-	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
-
-	if (hw->mac.type == e1000_pch2lan) {
-		/* Ungate automatic PHY configuration on non-managed 82579 */
-		if (!(E1000_READ_REG(hw, E1000_FWSM) &
-		    E1000_ICH_FWSM_FW_VALID)) {
-			msec_delay(10);
-			e1000_gate_hw_phy_config_ich8lan(hw, false);
-		}
-
-		/* Set EEE LPI Update Timer to 200usec */
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-		ret_val = e1000_write_emi_reg_locked(hw,
-						     I82579_LPI_UPDATE_TIMER,
-						     0x1387);
-		hw->phy.ops.release(hw);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
- *  @hw: pointer to the HW structure
- *
- *  Resets the PHY
- *  This is a function pointer entry point called by drivers
- *  or other shared routines.
- **/
-STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
-
-	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
-	if ((hw->mac.type == e1000_pch2lan) &&
-	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
-		e1000_gate_hw_phy_config_ich8lan(hw, true);
-
-	ret_val = e1000_phy_hw_reset_generic(hw);
-	if (ret_val)
-		return ret_val;
-
-	return e1000_post_phy_reset_ich8lan(hw);
-}
-
-/**
- *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
- *  @hw: pointer to the HW structure
- *  @active: true to enable LPLU, false to disable
- *
- *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
- *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
- *  the phy speed. This function will manually set the LPLU bit and restart
- *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
- *  since it configures the same bit.
- **/
-STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
-{
-	s32 ret_val;
-	u16 oem_reg;
-
-	DEBUGFUNC("e1000_set_lplu_state_pchlan");
-
-	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
-	if (ret_val)
-		return ret_val;
-
-	if (active)
-		oem_reg |= HV_OEM_BITS_LPLU;
-	else
-		oem_reg &= ~HV_OEM_BITS_LPLU;
-
-	if (!hw->phy.ops.check_reset_block(hw))
-		oem_reg |= HV_OEM_BITS_RESTART_AN;
-
-	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
-}
-
-/**
- *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
- *  @hw: pointer to the HW structure
- *  @active: true to enable LPLU, false to disable
- *
- *  Sets the LPLU D0 state according to the active flag.  When
- *  activating LPLU this function also disables smart speed
- *  and vice versa.  LPLU will not be activated unless the
- *  device autonegotiation advertisement meets standards of
- *  either 10 or 10/100 or 10/100/1000 at all duplexes.
- *  This is a function pointer entry point only called by
- *  PHY setup routines.
- **/
-STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	u32 phy_ctrl;
-	s32 ret_val = E1000_SUCCESS;
-	u16 data;
-
-	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
-
-	if (phy->type == e1000_phy_ife)
-		return E1000_SUCCESS;
-
-	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
-
-	if (active) {
-		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
-		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
-		if (phy->type != e1000_phy_igp_3)
-			return E1000_SUCCESS;
-
-		/* Call gig speed drop workaround on LPLU before accessing
-		 * any PHY registers
-		 */
-		if (hw->mac.type == e1000_ich8lan)
-			e1000_gig_downshift_workaround_ich8lan(hw);
-
-		/* When LPLU is enabled, we should disable SmartSpeed */
-		ret_val = phy->ops.read_reg(hw,
-					    IGP01E1000_PHY_PORT_CONFIG,
-					    &data);
-		if (ret_val)
-			return ret_val;
-		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-		ret_val = phy->ops.write_reg(hw,
-					     IGP01E1000_PHY_PORT_CONFIG,
-					     data);
-		if (ret_val)
-			return ret_val;
-	} else {
-		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
-		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
-		if (phy->type != e1000_phy_igp_3)
-			return E1000_SUCCESS;
-
-		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
-		 * during Dx states where the power conservation is most
-		 * important.  During driver activity we should enable
-		 * SmartSpeed, so performance is maintained.
-		 */
-		if (phy->smart_speed == e1000_smart_speed_on) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data |= IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-		} else if (phy->smart_speed == e1000_smart_speed_off) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
- *  @hw: pointer to the HW structure
- *  @active: true to enable LPLU, false to disable
- *
- *  Sets the LPLU D3 state according to the active flag.  When
- *  activating LPLU this function also disables smart speed
- *  and vice versa.  LPLU will not be activated unless the
- *  device autonegotiation advertisement meets standards of
- *  either 10 or 10/100 or 10/100/1000 at all duplexes.
- *  This is a function pointer entry point only called by
- *  PHY setup routines.
- **/
-STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	u32 phy_ctrl;
-	s32 ret_val = E1000_SUCCESS;
-	u16 data;
-
-	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
-
-	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
-
-	if (!active) {
-		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
-		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
-		if (phy->type != e1000_phy_igp_3)
-			return E1000_SUCCESS;
-
-		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
-		 * during Dx states where the power conservation is most
-		 * important.  During driver activity we should enable
-		 * SmartSpeed, so performance is maintained.
-		 */
-		if (phy->smart_speed == e1000_smart_speed_on) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data |= IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-		} else if (phy->smart_speed == e1000_smart_speed_off) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-		}
-	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
-		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
-		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
-		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
-		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
-		if (phy->type != e1000_phy_igp_3)
-			return E1000_SUCCESS;
-
-		/* Call gig speed drop workaround on LPLU before accessing
-		 * any PHY registers
-		 */
-		if (hw->mac.type == e1000_ich8lan)
-			e1000_gig_downshift_workaround_ich8lan(hw);
-
-		/* When LPLU is enabled, we should disable SmartSpeed */
-		ret_val = phy->ops.read_reg(hw,
-					    IGP01E1000_PHY_PORT_CONFIG,
-					    &data);
-		if (ret_val)
-			return ret_val;
-
-		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-		ret_val = phy->ops.write_reg(hw,
-					     IGP01E1000_PHY_PORT_CONFIG,
-					     data);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
- *  @hw: pointer to the HW structure
- *  @bank:  pointer to the variable that returns the active bank
- *
- *  Reads signature byte from the NVM using the flash access registers.
- *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
- **/
-STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
-{
-	u32 eecd;
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
-	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
-	u8 sig_byte = 0;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
-
-	switch (hw->mac.type) {
-	case e1000_ich8lan:
-	case e1000_ich9lan:
-		eecd = E1000_READ_REG(hw, E1000_EECD);
-		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
-		    E1000_EECD_SEC1VAL_VALID_MASK) {
-			if (eecd & E1000_EECD_SEC1VAL)
-				*bank = 1;
-			else
-				*bank = 0;
-
-			return E1000_SUCCESS;
-		}
-		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
-		/* fall-thru */
-	default:
-		/* set bank to 0 in case flash read fails */
-		*bank = 0;
-
-		/* Check bank 0 */
-		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
-							&sig_byte);
-		if (ret_val)
-			return ret_val;
-		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
-		    E1000_ICH_NVM_SIG_VALUE) {
-			*bank = 0;
-			return E1000_SUCCESS;
-		}
-
-		/* Check bank 1 */
-		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
-							bank1_offset,
-							&sig_byte);
-		if (ret_val)
-			return ret_val;
-		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
-		    E1000_ICH_NVM_SIG_VALUE) {
-			*bank = 1;
-			return E1000_SUCCESS;
-		}
-
-		DEBUGOUT("ERROR: No valid NVM bank present\n");
-		return -E1000_ERR_NVM;
-	}
-}
-
-/**
- *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
- *  @hw: pointer to the HW structure
- *  @offset: The offset (in bytes) of the word(s) to read.
- *  @words: Size of data to read in words
- *  @data: Pointer to the word(s) to read at offset.
- *
- *  Reads a word(s) from the NVM using the flash access registers.
- **/
-STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
-				  u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-	u32 act_offset;
-	s32 ret_val = E1000_SUCCESS;
-	u32 bank = 0;
-	u16 i, word;
-
-	DEBUGFUNC("e1000_read_nvm_ich8lan");
-
-	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		ret_val = -E1000_ERR_NVM;
-		goto out;
-	}
-
-	nvm->ops.acquire(hw);
-
-	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
-	if (ret_val != E1000_SUCCESS) {
-		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
-		bank = 0;
-	}
-
-	act_offset = (bank) ? nvm->flash_bank_size : 0;
-	act_offset += offset;
-
-	ret_val = E1000_SUCCESS;
-	for (i = 0; i < words; i++) {
-		if (dev_spec->shadow_ram[offset+i].modified) {
-			data[i] = dev_spec->shadow_ram[offset+i].value;
-		} else {
-			ret_val = e1000_read_flash_word_ich8lan(hw,
-								act_offset + i,
-								&word);
-			if (ret_val)
-				break;
-			data[i] = word;
-		}
-	}
-
-	nvm->ops.release(hw);
-
-out:
-	if (ret_val)
-		DEBUGOUT1("NVM read error: %d\n", ret_val);
-
-	return ret_val;
-}
-
-/**
- *  e1000_flash_cycle_init_ich8lan - Initialize flash
- *  @hw: pointer to the HW structure
- *
- *  This function does initial flash setup so that a new read/write/erase cycle
- *  can be started.
- **/
-STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
-{
-	union ich8_hws_flash_status hsfsts;
-	s32 ret_val = -E1000_ERR_NVM;
-
-	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
-
-	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
-	/* Check if the flash descriptor is valid */
-	if (!hsfsts.hsf_status.fldesvalid) {
-		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
-		return -E1000_ERR_NVM;
-	}
-
-	/* Clear FCERR and DAEL in hw status by writing 1 */
-	hsfsts.hsf_status.flcerr = 1;
-	hsfsts.hsf_status.dael = 1;
-	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-
-	/* Either we should have a hardware SPI cycle in progress
-	 * bit to check against, in order to start a new cycle or
-	 * FDONE bit should be changed in the hardware so that it
-	 * is 1 after hardware reset, which can then be used as an
-	 * indication whether a cycle is in progress or has been
-	 * completed.
-	 */
-
-	if (!hsfsts.hsf_status.flcinprog) {
-		/* There is no cycle running at present,
-		 * so we can start a cycle.
-		 * Begin by setting Flash Cycle Done.
-		 */
-		hsfsts.hsf_status.flcdone = 1;
-		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-		ret_val = E1000_SUCCESS;
-	} else {
-		s32 i;
-
-		/* Otherwise poll for sometime so the current
-		 * cycle has a chance to end before giving up.
-		 */
-		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
-			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
-							      ICH_FLASH_HSFSTS);
-			if (!hsfsts.hsf_status.flcinprog) {
-				ret_val = E1000_SUCCESS;
-				break;
-			}
-			usec_delay(1);
-		}
-		if (ret_val == E1000_SUCCESS) {
-			/* Successful in waiting for previous cycle to timeout,
-			 * now set the Flash Cycle Done.
-			 */
-			hsfsts.hsf_status.flcdone = 1;
-			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
-						hsfsts.regval);
-		} else {
-			DEBUGOUT("Flash controller busy, cannot get access\n");
-		}
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
- *  @hw: pointer to the HW structure
- *  @timeout: maximum time to wait for completion
- *
- *  This function starts a flash cycle and waits for its completion.
- **/
-STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
-{
-	union ich8_hws_flash_ctrl hsflctl;
-	union ich8_hws_flash_status hsfsts;
-	u32 i = 0;
-
-	DEBUGFUNC("e1000_flash_cycle_ich8lan");
-
-	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
-	hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-	hsflctl.hsf_ctrl.flcgo = 1;
-
-	E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-	/* wait till FDONE bit is set to 1 */
-	do {
-		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-		if (hsfsts.hsf_status.flcdone)
-			break;
-		usec_delay(1);
-	} while (i++ < timeout);
-
-	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
-		return E1000_SUCCESS;
-
-	return -E1000_ERR_NVM;
-}
-
-/**
- *  e1000_read_flash_word_ich8lan - Read word from flash
- *  @hw: pointer to the HW structure
- *  @offset: offset to data location
- *  @data: pointer to the location for storing the data
- *
- *  Reads the flash word at offset into data.  Offset is converted
- *  to bytes before read.
- **/
-STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
-					 u16 *data)
-{
-	DEBUGFUNC("e1000_read_flash_word_ich8lan");
-
-	if (!data)
-		return -E1000_ERR_NVM;
-
-	/* Must convert offset into bytes. */
-	offset <<= 1;
-
-	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
-}
-
-/**
- *  e1000_read_flash_byte_ich8lan - Read byte from flash
- *  @hw: pointer to the HW structure
- *  @offset: The offset of the byte to read.
- *  @data: Pointer to a byte to store the value read.
- *
- *  Reads a single byte from the NVM using the flash access registers.
- **/
-STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
-					 u8 *data)
-{
-	s32 ret_val;
-	u16 word = 0;
-
-	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
-
-	if (ret_val)
-		return ret_val;
-
-	*data = (u8)word;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
- *  @hw: pointer to the HW structure
- *  @offset: The offset (in bytes) of the byte or word to read.
- *  @size: Size of data to read, 1=byte 2=word
- *  @data: Pointer to the word to store the value read.
- *
- *  Reads a byte or word from the NVM using the flash access registers.
- **/
-STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
-					 u8 size, u16 *data)
-{
-	union ich8_hws_flash_status hsfsts;
-	union ich8_hws_flash_ctrl hsflctl;
-	u32 flash_linear_addr;
-	u32 flash_data = 0;
-	s32 ret_val = -E1000_ERR_NVM;
-	u8 count = 0;
-
-	DEBUGFUNC("e1000_read_flash_data_ich8lan");
-
-	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
-		return -E1000_ERR_NVM;
-	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
-			     hw->nvm.flash_base_addr);
-
-	do {
-		usec_delay(1);
-		/* Steps */
-		ret_val = e1000_flash_cycle_init_ich8lan(hw);
-		if (ret_val != E1000_SUCCESS)
-			break;
-		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-
-		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-		hsflctl.hsf_ctrl.fldbcount = size - 1;
-		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
-		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
-
-		ret_val =
-		    e1000_flash_cycle_ich8lan(hw,
-					      ICH_FLASH_READ_COMMAND_TIMEOUT);
-
-		/* Check if FCERR is set to 1, if set to 1, clear it
-		 * and try the whole sequence a few more times, else
-		 * read in (shift in) the Flash Data0, the order is
-		 * least significant byte first msb to lsb
-		 */
-		if (ret_val == E1000_SUCCESS) {
-			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
-			if (size == 1)
-				*data = (u8)(flash_data & 0x000000FF);
-			else if (size == 2)
-				*data = (u16)(flash_data & 0x0000FFFF);
-			break;
-		} else {
-			/* If we've gotten here, then things are probably
-			 * completely hosed, but if the error condition is
-			 * detected, it won't hurt to give it another try...
-			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
-			 */
-			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
-							      ICH_FLASH_HSFSTS);
-			if (hsfsts.hsf_status.flcerr) {
-				/* Repeat for some time before giving up. */
-				continue;
-			} else if (!hsfsts.hsf_status.flcdone) {
-				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
-				break;
-			}
-		}
-	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
- *  @hw: pointer to the HW structure
- *  @offset: The offset (in bytes) of the word(s) to write.
- *  @words: Size of data to write in words
- *  @data: Pointer to the word(s) to write at offset.
- *
- *  Writes a byte or word to the NVM using the flash access registers.
- **/
-STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
-				   u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-	u16 i;
-
-	DEBUGFUNC("e1000_write_nvm_ich8lan");
-
-	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		return -E1000_ERR_NVM;
-	}
-
-	nvm->ops.acquire(hw);
-
-	for (i = 0; i < words; i++) {
-		dev_spec->shadow_ram[offset+i].modified = true;
-		dev_spec->shadow_ram[offset+i].value = data[i];
-	}
-
-	nvm->ops.release(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
- *  @hw: pointer to the HW structure
- *
- *  The NVM checksum is updated by calling the generic update_nvm_checksum,
- *  which writes the checksum to the shadow ram.  The changes in the shadow
- *  ram are then committed to the EEPROM by processing each bank at a time
- *  checking for the modified bit and writing only the pending changes.
- *  After a successful commit, the shadow ram is cleared and is ready for
- *  future writes.
- **/
-STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
-
-	ret_val = e1000_update_nvm_checksum_generic(hw);
-	if (ret_val)
-		goto out;
-
-	if (nvm->type != e1000_nvm_flash_sw)
-		goto out;
-
-	nvm->ops.acquire(hw);
-
-	/* We're writing to the opposite bank so if we're on bank 1,
-	 * write to bank 0 etc.  We also need to erase the segment that
-	 * is going to be written
-	 */
-	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
-	if (ret_val != E1000_SUCCESS) {
-		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
-		bank = 0;
-	}
-
-	if (bank == 0) {
-		new_bank_offset = nvm->flash_bank_size;
-		old_bank_offset = 0;
-		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
-		if (ret_val)
-			goto release;
-	} else {
-		old_bank_offset = nvm->flash_bank_size;
-		new_bank_offset = 0;
-		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
-		if (ret_val)
-			goto release;
-	}
-
-	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-		/* Determine whether to write the value stored
-		 * in the other NVM bank or a modified value stored
-		 * in the shadow RAM
-		 */
-		if (dev_spec->shadow_ram[i].modified) {
-			data = dev_spec->shadow_ram[i].value;
-		} else {
-			ret_val = e1000_read_flash_word_ich8lan(hw, i +
-								old_bank_offset,
-								&data);
-			if (ret_val)
-				break;
-		}
-
-		/* If the word is 0x13, then make sure the signature bits
-		 * (15:14) are 11b until the commit has completed.
-		 * This will allow us to write 10b which indicates the
-		 * signature is valid.  We want to do this after the write
-		 * has completed so that we don't mark the segment valid
-		 * while the write is still in progress
-		 */
-		if (i == E1000_ICH_NVM_SIG_WORD)
-			data |= E1000_ICH_NVM_SIG_MASK;
-
-		/* Convert offset to bytes. */
-		act_offset = (i + new_bank_offset) << 1;
-
-		usec_delay(100);
-		/* Write the bytes to the new bank. */
-		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
-							       act_offset,
-							       (u8)data);
-		if (ret_val)
-			break;
-
-		usec_delay(100);
-		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
-							  act_offset + 1,
-							  (u8)(data >> 8));
-		if (ret_val)
-			break;
-	}
-
-	/* Don't bother writing the segment valid bits if sector
-	 * programming failed.
-	 */
-	if (ret_val) {
-		DEBUGOUT("Flash commit failed.\n");
-		goto release;
-	}
-
-	/* Finally validate the new segment by setting bit 15:14
-	 * to 10b in word 0x13 , this can be done without an
-	 * erase as well since these bits are 11 to start with
-	 * and we need to change bit 14 to 0b
-	 */
-	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
-	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
-	if (ret_val)
-		goto release;
-
-	data &= 0xBFFF;
-	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
-						       act_offset * 2 + 1,
-						       (u8)(data >> 8));
-	if (ret_val)
-		goto release;
-
-	/* And invalidate the previously valid segment by setting
-	 * its signature word (0x13) high_byte to 0b. This can be
-	 * done without an erase because flash erase sets all bits
-	 * to 1's. We can write 1's to 0's without an erase
-	 */
-	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
-	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
-	if (ret_val)
-		goto release;
-
-	/* Great!  Everything worked, we can now clear the cached entries. */
-	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-		dev_spec->shadow_ram[i].modified = false;
-		dev_spec->shadow_ram[i].value = 0xFFFF;
-	}
-
-release:
-	nvm->ops.release(hw);
-
-	/* Reload the EEPROM, or else modifications will not appear
-	 * until after the next adapter reset.
-	 */
-	if (!ret_val) {
-		nvm->ops.reload(hw);
-		msec_delay(10);
-	}
-
-out:
-	if (ret_val)
-		DEBUGOUT1("NVM update error: %d\n", ret_val);
-
-	return ret_val;
-}
-
-/**
- *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
- *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
- *  calculated, in which case we need to calculate the checksum and set bit 6.
- **/
-STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 data;
-	u16 word;
-	u16 valid_csum_mask;
-
-	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
-
-	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
-	 * the checksum needs to be fixed.  This bit is an indication that
-	 * the NVM was prepared by OEM software and did not calculate
-	 * the checksum...a likely scenario.
-	 */
-	switch (hw->mac.type) {
-	case e1000_pch_lpt:
-		word = NVM_COMPAT;
-		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
-		break;
-	default:
-		word = NVM_FUTURE_INIT_WORD1;
-		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
-		break;
-	}
-
-	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
-	if (ret_val)
-		return ret_val;
-
-	if (!(data & valid_csum_mask)) {
-		data |= valid_csum_mask;
-		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
-		if (ret_val)
-			return ret_val;
-		ret_val = hw->nvm.ops.update(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	return e1000_validate_nvm_checksum_generic(hw);
-}
-
-/**
- *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
- *  @hw: pointer to the HW structure
- *  @offset: The offset (in bytes) of the byte/word to read.
- *  @size: Size of data to read, 1=byte 2=word
- *  @data: The byte(s) to write to the NVM.
- *
- *  Writes one/two bytes to the NVM using the flash access registers.
- **/
-STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
-					  u8 size, u16 data)
-{
-	union ich8_hws_flash_status hsfsts;
-	union ich8_hws_flash_ctrl hsflctl;
-	u32 flash_linear_addr;
-	u32 flash_data = 0;
-	s32 ret_val;
-	u8 count = 0;
-
-	DEBUGFUNC("e1000_write_ich8_data");
-
-	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
-		return -E1000_ERR_NVM;
-
-	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
-			     hw->nvm.flash_base_addr);
-
-	do {
-		usec_delay(1);
-		/* Steps */
-		ret_val = e1000_flash_cycle_init_ich8lan(hw);
-		if (ret_val != E1000_SUCCESS)
-			break;
-		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-
-		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-		hsflctl.hsf_ctrl.fldbcount = size - 1;
-		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
-		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
-
-		if (size == 1)
-			flash_data = (u32)data & 0x00FF;
-		else
-			flash_data = (u32)data;
-
-		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
-
-		/* check if FCERR is set to 1 , if set to 1, clear it
-		 * and try the whole sequence a few more times else done
-		 */
-		ret_val =
-		    e1000_flash_cycle_ich8lan(hw,
-					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
-		if (ret_val == E1000_SUCCESS)
-			break;
-
-		/* If we're here, then things are most likely
-		 * completely hosed, but if the error condition
-		 * is detected, it won't hurt to give it another
-		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
-		 */
-		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-		if (hsfsts.hsf_status.flcerr)
-			/* Repeat for some time before giving up. */
-			continue;
-		if (!hsfsts.hsf_status.flcdone) {
-			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
-			break;
-		}
-	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
- *  @hw: pointer to the HW structure
- *  @offset: The index of the byte to read.
- *  @data: The byte to write to the NVM.
- *
- *  Writes a single byte to the NVM using the flash access registers.
- **/
-STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
-					  u8 data)
-{
-	u16 word = (u16)data;
-
-	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
-
-	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
-}
-
-/**
- *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
- *  @hw: pointer to the HW structure
- *  @offset: The offset of the byte to write.
- *  @byte: The byte to write to the NVM.
- *
- *  Writes a single byte to the NVM using the flash access registers.
- *  Goes through a retry algorithm before giving up.
- **/
-STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
-						u32 offset, u8 byte)
-{
-	s32 ret_val;
-	u16 program_retries;
-
-	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
-
-	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
-	if (!ret_val)
-		return ret_val;
-
-	for (program_retries = 0; program_retries < 100; program_retries++) {
-		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
-		usec_delay(100);
-		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
-		if (ret_val == E1000_SUCCESS)
-			break;
-	}
-	if (program_retries == 100)
-		return -E1000_ERR_NVM;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
- *  @hw: pointer to the HW structure
- *  @bank: 0 for first bank, 1 for second bank, etc.
- *
- *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
- *  bank N is 4096 * N + flash_reg_addr.
- **/
-STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	union ich8_hws_flash_status hsfsts;
-	union ich8_hws_flash_ctrl hsflctl;
-	u32 flash_linear_addr;
-	/* bank size is in 16bit words - adjust to bytes */
-	u32 flash_bank_size = nvm->flash_bank_size * 2;
-	s32 ret_val;
-	s32 count = 0;
-	s32 j, iteration, sector_size;
-
-	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
-
-	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
-	/* Determine HW Sector size: Read BERASE bits of hw flash status
-	 * register
-	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
-	 *     consecutive sectors.  The start index for the nth Hw sector
-	 *     can be calculated as = bank * 4096 + n * 256
-	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
-	 *     The start index for the nth Hw sector can be calculated
-	 *     as = bank * 4096
-	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
-	 *     (ich9 only, otherwise error condition)
-	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
-	 */
-	switch (hsfsts.hsf_status.berasesz) {
-	case 0:
-		/* Hw sector size 256 */
-		sector_size = ICH_FLASH_SEG_SIZE_256;
-		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
-		break;
-	case 1:
-		sector_size = ICH_FLASH_SEG_SIZE_4K;
-		iteration = 1;
-		break;
-	case 2:
-		sector_size = ICH_FLASH_SEG_SIZE_8K;
-		iteration = 1;
-		break;
-	case 3:
-		sector_size = ICH_FLASH_SEG_SIZE_64K;
-		iteration = 1;
-		break;
-	default:
-		return -E1000_ERR_NVM;
-	}
-
-	/* Start with the base address, then add the sector offset. */
-	flash_linear_addr = hw->nvm.flash_base_addr;
-	flash_linear_addr += (bank) ? flash_bank_size : 0;
-
-	for (j = 0; j < iteration; j++) {
-		do {
-			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
-
-			/* Steps */
-			ret_val = e1000_flash_cycle_init_ich8lan(hw);
-			if (ret_val)
-				return ret_val;
-
-			/* Write a value 11 (block Erase) in Flash
-			 * Cycle field in hw flash control
-			 */
-			hsflctl.regval =
-			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-
-			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
-			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
-						hsflctl.regval);
-
-			/* Write the last 24 bits of an index within the
-			 * block into Flash Linear address field in Flash
-			 * Address.
-			 */
-			flash_linear_addr += (j * sector_size);
-			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
-					      flash_linear_addr);
-
-			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
-			if (ret_val == E1000_SUCCESS)
-				break;
-
-			/* Check if FCERR is set to 1.  If 1,
-			 * clear it and try the whole sequence
-			 * a few more times else Done
-			 */
-			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
-						      ICH_FLASH_HSFSTS);
-			if (hsfsts.hsf_status.flcerr)
-				/* repeat for some time before giving up */
-				continue;
-			else if (!hsfsts.hsf_status.flcdone)
-				return ret_val;
-		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_valid_led_default_ich8lan - Set the default LED settings
- *  @hw: pointer to the HW structure
- *  @data: Pointer to the LED settings
- *
- *  Reads the LED default settings from the NVM to data.  If the NVM LED
- *  settings is all 0's or F's, set the LED default to a valid LED default
- *  setting.
- **/
-STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_valid_led_default_ich8lan");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
-		*data = ID_LED_DEFAULT_ICH8LAN;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_id_led_init_pchlan - store LED configurations
- *  @hw: pointer to the HW structure
- *
- *  PCH does not control LEDs via the LEDCTL register, rather it uses
- *  the PHY LED configuration register.
- *
- *  PCH also does not have an "always on" or "always off" mode which
- *  complicates the ID feature.  Instead of using the "on" mode to indicate
- *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
- *  use "link_up" mode.  The LEDs will still ID on request if there is no
- *  link based on logic in e1000_led_[on|off]_pchlan().
- **/
-STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val;
-	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
-	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
-	u16 data, i, temp, shift;
-
-	DEBUGFUNC("e1000_id_led_init_pchlan");
-
-	/* Get default ID LED modes */
-	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
-	if (ret_val)
-		return ret_val;
-
-	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
-	mac->ledctl_mode1 = mac->ledctl_default;
-	mac->ledctl_mode2 = mac->ledctl_default;
-
-	for (i = 0; i < 4; i++) {
-		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
-		shift = (i * 5);
-		switch (temp) {
-		case ID_LED_ON1_DEF2:
-		case ID_LED_ON1_ON2:
-		case ID_LED_ON1_OFF2:
-			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
-			mac->ledctl_mode1 |= (ledctl_on << shift);
-			break;
-		case ID_LED_OFF1_DEF2:
-		case ID_LED_OFF1_ON2:
-		case ID_LED_OFF1_OFF2:
-			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
-			mac->ledctl_mode1 |= (ledctl_off << shift);
-			break;
-		default:
-			/* Do nothing */
-			break;
-		}
-		switch (temp) {
-		case ID_LED_DEF1_ON2:
-		case ID_LED_ON1_ON2:
-		case ID_LED_OFF1_ON2:
-			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
-			mac->ledctl_mode2 |= (ledctl_on << shift);
-			break;
-		case ID_LED_DEF1_OFF2:
-		case ID_LED_ON1_OFF2:
-		case ID_LED_OFF1_OFF2:
-			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
-			mac->ledctl_mode2 |= (ledctl_off << shift);
-			break;
-		default:
-			/* Do nothing */
-			break;
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
- *  @hw: pointer to the HW structure
- *
- *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
- *  register, so the the bus width is hard coded.
- **/
-STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_bus_info *bus = &hw->bus;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_get_bus_info_ich8lan");
-
-	ret_val = e1000_get_bus_info_pcie_generic(hw);
-
-	/* ICH devices are "PCI Express"-ish.  They have
-	 * a configuration space, but do not contain
-	 * PCI Express Capability registers, so bus width
-	 * must be hardcoded.
-	 */
-	if (bus->width == e1000_bus_width_unknown)
-		bus->width = e1000_bus_width_pcie_x1;
-
-	return ret_val;
-}
-
-/**
- *  e1000_reset_hw_ich8lan - Reset the hardware
- *  @hw: pointer to the HW structure
- *
- *  Does a full reset of the hardware which includes a reset of the PHY and
- *  MAC.
- **/
-STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-	u16 kum_cfg;
-	u32 ctrl, reg;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_reset_hw_ich8lan");
-
-	/* Prevent the PCI-E bus from sticking if there is no TLP connection
-	 * on the last TLP read/write transaction when MAC is reset.
-	 */
-	ret_val = e1000_disable_pcie_master_generic(hw);
-	if (ret_val)
-		DEBUGOUT("PCI-E Master disable polling has failed.\n");
-
-	DEBUGOUT("Masking off all interrupts\n");
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-
-	/* Disable the Transmit and Receive units.  Then delay to allow
-	 * any pending transactions to complete before we hit the MAC
-	 * with the global reset.
-	 */
-	E1000_WRITE_REG(hw, E1000_RCTL, 0);
-	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
-	E1000_WRITE_FLUSH(hw);
-
-	msec_delay(10);
-
-	/* Workaround for ICH8 bit corruption issue in FIFO memory */
-	if (hw->mac.type == e1000_ich8lan) {
-		/* Set Tx and Rx buffer allocation to 8k apiece. */
-		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
-		/* Set Packet Buffer Size to 16k. */
-		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
-	}
-
-	if (hw->mac.type == e1000_pchlan) {
-		/* Save the NVM K1 bit setting*/
-		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
-		if (ret_val)
-			return ret_val;
-
-		if (kum_cfg & E1000_NVM_K1_ENABLE)
-			dev_spec->nvm_k1_enabled = true;
-		else
-			dev_spec->nvm_k1_enabled = false;
-	}
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	if (!hw->phy.ops.check_reset_block(hw)) {
-		/* Full-chip reset requires MAC and PHY reset at the same
-		 * time to make sure the interface between MAC and the
-		 * external PHY is reset.
-		 */
-		ctrl |= E1000_CTRL_PHY_RST;
-
-		/* Gate automatic PHY configuration by hardware on
-		 * non-managed 82579
-		 */
-		if ((hw->mac.type == e1000_pch2lan) &&
-		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
-			e1000_gate_hw_phy_config_ich8lan(hw, true);
-	}
-	ret_val = e1000_acquire_swflag_ich8lan(hw);
-	DEBUGOUT("Issuing a global reset to ich8lan\n");
-	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
-	/* cannot issue a flush here because it hangs the hardware */
-	msec_delay(20);
-
-	/* Set Phy Config Counter to 50msec */
-	if (hw->mac.type == e1000_pch2lan) {
-		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
-		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
-		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
-		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
-	}
-
-	if (!ret_val)
-		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
-
-	if (ctrl & E1000_CTRL_PHY_RST) {
-		ret_val = hw->phy.ops.get_cfg_done(hw);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = e1000_post_phy_reset_ich8lan(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* For PCH, this write will make sure that any noise
-	 * will be detected as a CRC error and be dropped rather than show up
-	 * as a bad packet to the DMA engine.
-	 */
-	if (hw->mac.type == e1000_pchlan)
-		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
-
-	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
-	E1000_READ_REG(hw, E1000_ICR);
-
-	reg = E1000_READ_REG(hw, E1000_KABGTXD);
-	reg |= E1000_KABGTXD_BGSQLBIAS;
-	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_hw_ich8lan - Initialize the hardware
- *  @hw: pointer to the HW structure
- *
- *  Prepares the hardware for transmit and receive by doing the following:
- *   - initialize hardware bits
- *   - initialize LED identification
- *   - setup receive address registers
- *   - setup flow control
- *   - setup transmit descriptors
- *   - clear statistics
- **/
-STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 ctrl_ext, txdctl, snoop;
-	s32 ret_val;
-	u16 i;
-
-	DEBUGFUNC("e1000_init_hw_ich8lan");
-
-	e1000_initialize_hw_bits_ich8lan(hw);
-
-	/* Initialize identification LED */
-	ret_val = mac->ops.id_led_init(hw);
-	/* An error is not fatal and we should not stop init due to this */
-	if (ret_val)
-		DEBUGOUT("Error initializing identification LED\n");
-
-	/* Setup the receive address. */
-	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
-
-	/* Zero out the Multicast HASH table */
-	DEBUGOUT("Zeroing the MTA\n");
-	for (i = 0; i < mac->mta_reg_count; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
-	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
-	 * the ME.  Disable wakeup by clearing the host wakeup bit.
-	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
-	 */
-	if (hw->phy.type == e1000_phy_82578) {
-		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
-		i &= ~BM_WUC_HOST_WU_BIT;
-		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
-		ret_val = e1000_phy_hw_reset_ich8lan(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Setup link and flow control */
-	ret_val = mac->ops.setup_link(hw);
-
-	/* Set the transmit descriptor write-back policy for both queues */
-	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
-	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
-		  E1000_TXDCTL_FULL_TX_DESC_WB);
-	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
-		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
-	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
-	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
-		  E1000_TXDCTL_FULL_TX_DESC_WB);
-	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
-		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
-
-	/* ICH8 has opposite polarity of no_snoop bits.
-	 * By default, we should use snoop behavior.
-	 */
-	if (mac->type == e1000_ich8lan)
-		snoop = PCIE_ICH8_SNOOP_ALL;
-	else
-		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
-	e1000_set_pcie_no_snoop_generic(hw, snoop);
-
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-
-	/* Clear all of the statistics registers (clear on read).  It is
-	 * important that we do this after we have tried to establish link
-	 * because the symbol error count will increment wildly if there
-	 * is no link.
-	 */
-	e1000_clear_hw_cntrs_ich8lan(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
- *  @hw: pointer to the HW structure
- *
- *  Sets/Clears required hardware bits necessary for correctly setting up the
- *  hardware for transmit and receive.
- **/
-STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
-{
-	u32 reg;
-
-	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
-
-	/* Extended Device Control */
-	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	reg |= (1 << 22);
-	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
-	if (hw->mac.type >= e1000_pchlan)
-		reg |= E1000_CTRL_EXT_PHYPDEN;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
-	/* Transmit Descriptor Control 0 */
-	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
-	reg |= (1 << 22);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
-
-	/* Transmit Descriptor Control 1 */
-	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
-	reg |= (1 << 22);
-	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
-
-	/* Transmit Arbitration Control 0 */
-	reg = E1000_READ_REG(hw, E1000_TARC(0));
-	if (hw->mac.type == e1000_ich8lan)
-		reg |= (1 << 28) | (1 << 29);
-	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
-	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
-
-	/* Transmit Arbitration Control 1 */
-	reg = E1000_READ_REG(hw, E1000_TARC(1));
-	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
-		reg &= ~(1 << 28);
-	else
-		reg |= (1 << 28);
-	reg |= (1 << 24) | (1 << 26) | (1 << 30);
-	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
-
-	/* Device Status */
-	if (hw->mac.type == e1000_ich8lan) {
-		reg = E1000_READ_REG(hw, E1000_STATUS);
-		reg &= ~(1 << 31);
-		E1000_WRITE_REG(hw, E1000_STATUS, reg);
-	}
-
-	/* work-around descriptor data corruption issue during nfs v2 udp
-	 * traffic, just disable the nfs filtering capability
-	 */
-	reg = E1000_READ_REG(hw, E1000_RFCTL);
-	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
-
-	/* Disable IPv6 extension header parsing because some malformed
-	 * IPv6 headers can hang the Rx.
-	 */
-	if (hw->mac.type == e1000_ich8lan)
-		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
-	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
-
-	/* Enable ECC on Lynxpoint */
-	if (hw->mac.type == e1000_pch_lpt) {
-		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
-		reg |= E1000_PBECCSTS_ECC_ENABLE;
-		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
-
-		reg = E1000_READ_REG(hw, E1000_CTRL);
-		reg |= E1000_CTRL_MEHE;
-		E1000_WRITE_REG(hw, E1000_CTRL, reg);
-	}
-
-	return;
-}
-
-/**
- *  e1000_setup_link_ich8lan - Setup flow control and link settings
- *  @hw: pointer to the HW structure
- *
- *  Determines which flow control settings to use, then configures flow
- *  control.  Calls the appropriate media-specific link configuration
- *  function.  Assuming the adapter has a valid link partner, a valid link
- *  should be established.  Assumes the hardware has previously been reset
- *  and the transmitter and receiver are not enabled.
- **/
-STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_setup_link_ich8lan");
-
-	if (hw->phy.ops.check_reset_block(hw))
-		return E1000_SUCCESS;
-
-	/* ICH parts do not have a word in the NVM to determine
-	 * the default flow control setting, so we explicitly
-	 * set it to full.
-	 */
-	if (hw->fc.requested_mode == e1000_fc_default)
-		hw->fc.requested_mode = e1000_fc_full;
-
-	/* Save off the requested flow control mode for use later.  Depending
-	 * on the link partner's capabilities, we may or may not use this mode.
-	 */
-	hw->fc.current_mode = hw->fc.requested_mode;
-
-	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
-		hw->fc.current_mode);
-
-	/* Continue to configure the copper link. */
-	ret_val = hw->mac.ops.setup_physical_interface(hw);
-	if (ret_val)
-		return ret_val;
-
-	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
-	if ((hw->phy.type == e1000_phy_82578) ||
-	    (hw->phy.type == e1000_phy_82579) ||
-	    (hw->phy.type == e1000_phy_i217) ||
-	    (hw->phy.type == e1000_phy_82577)) {
-		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
-
-		ret_val = hw->phy.ops.write_reg(hw,
-					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
-					     hw->fc.pause_time);
-		if (ret_val)
-			return ret_val;
-	}
-
-	return e1000_set_fc_watermarks_generic(hw);
-}
-
-/**
- *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
- *  @hw: pointer to the HW structure
- *
- *  Configures the kumeran interface to the PHY to wait the appropriate time
- *  when polling the PHY, then call the generic setup_copper_link to finish
- *  configuring the copper link.
- **/
-STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-	u16 reg_data;
-
-	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= E1000_CTRL_SLU;
-	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	/* Set the mac to wait the maximum time between each iteration
-	 * and increase the max iterations when polling the phy;
-	 * this fixes erroneous timeouts at 10Mbps.
-	 */
-	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
-					       0xFFFF);
-	if (ret_val)
-		return ret_val;
-	ret_val = e1000_read_kmrn_reg_generic(hw,
-					      E1000_KMRNCTRLSTA_INBAND_PARAM,
-					      &reg_data);
-	if (ret_val)
-		return ret_val;
-	reg_data |= 0x3F;
-	ret_val = e1000_write_kmrn_reg_generic(hw,
-					       E1000_KMRNCTRLSTA_INBAND_PARAM,
-					       reg_data);
-	if (ret_val)
-		return ret_val;
-
-	switch (hw->phy.type) {
-	case e1000_phy_igp_3:
-		ret_val = e1000_copper_link_setup_igp(hw);
-		if (ret_val)
-			return ret_val;
-		break;
-	case e1000_phy_bm:
-	case e1000_phy_82578:
-		ret_val = e1000_copper_link_setup_m88(hw);
-		if (ret_val)
-			return ret_val;
-		break;
-	case e1000_phy_82577:
-	case e1000_phy_82579:
-		ret_val = e1000_copper_link_setup_82577(hw);
-		if (ret_val)
-			return ret_val;
-		break;
-	case e1000_phy_ife:
-		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
-					       &reg_data);
-		if (ret_val)
-			return ret_val;
-
-		reg_data &= ~IFE_PMC_AUTO_MDIX;
-
-		switch (hw->phy.mdix) {
-		case 1:
-			reg_data &= ~IFE_PMC_FORCE_MDIX;
-			break;
-		case 2:
-			reg_data |= IFE_PMC_FORCE_MDIX;
-			break;
-		case 0:
-		default:
-			reg_data |= IFE_PMC_AUTO_MDIX;
-			break;
-		}
-		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
-						reg_data);
-		if (ret_val)
-			return ret_val;
-		break;
-	default:
-		break;
-	}
-
-	return e1000_setup_copper_link_generic(hw);
-}
-
-/**
- *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
- *  @hw: pointer to the HW structure
- *
- *  Calls the PHY specific link setup function and then calls the
- *  generic setup_copper_link to finish configuring the link for
- *  Lynxpoint PCH devices
- **/
-STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= E1000_CTRL_SLU;
-	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	ret_val = e1000_copper_link_setup_82577(hw);
-	if (ret_val)
-		return ret_val;
-
-	return e1000_setup_copper_link_generic(hw);
-}
-
-/**
- *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
- *  @hw: pointer to the HW structure
- *  @speed: pointer to store current link speed
- *  @duplex: pointer to store the current link duplex
- *
- *  Calls the generic get_speed_and_duplex to retrieve the current link
- *  information and then calls the Kumeran lock loss workaround for links at
- *  gigabit speeds.
- **/
-STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
-					  u16 *duplex)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
-
-	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
-	if (ret_val)
-		return ret_val;
-
-	if ((hw->mac.type == e1000_ich8lan) &&
-	    (hw->phy.type == e1000_phy_igp_3) &&
-	    (*speed == SPEED_1000)) {
-		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
- *  @hw: pointer to the HW structure
- *
- *  Work-around for 82566 Kumeran PCS lock loss:
- *  On link status change (i.e. PCI reset, speed change) and link is up and
- *  speed is gigabit-
- *    0) if workaround is optionally disabled do nothing
- *    1) wait 1ms for Kumeran link to come up
- *    2) check Kumeran Diagnostic register PCS lock loss bit
- *    3) if not set the link is locked (all is good), otherwise...
- *    4) reset the PHY
- *    5) repeat up to 10 times
- *  Note: this is only called for IGP3 copper when speed is 1gb.
- **/
-STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-	u32 phy_ctrl;
-	s32 ret_val;
-	u16 i, data;
-	bool link;
-
-	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
-
-	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
-		return E1000_SUCCESS;
-
-	/* Make sure link is up before proceeding.  If not just return.
-	 * Attempting this while link is negotiating fouled up link
-	 * stability
-	 */
-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-	if (!link)
-		return E1000_SUCCESS;
-
-	for (i = 0; i < 10; i++) {
-		/* read once to clear */
-		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
-		if (ret_val)
-			return ret_val;
-		/* and again to get new status */
-		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
-		if (ret_val)
-			return ret_val;
-
-		/* check for PCS lock */
-		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
-			return E1000_SUCCESS;
-
-		/* Issue PHY reset */
-		hw->phy.ops.reset(hw);
-		msec_delay_irq(5);
-	}
-	/* Disable GigE link negotiation */
-	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
-	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
-		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
-	/* Call gig speed drop workaround on Gig disable before accessing
-	 * any PHY registers
-	 */
-	e1000_gig_downshift_workaround_ich8lan(hw);
-
-	/* unable to acquire PCS lock */
-	return -E1000_ERR_PHY;
-}
-
-/**
- *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
- *  @hw: pointer to the HW structure
- *  @state: boolean value used to set the current Kumeran workaround state
- *
- *  If ICH8, set the current Kumeran workaround state (enabled - true
- *  /disabled - false).
- **/
-void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
-						 bool state)
-{
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-
-	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
-
-	if (hw->mac.type != e1000_ich8lan) {
-		DEBUGOUT("Workaround applies to ICH8 only.\n");
-		return;
-	}
-
-	dev_spec->kmrn_lock_loss_workaround_enabled = state;
-
-	return;
-}
-
-/**
- *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
- *  @hw: pointer to the HW structure
- *
- *  Workaround for 82566 power-down on D3 entry:
- *    1) disable gigabit link
- *    2) write VR power-down enable
- *    3) read it back
- *  Continue if successful, else issue LCD reset and repeat
- **/
-void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
-{
-	u32 reg;
-	u16 data;
-	u8  retry = 0;
-
-	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
-
-	if (hw->phy.type != e1000_phy_igp_3)
-		return;
-
-	/* Try the workaround twice (if needed) */
-	do {
-		/* Disable link */
-		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
-		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
-			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
-
-		/* Call gig speed drop workaround on Gig disable before
-		 * accessing any PHY registers
-		 */
-		if (hw->mac.type == e1000_ich8lan)
-			e1000_gig_downshift_workaround_ich8lan(hw);
-
-		/* Write VR power-down enable */
-		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
-		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
-		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
-				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
-
-		/* Read it back and test */
-		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
-		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
-		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
-			break;
-
-		/* Issue PHY reset and repeat at most one more time */
-		reg = E1000_READ_REG(hw, E1000_CTRL);
-		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
-		retry++;
-	} while (retry);
-}
-
-/**
- *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
- *  @hw: pointer to the HW structure
- *
- *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
- *  LPLU, Gig disable, MDIC PHY reset):
- *    1) Set Kumeran Near-end loopback
- *    2) Clear Kumeran Near-end loopback
- *  Should only be called for ICH8[m] devices with any 1G Phy.
- **/
-void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 reg_data;
-
-	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
-
-	if ((hw->mac.type != e1000_ich8lan) ||
-	    (hw->phy.type == e1000_phy_ife))
-		return;
-
-	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
-					      &reg_data);
-	if (ret_val)
-		return;
-	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
-	ret_val = e1000_write_kmrn_reg_generic(hw,
-					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
-					       reg_data);
-	if (ret_val)
-		return;
-	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
-	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
-				     reg_data);
-}
-
-/**
- *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
- *  @hw: pointer to the HW structure
- *
- *  During S0 to Sx transition, it is possible the link remains at gig
- *  instead of negotiating to a lower speed.  Before going to Sx, set
- *  'Gig Disable' to force link speed negotiation to a lower speed based on
- *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
- *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
- *  needs to be written.
- *  Parts that support (and are linked to a partner which support) EEE in
- *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
- *  than 10Mbps w/o EEE.
- **/
-void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
-{
-	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-	u32 phy_ctrl;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
-
-	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
-	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
-
-	if (hw->phy.type == e1000_phy_i217) {
-		u16 phy_reg, device_id = hw->device_id;
-
-		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
-		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) {
-			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
-
-			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
-					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
-		}
-
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			goto out;
-
-		if (!dev_spec->eee_disable) {
-			u16 eee_advert;
-
-			ret_val =
-			    e1000_read_emi_reg_locked(hw,
-						      I217_EEE_ADVERTISEMENT,
-						      &eee_advert);
-			if (ret_val)
-				goto release;
-
-			/* Disable LPLU if both link partners support 100BaseT
-			 * EEE and 100Full is advertised on both ends of the
-			 * link, and enable Auto Enable LPI since there will
-			 * be no driver to enable LPI while in Sx.
-			 */
-			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
-			    (dev_spec->eee_lp_ability &
-			     I82579_EEE_100_SUPPORTED) &&
-			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
-				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
-					      E1000_PHY_CTRL_NOND0A_LPLU);
-
-				/* Set Auto Enable LPI after link up */
-				hw->phy.ops.read_reg_locked(hw,
-							    I217_LPI_GPIO_CTRL,
-							    &phy_reg);
-				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
-				hw->phy.ops.write_reg_locked(hw,
-							     I217_LPI_GPIO_CTRL,
-							     phy_reg);
-			}
-		}
-
-		/* For i217 Intel Rapid Start Technology support,
-		 * when the system is going into Sx and no manageability engine
-		 * is present, the driver must configure proxy to reset only on
-		 * power good.  LPI (Low Power Idle) state must also reset only
-		 * on power good, as well as the MTA (Multicast table array).
-		 * The SMBus release must also be disabled on LCD reset.
-		 */
-		if (!(E1000_READ_REG(hw, E1000_FWSM) &
-		      E1000_ICH_FWSM_FW_VALID)) {
-			/* Enable proxy to reset only on power good. */
-			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
-						    &phy_reg);
-			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
-			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
-						     phy_reg);
-
-			/* Set bit enable LPI (EEE) to reset only on
-			 * power good.
-			*/
-			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
-			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
-			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
-
-			/* Disable the SMB release on LCD reset. */
-			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
-			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
-			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
-		}
-
-		/* Enable MTA to reset for Intel Rapid Start Technology
-		 * Support
-		 */
-		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
-		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
-		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
-
-release:
-		hw->phy.ops.release(hw);
-	}
-out:
-	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
-
-	if (hw->mac.type == e1000_ich8lan)
-		e1000_gig_downshift_workaround_ich8lan(hw);
-
-	if (hw->mac.type >= e1000_pchlan) {
-		e1000_oem_bits_config_ich8lan(hw, false);
-
-		/* Reset PHY to activate OEM bits on 82577/8 */
-		if (hw->mac.type == e1000_pchlan)
-			e1000_phy_hw_reset_generic(hw);
-
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return;
-		e1000_write_smbus_addr(hw);
-		hw->phy.ops.release(hw);
-	}
-
-	return;
-}
-
-/**
- *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
- *  @hw: pointer to the HW structure
- *
- *  During Sx to S0 transitions on non-managed devices or managed devices
- *  on which PHY resets are not blocked, if the PHY registers cannot be
- *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
- *  the PHY.
- *  On i217, setup Intel Rapid Start Technology.
- **/
-void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_resume_workarounds_pchlan");
-
-	if (hw->mac.type < e1000_pch2lan)
-		return;
-
-	ret_val = e1000_init_phy_workarounds_pchlan(hw);
-	if (ret_val) {
-		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
-		return;
-	}
-
-	/* For i217 Intel Rapid Start Technology support when the system
-	 * is transitioning from Sx and no manageability engine is present
-	 * configure SMBus to restore on reset, disable proxy, and enable
-	 * the reset on MTA (Multicast table array).
-	 */
-	if (hw->phy.type == e1000_phy_i217) {
-		u16 phy_reg;
-
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val) {
-			DEBUGOUT("Failed to setup iRST\n");
-			return;
-		}
-
-		/* Clear Auto Enable LPI after link up */
-		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
-		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
-		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
-
-		if (!(E1000_READ_REG(hw, E1000_FWSM) &
-		    E1000_ICH_FWSM_FW_VALID)) {
-			/* Restore clear on SMB if no manageability engine
-			 * is present
-			 */
-			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
-							      &phy_reg);
-			if (ret_val)
-				goto release;
-			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
-			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
-
-			/* Disable Proxy */
-			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
-		}
-		/* Enable reset on MTA */
-		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
-						      &phy_reg);
-		if (ret_val)
-			goto release;
-		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
-		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
-release:
-		if (ret_val)
-			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
-		hw->phy.ops.release(hw);
-	}
-}
-
-/**
- *  e1000_cleanup_led_ich8lan - Restore the default LED operation
- *  @hw: pointer to the HW structure
- *
- *  Return the LED back to the default configuration.
- **/
-STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_cleanup_led_ich8lan");
-
-	if (hw->phy.type == e1000_phy_ife)
-		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-					     0);
-
-	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_led_on_ich8lan - Turn LEDs on
- *  @hw: pointer to the HW structure
- *
- *  Turn on the LEDs.
- **/
-STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_led_on_ich8lan");
-
-	if (hw->phy.type == e1000_phy_ife)
-		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
-
-	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_led_off_ich8lan - Turn LEDs off
- *  @hw: pointer to the HW structure
- *
- *  Turn off the LEDs.
- **/
-STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_led_off_ich8lan");
-
-	if (hw->phy.type == e1000_phy_ife)
-		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
-
-	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_setup_led_pchlan - Configures SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  This prepares the SW controllable LED for use.
- **/
-STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_setup_led_pchlan");
-
-	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
-				     (u16)hw->mac.ledctl_mode1);
-}
-
-/**
- *  e1000_cleanup_led_pchlan - Restore the default LED operation
- *  @hw: pointer to the HW structure
- *
- *  Return the LED back to the default configuration.
- **/
-STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_cleanup_led_pchlan");
-
-	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
-				     (u16)hw->mac.ledctl_default);
-}
-
-/**
- *  e1000_led_on_pchlan - Turn LEDs on
- *  @hw: pointer to the HW structure
- *
- *  Turn on the LEDs.
- **/
-STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw)
-{
-	u16 data = (u16)hw->mac.ledctl_mode2;
-	u32 i, led;
-
-	DEBUGFUNC("e1000_led_on_pchlan");
-
-	/* If no link, then turn LED on by setting the invert bit
-	 * for each LED that's mode is "link_up" in ledctl_mode2.
-	 */
-	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
-		for (i = 0; i < 3; i++) {
-			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
-			if ((led & E1000_PHY_LED0_MODE_MASK) !=
-			    E1000_LEDCTL_MODE_LINK_UP)
-				continue;
-			if (led & E1000_PHY_LED0_IVRT)
-				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
-			else
-				data |= (E1000_PHY_LED0_IVRT << (i * 5));
-		}
-	}
-
-	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
-}
-
-/**
- *  e1000_led_off_pchlan - Turn LEDs off
- *  @hw: pointer to the HW structure
- *
- *  Turn off the LEDs.
- **/
-STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw)
-{
-	u16 data = (u16)hw->mac.ledctl_mode1;
-	u32 i, led;
-
-	DEBUGFUNC("e1000_led_off_pchlan");
-
-	/* If no link, then turn LED off by clearing the invert bit
-	 * for each LED that's mode is "link_up" in ledctl_mode1.
-	 */
-	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
-		for (i = 0; i < 3; i++) {
-			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
-			if ((led & E1000_PHY_LED0_MODE_MASK) !=
-			    E1000_LEDCTL_MODE_LINK_UP)
-				continue;
-			if (led & E1000_PHY_LED0_IVRT)
-				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
-			else
-				data |= (E1000_PHY_LED0_IVRT << (i * 5));
-		}
-	}
-
-	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
-}
-
-/**
- *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
- *  @hw: pointer to the HW structure
- *
- *  Read appropriate register for the config done bit for completion status
- *  and configure the PHY through s/w for EEPROM-less parts.
- *
- *  NOTE: some silicon which is EEPROM-less will fail trying to read the
- *  config done bit, so only an error is logged and continues.  If we were
- *  to return with error, EEPROM-less silicon would not be able to be reset
- *  or change link.
- **/
-STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u32 bank = 0;
-	u32 status;
-
-	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
-
-	e1000_get_cfg_done_generic(hw);
-
-	/* Wait for indication from h/w that it has completed basic config */
-	if (hw->mac.type >= e1000_ich10lan) {
-		e1000_lan_init_done_ich8lan(hw);
-	} else {
-		ret_val = e1000_get_auto_rd_done_generic(hw);
-		if (ret_val) {
-			/* When auto config read does not complete, do not
-			 * return with an error. This can happen in situations
-			 * where there is no eeprom and prevents getting link.
-			 */
-			DEBUGOUT("Auto Read Done did not complete\n");
-			ret_val = E1000_SUCCESS;
-		}
-	}
-
-	/* Clear PHY Reset Asserted bit */
-	status = E1000_READ_REG(hw, E1000_STATUS);
-	if (status & E1000_STATUS_PHYRA)
-		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
-	else
-		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
-
-	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
-	if (hw->mac.type <= e1000_ich9lan) {
-		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
-		    (hw->phy.type == e1000_phy_igp_3)) {
-			e1000_phy_init_script_igp3(hw);
-		}
-	} else {
-		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
-			/* Maybe we should do a basic PHY config */
-			DEBUGOUT("EEPROM not present\n");
-			ret_val = -E1000_ERR_CONFIG;
-		}
-	}
-
-	return ret_val;
-}
-
-/**
- * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
-{
-	/* If the management interface is not enabled, then power down */
-	if (!(hw->mac.ops.check_mng_mode(hw) ||
-	      hw->phy.ops.check_reset_block(hw)))
-		e1000_power_down_phy_copper(hw);
-
-	return;
-}
-
-/**
- *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
- *  @hw: pointer to the HW structure
- *
- *  Clears hardware counters specific to the silicon family and calls
- *  clear_hw_cntrs_generic to clear all general purpose counters.
- **/
-STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
-{
-	u16 phy_data;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	E1000_READ_REG(hw, E1000_ALGNERRC);
-	E1000_READ_REG(hw, E1000_RXERRC);
-	E1000_READ_REG(hw, E1000_TNCRS);
-	E1000_READ_REG(hw, E1000_CEXTERR);
-	E1000_READ_REG(hw, E1000_TSCTC);
-	E1000_READ_REG(hw, E1000_TSCTFC);
-
-	E1000_READ_REG(hw, E1000_MGTPRC);
-	E1000_READ_REG(hw, E1000_MGTPDC);
-	E1000_READ_REG(hw, E1000_MGTPTC);
-
-	E1000_READ_REG(hw, E1000_IAC);
-	E1000_READ_REG(hw, E1000_ICRXOC);
-
-	/* Clear PHY statistics registers */
-	if ((hw->phy.type == e1000_phy_82578) ||
-	    (hw->phy.type == e1000_phy_82579) ||
-	    (hw->phy.type == e1000_phy_i217) ||
-	    (hw->phy.type == e1000_phy_82577)) {
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return;
-		ret_val = hw->phy.ops.set_page(hw,
-					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
-		if (ret_val)
-			goto release;
-		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
-		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
-release:
-		hw->phy.ops.release(hw);
-	}
-}
-
diff --git a/lib/librte_pmd_e1000/e1000/e1000_ich8lan.h b/lib/librte_pmd_e1000/e1000/e1000_ich8lan.h
deleted file mode 100644
index 8c5e9c3..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_ich8lan.h
+++ /dev/null
@@ -1,313 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_ICH8LAN_H_
-#define _E1000_ICH8LAN_H_
-
-#define ICH_FLASH_GFPREG		0x0000
-#define ICH_FLASH_HSFSTS		0x0004
-#define ICH_FLASH_HSFCTL		0x0006
-#define ICH_FLASH_FADDR			0x0008
-#define ICH_FLASH_FDATA0		0x0010
-
-/* Requires up to 10 seconds when MNG might be accessing part. */
-#define ICH_FLASH_READ_COMMAND_TIMEOUT	10000000
-#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	10000000
-#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	10000000
-#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
-#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
-
-#define ICH_CYCLE_READ			0
-#define ICH_CYCLE_WRITE			2
-#define ICH_CYCLE_ERASE			3
-
-#define FLASH_GFPREG_BASE_MASK		0x1FFF
-#define FLASH_SECTOR_ADDR_SHIFT		12
-
-#define ICH_FLASH_SEG_SIZE_256		256
-#define ICH_FLASH_SEG_SIZE_4K		4096
-#define ICH_FLASH_SEG_SIZE_8K		8192
-#define ICH_FLASH_SEG_SIZE_64K		65536
-
-#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
-/* FW established a valid mode */
-#define E1000_ICH_FWSM_FW_VALID	0x00008000
-#define E1000_ICH_FWSM_PCIM2PCI	0x01000000 /* ME PCIm-to-PCI active */
-#define E1000_ICH_FWSM_PCIM2PCI_COUNT	2000
-
-#define E1000_ICH_MNG_IAMT_MODE		0x2
-
-#define E1000_FWSM_WLOCK_MAC_MASK	0x0380
-#define E1000_FWSM_WLOCK_MAC_SHIFT	7
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_FWSM_ULP_CFG_DONE		0x00000400  /* Low power cfg done */
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-
-/* Shared Receive Address Registers */
-#define E1000_SHRAL_PCH_LPT(_i)		(0x05408 + ((_i) * 8))
-#define E1000_SHRAH_PCH_LPT(_i)		(0x0540C + ((_i) * 8))
-
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_H2ME		0x05B50    /* Host to ME */
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_H2ME_ULP		0x00000800 /* ULP Indication Bit */
-#define E1000_H2ME_ENFORCE_SETTINGS	0x00001000 /* Enforce Settings */
-
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#define ID_LED_DEFAULT_ICH8LAN	((ID_LED_DEF1_DEF2 << 12) | \
-				 (ID_LED_OFF1_OFF2 <<  8) | \
-				 (ID_LED_OFF1_ON2  <<  4) | \
-				 (ID_LED_DEF1_DEF2))
-
-#define E1000_ICH_NVM_SIG_WORD		0x13
-#define E1000_ICH_NVM_SIG_MASK		0xC000
-#define E1000_ICH_NVM_VALID_SIG_MASK	0xC0
-#define E1000_ICH_NVM_SIG_VALUE		0x80
-
-#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
-
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-/* FEXT register bit definition */
-#define E1000_FEXT_PHY_CABLE_DISCONNECTED	0x00000004
-
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#define E1000_FEXTNVM_SW_CONFIG		1
-#define E1000_FEXTNVM_SW_CONFIG_ICH8M	(1 << 27) /* different on ICH8M */
-
-#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK	0x0C000000
-#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC	0x08000000
-
-#define E1000_FEXTNVM4_BEACON_DURATION_MASK	0x7
-#define E1000_FEXTNVM4_BEACON_DURATION_8USEC	0x7
-#define E1000_FEXTNVM4_BEACON_DURATION_16USEC	0x3
-
-#define E1000_FEXTNVM6_REQ_PLL_CLK	0x00000100
-#define E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION	0x00000200
-
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_FEXTNVM7_DISABLE_SMB_PERST	0x00000020
-
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#define PCIE_ICH8_SNOOP_ALL	PCIE_NO_SNOOP_ALL
-
-#define E1000_ICH_RAR_ENTRIES	7
-#define E1000_PCH2_RAR_ENTRIES	5 /* RAR[0], SHRA[0-3] */
-#define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
-
-#define PHY_PAGE_SHIFT		5
-#define PHY_REG(page, reg)	(((page) << PHY_PAGE_SHIFT) | \
-				 ((reg) & MAX_PHY_REG_ADDRESS))
-#define IGP3_KMRN_DIAG	PHY_REG(770, 19) /* KMRN Diagnostic */
-#define IGP3_VR_CTRL	PHY_REG(776, 18) /* Voltage Regulator Control */
-
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS		0x0002
-#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK	0x0300
-#define IGP3_VR_CTRL_MODE_SHUTDOWN		0x0200
-
-/* PHY Wakeup Registers and defines */
-#define BM_PORT_GEN_CFG		PHY_REG(BM_PORT_CTRL_PAGE, 17)
-#define BM_RCTL			PHY_REG(BM_WUC_PAGE, 0)
-#define BM_WUC			PHY_REG(BM_WUC_PAGE, 1)
-#define BM_WUFC			PHY_REG(BM_WUC_PAGE, 2)
-#define BM_WUS			PHY_REG(BM_WUC_PAGE, 3)
-#define BM_RAR_L(_i)		(BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
-#define BM_RAR_M(_i)		(BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
-#define BM_RAR_H(_i)		(BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
-#define BM_RAR_CTRL(_i)		(BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
-#define BM_MTA(_i)		(BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
-
-#define BM_RCTL_UPE		0x0001 /* Unicast Promiscuous Mode */
-#define BM_RCTL_MPE		0x0002 /* Multicast Promiscuous Mode */
-#define BM_RCTL_MO_SHIFT	3      /* Multicast Offset Shift */
-#define BM_RCTL_MO_MASK		(3 << 3) /* Multicast Offset Mask */
-#define BM_RCTL_BAM		0x0020 /* Broadcast Accept Mode */
-#define BM_RCTL_PMCF		0x0040 /* Pass MAC Control Frames */
-#define BM_RCTL_RFCE		0x0080 /* Rx Flow Control Enable */
-
-#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
-#define HV_MUX_DATA_CTRL	PHY_REG(776, 16)
-#define HV_MUX_DATA_CTRL_GEN_TO_MAC	0x0400
-#define HV_MUX_DATA_CTRL_FORCE_SPEED	0x0004
-#define HV_STATS_PAGE	778
-/* Half-duplex collision counts */
-#define HV_SCC_UPPER	PHY_REG(HV_STATS_PAGE, 16) /* Single Collision */
-#define HV_SCC_LOWER	PHY_REG(HV_STATS_PAGE, 17)
-#define HV_ECOL_UPPER	PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. */
-#define HV_ECOL_LOWER	PHY_REG(HV_STATS_PAGE, 19)
-#define HV_MCC_UPPER	PHY_REG(HV_STATS_PAGE, 20) /* Multiple Collision */
-#define HV_MCC_LOWER	PHY_REG(HV_STATS_PAGE, 21)
-#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision */
-#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
-#define HV_COLC_UPPER	PHY_REG(HV_STATS_PAGE, 25) /* Collision */
-#define HV_COLC_LOWER	PHY_REG(HV_STATS_PAGE, 26)
-#define HV_DC_UPPER	PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
-#define HV_DC_LOWER	PHY_REG(HV_STATS_PAGE, 28)
-#define HV_TNCRS_UPPER	PHY_REG(HV_STATS_PAGE, 29) /* Tx with no CRS */
-#define HV_TNCRS_LOWER	PHY_REG(HV_STATS_PAGE, 30)
-
-#define E1000_FCRTV_PCH	0x05F40 /* PCH Flow Control Refresh Timer Value */
-
-#define E1000_NVM_K1_CONFIG	0x1B /* NVM K1 Config Word */
-#define E1000_NVM_K1_ENABLE	0x1  /* NVM Enable K1 bit */
-
-/* SMBus Control Phy Register */
-#define CV_SMB_CTRL		PHY_REG(769, 23)
-#define CV_SMB_CTRL_FORCE_SMBUS	0x0001
-
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-/* I218 Ultra Low Power Configuration 1 Register */
-#define I218_ULP_CONFIG1		PHY_REG(779, 16)
-#define I218_ULP_CONFIG1_START		0x0001 /* Start auto ULP config */
-#define I218_ULP_CONFIG1_IND		0x0004 /* Pwr up from ULP indication */
-#define I218_ULP_CONFIG1_STICKY_ULP	0x0010 /* Set sticky ULP mode */
-#define I218_ULP_CONFIG1_INBAND_EXIT	0x0020 /* Inband on ULP exit */
-#define I218_ULP_CONFIG1_WOL_HOST	0x0040 /* WoL Host on ULP exit */
-#define I218_ULP_CONFIG1_RESET_TO_SMBUS	0x0100 /* Reset to SMBus mode */
-#define I218_ULP_CONFIG1_DISABLE_SMB_PERST	0x1000 /* Disable on PERST# */
-
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-/* SMBus Address Phy Register */
-#define HV_SMB_ADDR		PHY_REG(768, 26)
-#define HV_SMB_ADDR_MASK	0x007F
-#define HV_SMB_ADDR_PEC_EN	0x0200
-#define HV_SMB_ADDR_VALID	0x0080
-#define HV_SMB_ADDR_FREQ_MASK		0x1100
-#define HV_SMB_ADDR_FREQ_LOW_SHIFT	8
-#define HV_SMB_ADDR_FREQ_HIGH_SHIFT	12
-
-/* Strapping Option Register - RO */
-#define E1000_STRAP			0x0000C
-#define E1000_STRAP_SMBUS_ADDRESS_MASK	0x00FE0000
-#define E1000_STRAP_SMBUS_ADDRESS_SHIFT	17
-#define E1000_STRAP_SMT_FREQ_MASK	0x00003000
-#define E1000_STRAP_SMT_FREQ_SHIFT	12
-
-/* OEM Bits Phy Register */
-#define HV_OEM_BITS		PHY_REG(768, 25)
-#define HV_OEM_BITS_LPLU	0x0004 /* Low Power Link Up */
-#define HV_OEM_BITS_GBE_DIS	0x0040 /* Gigabit Disable */
-#define HV_OEM_BITS_RESTART_AN	0x0400 /* Restart Auto-negotiation */
-
-/* KMRN Mode Control */
-#define HV_KMRN_MODE_CTRL	PHY_REG(769, 16)
-#define HV_KMRN_MDIO_SLOW	0x0400
-
-/* KMRN FIFO Control and Status */
-#define HV_KMRN_FIFO_CTRLSTA			PHY_REG(770, 16)
-#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK	0x7000
-#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT	12
-
-/* PHY Power Management Control */
-#define HV_PM_CTRL		PHY_REG(770, 17)
-#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
-#define HV_PM_CTRL_K1_ENABLE		0x4000
-
-#define SW_FLAG_TIMEOUT		1000 /* SW Semaphore flag timeout in ms */
-
-/* Inband Control */
-#define I217_INBAND_CTRL				PHY_REG(770, 18)
-#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK	0x3F00
-#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT	8
-
-/* Low Power Idle GPIO Control */
-#define I217_LPI_GPIO_CTRL			PHY_REG(772, 18)
-#define I217_LPI_GPIO_CTRL_AUTO_EN_LPI		0x0800
-
-/* PHY Low Power Idle Control */
-#define I82579_LPI_CTRL				PHY_REG(772, 20)
-#define I82579_LPI_CTRL_100_ENABLE		0x2000
-#define I82579_LPI_CTRL_1000_ENABLE		0x4000
-#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
-
-/* 82579 DFT Control */
-#define I82579_DFT_CTRL			PHY_REG(769, 20)
-#define I82579_DFT_CTRL_GATE_PHY_RESET	0x0040 /* Gate PHY Reset on MAC Reset */
-
-/* Extended Management Interface (EMI) Registers */
-#define I82579_EMI_ADDR		0x10
-#define I82579_EMI_DATA		0x11
-#define I82579_LPI_UPDATE_TIMER	0x4805 /* in 40ns units + 40 ns base value */
-#define I82579_MSE_THRESHOLD	0x084F /* 82579 Mean Square Error Threshold */
-#define I82577_MSE_THRESHOLD	0x0887 /* 82577 Mean Square Error Threshold */
-#define I82579_MSE_LINK_DOWN	0x2411 /* MSE count before dropping link */
-#define I82579_RX_CONFIG		0x3412 /* Receive configuration */
-#define I82579_EEE_PCS_STATUS		0x182E	/* IEEE MMD Register 3.1 >> 8 */
-#define I82579_EEE_CAPABILITY		0x0410 /* IEEE MMD Register 3.20 */
-#define I82579_EEE_ADVERTISEMENT	0x040E /* IEEE MMD Register 7.60 */
-#define I82579_EEE_LP_ABILITY		0x040F /* IEEE MMD Register 7.61 */
-#define I82579_EEE_100_SUPPORTED	(1 << 1) /* 100BaseTx EEE */
-#define I82579_EEE_1000_SUPPORTED	(1 << 2) /* 1000BaseTx EEE */
-#define I217_EEE_PCS_STATUS	0x9401   /* IEEE MMD Register 3.1 */
-#define I217_EEE_CAPABILITY	0x8000   /* IEEE MMD Register 3.20 */
-#define I217_EEE_ADVERTISEMENT	0x8001   /* IEEE MMD Register 7.60 */
-#define I217_EEE_LP_ABILITY	0x8002   /* IEEE MMD Register 7.61 */
-#define I217_RX_CONFIG		0xB20C /* Receive configuration */
-
-#define E1000_EEE_RX_LPI_RCVD	0x0400	/* Tx LP idle received */
-#define E1000_EEE_TX_LPI_RCVD	0x0800	/* Rx LP idle received */
-
-/* Intel Rapid Start Technology Support */
-#define I217_PROXY_CTRL		BM_PHY_REG(BM_WUC_PAGE, 70)
-#define I217_PROXY_CTRL_AUTO_DISABLE	0x0080
-#define I217_SxCTRL			PHY_REG(BM_PORT_CTRL_PAGE, 28)
-#define I217_SxCTRL_ENABLE_LPI_RESET	0x1000
-#define I217_CGFREG			PHY_REG(772, 29)
-#define I217_CGFREG_ENABLE_MTA_RESET	0x0002
-#define I217_MEMPWR			PHY_REG(772, 26)
-#define I217_MEMPWR_DISABLE_SMB_RELEASE	0x0010
-
-/* Receive Address Initial CRC Calculation */
-#define E1000_PCH_RAICC(_n)	(0x05F50 + ((_n) * 4))
-
-#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
-#define E1000_PCI_REVISION_ID_REG	0x08
-#endif /* defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) */
-void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
-						 bool state);
-void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
-void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
-void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw);
-void e1000_resume_workarounds_pchlan(struct e1000_hw *hw);
-s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
-void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
-s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
-s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data);
-s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data);
-s32 e1000_set_eee_pchlan(struct e1000_hw *hw);
-#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)
-s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx);
-s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
-#endif /* NAHUM6LP_HW && ULP_SUPPORT */
-#endif /* _E1000_ICH8LAN_H_ */
-void e1000_demote_ltr(struct e1000_hw *hw, bool demote, bool link);
diff --git a/lib/librte_pmd_e1000/e1000/e1000_mac.c b/lib/librte_pmd_e1000/e1000/e1000_mac.c
deleted file mode 100644
index c8ec049..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_mac.c
+++ /dev/null
@@ -1,2247 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
-STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
-STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw);
-STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
-
-/**
- *  e1000_init_mac_ops_generic - Initialize MAC function pointers
- *  @hw: pointer to the HW structure
- *
- *  Setups up the function pointers to no-op functions
- **/
-void e1000_init_mac_ops_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	DEBUGFUNC("e1000_init_mac_ops_generic");
-
-	/* General Setup */
-	mac->ops.init_params = e1000_null_ops_generic;
-	mac->ops.init_hw = e1000_null_ops_generic;
-	mac->ops.reset_hw = e1000_null_ops_generic;
-	mac->ops.setup_physical_interface = e1000_null_ops_generic;
-	mac->ops.get_bus_info = e1000_null_ops_generic;
-	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
-	mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
-	mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
-	mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
-	/* LED */
-	mac->ops.cleanup_led = e1000_null_ops_generic;
-	mac->ops.setup_led = e1000_null_ops_generic;
-	mac->ops.blink_led = e1000_null_ops_generic;
-	mac->ops.led_on = e1000_null_ops_generic;
-	mac->ops.led_off = e1000_null_ops_generic;
-	/* LINK */
-	mac->ops.setup_link = e1000_null_ops_generic;
-	mac->ops.get_link_up_info = e1000_null_link_info;
-	mac->ops.check_for_link = e1000_null_ops_generic;
-	/* Management */
-	mac->ops.check_mng_mode = e1000_null_mng_mode;
-	/* VLAN, MC, etc. */
-	mac->ops.update_mc_addr_list = e1000_null_update_mc;
-	mac->ops.clear_vfta = e1000_null_mac_generic;
-	mac->ops.write_vfta = e1000_null_write_vfta;
-	mac->ops.rar_set = e1000_rar_set_generic;
-	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
-}
-
-/**
- *  e1000_null_ops_generic - No-op function, returns 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	DEBUGFUNC("e1000_null_ops_generic");
-	UNREFERENCED_1PARAMETER(hw);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_mac_generic - No-op function, return void
- *  @hw: pointer to the HW structure
- **/
-void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	DEBUGFUNC("e1000_null_mac_generic");
-	UNREFERENCED_1PARAMETER(hw);
-	return;
-}
-
-/**
- *  e1000_null_link_info - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
-			 u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
-{
-	DEBUGFUNC("e1000_null_link_info");
-	UNREFERENCED_3PARAMETER(hw, s, d);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_mng_mode - No-op function, return false
- *  @hw: pointer to the HW structure
- **/
-bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	DEBUGFUNC("e1000_null_mng_mode");
-	UNREFERENCED_1PARAMETER(hw);
-	return false;
-}
-
-/**
- *  e1000_null_update_mc - No-op function, return void
- *  @hw: pointer to the HW structure
- **/
-void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
-			  u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
-{
-	DEBUGFUNC("e1000_null_update_mc");
-	UNREFERENCED_3PARAMETER(hw, h, a);
-	return;
-}
-
-/**
- *  e1000_null_write_vfta - No-op function, return void
- *  @hw: pointer to the HW structure
- **/
-void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
-			   u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
-{
-	DEBUGFUNC("e1000_null_write_vfta");
-	UNREFERENCED_3PARAMETER(hw, a, b);
-	return;
-}
-
-/**
- *  e1000_null_rar_set - No-op function, return void
- *  @hw: pointer to the HW structure
- **/
-void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
-			u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
-{
-	DEBUGFUNC("e1000_null_rar_set");
-	UNREFERENCED_3PARAMETER(hw, h, a);
-	return;
-}
-
-/**
- *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information
- *  @hw: pointer to the HW structure
- *
- *  Determines and stores the system bus information for a particular
- *  network interface.  The following bus information is determined and stored:
- *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
- **/
-s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	struct e1000_bus_info *bus = &hw->bus;
-	u32 status = E1000_READ_REG(hw, E1000_STATUS);
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_get_bus_info_pci_generic");
-
-	/* PCI or PCI-X? */
-	bus->type = (status & E1000_STATUS_PCIX_MODE)
-			? e1000_bus_type_pcix
-			: e1000_bus_type_pci;
-
-	/* Bus speed */
-	if (bus->type == e1000_bus_type_pci) {
-		bus->speed = (status & E1000_STATUS_PCI66)
-			     ? e1000_bus_speed_66
-			     : e1000_bus_speed_33;
-	} else {
-		switch (status & E1000_STATUS_PCIX_SPEED) {
-		case E1000_STATUS_PCIX_SPEED_66:
-			bus->speed = e1000_bus_speed_66;
-			break;
-		case E1000_STATUS_PCIX_SPEED_100:
-			bus->speed = e1000_bus_speed_100;
-			break;
-		case E1000_STATUS_PCIX_SPEED_133:
-			bus->speed = e1000_bus_speed_133;
-			break;
-		default:
-			bus->speed = e1000_bus_speed_reserved;
-			break;
-		}
-	}
-
-	/* Bus width */
-	bus->width = (status & E1000_STATUS_BUS64)
-		     ? e1000_bus_width_64
-		     : e1000_bus_width_32;
-
-	/* Which PCI(-X) function? */
-	mac->ops.set_lan_id(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_bus_info_pcie_generic - Get PCIe bus information
- *  @hw: pointer to the HW structure
- *
- *  Determines and stores the system bus information for a particular
- *  network interface.  The following bus information is determined and stored:
- *  bus speed, bus width, type (PCIe), and PCIe function.
- **/
-s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	struct e1000_bus_info *bus = &hw->bus;
-	s32 ret_val;
-	u16 pcie_link_status;
-
-	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
-
-	bus->type = e1000_bus_type_pci_express;
-
-	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
-					  &pcie_link_status);
-	if (ret_val) {
-		bus->width = e1000_bus_width_unknown;
-		bus->speed = e1000_bus_speed_unknown;
-	} else {
-		switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
-		case PCIE_LINK_SPEED_2500:
-			bus->speed = e1000_bus_speed_2500;
-			break;
-		case PCIE_LINK_SPEED_5000:
-			bus->speed = e1000_bus_speed_5000;
-			break;
-		default:
-			bus->speed = e1000_bus_speed_unknown;
-			break;
-		}
-
-		bus->width = (enum e1000_bus_width)((pcie_link_status &
-			      PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
-	}
-
-	mac->ops.set_lan_id(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
- *
- *  @hw: pointer to the HW structure
- *
- *  Determines the LAN function id by reading memory-mapped registers
- *  and swaps the port value if requested.
- **/
-STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
-{
-	struct e1000_bus_info *bus = &hw->bus;
-	u32 reg;
-
-	/* The status register reports the correct function number
-	 * for the device regardless of function swap state.
-	 */
-	reg = E1000_READ_REG(hw, E1000_STATUS);
-	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
-}
-
-/**
- *  e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
- *  @hw: pointer to the HW structure
- *
- *  Determines the LAN function id by reading PCI config space.
- **/
-void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
-{
-	struct e1000_bus_info *bus = &hw->bus;
-	u16 pci_header_type;
-	u32 status;
-
-	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
-	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
-		status = E1000_READ_REG(hw, E1000_STATUS);
-		bus->func = (status & E1000_STATUS_FUNC_MASK)
-			    >> E1000_STATUS_FUNC_SHIFT;
-	} else {
-		bus->func = 0;
-	}
-}
-
-/**
- *  e1000_set_lan_id_single_port - Set LAN id for a single port device
- *  @hw: pointer to the HW structure
- *
- *  Sets the LAN function id to zero for a single port device.
- **/
-void e1000_set_lan_id_single_port(struct e1000_hw *hw)
-{
-	struct e1000_bus_info *bus = &hw->bus;
-
-	bus->func = 0;
-}
-
-/**
- *  e1000_clear_vfta_generic - Clear VLAN filter table
- *  @hw: pointer to the HW structure
- *
- *  Clears the register array which contains the VLAN filter table by
- *  setting all the values to 0.
- **/
-void e1000_clear_vfta_generic(struct e1000_hw *hw)
-{
-	u32 offset;
-
-	DEBUGFUNC("e1000_clear_vfta_generic");
-
-	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
-		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
-		E1000_WRITE_FLUSH(hw);
-	}
-}
-
-/**
- *  e1000_write_vfta_generic - Write value to VLAN filter table
- *  @hw: pointer to the HW structure
- *  @offset: register offset in VLAN filter table
- *  @value: register value written to VLAN filter table
- *
- *  Writes value at the given offset in the register array which stores
- *  the VLAN filter table.
- **/
-void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
-{
-	DEBUGFUNC("e1000_write_vfta_generic");
-
-	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
-	E1000_WRITE_FLUSH(hw);
-}
-
-/**
- *  e1000_init_rx_addrs_generic - Initialize receive address's
- *  @hw: pointer to the HW structure
- *  @rar_count: receive address registers
- *
- *  Setup the receive address registers by setting the base receive address
- *  register to the devices MAC address and clearing all the other receive
- *  address registers to 0.
- **/
-void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
-{
-	u32 i;
-	u8 mac_addr[ETH_ADDR_LEN] = {0};
-
-	DEBUGFUNC("e1000_init_rx_addrs_generic");
-
-	/* Setup the receive address */
-	DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
-	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
-
-	/* Zero out the other (rar_entry_count - 1) receive addresses */
-	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
-	for (i = 1; i < rar_count; i++)
-		hw->mac.ops.rar_set(hw, mac_addr, i);
-}
-
-/**
- *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
- *  @hw: pointer to the HW structure
- *
- *  Checks the nvm for an alternate MAC address.  An alternate MAC address
- *  can be setup by pre-boot software and must be treated like a permanent
- *  address and must override the actual permanent MAC address. If an
- *  alternate MAC address is found it is programmed into RAR0, replacing
- *  the permanent address that was installed into RAR0 by the Si on reset.
- *  This function will return SUCCESS unless it encounters an error while
- *  reading the EEPROM.
- **/
-s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
-{
-	u32 i;
-	s32 ret_val;
-	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
-	u8 alt_mac_addr[ETH_ADDR_LEN];
-
-	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
-	if (ret_val)
-		return ret_val;
-
-	/* not supported on older hardware or 82573 */
-	if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
-		return E1000_SUCCESS;
-
-	/* Alternate MAC address is handled by the option ROM for 82580
-	 * and newer. SW support not required.
-	 */
-	if (hw->mac.type >= e1000_82580)
-		return E1000_SUCCESS;
-
-	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
-				   &nvm_alt_mac_addr_offset);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
-	    (nvm_alt_mac_addr_offset == 0x0000))
-		/* There is no Alternate MAC Address */
-		return E1000_SUCCESS;
-
-	if (hw->bus.func == E1000_FUNC_1)
-		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
-	if (hw->bus.func == E1000_FUNC_2)
-		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
-
-	if (hw->bus.func == E1000_FUNC_3)
-		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
-	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
-		offset = nvm_alt_mac_addr_offset + (i >> 1);
-		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error\n");
-			return ret_val;
-		}
-
-		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
-		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
-	}
-
-	/* if multicast bit is set, the alternate address will not be used */
-	if (alt_mac_addr[0] & 0x01) {
-		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
-		return E1000_SUCCESS;
-	}
-
-	/* We have a valid alternate MAC address, and we want to treat it the
-	 * same as the normal permanent MAC address stored by the HW into the
-	 * RAR. Do this by mapping this address into RAR0.
-	 */
-	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_rar_set_generic - Set receive address register
- *  @hw: pointer to the HW structure
- *  @addr: pointer to the receive address
- *  @index: receive address array register
- *
- *  Sets the receive address array register at index to the address passed
- *  in by addr.
- **/
-STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
-{
-	u32 rar_low, rar_high;
-
-	DEBUGFUNC("e1000_rar_set_generic");
-
-	/* HW expects these in little endian so we reverse the byte order
-	 * from network order (big endian) to little endian
-	 */
-	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
-		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
-	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
-	/* If MAC address zero, no need to set the AV bit */
-	if (rar_low || rar_high)
-		rar_high |= E1000_RAH_AV;
-
-	/* Some bridges will combine consecutive 32-bit writes into
-	 * a single burst write, which will malfunction on some parts.
-	 * The flushes avoid this.
-	 */
-	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
-	E1000_WRITE_FLUSH(hw);
-	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
-	E1000_WRITE_FLUSH(hw);
-}
-
-/**
- *  e1000_hash_mc_addr_generic - Generate a multicast hash value
- *  @hw: pointer to the HW structure
- *  @mc_addr: pointer to a multicast address
- *
- *  Generates a multicast address hash value which is used to determine
- *  the multicast filter table array address and new table value.
- **/
-u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
-{
-	u32 hash_value, hash_mask;
-	u8 bit_shift = 0;
-
-	DEBUGFUNC("e1000_hash_mc_addr_generic");
-
-	/* Register count multiplied by bits per register */
-	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
-	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
-	 * where 0xFF would still fall within the hash mask.
-	 */
-	while (hash_mask >> bit_shift != 0xFF)
-		bit_shift++;
-
-	/* The portion of the address that is used for the hash table
-	 * is determined by the mc_filter_type setting.
-	 * The algorithm is such that there is a total of 8 bits of shifting.
-	 * The bit_shift for a mc_filter_type of 0 represents the number of
-	 * left-shifts where the MSB of mc_addr[5] would still fall within
-	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
-	 * of 8 bits of shifting, then mc_addr[4] will shift right the
-	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
-	 * cases are a variation of this algorithm...essentially raising the
-	 * number of bits to shift mc_addr[5] left, while still keeping the
-	 * 8-bit shifting total.
-	 *
-	 * For example, given the following Destination MAC Address and an
-	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
-	 * we can see that the bit_shift for case 0 is 4.  These are the hash
-	 * values resulting from each mc_filter_type...
-	 * [0] [1] [2] [3] [4] [5]
-	 * 01  AA  00  12  34  56
-	 * LSB		 MSB
-	 *
-	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
-	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
-	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
-	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
-	 */
-	switch (hw->mac.mc_filter_type) {
-	default:
-	case 0:
-		break;
-	case 1:
-		bit_shift += 1;
-		break;
-	case 2:
-		bit_shift += 2;
-		break;
-	case 3:
-		bit_shift += 4;
-		break;
-	}
-
-	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
-				  (((u16) mc_addr[5]) << bit_shift)));
-
-	return hash_value;
-}
-
-/**
- *  e1000_update_mc_addr_list_generic - Update Multicast addresses
- *  @hw: pointer to the HW structure
- *  @mc_addr_list: array of multicast addresses to program
- *  @mc_addr_count: number of multicast addresses to program
- *
- *  Updates entire Multicast Table Array.
- *  The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
-				       u8 *mc_addr_list, u32 mc_addr_count)
-{
-	u32 hash_value, hash_bit, hash_reg;
-	int i;
-
-	DEBUGFUNC("e1000_update_mc_addr_list_generic");
-
-	/* clear mta_shadow */
-	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
-
-	/* update mta_shadow from mc_addr_list */
-	for (i = 0; (u32) i < mc_addr_count; i++) {
-		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
-
-		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
-		hash_bit = hash_value & 0x1F;
-
-		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
-		mc_addr_list += (ETH_ADDR_LEN);
-	}
-
-	/* replace the entire MTA table */
-	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
-	E1000_WRITE_FLUSH(hw);
-}
-
-/**
- *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
- *  @hw: pointer to the HW structure
- *
- *  In certain situations, a system BIOS may report that the PCIx maximum
- *  memory read byte count (MMRBC) value is higher than than the actual
- *  value. We check the PCIx command register with the current PCIx status
- *  register.
- **/
-void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
-{
-	u16 cmd_mmrbc;
-	u16 pcix_cmd;
-	u16 pcix_stat_hi_word;
-	u16 stat_mmrbc;
-
-	DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
-
-	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
-	if (hw->bus.type != e1000_bus_type_pcix)
-		return;
-
-	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
-	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
-	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
-		     PCIX_COMMAND_MMRBC_SHIFT;
-	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
-		      PCIX_STATUS_HI_MMRBC_SHIFT;
-	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
-		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
-	if (cmd_mmrbc > stat_mmrbc) {
-		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
-		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
-		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
-	}
-}
-
-/**
- *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
- *  @hw: pointer to the HW structure
- *
- *  Clears the base hardware counters by reading the counter registers.
- **/
-void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
-
-	E1000_READ_REG(hw, E1000_CRCERRS);
-	E1000_READ_REG(hw, E1000_SYMERRS);
-	E1000_READ_REG(hw, E1000_MPC);
-	E1000_READ_REG(hw, E1000_SCC);
-	E1000_READ_REG(hw, E1000_ECOL);
-	E1000_READ_REG(hw, E1000_MCC);
-	E1000_READ_REG(hw, E1000_LATECOL);
-	E1000_READ_REG(hw, E1000_COLC);
-	E1000_READ_REG(hw, E1000_DC);
-	E1000_READ_REG(hw, E1000_SEC);
-	E1000_READ_REG(hw, E1000_RLEC);
-	E1000_READ_REG(hw, E1000_XONRXC);
-	E1000_READ_REG(hw, E1000_XONTXC);
-	E1000_READ_REG(hw, E1000_XOFFRXC);
-	E1000_READ_REG(hw, E1000_XOFFTXC);
-	E1000_READ_REG(hw, E1000_FCRUC);
-	E1000_READ_REG(hw, E1000_GPRC);
-	E1000_READ_REG(hw, E1000_BPRC);
-	E1000_READ_REG(hw, E1000_MPRC);
-	E1000_READ_REG(hw, E1000_GPTC);
-	E1000_READ_REG(hw, E1000_GORCL);
-	E1000_READ_REG(hw, E1000_GORCH);
-	E1000_READ_REG(hw, E1000_GOTCL);
-	E1000_READ_REG(hw, E1000_GOTCH);
-	E1000_READ_REG(hw, E1000_RNBC);
-	E1000_READ_REG(hw, E1000_RUC);
-	E1000_READ_REG(hw, E1000_RFC);
-	E1000_READ_REG(hw, E1000_ROC);
-	E1000_READ_REG(hw, E1000_RJC);
-	E1000_READ_REG(hw, E1000_TORL);
-	E1000_READ_REG(hw, E1000_TORH);
-	E1000_READ_REG(hw, E1000_TOTL);
-	E1000_READ_REG(hw, E1000_TOTH);
-	E1000_READ_REG(hw, E1000_TPR);
-	E1000_READ_REG(hw, E1000_TPT);
-	E1000_READ_REG(hw, E1000_MPTC);
-	E1000_READ_REG(hw, E1000_BPTC);
-}
-
-/**
- *  e1000_check_for_copper_link_generic - Check for link (Copper)
- *  @hw: pointer to the HW structure
- *
- *  Checks to see of the link status of the hardware has changed.  If a
- *  change in link status has been detected, then we read the PHY registers
- *  to get the current speed/duplex if link exists.
- **/
-s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val;
-	bool link;
-
-	DEBUGFUNC("e1000_check_for_copper_link");
-
-	/* We only want to go out to the PHY registers to see if Auto-Neg
-	 * has completed and/or if our link status has changed.  The
-	 * get_link_status flag is set upon receiving a Link Status
-	 * Change or Rx Sequence Error interrupt.
-	 */
-	if (!mac->get_link_status)
-		return E1000_SUCCESS;
-
-	/* First we want to see if the MII Status Register reports
-	 * link.  If so, then we want to get the current speed/duplex
-	 * of the PHY.
-	 */
-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-	if (ret_val)
-		return ret_val;
-
-	if (!link)
-		return E1000_SUCCESS; /* No link detected */
-
-	mac->get_link_status = false;
-
-	/* Check if there was DownShift, must be checked
-	 * immediately after link-up
-	 */
-	e1000_check_downshift_generic(hw);
-
-	/* If we are forcing speed/duplex, then we simply return since
-	 * we have already determined whether we have link or not.
-	 */
-	if (!mac->autoneg)
-		return -E1000_ERR_CONFIG;
-
-	/* Auto-Neg is enabled.  Auto Speed Detection takes care
-	 * of MAC speed/duplex configuration.  So we only need to
-	 * configure Collision Distance in the MAC.
-	 */
-	mac->ops.config_collision_dist(hw);
-
-	/* Configure Flow Control now that Auto-Neg has completed.
-	 * First, we need to restore the desired flow control
-	 * settings because we may have had to re-autoneg with a
-	 * different link partner.
-	 */
-	ret_val = e1000_config_fc_after_link_up_generic(hw);
-	if (ret_val)
-		DEBUGOUT("Error configuring flow control\n");
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_fiber_link_generic - Check for link (Fiber)
- *  @hw: pointer to the HW structure
- *
- *  Checks for link up on the hardware.  If link is not up and we have
- *  a signal, then we need to force link up.
- **/
-s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 rxcw;
-	u32 ctrl;
-	u32 status;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_check_for_fiber_link_generic");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	status = E1000_READ_REG(hw, E1000_STATUS);
-	rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
-	/* If we don't have link (auto-negotiation failed or link partner
-	 * cannot auto-negotiate), the cable is plugged in (we have signal),
-	 * and our link partner is not trying to auto-negotiate with us (we
-	 * are receiving idles or data), we need to force link up. We also
-	 * need to give auto-negotiation time to complete, in case the cable
-	 * was just plugged in. The autoneg_failed flag does this.
-	 */
-	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
-	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
-	    !(rxcw & E1000_RXCW_C)) {
-		if (!mac->autoneg_failed) {
-			mac->autoneg_failed = true;
-			return E1000_SUCCESS;
-		}
-		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
-		/* Disable auto-negotiation in the TXCW register */
-		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
-		/* Force link-up and also force full-duplex. */
-		ctrl = E1000_READ_REG(hw, E1000_CTRL);
-		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-		/* Configure Flow Control after forcing link up. */
-		ret_val = e1000_config_fc_after_link_up_generic(hw);
-		if (ret_val) {
-			DEBUGOUT("Error configuring flow control\n");
-			return ret_val;
-		}
-	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
-		/* If we are forcing link and we are receiving /C/ ordered
-		 * sets, re-enable auto-negotiation in the TXCW register
-		 * and disable forced link in the Device Control register
-		 * in an attempt to auto-negotiate with our link partner.
-		 */
-		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
-		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
-		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
-		mac->serdes_has_link = true;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
- *  @hw: pointer to the HW structure
- *
- *  Checks for link up on the hardware.  If link is not up and we have
- *  a signal, then we need to force link up.
- **/
-s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 rxcw;
-	u32 ctrl;
-	u32 status;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_check_for_serdes_link_generic");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	status = E1000_READ_REG(hw, E1000_STATUS);
-	rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
-	/* If we don't have link (auto-negotiation failed or link partner
-	 * cannot auto-negotiate), and our link partner is not trying to
-	 * auto-negotiate with us (we are receiving idles or data),
-	 * we need to force link up. We also need to give auto-negotiation
-	 * time to complete.
-	 */
-	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
-	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
-		if (!mac->autoneg_failed) {
-			mac->autoneg_failed = true;
-			return E1000_SUCCESS;
-		}
-		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
-		/* Disable auto-negotiation in the TXCW register */
-		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
-		/* Force link-up and also force full-duplex. */
-		ctrl = E1000_READ_REG(hw, E1000_CTRL);
-		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-		/* Configure Flow Control after forcing link up. */
-		ret_val = e1000_config_fc_after_link_up_generic(hw);
-		if (ret_val) {
-			DEBUGOUT("Error configuring flow control\n");
-			return ret_val;
-		}
-	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
-		/* If we are forcing link and we are receiving /C/ ordered
-		 * sets, re-enable auto-negotiation in the TXCW register
-		 * and disable forced link in the Device Control register
-		 * in an attempt to auto-negotiate with our link partner.
-		 */
-		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
-		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
-		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
-		mac->serdes_has_link = true;
-	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
-		/* If we force link for non-auto-negotiation switch, check
-		 * link status based on MAC synchronization for internal
-		 * serdes media type.
-		 */
-		/* SYNCH bit and IV bit are sticky. */
-		usec_delay(10);
-		rxcw = E1000_READ_REG(hw, E1000_RXCW);
-		if (rxcw & E1000_RXCW_SYNCH) {
-			if (!(rxcw & E1000_RXCW_IV)) {
-				mac->serdes_has_link = true;
-				DEBUGOUT("SERDES: Link up - forced.\n");
-			}
-		} else {
-			mac->serdes_has_link = false;
-			DEBUGOUT("SERDES: Link down - force failed.\n");
-		}
-	}
-
-	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
-		status = E1000_READ_REG(hw, E1000_STATUS);
-		if (status & E1000_STATUS_LU) {
-			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
-			usec_delay(10);
-			rxcw = E1000_READ_REG(hw, E1000_RXCW);
-			if (rxcw & E1000_RXCW_SYNCH) {
-				if (!(rxcw & E1000_RXCW_IV)) {
-					mac->serdes_has_link = true;
-					DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
-				} else {
-					mac->serdes_has_link = false;
-					DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
-				}
-			} else {
-				mac->serdes_has_link = false;
-				DEBUGOUT("SERDES: Link down - no sync.\n");
-			}
-		} else {
-			mac->serdes_has_link = false;
-			DEBUGOUT("SERDES: Link down - autoneg failed\n");
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_set_default_fc_generic - Set flow control default values
- *  @hw: pointer to the HW structure
- *
- *  Read the EEPROM for the default values for flow control and store the
- *  values.
- **/
-s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 nvm_data;
-	u16 nvm_offset = 0;
-
-	DEBUGFUNC("e1000_set_default_fc_generic");
-
-	/* Read and store word 0x0F of the EEPROM. This word contains bits
-	 * that determine the hardware's default PAUSE (flow control) mode,
-	 * a bit that determines whether the HW defaults to enabling or
-	 * disabling auto-negotiation, and the direction of the
-	 * SW defined pins. If there is no SW over-ride of the flow
-	 * control setting, then the variable hw->fc will
-	 * be initialized based on a value in the EEPROM.
-	 */
-	if (hw->mac.type == e1000_i350) {
-		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
-		ret_val = hw->nvm.ops.read(hw,
-					   NVM_INIT_CONTROL2_REG +
-					   nvm_offset,
-					   1, &nvm_data);
-	} else {
-		ret_val = hw->nvm.ops.read(hw,
-					   NVM_INIT_CONTROL2_REG,
-					   1, &nvm_data);
-	}
-
-
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
-		hw->fc.requested_mode = e1000_fc_none;
-	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
-		 NVM_WORD0F_ASM_DIR)
-		hw->fc.requested_mode = e1000_fc_tx_pause;
-	else
-		hw->fc.requested_mode = e1000_fc_full;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_setup_link_generic - Setup flow control and link settings
- *  @hw: pointer to the HW structure
- *
- *  Determines which flow control settings to use, then configures flow
- *  control.  Calls the appropriate media-specific link configuration
- *  function.  Assuming the adapter has a valid link partner, a valid link
- *  should be established.  Assumes the hardware has previously been reset
- *  and the transmitter and receiver are not enabled.
- **/
-s32 e1000_setup_link_generic(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_setup_link_generic");
-
-	/* In the case of the phy reset being blocked, we already have a link.
-	 * We do not need to set it up again.
-	 */
-	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
-		return E1000_SUCCESS;
-
-	/* If requested flow control is set to default, set flow control
-	 * based on the EEPROM flow control settings.
-	 */
-	if (hw->fc.requested_mode == e1000_fc_default) {
-		ret_val = e1000_set_default_fc_generic(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Save off the requested flow control mode for use later.  Depending
-	 * on the link partner's capabilities, we may or may not use this mode.
-	 */
-	hw->fc.current_mode = hw->fc.requested_mode;
-
-	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
-		hw->fc.current_mode);
-
-	/* Call the necessary media_type subroutine to configure the link. */
-	ret_val = hw->mac.ops.setup_physical_interface(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Initialize the flow control address, type, and PAUSE timer
-	 * registers to their default values.  This is done even if flow
-	 * control is disabled, because it does not hurt anything to
-	 * initialize these registers.
-	 */
-	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
-	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
-	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
-
-	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
-
-	return e1000_set_fc_watermarks_generic(hw);
-}
-
-/**
- *  e1000_commit_fc_settings_generic - Configure flow control
- *  @hw: pointer to the HW structure
- *
- *  Write the flow control settings to the Transmit Config Word Register (TXCW)
- *  base on the flow control settings in e1000_mac_info.
- **/
-s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 txcw;
-
-	DEBUGFUNC("e1000_commit_fc_settings_generic");
-
-	/* Check for a software override of the flow control settings, and
-	 * setup the device accordingly.  If auto-negotiation is enabled, then
-	 * software will have to set the "PAUSE" bits to the correct value in
-	 * the Transmit Config Word Register (TXCW) and re-start auto-
-	 * negotiation.  However, if auto-negotiation is disabled, then
-	 * software will have to manually configure the two flow control enable
-	 * bits in the CTRL register.
-	 *
-	 * The possible values of the "fc" parameter are:
-	 *      0:  Flow control is completely disabled
-	 *      1:  Rx flow control is enabled (we can receive pause frames,
-	 *          but not send pause frames).
-	 *      2:  Tx flow control is enabled (we can send pause frames but we
-	 *          do not support receiving pause frames).
-	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
-	 */
-	switch (hw->fc.current_mode) {
-	case e1000_fc_none:
-		/* Flow control completely disabled by a software over-ride. */
-		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
-		break;
-	case e1000_fc_rx_pause:
-		/* Rx Flow control is enabled and Tx Flow control is disabled
-		 * by a software over-ride. Since there really isn't a way to
-		 * advertise that we are capable of Rx Pause ONLY, we will
-		 * advertise that we support both symmetric and asymmetric Rx
-		 * PAUSE.  Later, we will disable the adapter's ability to send
-		 * PAUSE frames.
-		 */
-		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
-		break;
-	case e1000_fc_tx_pause:
-		/* Tx Flow control is enabled, and Rx Flow control is disabled,
-		 * by a software over-ride.
-		 */
-		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
-		break;
-	case e1000_fc_full:
-		/* Flow control (both Rx and Tx) is enabled by a software
-		 * over-ride.
-		 */
-		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
-		break;
-	default:
-		DEBUGOUT("Flow control param set incorrectly\n");
-		return -E1000_ERR_CONFIG;
-		break;
-	}
-
-	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
-	mac->txcw = txcw;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_poll_fiber_serdes_link_generic - Poll for link up
- *  @hw: pointer to the HW structure
- *
- *  Polls for link up by reading the status register, if link fails to come
- *  up with auto-negotiation, then the link is forced if a signal is detected.
- **/
-s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 i, status;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
-
-	/* If we have a signal (the cable is plugged in, or assumed true for
-	 * serdes media) then poll for a "Link-Up" indication in the Device
-	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
-	 * seconds (Auto-negotiation should complete in less than 500
-	 * milliseconds even if the other end is doing it in SW).
-	 */
-	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
-		msec_delay(10);
-		status = E1000_READ_REG(hw, E1000_STATUS);
-		if (status & E1000_STATUS_LU)
-			break;
-	}
-	if (i == FIBER_LINK_UP_LIMIT) {
-		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
-		mac->autoneg_failed = true;
-		/* AutoNeg failed to achieve a link, so we'll call
-		 * mac->check_for_link. This routine will force the
-		 * link up if we detect a signal. This will allow us to
-		 * communicate with non-autonegotiating link partners.
-		 */
-		ret_val = mac->ops.check_for_link(hw);
-		if (ret_val) {
-			DEBUGOUT("Error while checking for link\n");
-			return ret_val;
-		}
-		mac->autoneg_failed = false;
-	} else {
-		mac->autoneg_failed = false;
-		DEBUGOUT("Valid Link Found\n");
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
- *  @hw: pointer to the HW structure
- *
- *  Configures collision distance and flow control for fiber and serdes
- *  links.  Upon successful setup, poll for link.
- **/
-s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	/* Take the link out of reset */
-	ctrl &= ~E1000_CTRL_LRST;
-
-	hw->mac.ops.config_collision_dist(hw);
-
-	ret_val = e1000_commit_fc_settings_generic(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Since auto-negotiation is enabled, take the link out of reset (the
-	 * link will be in reset, because we previously reset the chip). This
-	 * will restart auto-negotiation.  If auto-negotiation is successful
-	 * then the link-up status bit will be set and the flow control enable
-	 * bits (RFCE and TFCE) will be set according to their negotiated value.
-	 */
-	DEBUGOUT("Auto-negotiation enabled\n");
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-	E1000_WRITE_FLUSH(hw);
-	msec_delay(1);
-
-	/* For these adapters, the SW definable pin 1 is set when the optics
-	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
-	 * indication.
-	 */
-	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
-	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
-		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
-	} else {
-		DEBUGOUT("No signal detected\n");
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_config_collision_dist_generic - Configure collision distance
- *  @hw: pointer to the HW structure
- *
- *  Configures the collision distance to the default value and is used
- *  during link setup.
- **/
-STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw)
-{
-	u32 tctl;
-
-	DEBUGFUNC("e1000_config_collision_dist_generic");
-
-	tctl = E1000_READ_REG(hw, E1000_TCTL);
-
-	tctl &= ~E1000_TCTL_COLD;
-	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-
-	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-	E1000_WRITE_FLUSH(hw);
-}
-
-/**
- *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
- *  @hw: pointer to the HW structure
- *
- *  Sets the flow control high/low threshold (watermark) registers.  If
- *  flow control XON frame transmission is enabled, then set XON frame
- *  transmission as well.
- **/
-s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
-{
-	u32 fcrtl = 0, fcrth = 0;
-
-	DEBUGFUNC("e1000_set_fc_watermarks_generic");
-
-	/* Set the flow control receive threshold registers.  Normally,
-	 * these registers will be set to a default threshold that may be
-	 * adjusted later by the driver's runtime code.  However, if the
-	 * ability to transmit pause frames is not enabled, then these
-	 * registers will be set to 0.
-	 */
-	if (hw->fc.current_mode & e1000_fc_tx_pause) {
-		/* We need to set up the Receive Threshold high and low water
-		 * marks as well as (optionally) enabling the transmission of
-		 * XON frames.
-		 */
-		fcrtl = hw->fc.low_water;
-		if (hw->fc.send_xon)
-			fcrtl |= E1000_FCRTL_XONE;
-
-		fcrth = hw->fc.high_water;
-	}
-	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
-	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_force_mac_fc_generic - Force the MAC's flow control settings
- *  @hw: pointer to the HW structure
- *
- *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
- *  device control register to reflect the adapter settings.  TFCE and RFCE
- *  need to be explicitly set by software when a copper PHY is used because
- *  autonegotiation is managed by the PHY rather than the MAC.  Software must
- *  also configure these bits when link is forced on a fiber connection.
- **/
-s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
-{
-	u32 ctrl;
-
-	DEBUGFUNC("e1000_force_mac_fc_generic");
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
-	/* Because we didn't get link via the internal auto-negotiation
-	 * mechanism (we either forced link or we got link via PHY
-	 * auto-neg), we have to manually enable/disable transmit an
-	 * receive flow control.
-	 *
-	 * The "Case" statement below enables/disable flow control
-	 * according to the "hw->fc.current_mode" parameter.
-	 *
-	 * The possible values of the "fc" parameter are:
-	 *      0:  Flow control is completely disabled
-	 *      1:  Rx flow control is enabled (we can receive pause
-	 *          frames but not send pause frames).
-	 *      2:  Tx flow control is enabled (we can send pause frames
-	 *          frames but we do not receive pause frames).
-	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
-	 *  other:  No other values should be possible at this point.
-	 */
-	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
-
-	switch (hw->fc.current_mode) {
-	case e1000_fc_none:
-		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
-		break;
-	case e1000_fc_rx_pause:
-		ctrl &= (~E1000_CTRL_TFCE);
-		ctrl |= E1000_CTRL_RFCE;
-		break;
-	case e1000_fc_tx_pause:
-		ctrl &= (~E1000_CTRL_RFCE);
-		ctrl |= E1000_CTRL_TFCE;
-		break;
-	case e1000_fc_full:
-		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
-		break;
-	default:
-		DEBUGOUT("Flow control param set incorrectly\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_config_fc_after_link_up_generic - Configures flow control after link
- *  @hw: pointer to the HW structure
- *
- *  Checks the status of auto-negotiation after link up to ensure that the
- *  speed and duplex were not forced.  If the link needed to be forced, then
- *  flow control needs to be forced also.  If auto-negotiation is enabled
- *  and did not fail, then we configure flow control based on our link
- *  partner.
- **/
-s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val = E1000_SUCCESS;
-	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
-	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
-	u16 speed, duplex;
-
-	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
-
-	/* Check for the case where we have fiber media and auto-neg failed
-	 * so we had to force link.  In this case, we need to force the
-	 * configuration of the MAC to match the "fc" parameter.
-	 */
-	if (mac->autoneg_failed) {
-		if (hw->phy.media_type == e1000_media_type_fiber ||
-		    hw->phy.media_type == e1000_media_type_internal_serdes)
-			ret_val = e1000_force_mac_fc_generic(hw);
-	} else {
-		if (hw->phy.media_type == e1000_media_type_copper)
-			ret_val = e1000_force_mac_fc_generic(hw);
-	}
-
-	if (ret_val) {
-		DEBUGOUT("Error forcing flow control settings\n");
-		return ret_val;
-	}
-
-	/* Check for the case where we have copper media and auto-neg is
-	 * enabled.  In this case, we need to check and see if Auto-Neg
-	 * has completed, and if so, how the PHY and link partner has
-	 * flow control configured.
-	 */
-	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
-		/* Read the MII Status Register and check to see if AutoNeg
-		 * has completed.  We read this twice because this reg has
-		 * some "sticky" (latched) bits.
-		 */
-		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
-		if (ret_val)
-			return ret_val;
-		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
-		if (ret_val)
-			return ret_val;
-
-		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
-			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
-			return ret_val;
-		}
-
-		/* The AutoNeg process has completed, so we now need to
-		 * read both the Auto Negotiation Advertisement
-		 * Register (Address 4) and the Auto_Negotiation Base
-		 * Page Ability Register (Address 5) to determine how
-		 * flow control was negotiated.
-		 */
-		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
-					       &mii_nway_adv_reg);
-		if (ret_val)
-			return ret_val;
-		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
-					       &mii_nway_lp_ability_reg);
-		if (ret_val)
-			return ret_val;
-
-		/* Two bits in the Auto Negotiation Advertisement Register
-		 * (Address 4) and two bits in the Auto Negotiation Base
-		 * Page Ability Register (Address 5) determine flow control
-		 * for both the PHY and the link partner.  The following
-		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
-		 * 1999, describes these PAUSE resolution bits and how flow
-		 * control is determined based upon these settings.
-		 * NOTE:  DC = Don't Care
-		 *
-		 *   LOCAL DEVICE  |   LINK PARTNER
-		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
-		 *-------|---------|-------|---------|--------------------
-		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
-		 *   0   |    1    |   0   |   DC    | e1000_fc_none
-		 *   0   |    1    |   1   |    0    | e1000_fc_none
-		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
-		 *   1   |    0    |   0   |   DC    | e1000_fc_none
-		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
-		 *   1   |    1    |   0   |    0    | e1000_fc_none
-		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
-		 *
-		 * Are both PAUSE bits set to 1?  If so, this implies
-		 * Symmetric Flow Control is enabled at both ends.  The
-		 * ASM_DIR bits are irrelevant per the spec.
-		 *
-		 * For Symmetric Flow Control:
-		 *
-		 *   LOCAL DEVICE  |   LINK PARTNER
-		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-		 *-------|---------|-------|---------|--------------------
-		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
-		 *
-		 */
-		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
-			/* Now we need to check if the user selected Rx ONLY
-			 * of pause frames.  In this case, we had to advertise
-			 * FULL flow control because we could not advertise Rx
-			 * ONLY. Hence, we must now check to see if we need to
-			 * turn OFF the TRANSMISSION of PAUSE frames.
-			 */
-			if (hw->fc.requested_mode == e1000_fc_full) {
-				hw->fc.current_mode = e1000_fc_full;
-				DEBUGOUT("Flow Control = FULL.\n");
-			} else {
-				hw->fc.current_mode = e1000_fc_rx_pause;
-				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
-			}
-		}
-		/* For receiving PAUSE frames ONLY.
-		 *
-		 *   LOCAL DEVICE  |   LINK PARTNER
-		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-		 *-------|---------|-------|---------|--------------------
-		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
-		 */
-		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
-			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
-			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-			hw->fc.current_mode = e1000_fc_tx_pause;
-			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
-		}
-		/* For transmitting PAUSE frames ONLY.
-		 *
-		 *   LOCAL DEVICE  |   LINK PARTNER
-		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-		 *-------|---------|-------|---------|--------------------
-		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
-		 */
-		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
-			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
-			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-			hw->fc.current_mode = e1000_fc_rx_pause;
-			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
-		} else {
-			/* Per the IEEE spec, at this point flow control
-			 * should be disabled.
-			 */
-			hw->fc.current_mode = e1000_fc_none;
-			DEBUGOUT("Flow Control = NONE.\n");
-		}
-
-		/* Now we need to do one last check...  If we auto-
-		 * negotiated to HALF DUPLEX, flow control should not be
-		 * enabled per IEEE 802.3 spec.
-		 */
-		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
-		if (ret_val) {
-			DEBUGOUT("Error getting link speed and duplex\n");
-			return ret_val;
-		}
-
-		if (duplex == HALF_DUPLEX)
-			hw->fc.current_mode = e1000_fc_none;
-
-		/* Now we call a subroutine to actually force the MAC
-		 * controller to use the correct flow control settings.
-		 */
-		ret_val = e1000_force_mac_fc_generic(hw);
-		if (ret_val) {
-			DEBUGOUT("Error forcing flow control settings\n");
-			return ret_val;
-		}
-	}
-
-	/* Check for the case where we have SerDes media and auto-neg is
-	 * enabled.  In this case, we need to check and see if Auto-Neg
-	 * has completed, and if so, how the PHY and link partner has
-	 * flow control configured.
-	 */
-	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
-	    mac->autoneg) {
-		/* Read the PCS_LSTS and check to see if AutoNeg
-		 * has completed.
-		 */
-		pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
-
-		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
-			DEBUGOUT("PCS Auto Neg has not completed.\n");
-			return ret_val;
-		}
-
-		/* The AutoNeg process has completed, so we now need to
-		 * read both the Auto Negotiation Advertisement
-		 * Register (PCS_ANADV) and the Auto_Negotiation Base
-		 * Page Ability Register (PCS_LPAB) to determine how
-		 * flow control was negotiated.
-		 */
-		pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
-		pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
-
-		/* Two bits in the Auto Negotiation Advertisement Register
-		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
-		 * Page Ability Register (PCS_LPAB) determine flow control
-		 * for both the PHY and the link partner.  The following
-		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
-		 * 1999, describes these PAUSE resolution bits and how flow
-		 * control is determined based upon these settings.
-		 * NOTE:  DC = Don't Care
-		 *
-		 *   LOCAL DEVICE  |   LINK PARTNER
-		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
-		 *-------|---------|-------|---------|--------------------
-		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
-		 *   0   |    1    |   0   |   DC    | e1000_fc_none
-		 *   0   |    1    |   1   |    0    | e1000_fc_none
-		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
-		 *   1   |    0    |   0   |   DC    | e1000_fc_none
-		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
-		 *   1   |    1    |   0   |    0    | e1000_fc_none
-		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
-		 *
-		 * Are both PAUSE bits set to 1?  If so, this implies
-		 * Symmetric Flow Control is enabled at both ends.  The
-		 * ASM_DIR bits are irrelevant per the spec.
-		 *
-		 * For Symmetric Flow Control:
-		 *
-		 *   LOCAL DEVICE  |   LINK PARTNER
-		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-		 *-------|---------|-------|---------|--------------------
-		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
-		 *
-		 */
-		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
-		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
-			/* Now we need to check if the user selected Rx ONLY
-			 * of pause frames.  In this case, we had to advertise
-			 * FULL flow control because we could not advertise Rx
-			 * ONLY. Hence, we must now check to see if we need to
-			 * turn OFF the TRANSMISSION of PAUSE frames.
-			 */
-			if (hw->fc.requested_mode == e1000_fc_full) {
-				hw->fc.current_mode = e1000_fc_full;
-				DEBUGOUT("Flow Control = FULL.\n");
-			} else {
-				hw->fc.current_mode = e1000_fc_rx_pause;
-				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
-			}
-		}
-		/* For receiving PAUSE frames ONLY.
-		 *
-		 *   LOCAL DEVICE  |   LINK PARTNER
-		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-		 *-------|---------|-------|---------|--------------------
-		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
-		 */
-		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
-			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
-			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
-			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
-			hw->fc.current_mode = e1000_fc_tx_pause;
-			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
-		}
-		/* For transmitting PAUSE frames ONLY.
-		 *
-		 *   LOCAL DEVICE  |   LINK PARTNER
-		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-		 *-------|---------|-------|---------|--------------------
-		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
-		 */
-		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
-			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
-			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
-			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
-			hw->fc.current_mode = e1000_fc_rx_pause;
-			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
-		} else {
-			/* Per the IEEE spec, at this point flow control
-			 * should be disabled.
-			 */
-			hw->fc.current_mode = e1000_fc_none;
-			DEBUGOUT("Flow Control = NONE.\n");
-		}
-
-		/* Now we call a subroutine to actually force the MAC
-		 * controller to use the correct flow control settings.
-		 */
-		pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
-		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
-		E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
-
-		ret_val = e1000_force_mac_fc_generic(hw);
-		if (ret_val) {
-			DEBUGOUT("Error forcing flow control settings\n");
-			return ret_val;
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
- *  @hw: pointer to the HW structure
- *  @speed: stores the current speed
- *  @duplex: stores the current duplex
- *
- *  Read the status register for the current speed/duplex and store the current
- *  speed and duplex for copper connections.
- **/
-s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
-					      u16 *duplex)
-{
-	u32 status;
-
-	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
-
-	status = E1000_READ_REG(hw, E1000_STATUS);
-	if (status & E1000_STATUS_SPEED_1000) {
-		*speed = SPEED_1000;
-		DEBUGOUT("1000 Mbs, ");
-	} else if (status & E1000_STATUS_SPEED_100) {
-		*speed = SPEED_100;
-		DEBUGOUT("100 Mbs, ");
-	} else {
-		*speed = SPEED_10;
-		DEBUGOUT("10 Mbs, ");
-	}
-
-	if (status & E1000_STATUS_FD) {
-		*duplex = FULL_DUPLEX;
-		DEBUGOUT("Full Duplex\n");
-	} else {
-		*duplex = HALF_DUPLEX;
-		DEBUGOUT("Half Duplex\n");
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
- *  @hw: pointer to the HW structure
- *  @speed: stores the current speed
- *  @duplex: stores the current duplex
- *
- *  Sets the speed and duplex to gigabit full duplex (the only possible option)
- *  for fiber/serdes links.
- **/
-s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
-						    u16 *speed, u16 *duplex)
-{
-	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
-	UNREFERENCED_1PARAMETER(hw);
-
-	*speed = SPEED_1000;
-	*duplex = FULL_DUPLEX;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Acquire the HW semaphore to access the PHY or NVM
- **/
-s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
-{
-	u32 swsm;
-	s32 timeout = hw->nvm.word_size + 1;
-	s32 i = 0;
-
-	DEBUGFUNC("e1000_get_hw_semaphore_generic");
-
-	/* Get the SW semaphore */
-	while (i < timeout) {
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		if (!(swsm & E1000_SWSM_SMBI))
-			break;
-
-		usec_delay(50);
-		i++;
-	}
-
-	if (i == timeout) {
-		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
-		return -E1000_ERR_NVM;
-	}
-
-	/* Get the FW semaphore. */
-	for (i = 0; i < timeout; i++) {
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
-
-		/* Semaphore acquired if bit latched */
-		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
-			break;
-
-		usec_delay(50);
-	}
-
-	if (i == timeout) {
-		/* Release semaphores */
-		e1000_put_hw_semaphore_generic(hw);
-		DEBUGOUT("Driver can't access the NVM\n");
-		return -E1000_ERR_NVM;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_put_hw_semaphore_generic - Release hardware semaphore
- *  @hw: pointer to the HW structure
- *
- *  Release hardware semaphore used to access the PHY or NVM
- **/
-void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
-{
-	u32 swsm;
-
-	DEBUGFUNC("e1000_put_hw_semaphore_generic");
-
-	swsm = E1000_READ_REG(hw, E1000_SWSM);
-
-	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-
-	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
-}
-
-/**
- *  e1000_get_auto_rd_done_generic - Check for auto read completion
- *  @hw: pointer to the HW structure
- *
- *  Check EEPROM for Auto Read done bit.
- **/
-s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
-{
-	s32 i = 0;
-
-	DEBUGFUNC("e1000_get_auto_rd_done_generic");
-
-	while (i < AUTO_READ_DONE_TIMEOUT) {
-		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
-			break;
-		msec_delay(1);
-		i++;
-	}
-
-	if (i == AUTO_READ_DONE_TIMEOUT) {
-		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
-		return -E1000_ERR_RESET;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_valid_led_default_generic - Verify a valid default LED config
- *  @hw: pointer to the HW structure
- *  @data: pointer to the NVM (EEPROM)
- *
- *  Read the EEPROM for the current default LED configuration.  If the
- *  LED configuration is not valid, set to a valid LED configuration.
- **/
-s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_valid_led_default_generic");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
-		*data = ID_LED_DEFAULT;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_id_led_init_generic -
- *  @hw: pointer to the HW structure
- *
- **/
-s32 e1000_id_led_init_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val;
-	const u32 ledctl_mask = 0x000000FF;
-	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
-	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
-	u16 data, i, temp;
-	const u16 led_mask = 0x0F;
-
-	DEBUGFUNC("e1000_id_led_init_generic");
-
-	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
-	if (ret_val)
-		return ret_val;
-
-	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
-	mac->ledctl_mode1 = mac->ledctl_default;
-	mac->ledctl_mode2 = mac->ledctl_default;
-
-	for (i = 0; i < 4; i++) {
-		temp = (data >> (i << 2)) & led_mask;
-		switch (temp) {
-		case ID_LED_ON1_DEF2:
-		case ID_LED_ON1_ON2:
-		case ID_LED_ON1_OFF2:
-			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
-			mac->ledctl_mode1 |= ledctl_on << (i << 3);
-			break;
-		case ID_LED_OFF1_DEF2:
-		case ID_LED_OFF1_ON2:
-		case ID_LED_OFF1_OFF2:
-			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
-			mac->ledctl_mode1 |= ledctl_off << (i << 3);
-			break;
-		default:
-			/* Do nothing */
-			break;
-		}
-		switch (temp) {
-		case ID_LED_DEF1_ON2:
-		case ID_LED_ON1_ON2:
-		case ID_LED_OFF1_ON2:
-			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
-			mac->ledctl_mode2 |= ledctl_on << (i << 3);
-			break;
-		case ID_LED_DEF1_OFF2:
-		case ID_LED_ON1_OFF2:
-		case ID_LED_OFF1_OFF2:
-			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
-			mac->ledctl_mode2 |= ledctl_off << (i << 3);
-			break;
-		default:
-			/* Do nothing */
-			break;
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_setup_led_generic - Configures SW controllable LED
- *  @hw: pointer to the HW structure
- *
- *  This prepares the SW controllable LED for use and saves the current state
- *  of the LED so it can be later restored.
- **/
-s32 e1000_setup_led_generic(struct e1000_hw *hw)
-{
-	u32 ledctl;
-
-	DEBUGFUNC("e1000_setup_led_generic");
-
-	if (hw->mac.ops.setup_led != e1000_setup_led_generic)
-		return -E1000_ERR_CONFIG;
-
-	if (hw->phy.media_type == e1000_media_type_fiber) {
-		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
-		hw->mac.ledctl_default = ledctl;
-		/* Turn off LED0 */
-		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
-			    E1000_LEDCTL_LED0_MODE_MASK);
-		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
-			   E1000_LEDCTL_LED0_MODE_SHIFT);
-		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
-	} else if (hw->phy.media_type == e1000_media_type_copper) {
-		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_cleanup_led_generic - Set LED config to default operation
- *  @hw: pointer to the HW structure
- *
- *  Remove the current LED configuration and set the LED configuration
- *  to the default value, saved from the EEPROM.
- **/
-s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_cleanup_led_generic");
-
-	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_blink_led_generic - Blink LED
- *  @hw: pointer to the HW structure
- *
- *  Blink the LEDs which are set to be on.
- **/
-s32 e1000_blink_led_generic(struct e1000_hw *hw)
-{
-	u32 ledctl_blink = 0;
-	u32 i;
-
-	DEBUGFUNC("e1000_blink_led_generic");
-
-	if (hw->phy.media_type == e1000_media_type_fiber) {
-		/* always blink LED0 for PCI-E fiber */
-		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
-		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
-	} else {
-		/* Set the blink bit for each LED that's "on" (0x0E)
-		 * (or "off" if inverted) in ledctl_mode2.  The blink
-		 * logic in hardware only works when mode is set to "on"
-		 * so it must be changed accordingly when the mode is
-		 * "off" and inverted.
-		 */
-		ledctl_blink = hw->mac.ledctl_mode2;
-		for (i = 0; i < 32; i += 8) {
-			u32 mode = (hw->mac.ledctl_mode2 >> i) &
-			    E1000_LEDCTL_LED0_MODE_MASK;
-			u32 led_default = hw->mac.ledctl_default >> i;
-
-			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
-			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
-			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
-			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
-				ledctl_blink &=
-				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
-				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
-						 E1000_LEDCTL_MODE_LED_ON) << i;
-			}
-		}
-	}
-
-	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_led_on_generic - Turn LED on
- *  @hw: pointer to the HW structure
- *
- *  Turn LED on.
- **/
-s32 e1000_led_on_generic(struct e1000_hw *hw)
-{
-	u32 ctrl;
-
-	DEBUGFUNC("e1000_led_on_generic");
-
-	switch (hw->phy.media_type) {
-	case e1000_media_type_fiber:
-		ctrl = E1000_READ_REG(hw, E1000_CTRL);
-		ctrl &= ~E1000_CTRL_SWDPIN0;
-		ctrl |= E1000_CTRL_SWDPIO0;
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-		break;
-	case e1000_media_type_copper:
-		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
-		break;
-	default:
-		break;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_led_off_generic - Turn LED off
- *  @hw: pointer to the HW structure
- *
- *  Turn LED off.
- **/
-s32 e1000_led_off_generic(struct e1000_hw *hw)
-{
-	u32 ctrl;
-
-	DEBUGFUNC("e1000_led_off_generic");
-
-	switch (hw->phy.media_type) {
-	case e1000_media_type_fiber:
-		ctrl = E1000_READ_REG(hw, E1000_CTRL);
-		ctrl |= E1000_CTRL_SWDPIN0;
-		ctrl |= E1000_CTRL_SWDPIO0;
-		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-		break;
-	case e1000_media_type_copper:
-		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
-		break;
-	default:
-		break;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
- *  @hw: pointer to the HW structure
- *  @no_snoop: bitmap of snoop events
- *
- *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
- **/
-void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
-{
-	u32 gcr;
-
-	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
-
-	if (hw->bus.type != e1000_bus_type_pci_express)
-		return;
-
-	if (no_snoop) {
-		gcr = E1000_READ_REG(hw, E1000_GCR);
-		gcr &= ~(PCIE_NO_SNOOP_ALL);
-		gcr |= no_snoop;
-		E1000_WRITE_REG(hw, E1000_GCR, gcr);
-	}
-}
-
-/**
- *  e1000_disable_pcie_master_generic - Disables PCI-express master access
- *  @hw: pointer to the HW structure
- *
- *  Returns E1000_SUCCESS if successful, else returns -10
- *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
- *  the master requests to be disabled.
- *
- *  Disables PCI-Express master access and verifies there are no pending
- *  requests.
- **/
-s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
-{
-	u32 ctrl;
-	s32 timeout = MASTER_DISABLE_TIMEOUT;
-
-	DEBUGFUNC("e1000_disable_pcie_master_generic");
-
-	if (hw->bus.type != e1000_bus_type_pci_express)
-		return E1000_SUCCESS;
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
-	while (timeout) {
-		if (!(E1000_READ_REG(hw, E1000_STATUS) &
-		      E1000_STATUS_GIO_MASTER_ENABLE) ||
-				E1000_REMOVED(hw->hw_addr))
-			break;
-		usec_delay(100);
-		timeout--;
-	}
-
-	if (!timeout) {
-		DEBUGOUT("Master requests are pending.\n");
-		return -E1000_ERR_MASTER_REQUESTS_PENDING;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
- *  @hw: pointer to the HW structure
- *
- *  Reset the Adaptive Interframe Spacing throttle to default values.
- **/
-void e1000_reset_adaptive_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-
-	DEBUGFUNC("e1000_reset_adaptive_generic");
-
-	if (!mac->adaptive_ifs) {
-		DEBUGOUT("Not in Adaptive IFS mode!\n");
-		return;
-	}
-
-	mac->current_ifs_val = 0;
-	mac->ifs_min_val = IFS_MIN;
-	mac->ifs_max_val = IFS_MAX;
-	mac->ifs_step_size = IFS_STEP;
-	mac->ifs_ratio = IFS_RATIO;
-
-	mac->in_ifs_mode = false;
-	E1000_WRITE_REG(hw, E1000_AIT, 0);
-}
-
-/**
- *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
- *  @hw: pointer to the HW structure
- *
- *  Update the Adaptive Interframe Spacing Throttle value based on the
- *  time between transmitted packets and time between collisions.
- **/
-void e1000_update_adaptive_generic(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-
-	DEBUGFUNC("e1000_update_adaptive_generic");
-
-	if (!mac->adaptive_ifs) {
-		DEBUGOUT("Not in Adaptive IFS mode!\n");
-		return;
-	}
-
-	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
-		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
-			mac->in_ifs_mode = true;
-			if (mac->current_ifs_val < mac->ifs_max_val) {
-				if (!mac->current_ifs_val)
-					mac->current_ifs_val = mac->ifs_min_val;
-				else
-					mac->current_ifs_val +=
-						mac->ifs_step_size;
-				E1000_WRITE_REG(hw, E1000_AIT,
-						mac->current_ifs_val);
-			}
-		}
-	} else {
-		if (mac->in_ifs_mode &&
-		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
-			mac->current_ifs_val = 0;
-			mac->in_ifs_mode = false;
-			E1000_WRITE_REG(hw, E1000_AIT, 0);
-		}
-	}
-}
-
-/**
- *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
- *  @hw: pointer to the HW structure
- *
- *  Verify that when not using auto-negotiation that MDI/MDIx is correctly
- *  set, which is forced to MDI mode only.
- **/
-STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_validate_mdi_setting_generic");
-
-	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
-		DEBUGOUT("Invalid MDI setting detected\n");
-		hw->phy.mdix = 1;
-		return -E1000_ERR_CONFIG;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
- *  @hw: pointer to the HW structure
- *
- *  Validate the MDI/MDIx setting, allowing for auto-crossover during forced
- *  operation.
- **/
-s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
-	UNREFERENCED_1PARAMETER(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
- *  @hw: pointer to the HW structure
- *  @reg: 32bit register offset such as E1000_SCTL
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Writes an address/data control type register.  There are several of these
- *  and they all have the format address << 8 | data and bit 31 is polled for
- *  completion.
- **/
-s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
-				      u32 offset, u8 data)
-{
-	u32 i, regvalue = 0;
-
-	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
-
-	/* Set up the address and data */
-	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
-	E1000_WRITE_REG(hw, reg, regvalue);
-
-	/* Poll the ready bit to see if the MDI read completed */
-	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
-		usec_delay(5);
-		regvalue = E1000_READ_REG(hw, reg);
-		if (regvalue & E1000_GEN_CTL_READY)
-			break;
-	}
-	if (!(regvalue & E1000_GEN_CTL_READY)) {
-		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
-		return -E1000_ERR_PHY;
-	}
-
-	return E1000_SUCCESS;
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_mac.h b/lib/librte_pmd_e1000/e1000/e1000_mac.h
deleted file mode 100644
index 5a7ce4a..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_mac.h
+++ /dev/null
@@ -1,95 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_MAC_H_
-#define _E1000_MAC_H_
-
-void e1000_init_mac_ops_generic(struct e1000_hw *hw);
-#ifndef E1000_REMOVED
-#define E1000_REMOVED(a) (0)
-#endif /* E1000_REMOVED */
-void e1000_null_mac_generic(struct e1000_hw *hw);
-s32  e1000_null_ops_generic(struct e1000_hw *hw);
-s32  e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d);
-bool e1000_null_mng_mode(struct e1000_hw *hw);
-void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a);
-void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b);
-void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a);
-s32  e1000_blink_led_generic(struct e1000_hw *hw);
-s32  e1000_check_for_copper_link_generic(struct e1000_hw *hw);
-s32  e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
-s32  e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
-s32  e1000_cleanup_led_generic(struct e1000_hw *hw);
-s32  e1000_commit_fc_settings_generic(struct e1000_hw *hw);
-s32  e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
-s32  e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
-s32  e1000_disable_pcie_master_generic(struct e1000_hw *hw);
-s32  e1000_force_mac_fc_generic(struct e1000_hw *hw);
-s32  e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
-s32  e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
-s32  e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
-void e1000_set_lan_id_single_port(struct e1000_hw *hw);
-void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw);
-s32  e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
-s32  e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
-					       u16 *duplex);
-s32  e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
-						     u16 *speed, u16 *duplex);
-s32  e1000_id_led_init_generic(struct e1000_hw *hw);
-s32  e1000_led_on_generic(struct e1000_hw *hw);
-s32  e1000_led_off_generic(struct e1000_hw *hw);
-void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
-				       u8 *mc_addr_list, u32 mc_addr_count);
-s32  e1000_set_default_fc_generic(struct e1000_hw *hw);
-s32  e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
-s32  e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
-s32  e1000_setup_led_generic(struct e1000_hw *hw);
-s32  e1000_setup_link_generic(struct e1000_hw *hw);
-s32  e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw);
-s32  e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
-				       u32 offset, u8 data);
-
-u32  e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
-
-void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
-void e1000_clear_vfta_generic(struct e1000_hw *hw);
-void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
-void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
-void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
-s32  e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
-void e1000_reset_adaptive_generic(struct e1000_hw *hw);
-void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
-void e1000_update_adaptive_generic(struct e1000_hw *hw);
-void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_manage.c b/lib/librte_pmd_e1000/e1000/e1000_manage.c
deleted file mode 100644
index 30db892..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_manage.c
+++ /dev/null
@@ -1,573 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-/**
- *  e1000_calculate_checksum - Calculate checksum for buffer
- *  @buffer: pointer to EEPROM
- *  @length: size of EEPROM to calculate a checksum for
- *
- *  Calculates the checksum for some buffer on a specified length.  The
- *  checksum calculated is returned.
- **/
-u8 e1000_calculate_checksum(u8 *buffer, u32 length)
-{
-	u32 i;
-	u8 sum = 0;
-
-	DEBUGFUNC("e1000_calculate_checksum");
-
-	if (!buffer)
-		return 0;
-
-	for (i = 0; i < length; i++)
-		sum += buffer[i];
-
-	return (u8) (0 - sum);
-}
-
-/**
- *  e1000_mng_enable_host_if_generic - Checks host interface is enabled
- *  @hw: pointer to the HW structure
- *
- *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- *  This function checks whether the HOST IF is enabled for command operation
- *  and also checks whether the previous command is completed.  It busy waits
- *  in case of previous command is not completed.
- **/
-s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
-{
-	u32 hicr;
-	u8 i;
-
-	DEBUGFUNC("e1000_mng_enable_host_if_generic");
-
-	if (!hw->mac.arc_subsystem_valid) {
-		DEBUGOUT("ARC subsystem not valid.\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-
-	/* Check that the host interface is enabled. */
-	hicr = E1000_READ_REG(hw, E1000_HICR);
-	if (!(hicr & E1000_HICR_EN)) {
-		DEBUGOUT("E1000_HOST_EN bit disabled.\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-	/* check the previous command is completed */
-	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
-		hicr = E1000_READ_REG(hw, E1000_HICR);
-		if (!(hicr & E1000_HICR_C))
-			break;
-		msec_delay_irq(1);
-	}
-
-	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
-		DEBUGOUT("Previous command timeout failed .\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_check_mng_mode_generic - Generic check management mode
- *  @hw: pointer to the HW structure
- *
- *  Reads the firmware semaphore register and returns true (>0) if
- *  manageability is enabled, else false (0).
- **/
-bool e1000_check_mng_mode_generic(struct e1000_hw *hw)
-{
-	u32 fwsm = E1000_READ_REG(hw, E1000_FWSM);
-
-	DEBUGFUNC("e1000_check_mng_mode_generic");
-
-
-	return (fwsm & E1000_FWSM_MODE_MASK) ==
-		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
-}
-
-/**
- *  e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx
- *  @hw: pointer to the HW structure
- *
- *  Enables packet filtering on transmit packets if manageability is enabled
- *  and host interface is enabled.
- **/
-bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
-{
-	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
-	u32 *buffer = (u32 *)&hw->mng_cookie;
-	u32 offset;
-	s32 ret_val, hdr_csum, csum;
-	u8 i, len;
-
-	DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
-
-	hw->mac.tx_pkt_filtering = true;
-
-	/* No manageability, no filtering */
-	if (!hw->mac.ops.check_mng_mode(hw)) {
-		hw->mac.tx_pkt_filtering = false;
-		return hw->mac.tx_pkt_filtering;
-	}
-
-	/* If we can't read from the host interface for whatever
-	 * reason, disable filtering.
-	 */
-	ret_val = e1000_mng_enable_host_if_generic(hw);
-	if (ret_val != E1000_SUCCESS) {
-		hw->mac.tx_pkt_filtering = false;
-		return hw->mac.tx_pkt_filtering;
-	}
-
-	/* Read in the header.  Length and offset are in dwords. */
-	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
-	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
-	for (i = 0; i < len; i++)
-		*(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
-							   offset + i);
-	hdr_csum = hdr->checksum;
-	hdr->checksum = 0;
-	csum = e1000_calculate_checksum((u8 *)hdr,
-					E1000_MNG_DHCP_COOKIE_LENGTH);
-	/* If either the checksums or signature don't match, then
-	 * the cookie area isn't considered valid, in which case we
-	 * take the safe route of assuming Tx filtering is enabled.
-	 */
-	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
-		hw->mac.tx_pkt_filtering = true;
-		return hw->mac.tx_pkt_filtering;
-	}
-
-	/* Cookie area is valid, make the final check for filtering. */
-	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
-		hw->mac.tx_pkt_filtering = false;
-
-	return hw->mac.tx_pkt_filtering;
-}
-
-/**
- *  e1000_mng_write_cmd_header_generic - Writes manageability command header
- *  @hw: pointer to the HW structure
- *  @hdr: pointer to the host interface command header
- *
- *  Writes the command header after does the checksum calculation.
- **/
-s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
-				      struct e1000_host_mng_command_header *hdr)
-{
-	u16 i, length = sizeof(struct e1000_host_mng_command_header);
-
-	DEBUGFUNC("e1000_mng_write_cmd_header_generic");
-
-	/* Write the whole command header structure with new checksum. */
-
-	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
-
-	length >>= 2;
-	/* Write the relevant command block into the ram area. */
-	for (i = 0; i < length; i++) {
-		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
-					    *((u32 *) hdr + i));
-		E1000_WRITE_FLUSH(hw);
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_mng_host_if_write_generic - Write to the manageability host interface
- *  @hw: pointer to the HW structure
- *  @buffer: pointer to the host interface buffer
- *  @length: size of the buffer
- *  @offset: location in the buffer to write to
- *  @sum: sum of the data (not checksum)
- *
- *  This function writes the buffer content at the offset given on the host if.
- *  It also does alignment considerations to do the writes in most efficient
- *  way.  Also fills up the sum of the buffer in *buffer parameter.
- **/
-s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
-				    u16 length, u16 offset, u8 *sum)
-{
-	u8 *tmp;
-	u8 *bufptr = buffer;
-	u32 data = 0;
-	u16 remaining, i, j, prev_bytes;
-
-	DEBUGFUNC("e1000_mng_host_if_write_generic");
-
-	/* sum = only sum of the data and it is not checksum */
-
-	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
-		return -E1000_ERR_PARAM;
-
-	tmp = (u8 *)&data;
-	prev_bytes = offset & 0x3;
-	offset >>= 2;
-
-	if (prev_bytes) {
-		data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
-		for (j = prev_bytes; j < sizeof(u32); j++) {
-			*(tmp + j) = *bufptr++;
-			*sum += *(tmp + j);
-		}
-		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
-		length -= j - prev_bytes;
-		offset++;
-	}
-
-	remaining = length & 0x3;
-	length -= remaining;
-
-	/* Calculate length in DWORDs */
-	length >>= 2;
-
-	/* The device driver writes the relevant command block into the
-	 * ram area.
-	 */
-	for (i = 0; i < length; i++) {
-		for (j = 0; j < sizeof(u32); j++) {
-			*(tmp + j) = *bufptr++;
-			*sum += *(tmp + j);
-		}
-
-		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
-					    data);
-	}
-	if (remaining) {
-		for (j = 0; j < sizeof(u32); j++) {
-			if (j < remaining)
-				*(tmp + j) = *bufptr++;
-			else
-				*(tmp + j) = 0;
-
-			*sum += *(tmp + j);
-		}
-		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i,
-					    data);
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
- *  @hw: pointer to the HW structure
- *  @buffer: pointer to the host interface
- *  @length: size of the buffer
- *
- *  Writes the DHCP information to the host interface.
- **/
-s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
-				      u16 length)
-{
-	struct e1000_host_mng_command_header hdr;
-	s32 ret_val;
-	u32 hicr;
-
-	DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
-
-	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
-	hdr.command_length = length;
-	hdr.reserved1 = 0;
-	hdr.reserved2 = 0;
-	hdr.checksum = 0;
-
-	/* Enable the host interface */
-	ret_val = e1000_mng_enable_host_if_generic(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Populate the host interface with the contents of "buffer". */
-	ret_val = e1000_mng_host_if_write_generic(hw, buffer, length,
-						  sizeof(hdr), &(hdr.checksum));
-	if (ret_val)
-		return ret_val;
-
-	/* Write the manageability command header */
-	ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr);
-	if (ret_val)
-		return ret_val;
-
-	/* Tell the ARC a new command is pending. */
-	hicr = E1000_READ_REG(hw, E1000_HICR);
-	E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_enable_mng_pass_thru - Check if management passthrough is needed
- *  @hw: pointer to the HW structure
- *
- *  Verifies the hardware needs to leave interface enabled so that frames can
- *  be directed to and from the management interface.
- **/
-bool e1000_enable_mng_pass_thru(struct e1000_hw *hw)
-{
-	u32 manc;
-	u32 fwsm, factps;
-
-	DEBUGFUNC("e1000_enable_mng_pass_thru");
-
-	if (!hw->mac.asf_firmware_present)
-		return false;
-
-	manc = E1000_READ_REG(hw, E1000_MANC);
-
-	if (!(manc & E1000_MANC_RCV_TCO_EN))
-		return false;
-
-	if (hw->mac.has_fwsm) {
-		fwsm = E1000_READ_REG(hw, E1000_FWSM);
-		factps = E1000_READ_REG(hw, E1000_FACTPS);
-
-		if (!(factps & E1000_FACTPS_MNGCG) &&
-		    ((fwsm & E1000_FWSM_MODE_MASK) ==
-		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)))
-			return true;
-	} else if ((hw->mac.type == e1000_82574) ||
-		   (hw->mac.type == e1000_82583)) {
-		u16 data;
-
-		factps = E1000_READ_REG(hw, E1000_FACTPS);
-		e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
-
-		if (!(factps & E1000_FACTPS_MNGCG) &&
-		    ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
-		     (e1000_mng_mode_pt << 13)))
-			return true;
-	} else if ((manc & E1000_MANC_SMBUS_EN) &&
-		   !(manc & E1000_MANC_ASF_EN)) {
-		return true;
-	}
-
-	return false;
-}
-
-/**
- *  e1000_host_interface_command - Writes buffer to host interface
- *  @hw: pointer to the HW structure
- *  @buffer: contains a command to write
- *  @length: the byte length of the buffer, must be multiple of 4 bytes
- *
- *  Writes a buffer to the Host Interface.  Upon success, returns E1000_SUCCESS
- *  else returns E1000_ERR_HOST_INTERFACE_COMMAND.
- **/
-s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length)
-{
-	u32 hicr, i;
-
-	DEBUGFUNC("e1000_host_interface_command");
-
-	if (!(hw->mac.arc_subsystem_valid)) {
-		DEBUGOUT("Hardware doesn't support host interface command.\n");
-		return E1000_SUCCESS;
-	}
-
-	if (!hw->mac.asf_firmware_present) {
-		DEBUGOUT("Firmware is not present.\n");
-		return E1000_SUCCESS;
-	}
-
-	if (length == 0 || length & 0x3 ||
-	    length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) {
-		DEBUGOUT("Buffer length failure.\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-
-	/* Check that the host interface is enabled. */
-	hicr = E1000_READ_REG(hw, E1000_HICR);
-	if (!(hicr & E1000_HICR_EN)) {
-		DEBUGOUT("E1000_HOST_EN bit disabled.\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-
-	/* Calculate length in DWORDs */
-	length >>= 2;
-
-	/* The device driver writes the relevant command block
-	 * into the ram area.
-	 */
-	for (i = 0; i < length; i++)
-		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
-					    *((u32 *)buffer + i));
-
-	/* Setting this bit tells the ARC that a new command is pending. */
-	E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
-	for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
-		hicr = E1000_READ_REG(hw, E1000_HICR);
-		if (!(hicr & E1000_HICR_C))
-			break;
-		msec_delay(1);
-	}
-
-	/* Check command successful completion. */
-	if (i == E1000_HI_COMMAND_TIMEOUT ||
-	    (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) {
-		DEBUGOUT("Command has failed with no status valid.\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-
-	for (i = 0; i < length; i++)
-		*((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
-								  E1000_HOST_IF,
-								  i);
-
-	return E1000_SUCCESS;
-}
-/**
- *  e1000_load_firmware - Writes proxy FW code buffer to host interface
- *                        and execute.
- *  @hw: pointer to the HW structure
- *  @buffer: contains a firmware to write
- *  @length: the byte length of the buffer, must be multiple of 4 bytes
- *
- *  Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled
- *  in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND.
- **/
-s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length)
-{
-	u32 hicr, hibba, fwsm, icr, i;
-
-	DEBUGFUNC("e1000_load_firmware");
-
-	if (hw->mac.type < e1000_i210) {
-		DEBUGOUT("Hardware doesn't support loading FW by the driver\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	/* Check that the host interface is enabled. */
-	hicr = E1000_READ_REG(hw, E1000_HICR);
-	if (!(hicr & E1000_HICR_EN)) {
-		DEBUGOUT("E1000_HOST_EN bit disabled.\n");
-		return -E1000_ERR_CONFIG;
-	}
-	if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) {
-		DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) {
-		DEBUGOUT("Buffer length failure.\n");
-		return -E1000_ERR_INVALID_ARGUMENT;
-	}
-
-	/* Clear notification from ROM-FW by reading ICR register */
-	icr = E1000_READ_REG(hw, E1000_ICR_V2);
-
-	/* Reset ROM-FW */
-	hicr = E1000_READ_REG(hw, E1000_HICR);
-	hicr |= E1000_HICR_FW_RESET_ENABLE;
-	E1000_WRITE_REG(hw, E1000_HICR, hicr);
-	hicr |= E1000_HICR_FW_RESET;
-	E1000_WRITE_REG(hw, E1000_HICR, hicr);
-	E1000_WRITE_FLUSH(hw);
-
-	/* Wait till MAC notifies about its readiness after ROM-FW reset */
-	for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) {
-		icr = E1000_READ_REG(hw, E1000_ICR_V2);
-		if (icr & E1000_ICR_MNG)
-			break;
-		msec_delay(1);
-	}
-
-	/* Check for timeout */
-	if (i == E1000_HI_COMMAND_TIMEOUT) {
-		DEBUGOUT("FW reset failed.\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-
-	/* Wait till MAC is ready to accept new FW code */
-	for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
-		fwsm = E1000_READ_REG(hw, E1000_FWSM);
-		if ((fwsm & E1000_FWSM_FW_VALID) &&
-		    ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT ==
-		    E1000_FWSM_HI_EN_ONLY_MODE))
-			break;
-		msec_delay(1);
-	}
-
-	/* Check for timeout */
-	if (i == E1000_HI_COMMAND_TIMEOUT) {
-		DEBUGOUT("FW reset failed.\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-
-	/* Calculate length in DWORDs */
-	length >>= 2;
-
-	/* The device driver writes the relevant FW code block
-	 * into the ram area in DWORDs via 1kB ram addressing window.
-	 */
-	for (i = 0; i < length; i++) {
-		if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) {
-			/* Point to correct 1kB ram window */
-			hibba = E1000_HI_FW_BASE_ADDRESS +
-				((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) *
-				(i / E1000_HI_FW_BLOCK_DWORD_LENGTH));
-
-			E1000_WRITE_REG(hw, E1000_HIBBA, hibba);
-		}
-
-		E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
-					    i % E1000_HI_FW_BLOCK_DWORD_LENGTH,
-					    *((u32 *)buffer + i));
-	}
-
-	/* Setting this bit tells the ARC that a new FW is ready to execute. */
-	hicr = E1000_READ_REG(hw, E1000_HICR);
-	E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
-
-	for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) {
-		hicr = E1000_READ_REG(hw, E1000_HICR);
-		if (!(hicr & E1000_HICR_C))
-			break;
-		msec_delay(1);
-	}
-
-	/* Check for successful FW start. */
-	if (i == E1000_HI_COMMAND_TIMEOUT) {
-		DEBUGOUT("New FW did not start within timeout period.\n");
-		return -E1000_ERR_HOST_INTERFACE_COMMAND;
-	}
-
-	return E1000_SUCCESS;
-}
-
-
diff --git a/lib/librte_pmd_e1000/e1000/e1000_manage.h b/lib/librte_pmd_e1000/e1000/e1000_manage.h
deleted file mode 100644
index e6f92c0..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_manage.h
+++ /dev/null
@@ -1,95 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_MANAGE_H_
-#define _E1000_MANAGE_H_
-
-bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
-bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
-s32  e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
-s32  e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
-				     u16 length, u16 offset, u8 *sum);
-s32  e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
-				     struct e1000_host_mng_command_header *hdr);
-s32  e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
-				       u8 *buffer, u16 length);
-bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
-u8 e1000_calculate_checksum(u8 *buffer, u32 length);
-s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length);
-s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length);
-
-enum e1000_mng_mode {
-	e1000_mng_mode_none = 0,
-	e1000_mng_mode_asf,
-	e1000_mng_mode_pt,
-	e1000_mng_mode_ipmi,
-	e1000_mng_mode_host_if_only
-};
-
-#define E1000_FACTPS_MNGCG			0x20000000
-
-#define E1000_FWSM_MODE_MASK			0xE
-#define E1000_FWSM_MODE_SHIFT			1
-#define E1000_FWSM_FW_VALID			0x00008000
-#define E1000_FWSM_HI_EN_ONLY_MODE		0x4
-
-#define E1000_MNG_IAMT_MODE			0x3
-#define E1000_MNG_DHCP_COOKIE_LENGTH		0x10
-#define E1000_MNG_DHCP_COOKIE_OFFSET		0x6F0
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT		10
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD		64
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING	0x1
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN	0x2
-
-#define E1000_VFTA_ENTRY_SHIFT			5
-#define E1000_VFTA_ENTRY_MASK			0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK		0x1F
-
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH		1792 /* Num of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH		448 /* Num of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT		500 /* Process HI cmd limit */
-#define E1000_HI_FW_BASE_ADDRESS		0x10000
-#define E1000_HI_FW_MAX_LENGTH			(64 * 1024) /* Num of bytes */
-#define E1000_HI_FW_BLOCK_DWORD_LENGTH		256 /* Num of DWORDs per page */
-#define E1000_HICR_MEMORY_BASE_EN		0x200 /* MB Enable bit - RO */
-#define E1000_HICR_EN			0x01  /* Enable bit - RO */
-/* Driver sets this bit when done to put command in RAM */
-#define E1000_HICR_C			0x02
-#define E1000_HICR_SV			0x04  /* Status Validity */
-#define E1000_HICR_FW_RESET_ENABLE	0x40
-#define E1000_HICR_FW_RESET		0x80
-
-/* Intel(R) Active Management Technology signature */
-#define E1000_IAMT_SIGNATURE		0x544D4149
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_mbx.c b/lib/librte_pmd_e1000/e1000/e1000_mbx.c
deleted file mode 100644
index 7ec4c56..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_mbx.c
+++ /dev/null
@@ -1,777 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_mbx.h"
-
-/**
- *  e1000_null_mbx_check_for_flag - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_null_mbx_check_for_flag(struct e1000_hw E1000_UNUSEDARG *hw,
-					 u16 E1000_UNUSEDARG mbx_id)
-{
-	DEBUGFUNC("e1000_null_mbx_check_flag");
-	UNREFERENCED_2PARAMETER(hw, mbx_id);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_mbx_transact - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_null_mbx_transact(struct e1000_hw E1000_UNUSEDARG *hw,
-				   u32 E1000_UNUSEDARG *msg,
-				   u16 E1000_UNUSEDARG size,
-				   u16 E1000_UNUSEDARG mbx_id)
-{
-	DEBUGFUNC("e1000_null_mbx_rw_msg");
-	UNREFERENCED_4PARAMETER(hw, msg, size, mbx_id);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_mbx - Reads a message from the mailbox
- *  @hw: pointer to the HW structure
- *  @msg: The message buffer
- *  @size: Length of buffer
- *  @mbx_id: id of mailbox to read
- *
- *  returns SUCCESS if it successfully read message from buffer
- **/
-s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_read_mbx");
-
-	/* limit read to size of mailbox */
-	if (size > mbx->size)
-		size = mbx->size;
-
-	if (mbx->ops.read)
-		ret_val = mbx->ops.read(hw, msg, size, mbx_id);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_mbx - Write a message to the mailbox
- *  @hw: pointer to the HW structure
- *  @msg: The message buffer
- *  @size: Length of buffer
- *  @mbx_id: id of mailbox to write
- *
- *  returns SUCCESS if it successfully copied message into the buffer
- **/
-s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_write_mbx");
-
-	if (size > mbx->size)
-		ret_val = -E1000_ERR_MBX;
-
-	else if (mbx->ops.write)
-		ret_val = mbx->ops.write(hw, msg, size, mbx_id);
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_msg - checks to see if someone sent us mail
- *  @hw: pointer to the HW structure
- *  @mbx_id: id of mailbox to check
- *
- *  returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_check_for_msg");
-
-	if (mbx->ops.check_for_msg)
-		ret_val = mbx->ops.check_for_msg(hw, mbx_id);
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_ack - checks to see if someone sent us ACK
- *  @hw: pointer to the HW structure
- *  @mbx_id: id of mailbox to check
- *
- *  returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_check_for_ack");
-
-	if (mbx->ops.check_for_ack)
-		ret_val = mbx->ops.check_for_ack(hw, mbx_id);
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_rst - checks to see if other side has reset
- *  @hw: pointer to the HW structure
- *  @mbx_id: id of mailbox to check
- *
- *  returns SUCCESS if the Status bit was found or else ERR_MBX
- **/
-s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_check_for_rst");
-
-	if (mbx->ops.check_for_rst)
-		ret_val = mbx->ops.check_for_rst(hw, mbx_id);
-
-	return ret_val;
-}
-
-/**
- *  e1000_poll_for_msg - Wait for message notification
- *  @hw: pointer to the HW structure
- *  @mbx_id: id of mailbox to write
- *
- *  returns SUCCESS if it successfully received a message notification
- **/
-STATIC s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	int countdown = mbx->timeout;
-
-	DEBUGFUNC("e1000_poll_for_msg");
-
-	if (!countdown || !mbx->ops.check_for_msg)
-		goto out;
-
-	while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) {
-		countdown--;
-		if (!countdown)
-			break;
-		usec_delay(mbx->usec_delay);
-	}
-
-	/* if we failed, all future posted messages fail until reset */
-	if (!countdown)
-		mbx->timeout = 0;
-out:
-	return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
-}
-
-/**
- *  e1000_poll_for_ack - Wait for message acknowledgement
- *  @hw: pointer to the HW structure
- *  @mbx_id: id of mailbox to write
- *
- *  returns SUCCESS if it successfully received a message acknowledgement
- **/
-STATIC s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	int countdown = mbx->timeout;
-
-	DEBUGFUNC("e1000_poll_for_ack");
-
-	if (!countdown || !mbx->ops.check_for_ack)
-		goto out;
-
-	while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) {
-		countdown--;
-		if (!countdown)
-			break;
-		usec_delay(mbx->usec_delay);
-	}
-
-	/* if we failed, all future posted messages fail until reset */
-	if (!countdown)
-		mbx->timeout = 0;
-out:
-	return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
-}
-
-/**
- *  e1000_read_posted_mbx - Wait for message notification and receive message
- *  @hw: pointer to the HW structure
- *  @msg: The message buffer
- *  @size: Length of buffer
- *  @mbx_id: id of mailbox to write
- *
- *  returns SUCCESS if it successfully received a message notification and
- *  copied it into the receive buffer.
- **/
-s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_read_posted_mbx");
-
-	if (!mbx->ops.read)
-		goto out;
-
-	ret_val = e1000_poll_for_msg(hw, mbx_id);
-
-	/* if ack received read message, otherwise we timed out */
-	if (!ret_val)
-		ret_val = mbx->ops.read(hw, msg, size, mbx_id);
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
- *  @hw: pointer to the HW structure
- *  @msg: The message buffer
- *  @size: Length of buffer
- *  @mbx_id: id of mailbox to write
- *
- *  returns SUCCESS if it successfully copied message into the buffer and
- *  received an ack to that message within delay * timeout period
- **/
-s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_write_posted_mbx");
-
-	/* exit if either we can't write or there isn't a defined timeout */
-	if (!mbx->ops.write || !mbx->timeout)
-		goto out;
-
-	/* send msg */
-	ret_val = mbx->ops.write(hw, msg, size, mbx_id);
-
-	/* if msg sent wait until we receive an ack */
-	if (!ret_val)
-		ret_val = e1000_poll_for_ack(hw, mbx_id);
-out:
-	return ret_val;
-}
-
-/**
- *  e1000_init_mbx_ops_generic - Initialize mbx function pointers
- *  @hw: pointer to the HW structure
- *
- *  Sets the function pointers to no-op functions
- **/
-void e1000_init_mbx_ops_generic(struct e1000_hw *hw)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	mbx->ops.init_params = e1000_null_ops_generic;
-	mbx->ops.read = e1000_null_mbx_transact;
-	mbx->ops.write = e1000_null_mbx_transact;
-	mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag;
-	mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag;
-	mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag;
-	mbx->ops.read_posted = e1000_read_posted_mbx;
-	mbx->ops.write_posted = e1000_write_posted_mbx;
-}
-
-/**
- *  e1000_read_v2p_mailbox - read v2p mailbox
- *  @hw: pointer to the HW structure
- *
- *  This function is used to read the v2p mailbox without losing the read to
- *  clear status bits.
- **/
-STATIC u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
-{
-	u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0));
-
-	v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
-	hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
-
-	return v2p_mailbox;
-}
-
-/**
- *  e1000_check_for_bit_vf - Determine if a status bit was set
- *  @hw: pointer to the HW structure
- *  @mask: bitmask for bits to be tested and cleared
- *
- *  This function is used to check for the read to clear bits within
- *  the V2P mailbox.
- **/
-STATIC s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
-{
-	u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
-	s32 ret_val = -E1000_ERR_MBX;
-
-	if (v2p_mailbox & mask)
-		ret_val = E1000_SUCCESS;
-
-	hw->dev_spec.vf.v2p_mailbox &= ~mask;
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_msg_vf - checks to see if the PF has sent mail
- *  @hw: pointer to the HW structure
- *  @mbx_id: id of mailbox to check
- *
- *  returns SUCCESS if the PF has set the Status bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_msg_vf(struct e1000_hw *hw,
-				  u16 E1000_UNUSEDARG mbx_id)
-{
-	s32 ret_val = -E1000_ERR_MBX;
-
-	UNREFERENCED_1PARAMETER(mbx_id);
-	DEBUGFUNC("e1000_check_for_msg_vf");
-
-	if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
-		ret_val = E1000_SUCCESS;
-		hw->mbx.stats.reqs++;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_ack_vf - checks to see if the PF has ACK'd
- *  @hw: pointer to the HW structure
- *  @mbx_id: id of mailbox to check
- *
- *  returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_ack_vf(struct e1000_hw *hw,
-				  u16 E1000_UNUSEDARG mbx_id)
-{
-	s32 ret_val = -E1000_ERR_MBX;
-
-	UNREFERENCED_1PARAMETER(mbx_id);
-	DEBUGFUNC("e1000_check_for_ack_vf");
-
-	if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
-		ret_val = E1000_SUCCESS;
-		hw->mbx.stats.acks++;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_rst_vf - checks to see if the PF has reset
- *  @hw: pointer to the HW structure
- *  @mbx_id: id of mailbox to check
- *
- *  returns true if the PF has set the reset done bit or else false
- **/
-STATIC s32 e1000_check_for_rst_vf(struct e1000_hw *hw,
-				  u16 E1000_UNUSEDARG mbx_id)
-{
-	s32 ret_val = -E1000_ERR_MBX;
-
-	UNREFERENCED_1PARAMETER(mbx_id);
-	DEBUGFUNC("e1000_check_for_rst_vf");
-
-	if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
-					 E1000_V2PMAILBOX_RSTI))) {
-		ret_val = E1000_SUCCESS;
-		hw->mbx.stats.rsts++;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_obtain_mbx_lock_vf - obtain mailbox lock
- *  @hw: pointer to the HW structure
- *
- *  return SUCCESS if we obtained the mailbox lock
- **/
-STATIC s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
-{
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_obtain_mbx_lock_vf");
-
-	/* Take ownership of the buffer */
-	E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
-
-	/* reserve mailbox for vf use */
-	if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
-		ret_val = E1000_SUCCESS;
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_mbx_vf - Write a message to the mailbox
- *  @hw: pointer to the HW structure
- *  @msg: The message buffer
- *  @size: Length of buffer
- *  @mbx_id: id of mailbox to write
- *
- *  returns SUCCESS if it successfully copied message into the buffer
- **/
-STATIC s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
-			      u16 E1000_UNUSEDARG mbx_id)
-{
-	s32 ret_val;
-	u16 i;
-
-	UNREFERENCED_1PARAMETER(mbx_id);
-
-	DEBUGFUNC("e1000_write_mbx_vf");
-
-	/* lock the mailbox to prevent pf/vf race condition */
-	ret_val = e1000_obtain_mbx_lock_vf(hw);
-	if (ret_val)
-		goto out_no_write;
-
-	/* flush msg and acks as we are overwriting the message buffer */
-	e1000_check_for_msg_vf(hw, 0);
-	e1000_check_for_ack_vf(hw, 0);
-
-	/* copy the caller specified message to the mailbox memory buffer */
-	for (i = 0; i < size; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]);
-
-	/* update stats */
-	hw->mbx.stats.msgs_tx++;
-
-	/* Drop VFU and interrupt the PF to tell it a message has been sent */
-	E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
-
-out_no_write:
-	return ret_val;
-}
-
-/**
- *  e1000_read_mbx_vf - Reads a message from the inbox intended for vf
- *  @hw: pointer to the HW structure
- *  @msg: The message buffer
- *  @size: Length of buffer
- *  @mbx_id: id of mailbox to read
- *
- *  returns SUCCESS if it successfully read message from buffer
- **/
-STATIC s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size,
-			     u16 E1000_UNUSEDARG mbx_id)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 i;
-
-	DEBUGFUNC("e1000_read_mbx_vf");
-	UNREFERENCED_1PARAMETER(mbx_id);
-
-	/* lock the mailbox to prevent pf/vf race condition */
-	ret_val = e1000_obtain_mbx_lock_vf(hw);
-	if (ret_val)
-		goto out_no_read;
-
-	/* copy the message from the mailbox memory buffer */
-	for (i = 0; i < size; i++)
-		msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i);
-
-	/* Acknowledge receipt and release mailbox, then we're done */
-	E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
-
-	/* update stats */
-	hw->mbx.stats.msgs_rx++;
-
-out_no_read:
-	return ret_val;
-}
-
-/**
- *  e1000_init_mbx_params_vf - set initial values for vf mailbox
- *  @hw: pointer to the HW structure
- *
- *  Initializes the hw->mbx struct to correct values for vf mailbox
- */
-s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-
-	/* start mailbox as timed out and let the reset_hw call set the timeout
-	 * value to begin communications */
-	mbx->timeout = 0;
-	mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
-
-	mbx->size = E1000_VFMAILBOX_SIZE;
-
-	mbx->ops.read = e1000_read_mbx_vf;
-	mbx->ops.write = e1000_write_mbx_vf;
-	mbx->ops.read_posted = e1000_read_posted_mbx;
-	mbx->ops.write_posted = e1000_write_posted_mbx;
-	mbx->ops.check_for_msg = e1000_check_for_msg_vf;
-	mbx->ops.check_for_ack = e1000_check_for_ack_vf;
-	mbx->ops.check_for_rst = e1000_check_for_rst_vf;
-
-	mbx->stats.msgs_tx = 0;
-	mbx->stats.msgs_rx = 0;
-	mbx->stats.reqs = 0;
-	mbx->stats.acks = 0;
-	mbx->stats.rsts = 0;
-
-	return E1000_SUCCESS;
-}
-
-STATIC s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask)
-{
-	u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR);
-	s32 ret_val = -E1000_ERR_MBX;
-
-	if (mbvficr & mask) {
-		ret_val = E1000_SUCCESS;
-		E1000_WRITE_REG(hw, E1000_MBVFICR, mask);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_msg_pf - checks to see if the VF has sent mail
- *  @hw: pointer to the HW structure
- *  @vf_number: the VF index
- *
- *  returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number)
-{
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_check_for_msg_pf");
-
-	if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) {
-		ret_val = E1000_SUCCESS;
-		hw->mbx.stats.reqs++;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_ack_pf - checks to see if the VF has ACKed
- *  @hw: pointer to the HW structure
- *  @vf_number: the VF index
- *
- *  returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number)
-{
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_check_for_ack_pf");
-
-	if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) {
-		ret_val = E1000_SUCCESS;
-		hw->mbx.stats.acks++;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_for_rst_pf - checks to see if the VF has reset
- *  @hw: pointer to the HW structure
- *  @vf_number: the VF index
- *
- *  returns SUCCESS if the VF has set the Status bit or else ERR_MBX
- **/
-STATIC s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number)
-{
-	u32 vflre = E1000_READ_REG(hw, E1000_VFLRE);
-	s32 ret_val = -E1000_ERR_MBX;
-
-	DEBUGFUNC("e1000_check_for_rst_pf");
-
-	if (vflre & (1 << vf_number)) {
-		ret_val = E1000_SUCCESS;
-		E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number));
-		hw->mbx.stats.rsts++;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_obtain_mbx_lock_pf - obtain mailbox lock
- *  @hw: pointer to the HW structure
- *  @vf_number: the VF index
- *
- *  return SUCCESS if we obtained the mailbox lock
- **/
-STATIC s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number)
-{
-	s32 ret_val = -E1000_ERR_MBX;
-	u32 p2v_mailbox;
-
-	DEBUGFUNC("e1000_obtain_mbx_lock_pf");
-
-	/* Take ownership of the buffer */
-	E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU);
-
-	/* reserve mailbox for vf use */
-	p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number));
-	if (p2v_mailbox & E1000_P2VMAILBOX_PFU)
-		ret_val = E1000_SUCCESS;
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_mbx_pf - Places a message in the mailbox
- *  @hw: pointer to the HW structure
- *  @msg: The message buffer
- *  @size: Length of buffer
- *  @vf_number: the VF index
- *
- *  returns SUCCESS if it successfully copied message into the buffer
- **/
-STATIC s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
-			      u16 vf_number)
-{
-	s32 ret_val;
-	u16 i;
-
-	DEBUGFUNC("e1000_write_mbx_pf");
-
-	/* lock the mailbox to prevent pf/vf race condition */
-	ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
-	if (ret_val)
-		goto out_no_write;
-
-	/* flush msg and acks as we are overwriting the message buffer */
-	e1000_check_for_msg_pf(hw, vf_number);
-	e1000_check_for_ack_pf(hw, vf_number);
-
-	/* copy the caller specified message to the mailbox memory buffer */
-	for (i = 0; i < size; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]);
-
-	/* Interrupt VF to tell it a message has been sent and release buffer*/
-	E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS);
-
-	/* update stats */
-	hw->mbx.stats.msgs_tx++;
-
-out_no_write:
-	return ret_val;
-
-}
-
-/**
- *  e1000_read_mbx_pf - Read a message from the mailbox
- *  @hw: pointer to the HW structure
- *  @msg: The message buffer
- *  @size: Length of buffer
- *  @vf_number: the VF index
- *
- *  This function copies a message from the mailbox buffer to the caller's
- *  memory buffer.  The presumption is that the caller knows that there was
- *  a message due to a VF request so no polling for message is needed.
- **/
-STATIC s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size,
-			     u16 vf_number)
-{
-	s32 ret_val;
-	u16 i;
-
-	DEBUGFUNC("e1000_read_mbx_pf");
-
-	/* lock the mailbox to prevent pf/vf race condition */
-	ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number);
-	if (ret_val)
-		goto out_no_read;
-
-	/* copy the message to the mailbox memory buffer */
-	for (i = 0; i < size; i++)
-		msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i);
-
-	/* Acknowledge the message and release buffer */
-	E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK);
-
-	/* update stats */
-	hw->mbx.stats.msgs_rx++;
-
-out_no_read:
-	return ret_val;
-}
-
-/**
- *  e1000_init_mbx_params_pf - set initial values for pf mailbox
- *  @hw: pointer to the HW structure
- *
- *  Initializes the hw->mbx struct to correct values for pf mailbox
- */
-s32 e1000_init_mbx_params_pf(struct e1000_hw *hw)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-
-	switch (hw->mac.type) {
-	case e1000_82576:
-	case e1000_i350:
-	case e1000_i354:
-		mbx->timeout = 0;
-		mbx->usec_delay = 0;
-
-		mbx->size = E1000_VFMAILBOX_SIZE;
-
-		mbx->ops.read = e1000_read_mbx_pf;
-		mbx->ops.write = e1000_write_mbx_pf;
-		mbx->ops.read_posted = e1000_read_posted_mbx;
-		mbx->ops.write_posted = e1000_write_posted_mbx;
-		mbx->ops.check_for_msg = e1000_check_for_msg_pf;
-		mbx->ops.check_for_ack = e1000_check_for_ack_pf;
-		mbx->ops.check_for_rst = e1000_check_for_rst_pf;
-
-		mbx->stats.msgs_tx = 0;
-		mbx->stats.msgs_rx = 0;
-		mbx->stats.reqs = 0;
-		mbx->stats.acks = 0;
-		mbx->stats.rsts = 0;
-	default:
-		return E1000_SUCCESS;
-	}
-}
-
diff --git a/lib/librte_pmd_e1000/e1000/e1000_mbx.h b/lib/librte_pmd_e1000/e1000/e1000_mbx.h
deleted file mode 100644
index e9524fc..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_mbx.h
+++ /dev/null
@@ -1,105 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_MBX_H_
-#define _E1000_MBX_H_
-
-#include "e1000_api.h"
-
-/* Define mailbox register bits */
-#define E1000_V2PMAILBOX_REQ	0x00000001 /* Request for PF Ready bit */
-#define E1000_V2PMAILBOX_ACK	0x00000002 /* Ack PF message received */
-#define E1000_V2PMAILBOX_VFU	0x00000004 /* VF owns the mailbox buffer */
-#define E1000_V2PMAILBOX_PFU	0x00000008 /* PF owns the mailbox buffer */
-#define E1000_V2PMAILBOX_PFSTS	0x00000010 /* PF wrote a message in the MB */
-#define E1000_V2PMAILBOX_PFACK	0x00000020 /* PF ack the previous VF msg */
-#define E1000_V2PMAILBOX_RSTI	0x00000040 /* PF has reset indication */
-#define E1000_V2PMAILBOX_RSTD	0x00000080 /* PF has indicated reset done */
-#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
-
-#define E1000_P2VMAILBOX_STS	0x00000001 /* Initiate message send to VF */
-#define E1000_P2VMAILBOX_ACK	0x00000002 /* Ack message recv'd from VF */
-#define E1000_P2VMAILBOX_VFU	0x00000004 /* VF owns the mailbox buffer */
-#define E1000_P2VMAILBOX_PFU	0x00000008 /* PF owns the mailbox buffer */
-#define E1000_P2VMAILBOX_RVFU	0x00000010 /* Reset VFU - used when VF stuck */
-
-#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */
-#define E1000_MBVFICR_VFREQ_VF1	0x00000001 /* bit for VF 1 message */
-#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */
-#define E1000_MBVFICR_VFACK_VF1	0x00010000 /* bit for VF 1 ack */
-
-#define E1000_VFMAILBOX_SIZE	16 /* 16 32 bit words - 64 bytes */
-
-/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
- * PF.  The reverse is true if it is E1000_PF_*.
- * Message ACK's are the value or'd with 0xF0000000
- */
-/* Msgs below or'd with this are the ACK */
-#define E1000_VT_MSGTYPE_ACK	0x80000000
-/* Msgs below or'd with this are the NACK */
-#define E1000_VT_MSGTYPE_NACK	0x40000000
-/* Indicates that VF is still clear to send requests */
-#define E1000_VT_MSGTYPE_CTS	0x20000000
-#define E1000_VT_MSGINFO_SHIFT	16
-/* bits 23:16 are used for extra info for certain messages */
-#define E1000_VT_MSGINFO_MASK	(0xFF << E1000_VT_MSGINFO_SHIFT)
-
-#define E1000_VF_RESET			0x01 /* VF requests reset */
-#define E1000_VF_SET_MAC_ADDR		0x02 /* VF requests to set MAC addr */
-#define E1000_VF_SET_MULTICAST		0x03 /* VF requests to set MC addr */
-#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_MULTICAST_OVERFLOW	(0x80 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_VLAN		0x04 /* VF requests to set VLAN */
-#define E1000_VF_SET_VLAN_ADD		(0x01 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_LPE		0x05 /* reqs to set VMOLR.LPE */
-#define E1000_VF_SET_PROMISC		0x06 /* reqs to clear VMOLR.ROPE/MPME*/
-#define E1000_VF_SET_PROMISC_UNICAST	(0x01 << E1000_VT_MSGINFO_SHIFT)
-#define E1000_VF_SET_PROMISC_MULTICAST	(0x02 << E1000_VT_MSGINFO_SHIFT)
-
-#define E1000_PF_CONTROL_MSG		0x0100 /* PF control message */
-
-#define E1000_VF_MBX_INIT_TIMEOUT	2000 /* number of retries on mailbox */
-#define E1000_VF_MBX_INIT_DELAY		500  /* microseconds between retries */
-
-s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16);
-s32 e1000_check_for_msg(struct e1000_hw *, u16);
-s32 e1000_check_for_ack(struct e1000_hw *, u16);
-s32 e1000_check_for_rst(struct e1000_hw *, u16);
-void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
-s32 e1000_init_mbx_params_vf(struct e1000_hw *);
-s32 e1000_init_mbx_params_pf(struct e1000_hw *);
-
-#endif /* _E1000_MBX_H_ */
diff --git a/lib/librte_pmd_e1000/e1000/e1000_nvm.c b/lib/librte_pmd_e1000/e1000/e1000_nvm.c
deleted file mode 100644
index 8be437a..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_nvm.c
+++ /dev/null
@@ -1,1377 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw);
-
-/**
- *  e1000_init_nvm_ops_generic - Initialize NVM function pointers
- *  @hw: pointer to the HW structure
- *
- *  Setups up the function pointers to no-op functions
- **/
-void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	DEBUGFUNC("e1000_init_nvm_ops_generic");
-
-	/* Initialize function pointers */
-	nvm->ops.init_params = e1000_null_ops_generic;
-	nvm->ops.acquire = e1000_null_ops_generic;
-	nvm->ops.read = e1000_null_read_nvm;
-	nvm->ops.release = e1000_null_nvm_generic;
-	nvm->ops.reload = e1000_reload_nvm_generic;
-	nvm->ops.update = e1000_null_ops_generic;
-	nvm->ops.valid_led_default = e1000_null_led_default;
-	nvm->ops.validate = e1000_null_ops_generic;
-	nvm->ops.write = e1000_null_write_nvm;
-}
-
-/**
- *  e1000_null_nvm_read - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
-			u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
-			u16 E1000_UNUSEDARG *c)
-{
-	DEBUGFUNC("e1000_null_read_nvm");
-	UNREFERENCED_4PARAMETER(hw, a, b, c);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_nvm_generic - No-op function, return void
- *  @hw: pointer to the HW structure
- **/
-void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	DEBUGFUNC("e1000_null_nvm_generic");
-	UNREFERENCED_1PARAMETER(hw);
-	return;
-}
-
-/**
- *  e1000_null_led_default - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
-			   u16 E1000_UNUSEDARG *data)
-{
-	DEBUGFUNC("e1000_null_led_default");
-	UNREFERENCED_2PARAMETER(hw, data);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_write_nvm - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
-			 u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
-			 u16 E1000_UNUSEDARG *c)
-{
-	DEBUGFUNC("e1000_null_write_nvm");
-	UNREFERENCED_4PARAMETER(hw, a, b, c);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_raise_eec_clk - Raise EEPROM clock
- *  @hw: pointer to the HW structure
- *  @eecd: pointer to the EEPROM
- *
- *  Enable/Raise the EEPROM clock bit.
- **/
-STATIC void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
-	*eecd = *eecd | E1000_EECD_SK;
-	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
-	E1000_WRITE_FLUSH(hw);
-	usec_delay(hw->nvm.delay_usec);
-}
-
-/**
- *  e1000_lower_eec_clk - Lower EEPROM clock
- *  @hw: pointer to the HW structure
- *  @eecd: pointer to the EEPROM
- *
- *  Clear/Lower the EEPROM clock bit.
- **/
-STATIC void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
-	*eecd = *eecd & ~E1000_EECD_SK;
-	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
-	E1000_WRITE_FLUSH(hw);
-	usec_delay(hw->nvm.delay_usec);
-}
-
-/**
- *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
- *  @hw: pointer to the HW structure
- *  @data: data to send to the EEPROM
- *  @count: number of bits to shift out
- *
- *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
- *  "data" parameter will be shifted out to the EEPROM one bit at a time.
- *  In order to do this, "data" must be broken down into bits.
- **/
-STATIC void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-	u32 mask;
-
-	DEBUGFUNC("e1000_shift_out_eec_bits");
-
-	mask = 0x01 << (count - 1);
-	if (nvm->type == e1000_nvm_eeprom_microwire)
-		eecd &= ~E1000_EECD_DO;
-	else
-	if (nvm->type == e1000_nvm_eeprom_spi)
-		eecd |= E1000_EECD_DO;
-
-	do {
-		eecd &= ~E1000_EECD_DI;
-
-		if (data & mask)
-			eecd |= E1000_EECD_DI;
-
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		E1000_WRITE_FLUSH(hw);
-
-		usec_delay(nvm->delay_usec);
-
-		e1000_raise_eec_clk(hw, &eecd);
-		e1000_lower_eec_clk(hw, &eecd);
-
-		mask >>= 1;
-	} while (mask);
-
-	eecd &= ~E1000_EECD_DI;
-	E1000_WRITE_REG(hw, E1000_EECD, eecd);
-}
-
-/**
- *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
- *  @hw: pointer to the HW structure
- *  @count: number of bits to shift in
- *
- *  In order to read a register from the EEPROM, we need to shift 'count' bits
- *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
- *  the EEPROM (setting the SK bit), and then reading the value of the data out
- *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
- *  always be clear.
- **/
-STATIC u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
-{
-	u32 eecd;
-	u32 i;
-	u16 data;
-
-	DEBUGFUNC("e1000_shift_in_eec_bits");
-
-	eecd = E1000_READ_REG(hw, E1000_EECD);
-
-	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
-	data = 0;
-
-	for (i = 0; i < count; i++) {
-		data <<= 1;
-		e1000_raise_eec_clk(hw, &eecd);
-
-		eecd = E1000_READ_REG(hw, E1000_EECD);
-
-		eecd &= ~E1000_EECD_DI;
-		if (eecd & E1000_EECD_DO)
-			data |= 1;
-
-		e1000_lower_eec_clk(hw, &eecd);
-	}
-
-	return data;
-}
-
-/**
- *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
- *  @hw: pointer to the HW structure
- *  @ee_reg: EEPROM flag for polling
- *
- *  Polls the EEPROM status bit for either read or write completion based
- *  upon the value of 'ee_reg'.
- **/
-s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
-{
-	u32 attempts = 100000;
-	u32 i, reg = 0;
-
-	DEBUGFUNC("e1000_poll_eerd_eewr_done");
-
-	for (i = 0; i < attempts; i++) {
-		if (ee_reg == E1000_NVM_POLL_READ)
-			reg = E1000_READ_REG(hw, E1000_EERD);
-		else
-			reg = E1000_READ_REG(hw, E1000_EEWR);
-
-		if (reg & E1000_NVM_RW_REG_DONE)
-			return E1000_SUCCESS;
-
-		usec_delay(5);
-	}
-
-	return -E1000_ERR_NVM;
-}
-
-/**
- *  e1000_acquire_nvm_generic - Generic request for access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
- *  Return successful if access grant bit set, else clear the request for
- *  EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
-{
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
-
-	DEBUGFUNC("e1000_acquire_nvm_generic");
-
-	E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
-	eecd = E1000_READ_REG(hw, E1000_EECD);
-
-	while (timeout) {
-		if (eecd & E1000_EECD_GNT)
-			break;
-		usec_delay(5);
-		eecd = E1000_READ_REG(hw, E1000_EECD);
-		timeout--;
-	}
-
-	if (!timeout) {
-		eecd &= ~E1000_EECD_REQ;
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		DEBUGOUT("Could not acquire NVM grant\n");
-		return -E1000_ERR_NVM;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_standby_nvm - Return EEPROM to standby state
- *  @hw: pointer to the HW structure
- *
- *  Return the EEPROM to a standby state.
- **/
-STATIC void e1000_standby_nvm(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-
-	DEBUGFUNC("e1000_standby_nvm");
-
-	if (nvm->type == e1000_nvm_eeprom_microwire) {
-		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		E1000_WRITE_FLUSH(hw);
-		usec_delay(nvm->delay_usec);
-
-		e1000_raise_eec_clk(hw, &eecd);
-
-		/* Select EEPROM */
-		eecd |= E1000_EECD_CS;
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		E1000_WRITE_FLUSH(hw);
-		usec_delay(nvm->delay_usec);
-
-		e1000_lower_eec_clk(hw, &eecd);
-	} else if (nvm->type == e1000_nvm_eeprom_spi) {
-		/* Toggle CS to flush commands */
-		eecd |= E1000_EECD_CS;
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		E1000_WRITE_FLUSH(hw);
-		usec_delay(nvm->delay_usec);
-		eecd &= ~E1000_EECD_CS;
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		E1000_WRITE_FLUSH(hw);
-		usec_delay(nvm->delay_usec);
-	}
-}
-
-/**
- *  e1000_stop_nvm - Terminate EEPROM command
- *  @hw: pointer to the HW structure
- *
- *  Terminates the current command by inverting the EEPROM's chip select pin.
- **/
-void e1000_stop_nvm(struct e1000_hw *hw)
-{
-	u32 eecd;
-
-	DEBUGFUNC("e1000_stop_nvm");
-
-	eecd = E1000_READ_REG(hw, E1000_EECD);
-	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
-		/* Pull CS high */
-		eecd |= E1000_EECD_CS;
-		e1000_lower_eec_clk(hw, &eecd);
-	} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
-		/* CS on Microwire is active-high */
-		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		e1000_raise_eec_clk(hw, &eecd);
-		e1000_lower_eec_clk(hw, &eecd);
-	}
-}
-
-/**
- *  e1000_release_nvm_generic - Release exclusive access to EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-void e1000_release_nvm_generic(struct e1000_hw *hw)
-{
-	u32 eecd;
-
-	DEBUGFUNC("e1000_release_nvm_generic");
-
-	e1000_stop_nvm(hw);
-
-	eecd = E1000_READ_REG(hw, E1000_EECD);
-	eecd &= ~E1000_EECD_REQ;
-	E1000_WRITE_REG(hw, E1000_EECD, eecd);
-}
-
-/**
- *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
- *  @hw: pointer to the HW structure
- *
- *  Setups the EEPROM for reading and writing.
- **/
-STATIC s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
-	u8 spi_stat_reg;
-
-	DEBUGFUNC("e1000_ready_nvm_eeprom");
-
-	if (nvm->type == e1000_nvm_eeprom_microwire) {
-		/* Clear SK and DI */
-		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		/* Set CS */
-		eecd |= E1000_EECD_CS;
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-	} else if (nvm->type == e1000_nvm_eeprom_spi) {
-		u16 timeout = NVM_MAX_RETRY_SPI;
-
-		/* Clear SK and CS */
-		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-		E1000_WRITE_REG(hw, E1000_EECD, eecd);
-		E1000_WRITE_FLUSH(hw);
-		usec_delay(1);
-
-		/* Read "Status Register" repeatedly until the LSB is cleared.
-		 * The EEPROM will signal that the command has been completed
-		 * by clearing bit 0 of the internal status register.  If it's
-		 * not cleared within 'timeout', then error out.
-		 */
-		while (timeout) {
-			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
-						 hw->nvm.opcode_bits);
-			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
-			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
-				break;
-
-			usec_delay(5);
-			e1000_standby_nvm(hw);
-			timeout--;
-		}
-
-		if (!timeout) {
-			DEBUGOUT("SPI NVM Status error\n");
-			return -E1000_ERR_NVM;
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_nvm_spi - Read EEPROM's using SPI
- *  @hw: pointer to the HW structure
- *  @offset: offset of word in the EEPROM to read
- *  @words: number of words to read
- *  @data: word read from the EEPROM
- *
- *  Reads a 16 bit word from the EEPROM.
- **/
-s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 i = 0;
-	s32 ret_val;
-	u16 word_in;
-	u8 read_opcode = NVM_READ_OPCODE_SPI;
-
-	DEBUGFUNC("e1000_read_nvm_spi");
-
-	/* A check for invalid values:  offset too large, too many words,
-	 * and not enough words.
-	 */
-	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		return -E1000_ERR_NVM;
-	}
-
-	ret_val = nvm->ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_ready_nvm_eeprom(hw);
-	if (ret_val)
-		goto release;
-
-	e1000_standby_nvm(hw);
-
-	if ((nvm->address_bits == 8) && (offset >= 128))
-		read_opcode |= NVM_A8_OPCODE_SPI;
-
-	/* Send the READ command (opcode + addr) */
-	e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
-	e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
-
-	/* Read the data.  SPI NVMs increment the address with each byte
-	 * read and will roll over if reading beyond the end.  This allows
-	 * us to read the whole NVM from any offset
-	 */
-	for (i = 0; i < words; i++) {
-		word_in = e1000_shift_in_eec_bits(hw, 16);
-		data[i] = (word_in >> 8) | (word_in << 8);
-	}
-
-release:
-	nvm->ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_nvm_microwire - Reads EEPROM's using microwire
- *  @hw: pointer to the HW structure
- *  @offset: offset of word in the EEPROM to read
- *  @words: number of words to read
- *  @data: word read from the EEPROM
- *
- *  Reads a 16 bit word from the EEPROM.
- **/
-s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
-			     u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 i = 0;
-	s32 ret_val;
-	u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
-
-	DEBUGFUNC("e1000_read_nvm_microwire");
-
-	/* A check for invalid values:  offset too large, too many words,
-	 * and not enough words.
-	 */
-	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		return -E1000_ERR_NVM;
-	}
-
-	ret_val = nvm->ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_ready_nvm_eeprom(hw);
-	if (ret_val)
-		goto release;
-
-	for (i = 0; i < words; i++) {
-		/* Send the READ command (opcode + addr) */
-		e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
-		e1000_shift_out_eec_bits(hw, (u16)(offset + i),
-					nvm->address_bits);
-
-		/* Read the data.  For microwire, each word requires the
-		 * overhead of setup and tear-down.
-		 */
-		data[i] = e1000_shift_in_eec_bits(hw, 16);
-		e1000_standby_nvm(hw);
-	}
-
-release:
-	nvm->ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
- *  @hw: pointer to the HW structure
- *  @offset: offset of word in the EEPROM to read
- *  @words: number of words to read
- *  @data: word read from the EEPROM
- *
- *  Reads a 16 bit word from the EEPROM using the EERD register.
- **/
-s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	u32 i, eerd = 0;
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_read_nvm_eerd");
-
-	/* A check for invalid values:  offset too large, too many words,
-	 * too many words for the offset, and not enough words.
-	 */
-	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		return -E1000_ERR_NVM;
-	}
-
-	for (i = 0; i < words; i++) {
-		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
-		       E1000_NVM_RW_REG_START;
-
-		E1000_WRITE_REG(hw, E1000_EERD, eerd);
-		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
-		if (ret_val)
-			break;
-
-		data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
-			   E1000_NVM_RW_REG_DATA);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_nvm_spi - Write to EEPROM using SPI
- *  @hw: pointer to the HW structure
- *  @offset: offset within the EEPROM to be written to
- *  @words: number of words to write
- *  @data: 16 bit word(s) to be written to the EEPROM
- *
- *  Writes data to EEPROM at offset using SPI interface.
- *
- *  If e1000_update_nvm_checksum is not called after this function , the
- *  EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	s32 ret_val = -E1000_ERR_NVM;
-	u16 widx = 0;
-
-	DEBUGFUNC("e1000_write_nvm_spi");
-
-	/* A check for invalid values:  offset too large, too many words,
-	 * and not enough words.
-	 */
-	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		return -E1000_ERR_NVM;
-	}
-
-	while (widx < words) {
-		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
-
-		ret_val = nvm->ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = e1000_ready_nvm_eeprom(hw);
-		if (ret_val) {
-			nvm->ops.release(hw);
-			return ret_val;
-		}
-
-		e1000_standby_nvm(hw);
-
-		/* Send the WRITE ENABLE command (8 bit opcode) */
-		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
-					 nvm->opcode_bits);
-
-		e1000_standby_nvm(hw);
-
-		/* Some SPI eeproms use the 8th address bit embedded in the
-		 * opcode
-		 */
-		if ((nvm->address_bits == 8) && (offset >= 128))
-			write_opcode |= NVM_A8_OPCODE_SPI;
-
-		/* Send the Write command (8-bit opcode + addr) */
-		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
-		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
-					 nvm->address_bits);
-
-		/* Loop to allow for up to whole page write of eeprom */
-		while (widx < words) {
-			u16 word_out = data[widx];
-			word_out = (word_out >> 8) | (word_out << 8);
-			e1000_shift_out_eec_bits(hw, word_out, 16);
-			widx++;
-
-			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
-				e1000_standby_nvm(hw);
-				break;
-			}
-		}
-		msec_delay(10);
-		nvm->ops.release(hw);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_nvm_microwire - Writes EEPROM using microwire
- *  @hw: pointer to the HW structure
- *  @offset: offset within the EEPROM to be written to
- *  @words: number of words to write
- *  @data: 16 bit word(s) to be written to the EEPROM
- *
- *  Writes data to EEPROM at offset using microwire interface.
- *
- *  If e1000_update_nvm_checksum is not called after this function , the
- *  EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
-			      u16 *data)
-{
-	struct e1000_nvm_info *nvm = &hw->nvm;
-	s32  ret_val;
-	u32 eecd;
-	u16 words_written = 0;
-	u16 widx = 0;
-
-	DEBUGFUNC("e1000_write_nvm_microwire");
-
-	/* A check for invalid values:  offset too large, too many words,
-	 * and not enough words.
-	 */
-	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
-	    (words == 0)) {
-		DEBUGOUT("nvm parameter(s) out of bounds\n");
-		return -E1000_ERR_NVM;
-	}
-
-	ret_val = nvm->ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_ready_nvm_eeprom(hw);
-	if (ret_val)
-		goto release;
-
-	e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
-				 (u16)(nvm->opcode_bits + 2));
-
-	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
-
-	e1000_standby_nvm(hw);
-
-	while (words_written < words) {
-		e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
-					 nvm->opcode_bits);
-
-		e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
-					 nvm->address_bits);
-
-		e1000_shift_out_eec_bits(hw, data[words_written], 16);
-
-		e1000_standby_nvm(hw);
-
-		for (widx = 0; widx < 200; widx++) {
-			eecd = E1000_READ_REG(hw, E1000_EECD);
-			if (eecd & E1000_EECD_DO)
-				break;
-			usec_delay(50);
-		}
-
-		if (widx == 200) {
-			DEBUGOUT("NVM Write did not complete\n");
-			ret_val = -E1000_ERR_NVM;
-			goto release;
-		}
-
-		e1000_standby_nvm(hw);
-
-		words_written++;
-	}
-
-	e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
-				 (u16)(nvm->opcode_bits + 2));
-
-	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
-
-release:
-	nvm->ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_pba_string_generic - Read device part number
- *  @hw: pointer to the HW structure
- *  @pba_num: pointer to device part number
- *  @pba_num_size: size of part number buffer
- *
- *  Reads the product board assembly (PBA) number from the EEPROM and stores
- *  the value in pba_num.
- **/
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
-				  u32 pba_num_size)
-{
-	s32 ret_val;
-	u16 nvm_data;
-	u16 pba_ptr;
-	u16 offset;
-	u16 length;
-
-	DEBUGFUNC("e1000_read_pba_string_generic");
-
-	if ((hw->mac.type >= e1000_i210) &&
-	    !e1000_get_flash_presence_i210(hw)) {
-		DEBUGOUT("Flashless no PBA string\n");
-		return -E1000_ERR_NVM_PBA_SECTION;
-	}
-
-	if (pba_num == NULL) {
-		DEBUGOUT("PBA string buffer was null\n");
-		return -E1000_ERR_INVALID_ARGUMENT;
-	}
-
-	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	/* if nvm_data is not ptr guard the PBA must be in legacy format which
-	 * means pba_ptr is actually our second data word for the PBA number
-	 * and we can decode it into an ascii string
-	 */
-	if (nvm_data != NVM_PBA_PTR_GUARD) {
-		DEBUGOUT("NVM PBA number is not stored as string\n");
-
-		/* make sure callers buffer is big enough to store the PBA */
-		if (pba_num_size < E1000_PBANUM_LENGTH) {
-			DEBUGOUT("PBA string buffer too small\n");
-			return E1000_ERR_NO_SPACE;
-		}
-
-		/* extract hex string from data and pba_ptr */
-		pba_num[0] = (nvm_data >> 12) & 0xF;
-		pba_num[1] = (nvm_data >> 8) & 0xF;
-		pba_num[2] = (nvm_data >> 4) & 0xF;
-		pba_num[3] = nvm_data & 0xF;
-		pba_num[4] = (pba_ptr >> 12) & 0xF;
-		pba_num[5] = (pba_ptr >> 8) & 0xF;
-		pba_num[6] = '-';
-		pba_num[7] = 0;
-		pba_num[8] = (pba_ptr >> 4) & 0xF;
-		pba_num[9] = pba_ptr & 0xF;
-
-		/* put a null character on the end of our string */
-		pba_num[10] = '\0';
-
-		/* switch all the data but the '-' to hex char */
-		for (offset = 0; offset < 10; offset++) {
-			if (pba_num[offset] < 0xA)
-				pba_num[offset] += '0';
-			else if (pba_num[offset] < 0x10)
-				pba_num[offset] += 'A' - 0xA;
-		}
-
-		return E1000_SUCCESS;
-	}
-
-	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	if (length == 0xFFFF || length == 0) {
-		DEBUGOUT("NVM PBA number section invalid length\n");
-		return -E1000_ERR_NVM_PBA_SECTION;
-	}
-	/* check if pba_num buffer is big enough */
-	if (pba_num_size < (((u32)length * 2) - 1)) {
-		DEBUGOUT("PBA string buffer too small\n");
-		return -E1000_ERR_NO_SPACE;
-	}
-
-	/* trim pba length from start of string */
-	pba_ptr++;
-	length--;
-
-	for (offset = 0; offset < length; offset++) {
-		ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error\n");
-			return ret_val;
-		}
-		pba_num[offset * 2] = (u8)(nvm_data >> 8);
-		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
-	}
-	pba_num[offset * 2] = '\0';
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_pba_length_generic - Read device part number length
- *  @hw: pointer to the HW structure
- *  @pba_num_size: size of part number buffer
- *
- *  Reads the product board assembly (PBA) number length from the EEPROM and
- *  stores the value in pba_num_size.
- **/
-s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
-{
-	s32 ret_val;
-	u16 nvm_data;
-	u16 pba_ptr;
-	u16 length;
-
-	DEBUGFUNC("e1000_read_pba_length_generic");
-
-	if (pba_num_size == NULL) {
-		DEBUGOUT("PBA buffer size was null\n");
-		return -E1000_ERR_INVALID_ARGUMENT;
-	}
-
-	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	 /* if data is not ptr guard the PBA must be in legacy format */
-	if (nvm_data != NVM_PBA_PTR_GUARD) {
-		*pba_num_size = E1000_PBANUM_LENGTH;
-		return E1000_SUCCESS;
-	}
-
-	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-
-	if (length == 0xFFFF || length == 0) {
-		DEBUGOUT("NVM PBA number section invalid length\n");
-		return -E1000_ERR_NVM_PBA_SECTION;
-	}
-
-	/* Convert from length in u16 values to u8 chars, add 1 for NULL,
-	 * and subtract 2 because length field is included in length.
-	 */
-	*pba_num_size = ((u32)length * 2) - 1;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_pba_num_generic - Read device part number
- *  @hw: pointer to the HW structure
- *  @pba_num: pointer to device part number
- *
- *  Reads the product board assembly (PBA) number from the EEPROM and stores
- *  the value in pba_num.
- **/
-s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
-{
-	s32 ret_val;
-	u16 nvm_data;
-
-	DEBUGFUNC("e1000_read_pba_num_generic");
-
-	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	} else if (nvm_data == NVM_PBA_PTR_GUARD) {
-		DEBUGOUT("NVM Not Supported\n");
-		return -E1000_NOT_IMPLEMENTED;
-	}
-	*pba_num = (u32)(nvm_data << 16);
-
-	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
-	if (ret_val) {
-		DEBUGOUT("NVM Read Error\n");
-		return ret_val;
-	}
-	*pba_num |= nvm_data;
-
-	return E1000_SUCCESS;
-}
-
-
-/**
- *  e1000_read_pba_raw
- *  @hw: pointer to the HW structure
- *  @eeprom_buf: optional pointer to EEPROM image
- *  @eeprom_buf_size: size of EEPROM image in words
- *  @max_pba_block_size: PBA block size limit
- *  @pba: pointer to output PBA structure
- *
- *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
- *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
- *
- **/
-s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
-		       u32 eeprom_buf_size, u16 max_pba_block_size,
-		       struct e1000_pba *pba)
-{
-	s32 ret_val;
-	u16 pba_block_size;
-
-	if (pba == NULL)
-		return -E1000_ERR_PARAM;
-
-	if (eeprom_buf == NULL) {
-		ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
-					 &pba->word[0]);
-		if (ret_val)
-			return ret_val;
-	} else {
-		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
-			pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
-			pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
-		} else {
-			return -E1000_ERR_PARAM;
-		}
-	}
-
-	if (pba->word[0] == NVM_PBA_PTR_GUARD) {
-		if (pba->pba_block == NULL)
-			return -E1000_ERR_PARAM;
-
-		ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
-						   eeprom_buf_size,
-						   &pba_block_size);
-		if (ret_val)
-			return ret_val;
-
-		if (pba_block_size > max_pba_block_size)
-			return -E1000_ERR_PARAM;
-
-		if (eeprom_buf == NULL) {
-			ret_val = e1000_read_nvm(hw, pba->word[1],
-						 pba_block_size,
-						 pba->pba_block);
-			if (ret_val)
-				return ret_val;
-		} else {
-			if (eeprom_buf_size > (u32)(pba->word[1] +
-					      pba_block_size)) {
-				memcpy(pba->pba_block,
-				       &eeprom_buf[pba->word[1]],
-				       pba_block_size * sizeof(u16));
-			} else {
-				return -E1000_ERR_PARAM;
-			}
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_pba_raw
- *  @hw: pointer to the HW structure
- *  @eeprom_buf: optional pointer to EEPROM image
- *  @eeprom_buf_size: size of EEPROM image in words
- *  @pba: pointer to PBA structure
- *
- *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
- *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
- *
- **/
-s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
-			u32 eeprom_buf_size, struct e1000_pba *pba)
-{
-	s32 ret_val;
-
-	if (pba == NULL)
-		return -E1000_ERR_PARAM;
-
-	if (eeprom_buf == NULL) {
-		ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
-					  &pba->word[0]);
-		if (ret_val)
-			return ret_val;
-	} else {
-		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
-			eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
-			eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
-		} else {
-			return -E1000_ERR_PARAM;
-		}
-	}
-
-	if (pba->word[0] == NVM_PBA_PTR_GUARD) {
-		if (pba->pba_block == NULL)
-			return -E1000_ERR_PARAM;
-
-		if (eeprom_buf == NULL) {
-			ret_val = e1000_write_nvm(hw, pba->word[1],
-						  pba->pba_block[0],
-						  pba->pba_block);
-			if (ret_val)
-				return ret_val;
-		} else {
-			if (eeprom_buf_size > (u32)(pba->word[1] +
-					      pba->pba_block[0])) {
-				memcpy(&eeprom_buf[pba->word[1]],
-				       pba->pba_block,
-				       pba->pba_block[0] * sizeof(u16));
-			} else {
-				return -E1000_ERR_PARAM;
-			}
-		}
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_pba_block_size
- *  @hw: pointer to the HW structure
- *  @eeprom_buf: optional pointer to EEPROM image
- *  @eeprom_buf_size: size of EEPROM image in words
- *  @pba_data_size: pointer to output variable
- *
- *  Returns the size of the PBA block in words. Function operates on EEPROM
- *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
- *  EEPROM device.
- *
- **/
-s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
-			     u32 eeprom_buf_size, u16 *pba_block_size)
-{
-	s32 ret_val;
-	u16 pba_word[2];
-	u16 length;
-
-	DEBUGFUNC("e1000_get_pba_block_size");
-
-	if (eeprom_buf == NULL) {
-		ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
-		if (ret_val)
-			return ret_val;
-	} else {
-		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
-			pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
-			pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
-		} else {
-			return -E1000_ERR_PARAM;
-		}
-	}
-
-	if (pba_word[0] == NVM_PBA_PTR_GUARD) {
-		if (eeprom_buf == NULL) {
-			ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
-						 &length);
-			if (ret_val)
-				return ret_val;
-		} else {
-			if (eeprom_buf_size > pba_word[1])
-				length = eeprom_buf[pba_word[1] + 0];
-			else
-				return -E1000_ERR_PARAM;
-		}
-
-		if (length == 0xFFFF || length == 0)
-			return -E1000_ERR_NVM_PBA_SECTION;
-	} else {
-		/* PBA number in legacy format, there is no PBA Block. */
-		length = 0;
-	}
-
-	if (pba_block_size != NULL)
-		*pba_block_size = length;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_mac_addr_generic - Read device MAC address
- *  @hw: pointer to the HW structure
- *
- *  Reads the device MAC address from the EEPROM and stores the value.
- *  Since devices with two ports use the same EEPROM, we increment the
- *  last bit in the MAC address for the second port.
- **/
-s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
-{
-	u32 rar_high;
-	u32 rar_low;
-	u16 i;
-
-	rar_high = E1000_READ_REG(hw, E1000_RAH(0));
-	rar_low = E1000_READ_REG(hw, E1000_RAL(0));
-
-	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
-		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
-
-	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
-		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
-
-	for (i = 0; i < ETH_ADDR_LEN; i++)
-		hw->mac.addr[i] = hw->mac.perm_addr[i];
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 checksum = 0;
-	u16 i, nvm_data;
-
-	DEBUGFUNC("e1000_validate_nvm_checksum_generic");
-
-	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
-		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error\n");
-			return ret_val;
-		}
-		checksum += nvm_data;
-	}
-
-	if (checksum != (u16) NVM_SUM) {
-		DEBUGOUT("NVM Checksum Invalid\n");
-		return -E1000_ERR_NVM;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
- *  @hw: pointer to the HW structure
- *
- *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
- *  up to the checksum.  Then calculates the EEPROM checksum and writes the
- *  value to the EEPROM.
- **/
-s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 checksum = 0;
-	u16 i, nvm_data;
-
-	DEBUGFUNC("e1000_update_nvm_checksum");
-
-	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
-		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
-		if (ret_val) {
-			DEBUGOUT("NVM Read Error while updating checksum.\n");
-			return ret_val;
-		}
-		checksum += nvm_data;
-	}
-	checksum = (u16) NVM_SUM - checksum;
-	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
-	if (ret_val)
-		DEBUGOUT("NVM Write Error while updating checksum.\n");
-
-	return ret_val;
-}
-
-/**
- *  e1000_reload_nvm_generic - Reloads EEPROM
- *  @hw: pointer to the HW structure
- *
- *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- *  extended control register.
- **/
-STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw)
-{
-	u32 ctrl_ext;
-
-	DEBUGFUNC("e1000_reload_nvm_generic");
-
-	usec_delay(10);
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	E1000_WRITE_FLUSH(hw);
-}
-
-/**
- *  e1000_get_fw_version - Get firmware version information
- *  @hw: pointer to the HW structure
- *  @fw_vers: pointer to output version structure
- *
- *  unsupported/not present features return 0 in version structure
- **/
-void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
-{
-	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
-	u8 q, hval, rem, result;
-	u16 comb_verh, comb_verl, comb_offset;
-
-	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
-
-	/* basic eeprom version numbers, bits used vary by part and by tool
-	 * used to create the nvm images */
-	/* Check which data format we have */
-	switch (hw->mac.type) {
-	case e1000_i211:
-		e1000_read_invm_version(hw, fw_vers);
-		return;
-	case e1000_82575:
-	case e1000_82576:
-	case e1000_82580:
-		hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
-		/* Use this format, unless EETRACK ID exists,
-		 * then use alternate format
-		 */
-		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
-			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
-			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
-					      >> NVM_MAJOR_SHIFT;
-			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
-					      >> NVM_MINOR_SHIFT;
-			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
-			goto etrack_id;
-		}
-		break;
-	case e1000_i210:
-		if (!(e1000_get_flash_presence_i210(hw))) {
-			e1000_read_invm_version(hw, fw_vers);
-			return;
-		}
-		/* fall through */
-	case e1000_i350:
-		hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
-		/* find combo image version */
-		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
-		if ((comb_offset != 0x0) &&
-		    (comb_offset != NVM_VER_INVALID)) {
-
-			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
-					 + 1), 1, &comb_verh);
-			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
-					 1, &comb_verl);
-
-			/* get Option Rom version if it exists and is valid */
-			if ((comb_verh && comb_verl) &&
-			    ((comb_verh != NVM_VER_INVALID) &&
-			     (comb_verl != NVM_VER_INVALID))) {
-
-				fw_vers->or_valid = true;
-				fw_vers->or_major =
-					comb_verl >> NVM_COMB_VER_SHFT;
-				fw_vers->or_build =
-					(comb_verl << NVM_COMB_VER_SHFT)
-					| (comb_verh >> NVM_COMB_VER_SHFT);
-				fw_vers->or_patch =
-					comb_verh & NVM_COMB_VER_MASK;
-			}
-		}
-		break;
-	default:
-		hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
-		return;
-	}
-	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
-	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
-			      >> NVM_MAJOR_SHIFT;
-
-	/* check for old style version format in newer images*/
-	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
-		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
-	} else {
-		eeprom_verl = (fw_version & NVM_MINOR_MASK)
-				>> NVM_MINOR_SHIFT;
-	}
-	/* Convert minor value to hex before assigning to output struct
-	 * Val to be converted will not be higher than 99, per tool output
-	 */
-	q = eeprom_verl / NVM_HEX_CONV;
-	hval = q * NVM_HEX_TENS;
-	rem = eeprom_verl % NVM_HEX_CONV;
-	result = hval + rem;
-	fw_vers->eep_minor = result;
-
-etrack_id:
-	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
-		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
-		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
-		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
-			| eeprom_verl;
-	}
-	return;
-}
-
-
diff --git a/lib/librte_pmd_e1000/e1000/e1000_nvm.h b/lib/librte_pmd_e1000/e1000/e1000_nvm.h
deleted file mode 100644
index dee1f62..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_nvm.h
+++ /dev/null
@@ -1,98 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_NVM_H_
-#define _E1000_NVM_H_
-
-struct e1000_pba {
-	u16 word[2];
-	u16 *pba_block;
-};
-
-struct e1000_fw_version {
-	u32 etrack_id;
-	u16 eep_major;
-	u16 eep_minor;
-	u16 eep_build;
-
-	u8 invm_major;
-	u8 invm_minor;
-	u8 invm_img_type;
-
-	bool or_valid;
-	u16 or_major;
-	u16 or_build;
-	u16 or_patch;
-};
-
-
-void e1000_init_nvm_ops_generic(struct e1000_hw *hw);
-s32  e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
-void e1000_null_nvm_generic(struct e1000_hw *hw);
-s32  e1000_null_led_default(struct e1000_hw *hw, u16 *data);
-s32  e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c);
-s32  e1000_acquire_nvm_generic(struct e1000_hw *hw);
-
-s32  e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
-s32  e1000_read_mac_addr_generic(struct e1000_hw *hw);
-s32  e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
-s32  e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
-				   u32 pba_num_size);
-s32  e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size);
-s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
-		       u32 eeprom_buf_size, u16 max_pba_block_size,
-		       struct e1000_pba *pba);
-s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
-			u32 eeprom_buf_size, struct e1000_pba *pba);
-s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
-			     u32 eeprom_buf_size, u16 *pba_block_size);
-s32  e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-s32  e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
-			      u16 words, u16 *data);
-s32  e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
-			 u16 *data);
-s32  e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
-s32  e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
-s32  e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
-			       u16 words, u16 *data);
-s32  e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
-			 u16 *data);
-s32  e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
-void e1000_stop_nvm(struct e1000_hw *hw);
-void e1000_release_nvm_generic(struct e1000_hw *hw);
-void e1000_get_fw_version(struct e1000_hw *hw,
-			  struct e1000_fw_version *fw_vers);
-
-#define E1000_STM_OPCODE	0xDB00
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_osdep.c b/lib/librte_pmd_e1000/e1000/e1000_osdep.c
deleted file mode 100644
index 7270edf..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_osdep.c
+++ /dev/null
@@ -1,83 +0,0 @@
-/******************************************************************************
-
-  Copyright (c) 2001-2014, Intel Corporation 
-  All rights reserved.
-  
-  Redistribution and use in source and binary forms, with or without 
-  modification, are permitted provided that the following conditions are met:
-  
-   1. Redistributions of source code must retain the above copyright notice, 
-      this list of conditions and the following disclaimer.
-  
-   2. Redistributions in binary form must reproduce the above copyright 
-      notice, this list of conditions and the following disclaimer in the 
-      documentation and/or other materials provided with the distribution.
-  
-   3. Neither the name of the Intel Corporation nor the names of its 
-      contributors may be used to endorse or promote products derived from 
-      this software without specific prior written permission.
-  
-  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
-  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
-  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
-  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
-  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
-  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
-  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
-  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
-  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-  POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#include "e1000_api.h"
-
-/*
- * NOTE: the following routines using the e1000 
- * 	naming style are provided to the shared
- *	code but are OS specific
- */
-
-void
-e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
-	return;
-}
-
-void
-e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
-	*value = 0;
-	return;
-}
-
-void
-e1000_pci_set_mwi(struct e1000_hw *hw)
-{
-}
-
-void
-e1000_pci_clear_mwi(struct e1000_hw *hw)
-{
-}
-
-
-/*
- * Read the PCI Express capabilities
- */
-int32_t
-e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
-	return E1000_NOT_IMPLEMENTED;
-}
-
-/*
- * Write the PCI Express capabilities
- */
-int32_t
-e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
-{
-	return E1000_NOT_IMPLEMENTED;
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_osdep.h b/lib/librte_pmd_e1000/e1000/e1000_osdep.h
deleted file mode 100644
index d04ec73..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_osdep.h
+++ /dev/null
@@ -1,183 +0,0 @@
-/******************************************************************************
-
-  Copyright (c) 2001-2014, Intel Corporation 
-  All rights reserved.
-  
-  Redistribution and use in source and binary forms, with or without 
-  modification, are permitted provided that the following conditions are met:
-  
-   1. Redistributions of source code must retain the above copyright notice, 
-      this list of conditions and the following disclaimer.
-  
-   2. Redistributions in binary form must reproduce the above copyright 
-      notice, this list of conditions and the following disclaimer in the 
-      documentation and/or other materials provided with the distribution.
-  
-   3. Neither the name of the Intel Corporation nor the names of its 
-      contributors may be used to endorse or promote products derived from 
-      this software without specific prior written permission.
-  
-  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
-  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
-  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
-  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
-  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
-  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
-  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
-  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
-  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-  POSSIBILITY OF SUCH DAMAGE.
-
-******************************************************************************/
-/*$FreeBSD$*/
-
-#ifndef _E1000_OSDEP_H_
-#define _E1000_OSDEP_H_
-
-#include <stdint.h>
-#include <stdio.h>
-#include <stdarg.h>
-#include <string.h>
-#include <rte_common.h>
-#include <rte_cycles.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_byteorder.h>
-
-#include "../e1000_logs.h"
-
-#define DELAY(x) rte_delay_us(x)
-#define usec_delay(x) DELAY(x)
-#define usec_delay_irq(x) DELAY(x)
-#define msec_delay(x) DELAY(1000*(x))
-#define msec_delay_irq(x) DELAY(1000*(x))
-
-#define DEBUGFUNC(F)            DEBUGOUT(F "\n");
-#define DEBUGOUT(S, args...)    PMD_DRV_LOG_RAW(DEBUG, S, ##args)
-#define DEBUGOUT1(S, args...)   DEBUGOUT(S, ##args)
-#define DEBUGOUT2(S, args...)   DEBUGOUT(S, ##args)
-#define DEBUGOUT3(S, args...)   DEBUGOUT(S, ##args)
-#define DEBUGOUT6(S, args...)   DEBUGOUT(S, ##args)
-#define DEBUGOUT7(S, args...)   DEBUGOUT(S, ##args)
-
-#define UNREFERENCED_PARAMETER(_p)
-#define UNREFERENCED_1PARAMETER(_p)
-#define UNREFERENCED_2PARAMETER(_p, _q)
-#define UNREFERENCED_3PARAMETER(_p, _q, _r)
-#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s)
-
-#define FALSE			0
-#define TRUE			1
-
-#define	CMD_MEM_WRT_INVALIDATE	0x0010  /* BIT_4 */
-
-/* Mutex used in the shared code */
-#define E1000_MUTEX                     uintptr_t
-#define E1000_MUTEX_INIT(mutex)         (*(mutex) = 0)
-#define E1000_MUTEX_LOCK(mutex)         (*(mutex) = 1)
-#define E1000_MUTEX_UNLOCK(mutex)       (*(mutex) = 0)
-
-typedef uint64_t	u64;
-typedef uint32_t	u32;
-typedef uint16_t	u16;
-typedef uint8_t		u8;
-typedef int64_t		s64;
-typedef int32_t		s32;
-typedef int16_t		s16;
-typedef int8_t		s8;
-typedef int		bool;
-
-#define __le16		u16
-#define __le32		u32
-#define __le64		u64
-
-#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS)
-
-#define E1000_PCI_REG(reg) (*((volatile uint32_t *)(reg)))
-
-#define E1000_PCI_REG_WRITE(reg, value) do { \
-	E1000_PCI_REG((reg)) = (rte_cpu_to_le_32(value)); \
-} while (0)
-
-#define E1000_PCI_REG_ADDR(hw, reg) \
-	((volatile uint32_t *)((char *)(hw)->hw_addr + (reg)))
-
-#define E1000_PCI_REG_ARRAY_ADDR(hw, reg, index) \
-	E1000_PCI_REG_ADDR((hw), (reg) + ((index) << 2))
-
-static inline uint32_t e1000_read_addr(volatile void* addr)
-{
-	return rte_le_to_cpu_32(E1000_PCI_REG(addr));
-}
-
-/* Necessary defines */
-#define E1000_MRQC_ENABLE_MASK                  0x00000007
-#define E1000_MRQC_RSS_FIELD_IPV6_EX		0x00080000
-#define E1000_ALL_FULL_DUPLEX   ( \
-        ADVERTISE_10_FULL | ADVERTISE_100_FULL | ADVERTISE_1000_FULL)
-
-#define M88E1543_E_PHY_ID    0x01410EA0
-#define NAHUM6LP_HW 
-#define ULP_SUPPORT
-
-#define E1000_RCTL_DTYP_MASK	0x00000C00 /* Descriptor type mask */
-#define E1000_MRQC_RSS_FIELD_IPV6_EX            0x00080000
-
-/* Register READ/WRITE macros */
-
-#define E1000_READ_REG(hw, reg) \
-	e1000_read_addr(E1000_PCI_REG_ADDR((hw), (reg)))
-
-#define E1000_WRITE_REG(hw, reg, value) \
-	E1000_PCI_REG_WRITE(E1000_PCI_REG_ADDR((hw), (reg)), (value))
-
-#define E1000_READ_REG_ARRAY(hw, reg, index) \
-	E1000_PCI_REG(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)))
-
-#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \
-	E1000_PCI_REG_WRITE(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)), (value))
-
-#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
-#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
-
-#define	E1000_ACCESS_PANIC(x, hw, reg, value) \
-	rte_panic("%s:%u\t" RTE_STR(x) "(%p, 0x%x, 0x%x)", \
-		__FILE__, __LINE__, (hw), (reg), (unsigned int)(value))
-
-/*
- * To be able to do IO write, we need to map IO BAR
- * (bar 2/4 depending on device).
- * Right now mapping multiple BARs is not supported by DPDK.
- * Fortunatelly we need it only for legacy hw support.
- */
-
-#define E1000_WRITE_REG_IO(hw, reg, value) \
-	E1000_WRITE_REG(hw, reg, value)
-
-/*
- * Not implemented.
- */
-
-#define E1000_READ_FLASH_REG(hw, reg) \
-	(E1000_ACCESS_PANIC(E1000_READ_FLASH_REG, hw, reg, 0), 0)
-
-#define E1000_READ_FLASH_REG16(hw, reg)  \
-	(E1000_ACCESS_PANIC(E1000_READ_FLASH_REG16, hw, reg, 0), 0)
-
-#define E1000_WRITE_FLASH_REG(hw, reg, value)  \
-	E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG, hw, reg, value)
-
-#define E1000_WRITE_FLASH_REG16(hw, reg, value) \
-	E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG16, hw, reg, value)
-
-#define STATIC static
-
-#ifndef ETH_ADDR_LEN
-#define ETH_ADDR_LEN                  6
-#endif
-
-#define false                         FALSE
-#define true                          TRUE
-
-#endif /* _E1000_OSDEP_H_ */
diff --git a/lib/librte_pmd_e1000/e1000/e1000_phy.c b/lib/librte_pmd_e1000/e1000/e1000_phy.c
deleted file mode 100644
index e214f17..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_phy.c
+++ /dev/null
@@ -1,4273 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#include "e1000_api.h"
-
-STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw);
-STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
-					  u16 *data, bool read, bool page_set);
-STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page);
-STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
-					  u16 *data, bool read);
-
-/* Cable length tables */
-STATIC const u16 e1000_m88_cable_length_table[] = {
-	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
-#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
-		(sizeof(e1000_m88_cable_length_table) / \
-		 sizeof(e1000_m88_cable_length_table[0]))
-
-STATIC const u16 e1000_igp_2_cable_length_table[] = {
-	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
-	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
-	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
-	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
-	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
-	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
-	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
-	124};
-#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
-		(sizeof(e1000_igp_2_cable_length_table) / \
-		 sizeof(e1000_igp_2_cable_length_table[0]))
-
-/**
- *  e1000_init_phy_ops_generic - Initialize PHY function pointers
- *  @hw: pointer to the HW structure
- *
- *  Setups up the function pointers to no-op functions
- **/
-void e1000_init_phy_ops_generic(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	DEBUGFUNC("e1000_init_phy_ops_generic");
-
-	/* Initialize function pointers */
-	phy->ops.init_params = e1000_null_ops_generic;
-	phy->ops.acquire = e1000_null_ops_generic;
-	phy->ops.check_polarity = e1000_null_ops_generic;
-	phy->ops.check_reset_block = e1000_null_ops_generic;
-	phy->ops.commit = e1000_null_ops_generic;
-	phy->ops.force_speed_duplex = e1000_null_ops_generic;
-	phy->ops.get_cfg_done = e1000_null_ops_generic;
-	phy->ops.get_cable_length = e1000_null_ops_generic;
-	phy->ops.get_info = e1000_null_ops_generic;
-	phy->ops.set_page = e1000_null_set_page;
-	phy->ops.read_reg = e1000_null_read_reg;
-	phy->ops.read_reg_locked = e1000_null_read_reg;
-	phy->ops.read_reg_page = e1000_null_read_reg;
-	phy->ops.release = e1000_null_phy_generic;
-	phy->ops.reset = e1000_null_ops_generic;
-	phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
-	phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
-	phy->ops.write_reg = e1000_null_write_reg;
-	phy->ops.write_reg_locked = e1000_null_write_reg;
-	phy->ops.write_reg_page = e1000_null_write_reg;
-	phy->ops.power_up = e1000_null_phy_generic;
-	phy->ops.power_down = e1000_null_phy_generic;
-	phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
-	phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
-	phy->ops.cfg_on_link_up = e1000_null_ops_generic;
-}
-
-/**
- *  e1000_null_set_page - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
-			u16 E1000_UNUSEDARG data)
-{
-	DEBUGFUNC("e1000_null_set_page");
-	UNREFERENCED_2PARAMETER(hw, data);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_read_reg - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
-			u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
-{
-	DEBUGFUNC("e1000_null_read_reg");
-	UNREFERENCED_3PARAMETER(hw, offset, data);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_phy_generic - No-op function, return void
- *  @hw: pointer to the HW structure
- **/
-void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	DEBUGFUNC("e1000_null_phy_generic");
-	UNREFERENCED_1PARAMETER(hw);
-	return;
-}
-
-/**
- *  e1000_null_lplu_state - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
-			  bool E1000_UNUSEDARG active)
-{
-	DEBUGFUNC("e1000_null_lplu_state");
-	UNREFERENCED_2PARAMETER(hw, active);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_null_write_reg - No-op function, return 0
- *  @hw: pointer to the HW structure
- **/
-s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
-			 u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
-{
-	DEBUGFUNC("e1000_null_write_reg");
-	UNREFERENCED_3PARAMETER(hw, offset, data);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_i2c_byte_null - No-op function, return 0
- *  @hw: pointer to hardware structure
- *  @byte_offset: byte offset to write
- *  @dev_addr: device address
- *  @data: data value read
- *
- **/
-s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
-			     u8 E1000_UNUSEDARG byte_offset,
-			     u8 E1000_UNUSEDARG dev_addr,
-			     u8 E1000_UNUSEDARG *data)
-{
-	DEBUGFUNC("e1000_read_i2c_byte_null");
-	UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_i2c_byte_null - No-op function, return 0
- *  @hw: pointer to hardware structure
- *  @byte_offset: byte offset to write
- *  @dev_addr: device address
- *  @data: data value to write
- *
- **/
-s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
-			      u8 E1000_UNUSEDARG byte_offset,
-			      u8 E1000_UNUSEDARG dev_addr,
-			      u8 E1000_UNUSEDARG data)
-{
-	DEBUGFUNC("e1000_write_i2c_byte_null");
-	UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_check_reset_block_generic - Check if PHY reset is blocked
- *  @hw: pointer to the HW structure
- *
- *  Read the PHY management control register and check whether a PHY reset
- *  is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
- *  return E1000_BLK_PHY_RESET (12).
- **/
-s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
-{
-	u32 manc;
-
-	DEBUGFUNC("e1000_check_reset_block");
-
-	manc = E1000_READ_REG(hw, E1000_MANC);
-
-	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
-	       E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_phy_id - Retrieve the PHY ID and revision
- *  @hw: pointer to the HW structure
- *
- *  Reads the PHY registers and stores the PHY ID and possibly the PHY
- *  revision in the hardware structure.
- **/
-s32 e1000_get_phy_id(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val = E1000_SUCCESS;
-	u16 phy_id;
-	u16 retry_count = 0;
-
-	DEBUGFUNC("e1000_get_phy_id");
-
-	if (!phy->ops.read_reg)
-		return E1000_SUCCESS;
-
-	while (retry_count < 2) {
-		ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
-		if (ret_val)
-			return ret_val;
-
-		phy->id = (u32)(phy_id << 16);
-		usec_delay(20);
-		ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
-		if (ret_val)
-			return ret_val;
-
-		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
-		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
-
-		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
-			return E1000_SUCCESS;
-
-		retry_count++;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_phy_reset_dsp_generic - Reset PHY DSP
- *  @hw: pointer to the HW structure
- *
- *  Reset the digital signal processor.
- **/
-s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_phy_reset_dsp_generic");
-
-	if (!hw->phy.ops.write_reg)
-		return E1000_SUCCESS;
-
-	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
-	if (ret_val)
-		return ret_val;
-
-	return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
-}
-
-/**
- *  e1000_read_phy_reg_mdic - Read MDI control register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Reads the MDI control register in the PHY at offset and stores the
- *  information read to data.
- **/
-s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	u32 i, mdic = 0;
-
-	DEBUGFUNC("e1000_read_phy_reg_mdic");
-
-	if (offset > MAX_PHY_REG_ADDRESS) {
-		DEBUGOUT1("PHY Address %d is out of range\n", offset);
-		return -E1000_ERR_PARAM;
-	}
-
-	/* Set up Op-code, Phy Address, and register offset in the MDI
-	 * Control register.  The MAC will take care of interfacing with the
-	 * PHY to retrieve the desired data.
-	 */
-	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
-		(phy->addr << E1000_MDIC_PHY_SHIFT) |
-		(E1000_MDIC_OP_READ));
-
-	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
-
-	/* Poll the ready bit to see if the MDI read completed
-	 * Increasing the time out as testing showed failures with
-	 * the lower time out
-	 */
-	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
-		usec_delay_irq(50);
-		mdic = E1000_READ_REG(hw, E1000_MDIC);
-		if (mdic & E1000_MDIC_READY)
-			break;
-	}
-	if (!(mdic & E1000_MDIC_READY)) {
-		DEBUGOUT("MDI Read did not complete\n");
-		return -E1000_ERR_PHY;
-	}
-	if (mdic & E1000_MDIC_ERROR) {
-		DEBUGOUT("MDI Error\n");
-		return -E1000_ERR_PHY;
-	}
-	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
-		DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
-			  offset,
-			  (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
-		return -E1000_ERR_PHY;
-	}
-	*data = (u16) mdic;
-
-	/* Allow some time after each MDIC transaction to avoid
-	 * reading duplicate data in the next MDIC transaction.
-	 */
-	if (hw->mac.type == e1000_pch2lan)
-		usec_delay_irq(100);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_phy_reg_mdic - Write MDI control register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write to register at offset
- *
- *  Writes data to MDI control register in the PHY at offset.
- **/
-s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	u32 i, mdic = 0;
-
-	DEBUGFUNC("e1000_write_phy_reg_mdic");
-
-	if (offset > MAX_PHY_REG_ADDRESS) {
-		DEBUGOUT1("PHY Address %d is out of range\n", offset);
-		return -E1000_ERR_PARAM;
-	}
-
-	/* Set up Op-code, Phy Address, and register offset in the MDI
-	 * Control register.  The MAC will take care of interfacing with the
-	 * PHY to retrieve the desired data.
-	 */
-	mdic = (((u32)data) |
-		(offset << E1000_MDIC_REG_SHIFT) |
-		(phy->addr << E1000_MDIC_PHY_SHIFT) |
-		(E1000_MDIC_OP_WRITE));
-
-	E1000_WRITE_REG(hw, E1000_MDIC, mdic);
-
-	/* Poll the ready bit to see if the MDI read completed
-	 * Increasing the time out as testing showed failures with
-	 * the lower time out
-	 */
-	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
-		usec_delay_irq(50);
-		mdic = E1000_READ_REG(hw, E1000_MDIC);
-		if (mdic & E1000_MDIC_READY)
-			break;
-	}
-	if (!(mdic & E1000_MDIC_READY)) {
-		DEBUGOUT("MDI Write did not complete\n");
-		return -E1000_ERR_PHY;
-	}
-	if (mdic & E1000_MDIC_ERROR) {
-		DEBUGOUT("MDI Error\n");
-		return -E1000_ERR_PHY;
-	}
-	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
-		DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
-			  offset,
-			  (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
-		return -E1000_ERR_PHY;
-	}
-
-	/* Allow some time after each MDIC transaction to avoid
-	 * reading duplicate data in the next MDIC transaction.
-	 */
-	if (hw->mac.type == e1000_pch2lan)
-		usec_delay_irq(100);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_phy_reg_i2c - Read PHY register using i2c
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Reads the PHY register at offset using the i2c interface and stores the
- *  retrieved information in data.
- **/
-s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	u32 i, i2ccmd = 0;
-
-	DEBUGFUNC("e1000_read_phy_reg_i2c");
-
-	/* Set up Op-code, Phy Address, and register address in the I2CCMD
-	 * register.  The MAC will take care of interfacing with the
-	 * PHY to retrieve the desired data.
-	 */
-	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
-		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
-		  (E1000_I2CCMD_OPCODE_READ));
-
-	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-
-	/* Poll the ready bit to see if the I2C read completed */
-	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
-		usec_delay(50);
-		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
-		if (i2ccmd & E1000_I2CCMD_READY)
-			break;
-	}
-	if (!(i2ccmd & E1000_I2CCMD_READY)) {
-		DEBUGOUT("I2CCMD Read did not complete\n");
-		return -E1000_ERR_PHY;
-	}
-	if (i2ccmd & E1000_I2CCMD_ERROR) {
-		DEBUGOUT("I2CCMD Error bit set\n");
-		return -E1000_ERR_PHY;
-	}
-
-	/* Need to byte-swap the 16-bit value. */
-	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_phy_reg_i2c - Write PHY register using i2c
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Writes the data to PHY register at the offset using the i2c interface.
- **/
-s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	u32 i, i2ccmd = 0;
-	u16 phy_data_swapped;
-
-	DEBUGFUNC("e1000_write_phy_reg_i2c");
-
-	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
-	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
-		DEBUGOUT1("PHY I2C Address %d is out of range.\n",
-			  hw->phy.addr);
-		return -E1000_ERR_CONFIG;
-	}
-
-	/* Swap the data bytes for the I2C interface */
-	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
-
-	/* Set up Op-code, Phy Address, and register address in the I2CCMD
-	 * register.  The MAC will take care of interfacing with the
-	 * PHY to retrieve the desired data.
-	 */
-	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
-		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
-		  E1000_I2CCMD_OPCODE_WRITE |
-		  phy_data_swapped);
-
-	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-
-	/* Poll the ready bit to see if the I2C read completed */
-	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
-		usec_delay(50);
-		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
-		if (i2ccmd & E1000_I2CCMD_READY)
-			break;
-	}
-	if (!(i2ccmd & E1000_I2CCMD_READY)) {
-		DEBUGOUT("I2CCMD Write did not complete\n");
-		return -E1000_ERR_PHY;
-	}
-	if (i2ccmd & E1000_I2CCMD_ERROR) {
-		DEBUGOUT("I2CCMD Error bit set\n");
-		return -E1000_ERR_PHY;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_sfp_data_byte - Reads SFP module data.
- *  @hw: pointer to the HW structure
- *  @offset: byte location offset to be read
- *  @data: read data buffer pointer
- *
- *  Reads one byte from SFP module data stored
- *  in SFP resided EEPROM memory or SFP diagnostic area.
- *  Function should be called with
- *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
- *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
- *  access
- **/
-s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
-{
-	u32 i = 0;
-	u32 i2ccmd = 0;
-	u32 data_local = 0;
-
-	DEBUGFUNC("e1000_read_sfp_data_byte");
-
-	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
-		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
-		return -E1000_ERR_PHY;
-	}
-
-	/* Set up Op-code, EEPROM Address,in the I2CCMD
-	 * register. The MAC will take care of interfacing with the
-	 * EEPROM to retrieve the desired data.
-	 */
-	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
-		  E1000_I2CCMD_OPCODE_READ);
-
-	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-
-	/* Poll the ready bit to see if the I2C read completed */
-	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
-		usec_delay(50);
-		data_local = E1000_READ_REG(hw, E1000_I2CCMD);
-		if (data_local & E1000_I2CCMD_READY)
-			break;
-	}
-	if (!(data_local & E1000_I2CCMD_READY)) {
-		DEBUGOUT("I2CCMD Read did not complete\n");
-		return -E1000_ERR_PHY;
-	}
-	if (data_local & E1000_I2CCMD_ERROR) {
-		DEBUGOUT("I2CCMD Error bit set\n");
-		return -E1000_ERR_PHY;
-	}
-	*data = (u8) data_local & 0xFF;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_sfp_data_byte - Writes SFP module data.
- *  @hw: pointer to the HW structure
- *  @offset: byte location offset to write to
- *  @data: data to write
- *
- *  Writes one byte to SFP module data stored
- *  in SFP resided EEPROM memory or SFP diagnostic area.
- *  Function should be called with
- *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
- *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
- *  access
- **/
-s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
-{
-	u32 i = 0;
-	u32 i2ccmd = 0;
-	u32 data_local = 0;
-
-	DEBUGFUNC("e1000_write_sfp_data_byte");
-
-	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
-		DEBUGOUT("I2CCMD command address exceeds upper limit\n");
-		return -E1000_ERR_PHY;
-	}
-	/* The programming interface is 16 bits wide
-	 * so we need to read the whole word first
-	 * then update appropriate byte lane and write
-	 * the updated word back.
-	 */
-	/* Set up Op-code, EEPROM Address,in the I2CCMD
-	 * register. The MAC will take care of interfacing
-	 * with an EEPROM to write the data given.
-	 */
-	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
-		  E1000_I2CCMD_OPCODE_READ);
-	/* Set a command to read single word */
-	E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
-		usec_delay(50);
-		/* Poll the ready bit to see if lastly
-		 * launched I2C operation completed
-		 */
-		i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
-		if (i2ccmd & E1000_I2CCMD_READY) {
-			/* Check if this is READ or WRITE phase */
-			if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
-			    E1000_I2CCMD_OPCODE_READ) {
-				/* Write the selected byte
-				 * lane and update whole word
-				 */
-				data_local = i2ccmd & 0xFF00;
-				data_local |= data;
-				i2ccmd = ((offset <<
-					E1000_I2CCMD_REG_ADDR_SHIFT) |
-					E1000_I2CCMD_OPCODE_WRITE | data_local);
-				E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
-			} else {
-				break;
-			}
-		}
-	}
-	if (!(i2ccmd & E1000_I2CCMD_READY)) {
-		DEBUGOUT("I2CCMD Write did not complete\n");
-		return -E1000_ERR_PHY;
-	}
-	if (i2ccmd & E1000_I2CCMD_ERROR) {
-		DEBUGOUT("I2CCMD Error bit set\n");
-		return -E1000_ERR_PHY;
-	}
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_phy_reg_m88 - Read m88 PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Acquires semaphore, if necessary, then reads the PHY register at offset
- *  and storing the retrieved information in data.  Release any acquired
- *  semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_read_phy_reg_m88");
-
-	if (!hw->phy.ops.acquire)
-		return E1000_SUCCESS;
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
-					  data);
-
-	hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_phy_reg_m88 - Write m88 PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Acquires semaphore, if necessary, then writes the data to PHY register
- *  at the offset.  Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_write_phy_reg_m88");
-
-	if (!hw->phy.ops.acquire)
-		return E1000_SUCCESS;
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
-					   data);
-
-	hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
- *  @hw: pointer to the HW structure
- *  @page: page to set (shifted left when necessary)
- *
- *  Sets PHY page required for PHY register access.  Assumes semaphore is
- *  already acquired.  Note, this function sets phy.addr to 1 so the caller
- *  must set it appropriately (if necessary) after this function returns.
- **/
-s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
-{
-	DEBUGFUNC("e1000_set_page_igp");
-
-	DEBUGOUT1("Setting page 0x%x\n", page);
-
-	hw->phy.addr = 1;
-
-	return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
-}
-
-/**
- *  __e1000_read_phy_reg_igp - Read igp PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *  @locked: semaphore has already been acquired or not
- *
- *  Acquires semaphore, if necessary, then reads the PHY register at offset
- *  and stores the retrieved information in data.  Release any acquired
- *  semaphores before exiting.
- **/
-STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
-				    bool locked)
-{
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("__e1000_read_phy_reg_igp");
-
-	if (!locked) {
-		if (!hw->phy.ops.acquire)
-			return E1000_SUCCESS;
-
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	if (offset > MAX_PHY_MULTI_PAGE_REG)
-		ret_val = e1000_write_phy_reg_mdic(hw,
-						   IGP01E1000_PHY_PAGE_SELECT,
-						   (u16)offset);
-	if (!ret_val)
-		ret_val = e1000_read_phy_reg_mdic(hw,
-						  MAX_PHY_REG_ADDRESS & offset,
-						  data);
-	if (!locked)
-		hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_phy_reg_igp - Read igp PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Acquires semaphore then reads the PHY register at offset and stores the
- *  retrieved information in data.
- *  Release the acquired semaphore before exiting.
- **/
-s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	return __e1000_read_phy_reg_igp(hw, offset, data, false);
-}
-
-/**
- *  e1000_read_phy_reg_igp_locked - Read igp PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Reads the PHY register at offset and stores the retrieved information
- *  in data.  Assumes semaphore already acquired.
- **/
-s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	return __e1000_read_phy_reg_igp(hw, offset, data, true);
-}
-
-/**
- *  e1000_write_phy_reg_igp - Write igp PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *  @locked: semaphore has already been acquired or not
- *
- *  Acquires semaphore, if necessary, then writes the data to PHY register
- *  at the offset.  Release any acquired semaphores before exiting.
- **/
-STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
-				     bool locked)
-{
-	s32 ret_val = E1000_SUCCESS;
-
-	DEBUGFUNC("e1000_write_phy_reg_igp");
-
-	if (!locked) {
-		if (!hw->phy.ops.acquire)
-			return E1000_SUCCESS;
-
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	if (offset > MAX_PHY_MULTI_PAGE_REG)
-		ret_val = e1000_write_phy_reg_mdic(hw,
-						   IGP01E1000_PHY_PAGE_SELECT,
-						   (u16)offset);
-	if (!ret_val)
-		ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
-						       offset,
-						   data);
-	if (!locked)
-		hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_phy_reg_igp - Write igp PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Acquires semaphore then writes the data to PHY register
- *  at the offset.  Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	return __e1000_write_phy_reg_igp(hw, offset, data, false);
-}
-
-/**
- *  e1000_write_phy_reg_igp_locked - Write igp PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Writes the data to PHY register at the offset.
- *  Assumes semaphore already acquired.
- **/
-s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	return __e1000_write_phy_reg_igp(hw, offset, data, true);
-}
-
-/**
- *  __e1000_read_kmrn_reg - Read kumeran register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *  @locked: semaphore has already been acquired or not
- *
- *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
- *  using the kumeran interface.  The information retrieved is stored in data.
- *  Release any acquired semaphores before exiting.
- **/
-STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
-				 bool locked)
-{
-	u32 kmrnctrlsta;
-
-	DEBUGFUNC("__e1000_read_kmrn_reg");
-
-	if (!locked) {
-		s32 ret_val = E1000_SUCCESS;
-
-		if (!hw->phy.ops.acquire)
-			return E1000_SUCCESS;
-
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
-		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
-	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
-	E1000_WRITE_FLUSH(hw);
-
-	usec_delay(2);
-
-	kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
-	*data = (u16)kmrnctrlsta;
-
-	if (!locked)
-		hw->phy.ops.release(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_read_kmrn_reg_generic -  Read kumeran register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Acquires semaphore then reads the PHY register at offset using the
- *  kumeran interface.  The information retrieved is stored in data.
- *  Release the acquired semaphore before exiting.
- **/
-s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	return __e1000_read_kmrn_reg(hw, offset, data, false);
-}
-
-/**
- *  e1000_read_kmrn_reg_locked -  Read kumeran register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Reads the PHY register at offset using the kumeran interface.  The
- *  information retrieved is stored in data.
- *  Assumes semaphore already acquired.
- **/
-s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	return __e1000_read_kmrn_reg(hw, offset, data, true);
-}
-
-/**
- *  __e1000_write_kmrn_reg - Write kumeran register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *  @locked: semaphore has already been acquired or not
- *
- *  Acquires semaphore, if necessary.  Then write the data to PHY register
- *  at the offset using the kumeran interface.  Release any acquired semaphores
- *  before exiting.
- **/
-STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
-				  bool locked)
-{
-	u32 kmrnctrlsta;
-
-	DEBUGFUNC("e1000_write_kmrn_reg_generic");
-
-	if (!locked) {
-		s32 ret_val = E1000_SUCCESS;
-
-		if (!hw->phy.ops.acquire)
-			return E1000_SUCCESS;
-
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
-		       E1000_KMRNCTRLSTA_OFFSET) | data;
-	E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
-	E1000_WRITE_FLUSH(hw);
-
-	usec_delay(2);
-
-	if (!locked)
-		hw->phy.ops.release(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_kmrn_reg_generic -  Write kumeran register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Acquires semaphore then writes the data to the PHY register at the offset
- *  using the kumeran interface.  Release the acquired semaphore before exiting.
- **/
-s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	return __e1000_write_kmrn_reg(hw, offset, data, false);
-}
-
-/**
- *  e1000_write_kmrn_reg_locked -  Write kumeran register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Write the data to PHY register at the offset using the kumeran interface.
- *  Assumes semaphore already acquired.
- **/
-s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	return __e1000_write_kmrn_reg(hw, offset, data, true);
-}
-
-/**
- *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
- *  @hw: pointer to the HW structure
- *
- *  Sets up Master/slave mode
- **/
-STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 phy_data;
-
-	/* Resolve Master/Slave mode */
-	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* load defaults for future use */
-	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
-				   ((phy_data & CR_1000T_MS_VALUE) ?
-				    e1000_ms_force_master :
-				    e1000_ms_force_slave) : e1000_ms_auto;
-
-	switch (hw->phy.ms_type) {
-	case e1000_ms_force_master:
-		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
-		break;
-	case e1000_ms_force_slave:
-		phy_data |= CR_1000T_MS_ENABLE;
-		phy_data &= ~(CR_1000T_MS_VALUE);
-		break;
-	case e1000_ms_auto:
-		phy_data &= ~CR_1000T_MS_ENABLE;
-		/* fall-through */
-	default:
-		break;
-	}
-
-	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
-}
-
-/**
- *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
- *  @hw: pointer to the HW structure
- *
- *  Sets up Carrier-sense on Transmit and downshift values.
- **/
-s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 phy_data;
-
-	DEBUGFUNC("e1000_copper_link_setup_82577");
-
-	if (hw->phy.type == e1000_phy_82580) {
-		ret_val = hw->phy.ops.reset(hw);
-		if (ret_val) {
-			DEBUGOUT("Error resetting the PHY.\n");
-			return ret_val;
-		}
-	}
-
-	/* Enable CRS on Tx. This must be set for half-duplex operation. */
-	ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
-
-	/* Enable downshift */
-	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
-
-	ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Set MDI/MDIX mode */
-	ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
-	if (ret_val)
-		return ret_val;
-	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
-	/* Options:
-	 *   0 - Auto (default)
-	 *   1 - MDI mode
-	 *   2 - MDI-X mode
-	 */
-	switch (hw->phy.mdix) {
-	case 1:
-		break;
-	case 2:
-		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
-		break;
-	case 0:
-	default:
-		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
-		break;
-	}
-	ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	return e1000_set_master_slave_mode(hw);
-}
-
-/**
- *  e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
- *  @hw: pointer to the HW structure
- *
- *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
- *  and downshift values are set also.
- **/
-s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data;
-
-	DEBUGFUNC("e1000_copper_link_setup_m88");
-
-
-	/* Enable CRS on Tx. This must be set for half-duplex operation. */
-	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* For BM PHY this bit is downshift enable */
-	if (phy->type != e1000_phy_bm)
-		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
-	/* Options:
-	 *   MDI/MDI-X = 0 (default)
-	 *   0 - Auto for all speeds
-	 *   1 - MDI mode
-	 *   2 - MDI-X mode
-	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-	 */
-	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
-	switch (phy->mdix) {
-	case 1:
-		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
-		break;
-	case 2:
-		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
-		break;
-	case 3:
-		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
-		break;
-	case 0:
-	default:
-		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
-		break;
-	}
-
-	/* Options:
-	 *   disable_polarity_correction = 0 (default)
-	 *       Automatic Correction for Reversed Cable Polarity
-	 *   0 - Disabled
-	 *   1 - Enabled
-	 */
-	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
-	if (phy->disable_polarity_correction)
-		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
-	/* Enable downshift on BM (disabled by default) */
-	if (phy->type == e1000_phy_bm) {
-		/* For 82574/82583, first disable then enable downshift */
-		if (phy->id == BME1000_E_PHY_ID_R2) {
-			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
-			ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
-						     phy_data);
-			if (ret_val)
-				return ret_val;
-			/* Commit the changes. */
-			ret_val = phy->ops.commit(hw);
-			if (ret_val) {
-				DEBUGOUT("Error committing the PHY changes\n");
-				return ret_val;
-			}
-		}
-
-		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
-	}
-
-	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	if ((phy->type == e1000_phy_m88) &&
-	    (phy->revision < E1000_REVISION_4) &&
-	    (phy->id != BME1000_E_PHY_ID_R2)) {
-		/* Force TX_CLK in the Extended PHY Specific Control Register
-		 * to 25MHz clock.
-		 */
-		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
-					    &phy_data);
-		if (ret_val)
-			return ret_val;
-
-		phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
-		if ((phy->revision == E1000_REVISION_2) &&
-		    (phy->id == M88E1111_I_PHY_ID)) {
-			/* 82573L PHY - set the downshift counter to 5x. */
-			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
-			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
-		} else {
-			/* Configure Master and Slave downshift values */
-			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
-				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
-			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
-				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
-		}
-		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
-					     phy_data);
-		if (ret_val)
-			return ret_val;
-	}
-
-	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
-		/* Set PHY page 0, register 29 to 0x0003 */
-		ret_val = phy->ops.write_reg(hw, 29, 0x0003);
-		if (ret_val)
-			return ret_val;
-
-		/* Set PHY page 0, register 30 to 0x0000 */
-		ret_val = phy->ops.write_reg(hw, 30, 0x0000);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Commit the changes. */
-	ret_val = phy->ops.commit(hw);
-	if (ret_val) {
-		DEBUGOUT("Error committing the PHY changes\n");
-		return ret_val;
-	}
-
-	if (phy->type == e1000_phy_82578) {
-		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
-					    &phy_data);
-		if (ret_val)
-			return ret_val;
-
-		/* 82578 PHY - set the downshift count to 1x. */
-		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
-		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
-		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
-					     phy_data);
-		if (ret_val)
-			return ret_val;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
- *  @hw: pointer to the HW structure
- *
- *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
- *  Also enables and sets the downshift parameters.
- **/
-s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data;
-
-	DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
-
-
-	/* Enable CRS on Tx. This must be set for half-duplex operation. */
-	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Options:
-	 *   MDI/MDI-X = 0 (default)
-	 *   0 - Auto for all speeds
-	 *   1 - MDI mode
-	 *   2 - MDI-X mode
-	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-	 */
-	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
-	switch (phy->mdix) {
-	case 1:
-		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
-		break;
-	case 2:
-		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
-		break;
-	case 3:
-		/* M88E1112 does not support this mode) */
-		if (phy->id != M88E1112_E_PHY_ID) {
-			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
-			break;
-		}
-	case 0:
-	default:
-		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
-		break;
-	}
-
-	/* Options:
-	 *   disable_polarity_correction = 0 (default)
-	 *       Automatic Correction for Reversed Cable Polarity
-	 *   0 - Disabled
-	 *   1 - Enabled
-	 */
-	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
-	if (phy->disable_polarity_correction)
-		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
-	/* Enable downshift and setting it to X6 */
-	if (phy->id == M88E1543_E_PHY_ID) {
-		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
-		ret_val =
-		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = phy->ops.commit(hw);
-		if (ret_val) {
-			DEBUGOUT("Error committing the PHY changes\n");
-			return ret_val;
-		}
-	}
-
-	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
-	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
-	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
-
-	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Commit the changes. */
-	ret_val = phy->ops.commit(hw);
-	if (ret_val) {
-		DEBUGOUT("Error committing the PHY changes\n");
-		return ret_val;
-	}
-
-	ret_val = e1000_set_master_slave_mode(hw);
-	if (ret_val)
-		return ret_val;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_copper_link_setup_igp - Setup igp PHY's for copper link
- *  @hw: pointer to the HW structure
- *
- *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
- *  igp PHY's.
- **/
-s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_copper_link_setup_igp");
-
-
-	ret_val = hw->phy.ops.reset(hw);
-	if (ret_val) {
-		DEBUGOUT("Error resetting the PHY.\n");
-		return ret_val;
-	}
-
-	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
-	 * timeout issues when LFS is enabled.
-	 */
-	msec_delay(100);
-
-	/* The NVM settings will configure LPLU in D3 for
-	 * non-IGP1 PHYs.
-	 */
-	if (phy->type == e1000_phy_igp) {
-		/* disable lplu d3 during driver init */
-		ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
-		if (ret_val) {
-			DEBUGOUT("Error Disabling LPLU D3\n");
-			return ret_val;
-		}
-	}
-
-	/* disable lplu d0 during driver init */
-	if (hw->phy.ops.set_d0_lplu_state) {
-		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
-		if (ret_val) {
-			DEBUGOUT("Error Disabling LPLU D0\n");
-			return ret_val;
-		}
-	}
-	/* Configure mdi-mdix settings */
-	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
-	if (ret_val)
-		return ret_val;
-
-	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
-	switch (phy->mdix) {
-	case 1:
-		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-		break;
-	case 2:
-		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
-		break;
-	case 0:
-	default:
-		data |= IGP01E1000_PSCR_AUTO_MDIX;
-		break;
-	}
-	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
-	if (ret_val)
-		return ret_val;
-
-	/* set auto-master slave resolution settings */
-	if (hw->mac.autoneg) {
-		/* when autonegotiation advertisement is only 1000Mbps then we
-		 * should disable SmartSpeed and enable Auto MasterSlave
-		 * resolution as hardware default.
-		 */
-		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
-			/* Disable SmartSpeed */
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-
-			/* Set auto Master/Slave resolution process */
-			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
-			if (ret_val)
-				return ret_val;
-
-			data &= ~CR_1000T_MS_ENABLE;
-			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
-			if (ret_val)
-				return ret_val;
-		}
-
-		ret_val = e1000_set_master_slave_mode(hw);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
- *  @hw: pointer to the HW structure
- *
- *  Reads the MII auto-neg advertisement register and/or the 1000T control
- *  register and if the PHY is already setup for auto-negotiation, then
- *  return successful.  Otherwise, setup advertisement and flow control to
- *  the appropriate values for the wanted auto-negotiation.
- **/
-s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 mii_autoneg_adv_reg;
-	u16 mii_1000t_ctrl_reg = 0;
-
-	DEBUGFUNC("e1000_phy_setup_autoneg");
-
-	phy->autoneg_advertised &= phy->autoneg_mask;
-
-	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
-	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
-	if (ret_val)
-		return ret_val;
-
-	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
-		/* Read the MII 1000Base-T Control Register (Address 9). */
-		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
-					    &mii_1000t_ctrl_reg);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Need to parse both autoneg_advertised and fc and set up
-	 * the appropriate PHY registers.  First we will parse for
-	 * autoneg_advertised software override.  Since we can advertise
-	 * a plethora of combinations, we need to check each bit
-	 * individually.
-	 */
-
-	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
-	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
-	 * the  1000Base-T Control Register (Address 9).
-	 */
-	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
-				 NWAY_AR_100TX_HD_CAPS |
-				 NWAY_AR_10T_FD_CAPS   |
-				 NWAY_AR_10T_HD_CAPS);
-	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
-
-	DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
-
-	/* Do we want to advertise 10 Mb Half Duplex? */
-	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
-		DEBUGOUT("Advertise 10mb Half duplex\n");
-		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
-	}
-
-	/* Do we want to advertise 10 Mb Full Duplex? */
-	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
-		DEBUGOUT("Advertise 10mb Full duplex\n");
-		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
-	}
-
-	/* Do we want to advertise 100 Mb Half Duplex? */
-	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
-		DEBUGOUT("Advertise 100mb Half duplex\n");
-		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
-	}
-
-	/* Do we want to advertise 100 Mb Full Duplex? */
-	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
-		DEBUGOUT("Advertise 100mb Full duplex\n");
-		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
-	}
-
-	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
-	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
-		DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
-
-	/* Do we want to advertise 1000 Mb Full Duplex? */
-	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
-		DEBUGOUT("Advertise 1000mb Full duplex\n");
-		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
-	}
-
-	/* Check for a software override of the flow control settings, and
-	 * setup the PHY advertisement registers accordingly.  If
-	 * auto-negotiation is enabled, then software will have to set the
-	 * "PAUSE" bits to the correct value in the Auto-Negotiation
-	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
-	 * negotiation.
-	 *
-	 * The possible values of the "fc" parameter are:
-	 *      0:  Flow control is completely disabled
-	 *      1:  Rx flow control is enabled (we can receive pause frames
-	 *          but not send pause frames).
-	 *      2:  Tx flow control is enabled (we can send pause frames
-	 *          but we do not support receiving pause frames).
-	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
-	 *  other:  No software override.  The flow control configuration
-	 *          in the EEPROM is used.
-	 */
-	switch (hw->fc.current_mode) {
-	case e1000_fc_none:
-		/* Flow control (Rx & Tx) is completely disabled by a
-		 * software over-ride.
-		 */
-		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-		break;
-	case e1000_fc_rx_pause:
-		/* Rx Flow control is enabled, and Tx Flow control is
-		 * disabled, by a software over-ride.
-		 *
-		 * Since there really isn't a way to advertise that we are
-		 * capable of Rx Pause ONLY, we will advertise that we
-		 * support both symmetric and asymmetric Rx PAUSE.  Later
-		 * (in e1000_config_fc_after_link_up) we will disable the
-		 * hw's ability to send PAUSE frames.
-		 */
-		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-		break;
-	case e1000_fc_tx_pause:
-		/* Tx Flow control is enabled, and Rx Flow control is
-		 * disabled, by a software over-ride.
-		 */
-		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
-		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
-		break;
-	case e1000_fc_full:
-		/* Flow control (both Rx and Tx) is enabled by a software
-		 * over-ride.
-		 */
-		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-		break;
-	default:
-		DEBUGOUT("Flow control param set incorrectly\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
-	if (ret_val)
-		return ret_val;
-
-	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
-	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
-		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
-					     mii_1000t_ctrl_reg);
-
-	return ret_val;
-}
-
-/**
- *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
- *  @hw: pointer to the HW structure
- *
- *  Performs initial bounds checking on autoneg advertisement parameter, then
- *  configure to advertise the full capability.  Setup the PHY to autoneg
- *  and restart the negotiation process between the link partner.  If
- *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
- **/
-s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_ctrl;
-
-	DEBUGFUNC("e1000_copper_link_autoneg");
-
-	/* Perform some bounds checking on the autoneg advertisement
-	 * parameter.
-	 */
-	phy->autoneg_advertised &= phy->autoneg_mask;
-
-	/* If autoneg_advertised is zero, we assume it was not defaulted
-	 * by the calling code so we set to advertise full capability.
-	 */
-	if (!phy->autoneg_advertised)
-		phy->autoneg_advertised = phy->autoneg_mask;
-
-	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
-	ret_val = e1000_phy_setup_autoneg(hw);
-	if (ret_val) {
-		DEBUGOUT("Error Setting up Auto-Negotiation\n");
-		return ret_val;
-	}
-	DEBUGOUT("Restarting Auto-Neg\n");
-
-	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
-	 * the Auto Neg Restart bit in the PHY control register.
-	 */
-	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
-	if (ret_val)
-		return ret_val;
-
-	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
-	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
-	if (ret_val)
-		return ret_val;
-
-	/* Does the user want to wait for Auto-Neg to complete here, or
-	 * check at a later time (for example, callback routine).
-	 */
-	if (phy->autoneg_wait_to_complete) {
-		ret_val = e1000_wait_autoneg(hw);
-		if (ret_val) {
-			DEBUGOUT("Error while waiting for autoneg to complete\n");
-			return ret_val;
-		}
-	}
-
-	hw->mac.get_link_status = true;
-
-	return ret_val;
-}
-
-/**
- *  e1000_setup_copper_link_generic - Configure copper link settings
- *  @hw: pointer to the HW structure
- *
- *  Calls the appropriate function to configure the link for auto-neg or forced
- *  speed and duplex.  Then we check for link, once link is established calls
- *  to configure collision distance and flow control are called.  If link is
- *  not established, we return -E1000_ERR_PHY (-2).
- **/
-s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	bool link;
-
-	DEBUGFUNC("e1000_setup_copper_link_generic");
-
-	if (hw->mac.autoneg) {
-		/* Setup autoneg and flow control advertisement and perform
-		 * autonegotiation.
-		 */
-		ret_val = e1000_copper_link_autoneg(hw);
-		if (ret_val)
-			return ret_val;
-	} else {
-		/* PHY will be set to 10H, 10F, 100H or 100F
-		 * depending on user settings.
-		 */
-		DEBUGOUT("Forcing Speed and Duplex\n");
-		ret_val = hw->phy.ops.force_speed_duplex(hw);
-		if (ret_val) {
-			DEBUGOUT("Error Forcing Speed and Duplex\n");
-			return ret_val;
-		}
-	}
-
-	/* Check link status. Wait up to 100 microseconds for link to become
-	 * valid.
-	 */
-	ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
-					     &link);
-	if (ret_val)
-		return ret_val;
-
-	if (link) {
-		DEBUGOUT("Valid link established!!!\n");
-		hw->mac.ops.config_collision_dist(hw);
-		ret_val = e1000_config_fc_after_link_up_generic(hw);
-	} else {
-		DEBUGOUT("Unable to establish link!!!\n");
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
- *  @hw: pointer to the HW structure
- *
- *  Calls the PHY setup function to force speed and duplex.  Clears the
- *  auto-crossover to force MDI manually.  Waits for link and returns
- *  successful if link up is successful, else -E1000_ERR_PHY (-2).
- **/
-s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data;
-	bool link;
-
-	DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
-
-	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
-	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
-	 * forced whenever speed and duplex are forced.
-	 */
-	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
-	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	DEBUGOUT1("IGP PSCR: %X\n", phy_data);
-
-	usec_delay(1);
-
-	if (phy->autoneg_wait_to_complete) {
-		DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
-
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-		if (ret_val)
-			return ret_val;
-
-		if (!link)
-			DEBUGOUT("Link taking longer than expected.\n");
-
-		/* Try once more */
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
- *  @hw: pointer to the HW structure
- *
- *  Calls the PHY setup function to force speed and duplex.  Clears the
- *  auto-crossover to force MDI manually.  Resets the PHY to commit the
- *  changes.  If time expires while waiting for link up, we reset the DSP.
- *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
- *  successful completion, else return corresponding error code.
- **/
-s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data;
-	bool link;
-
-	DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
-
-	/* I210 and I211 devices support Auto-Crossover in forced operation. */
-	if (phy->type != e1000_phy_i210) {
-		/* Clear Auto-Crossover to force MDI manually.  M88E1000
-		 * requires MDI forced whenever speed and duplex are forced.
-		 */
-		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
-					    &phy_data);
-		if (ret_val)
-			return ret_val;
-
-		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
-					     phy_data);
-		if (ret_val)
-			return ret_val;
-	}
-
-	DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
-
-	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
-	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Reset the phy to commit changes. */
-	ret_val = hw->phy.ops.commit(hw);
-	if (ret_val)
-		return ret_val;
-
-	if (phy->autoneg_wait_to_complete) {
-		DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
-
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-		if (ret_val)
-			return ret_val;
-
-		if (!link) {
-			bool reset_dsp = true;
-
-			switch (hw->phy.id) {
-			case I347AT4_E_PHY_ID:
-			case M88E1340M_E_PHY_ID:
-			case M88E1112_E_PHY_ID:
-			case M88E1543_E_PHY_ID:
-			case M88E1512_E_PHY_ID:
-			case I210_I_PHY_ID:
-				reset_dsp = false;
-				break;
-			default:
-				if (hw->phy.type != e1000_phy_m88)
-					reset_dsp = false;
-				break;
-			}
-
-			if (!reset_dsp) {
-				DEBUGOUT("Link taking longer than expected.\n");
-			} else {
-				/* We didn't get link.
-				 * Reset the DSP and cross our fingers.
-				 */
-				ret_val = phy->ops.write_reg(hw,
-						M88E1000_PHY_PAGE_SELECT,
-						0x001d);
-				if (ret_val)
-					return ret_val;
-				ret_val = e1000_phy_reset_dsp_generic(hw);
-				if (ret_val)
-					return ret_val;
-			}
-		}
-
-		/* Try once more */
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-		if (ret_val)
-			return ret_val;
-	}
-
-	if (hw->phy.type != e1000_phy_m88)
-		return E1000_SUCCESS;
-
-	if (hw->phy.id == I347AT4_E_PHY_ID ||
-		hw->phy.id == M88E1340M_E_PHY_ID ||
-		hw->phy.id == M88E1112_E_PHY_ID)
-		return E1000_SUCCESS;
-	if (hw->phy.id == I210_I_PHY_ID)
-		return E1000_SUCCESS;
-	if ((hw->phy.id == M88E1543_E_PHY_ID) ||
-	    (hw->phy.id == M88E1512_E_PHY_ID))
-		return E1000_SUCCESS;
-	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* Resetting the phy means we need to re-force TX_CLK in the
-	 * Extended PHY Specific Control Register to 25MHz clock from
-	 * the reset value of 2.5MHz.
-	 */
-	phy_data |= M88E1000_EPSCR_TX_CLK_25;
-	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	/* In addition, we must re-enable CRS on Tx for both half and full
-	 * duplex.
-	 */
-	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-
-	return ret_val;
-}
-
-/**
- *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
- *  @hw: pointer to the HW structure
- *
- *  Forces the speed and duplex settings of the PHY.
- *  This is a function pointer entry point only called by
- *  PHY setup routines.
- **/
-s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-	bool link;
-
-	DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
-
-	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
-	if (ret_val)
-		return ret_val;
-
-	e1000_phy_force_speed_duplex_setup(hw, &data);
-
-	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
-	if (ret_val)
-		return ret_val;
-
-	/* Disable MDI-X support for 10/100 */
-	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
-	if (ret_val)
-		return ret_val;
-
-	data &= ~IFE_PMC_AUTO_MDIX;
-	data &= ~IFE_PMC_FORCE_MDIX;
-
-	ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
-	if (ret_val)
-		return ret_val;
-
-	DEBUGOUT1("IFE PMC: %X\n", data);
-
-	usec_delay(1);
-
-	if (phy->autoneg_wait_to_complete) {
-		DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
-
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-		if (ret_val)
-			return ret_val;
-
-		if (!link)
-			DEBUGOUT("Link taking longer than expected.\n");
-
-		/* Try once more */
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-		if (ret_val)
-			return ret_val;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
- *  @hw: pointer to the HW structure
- *  @phy_ctrl: pointer to current value of PHY_CONTROL
- *
- *  Forces speed and duplex on the PHY by doing the following: disable flow
- *  control, force speed/duplex on the MAC, disable auto speed detection,
- *  disable auto-negotiation, configure duplex, configure speed, configure
- *  the collision distance, write configuration to CTRL register.  The
- *  caller must write to the PHY_CONTROL register for these settings to
- *  take affect.
- **/
-void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-	u32 ctrl;
-
-	DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
-
-	/* Turn off flow control when forcing speed/duplex */
-	hw->fc.current_mode = e1000_fc_none;
-
-	/* Force speed/duplex on the mac */
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-	ctrl &= ~E1000_CTRL_SPD_SEL;
-
-	/* Disable Auto Speed Detection */
-	ctrl &= ~E1000_CTRL_ASDE;
-
-	/* Disable autoneg on the phy */
-	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
-
-	/* Forcing Full or Half Duplex? */
-	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
-		ctrl &= ~E1000_CTRL_FD;
-		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
-		DEBUGOUT("Half Duplex\n");
-	} else {
-		ctrl |= E1000_CTRL_FD;
-		*phy_ctrl |= MII_CR_FULL_DUPLEX;
-		DEBUGOUT("Full Duplex\n");
-	}
-
-	/* Forcing 10mb or 100mb? */
-	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
-		ctrl |= E1000_CTRL_SPD_100;
-		*phy_ctrl |= MII_CR_SPEED_100;
-		*phy_ctrl &= ~MII_CR_SPEED_1000;
-		DEBUGOUT("Forcing 100mb\n");
-	} else {
-		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
-		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
-		DEBUGOUT("Forcing 10mb\n");
-	}
-
-	hw->mac.ops.config_collision_dist(hw);
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-}
-
-/**
- *  e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
- *  @hw: pointer to the HW structure
- *  @active: boolean used to enable/disable lplu
- *
- *  Success returns 0, Failure returns 1
- *
- *  The low power link up (lplu) state is set to the power management level D3
- *  and SmartSpeed is disabled when active is true, else clear lplu for D3
- *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
- *  is used during Dx states where the power conservation is most important.
- *  During driver activity, SmartSpeed should be enabled so performance is
- *  maintained.
- **/
-s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_set_d3_lplu_state_generic");
-
-	if (!hw->phy.ops.read_reg)
-		return E1000_SUCCESS;
-
-	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
-	if (ret_val)
-		return ret_val;
-
-	if (!active) {
-		data &= ~IGP02E1000_PM_D3_LPLU;
-		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-					     data);
-		if (ret_val)
-			return ret_val;
-		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
-		 * during Dx states where the power conservation is most
-		 * important.  During driver activity we should enable
-		 * SmartSpeed, so performance is maintained.
-		 */
-		if (phy->smart_speed == e1000_smart_speed_on) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data |= IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-		} else if (phy->smart_speed == e1000_smart_speed_off) {
-			ret_val = phy->ops.read_reg(hw,
-						    IGP01E1000_PHY_PORT_CONFIG,
-						    &data);
-			if (ret_val)
-				return ret_val;
-
-			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-			ret_val = phy->ops.write_reg(hw,
-						     IGP01E1000_PHY_PORT_CONFIG,
-						     data);
-			if (ret_val)
-				return ret_val;
-		}
-	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
-		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
-		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
-		data |= IGP02E1000_PM_D3_LPLU;
-		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-					     data);
-		if (ret_val)
-			return ret_val;
-
-		/* When LPLU is enabled, we should disable SmartSpeed */
-		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-					    &data);
-		if (ret_val)
-			return ret_val;
-
-		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-					     data);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_downshift_generic - Checks whether a downshift in speed occurred
- *  @hw: pointer to the HW structure
- *
- *  Success returns 0, Failure returns 1
- *
- *  A downshift is detected by querying the PHY link health.
- **/
-s32 e1000_check_downshift_generic(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data, offset, mask;
-
-	DEBUGFUNC("e1000_check_downshift_generic");
-
-	switch (phy->type) {
-	case e1000_phy_i210:
-	case e1000_phy_m88:
-	case e1000_phy_gg82563:
-	case e1000_phy_bm:
-	case e1000_phy_82578:
-		offset = M88E1000_PHY_SPEC_STATUS;
-		mask = M88E1000_PSSR_DOWNSHIFT;
-		break;
-	case e1000_phy_igp:
-	case e1000_phy_igp_2:
-	case e1000_phy_igp_3:
-		offset = IGP01E1000_PHY_LINK_HEALTH;
-		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
-		break;
-	default:
-		/* speed downshift not supported */
-		phy->speed_downgraded = false;
-		return E1000_SUCCESS;
-	}
-
-	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
-
-	if (!ret_val)
-		phy->speed_downgraded = !!(phy_data & mask);
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_polarity_m88 - Checks the polarity.
- *  @hw: pointer to the HW structure
- *
- *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- *  Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_m88(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_check_polarity_m88");
-
-	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
-
-	if (!ret_val)
-		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
-				       ? e1000_rev_polarity_reversed
-				       : e1000_rev_polarity_normal);
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_polarity_igp - Checks the polarity.
- *  @hw: pointer to the HW structure
- *
- *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- *  Polarity is determined based on the PHY port status register, and the
- *  current speed (since there is no polarity at 100Mbps).
- **/
-s32 e1000_check_polarity_igp(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data, offset, mask;
-
-	DEBUGFUNC("e1000_check_polarity_igp");
-
-	/* Polarity is determined based on the speed of
-	 * our connection.
-	 */
-	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
-	if (ret_val)
-		return ret_val;
-
-	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
-	    IGP01E1000_PSSR_SPEED_1000MBPS) {
-		offset = IGP01E1000_PHY_PCS_INIT_REG;
-		mask = IGP01E1000_PHY_POLARITY_MASK;
-	} else {
-		/* This really only applies to 10Mbps since
-		 * there is no polarity for 100Mbps (always 0).
-		 */
-		offset = IGP01E1000_PHY_PORT_STATUS;
-		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
-	}
-
-	ret_val = phy->ops.read_reg(hw, offset, &data);
-
-	if (!ret_val)
-		phy->cable_polarity = ((data & mask)
-				       ? e1000_rev_polarity_reversed
-				       : e1000_rev_polarity_normal);
-
-	return ret_val;
-}
-
-/**
- *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
- *  @hw: pointer to the HW structure
- *
- *  Polarity is determined on the polarity reversal feature being enabled.
- **/
-s32 e1000_check_polarity_ife(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data, offset, mask;
-
-	DEBUGFUNC("e1000_check_polarity_ife");
-
-	/* Polarity is determined based on the reversal feature being enabled.
-	 */
-	if (phy->polarity_correction) {
-		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
-		mask = IFE_PESC_POLARITY_REVERSED;
-	} else {
-		offset = IFE_PHY_SPECIAL_CONTROL;
-		mask = IFE_PSC_FORCE_POLARITY;
-	}
-
-	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
-
-	if (!ret_val)
-		phy->cable_polarity = ((phy_data & mask)
-				       ? e1000_rev_polarity_reversed
-				       : e1000_rev_polarity_normal);
-
-	return ret_val;
-}
-
-/**
- *  e1000_wait_autoneg - Wait for auto-neg completion
- *  @hw: pointer to the HW structure
- *
- *  Waits for auto-negotiation to complete or for the auto-negotiation time
- *  limit to expire, which ever happens first.
- **/
-STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 i, phy_status;
-
-	DEBUGFUNC("e1000_wait_autoneg");
-
-	if (!hw->phy.ops.read_reg)
-		return E1000_SUCCESS;
-
-	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
-	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
-		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
-		if (ret_val)
-			break;
-		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
-		if (ret_val)
-			break;
-		if (phy_status & MII_SR_AUTONEG_COMPLETE)
-			break;
-		msec_delay(100);
-	}
-
-	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
-	 * has completed.
-	 */
-	return ret_val;
-}
-
-/**
- *  e1000_phy_has_link_generic - Polls PHY for link
- *  @hw: pointer to the HW structure
- *  @iterations: number of times to poll for link
- *  @usec_interval: delay between polling attempts
- *  @success: pointer to whether polling was successful or not
- *
- *  Polls the PHY status register for link, 'iterations' number of times.
- **/
-s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
-			       u32 usec_interval, bool *success)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 i, phy_status;
-
-	DEBUGFUNC("e1000_phy_has_link_generic");
-
-	if (!hw->phy.ops.read_reg)
-		return E1000_SUCCESS;
-
-	for (i = 0; i < iterations; i++) {
-		/* Some PHYs require the PHY_STATUS register to be read
-		 * twice due to the link bit being sticky.  No harm doing
-		 * it across the board.
-		 */
-		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
-		if (ret_val) {
-			/* If the first read fails, another entity may have
-			 * ownership of the resources, wait and try again to
-			 * see if they have relinquished the resources yet.
-			 */
-			if (usec_interval >= 1000)
-				msec_delay(usec_interval/1000);
-			else
-				usec_delay(usec_interval);
-		}
-		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
-		if (ret_val)
-			break;
-		if (phy_status & MII_SR_LINK_STATUS)
-			break;
-		if (usec_interval >= 1000)
-			msec_delay(usec_interval/1000);
-		else
-			usec_delay(usec_interval);
-	}
-
-	*success = (i < iterations);
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_cable_length_m88 - Determine cable length for m88 PHY
- *  @hw: pointer to the HW structure
- *
- *  Reads the PHY specific status register to retrieve the cable length
- *  information.  The cable length is determined by averaging the minimum and
- *  maximum values to get the "average" cable length.  The m88 PHY has four
- *  possible cable length values, which are:
- *	Register Value		Cable Length
- *	0			< 50 meters
- *	1			50 - 80 meters
- *	2			80 - 110 meters
- *	3			110 - 140 meters
- *	4			> 140 meters
- **/
-s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data, index;
-
-	DEBUGFUNC("e1000_get_cable_length_m88");
-
-	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-
-	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
-		return -E1000_ERR_PHY;
-
-	phy->min_cable_length = e1000_m88_cable_length_table[index];
-	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
-
-	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-	return E1000_SUCCESS;
-}
-
-s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data, phy_data2, is_cm;
-	u16 index, default_page;
-
-	DEBUGFUNC("e1000_get_cable_length_m88_gen2");
-
-	switch (hw->phy.id) {
-	case I210_I_PHY_ID:
-		/* Get cable length from PHY Cable Diagnostics Control Reg */
-		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
-					    (I347AT4_PCDL + phy->addr),
-					    &phy_data);
-		if (ret_val)
-			return ret_val;
-
-		/* Check if the unit of cable length is meters or cm */
-		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
-					    I347AT4_PCDC, &phy_data2);
-		if (ret_val)
-			return ret_val;
-
-		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
-
-		/* Populate the phy structure with cable length in meters */
-		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
-		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
-		phy->cable_length = phy_data / (is_cm ? 100 : 1);
-		break;
-	case M88E1543_E_PHY_ID:
-	case M88E1512_E_PHY_ID:
-	case M88E1340M_E_PHY_ID:
-	case I347AT4_E_PHY_ID:
-		/* Remember the original page select and set it to 7 */
-		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
-					    &default_page);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
-		if (ret_val)
-			return ret_val;
-
-		/* Get cable length from PHY Cable Diagnostics Control Reg */
-		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
-					    &phy_data);
-		if (ret_val)
-			return ret_val;
-
-		/* Check if the unit of cable length is meters or cm */
-		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
-		if (ret_val)
-			return ret_val;
-
-		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
-
-		/* Populate the phy structure with cable length in meters */
-		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
-		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
-		phy->cable_length = phy_data / (is_cm ? 100 : 1);
-
-		/* Reset the page select to its original value */
-		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
-					     default_page);
-		if (ret_val)
-			return ret_val;
-		break;
-
-	case M88E1112_E_PHY_ID:
-		/* Remember the original page select and set it to 5 */
-		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
-					    &default_page);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
-					    &phy_data);
-		if (ret_val)
-			return ret_val;
-
-		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
-		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
-			return -E1000_ERR_PHY;
-
-		phy->min_cable_length = e1000_m88_cable_length_table[index];
-		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
-
-		phy->cable_length = (phy->min_cable_length +
-				     phy->max_cable_length) / 2;
-
-		/* Reset the page select to its original value */
-		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
-					     default_page);
-		if (ret_val)
-			return ret_val;
-
-		break;
-	default:
-		return -E1000_ERR_PHY;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
- *  @hw: pointer to the HW structure
- *
- *  The automatic gain control (agc) normalizes the amplitude of the
- *  received signal, adjusting for the attenuation produced by the
- *  cable.  By reading the AGC registers, which represent the
- *  combination of coarse and fine gain value, the value can be put
- *  into a lookup table to obtain the approximate cable length
- *  for each channel.
- **/
-s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data, i, agc_value = 0;
-	u16 cur_agc_index, max_agc_index = 0;
-	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
-	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
-		IGP02E1000_PHY_AGC_A,
-		IGP02E1000_PHY_AGC_B,
-		IGP02E1000_PHY_AGC_C,
-		IGP02E1000_PHY_AGC_D
-	};
-
-	DEBUGFUNC("e1000_get_cable_length_igp_2");
-
-	/* Read the AGC registers for all channels */
-	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
-		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
-		if (ret_val)
-			return ret_val;
-
-		/* Getting bits 15:9, which represent the combination of
-		 * coarse and fine gain values.  The result is a number
-		 * that can be put into the lookup table to obtain the
-		 * approximate cable length.
-		 */
-		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
-				 IGP02E1000_AGC_LENGTH_MASK);
-
-		/* Array index bound check. */
-		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
-		    (cur_agc_index == 0))
-			return -E1000_ERR_PHY;
-
-		/* Remove min & max AGC values from calculation. */
-		if (e1000_igp_2_cable_length_table[min_agc_index] >
-		    e1000_igp_2_cable_length_table[cur_agc_index])
-			min_agc_index = cur_agc_index;
-		if (e1000_igp_2_cable_length_table[max_agc_index] <
-		    e1000_igp_2_cable_length_table[cur_agc_index])
-			max_agc_index = cur_agc_index;
-
-		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
-	}
-
-	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
-		      e1000_igp_2_cable_length_table[max_agc_index]);
-	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
-	/* Calculate cable length with the error range of +/- 10 meters. */
-	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
-				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
-	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
-
-	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_phy_info_m88 - Retrieve PHY information
- *  @hw: pointer to the HW structure
- *
- *  Valid for only copper links.  Read the PHY status register (sticky read)
- *  to verify that link is up.  Read the PHY special control register to
- *  determine the polarity and 10base-T extended distance.  Read the PHY
- *  special status register to determine MDI/MDIx and current speed.  If
- *  speed is 1000, then determine cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32  ret_val;
-	u16 phy_data;
-	bool link;
-
-	DEBUGFUNC("e1000_get_phy_info_m88");
-
-	if (phy->media_type != e1000_media_type_copper) {
-		DEBUGOUT("Phy info is only valid for copper media\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-	if (ret_val)
-		return ret_val;
-
-	if (!link) {
-		DEBUGOUT("Phy info is only valid if link is up\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	phy->polarity_correction = !!(phy_data &
-				      M88E1000_PSCR_POLARITY_REVERSAL);
-
-	ret_val = e1000_check_polarity_m88(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
-
-	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
-		ret_val = hw->phy.ops.get_cable_length(hw);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
-		if (ret_val)
-			return ret_val;
-
-		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
-				? e1000_1000t_rx_status_ok
-				: e1000_1000t_rx_status_not_ok;
-
-		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
-				 ? e1000_1000t_rx_status_ok
-				 : e1000_1000t_rx_status_not_ok;
-	} else {
-		/* Set values to "undefined" */
-		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
-		phy->local_rx = e1000_1000t_rx_status_undefined;
-		phy->remote_rx = e1000_1000t_rx_status_undefined;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_phy_info_igp - Retrieve igp PHY information
- *  @hw: pointer to the HW structure
- *
- *  Read PHY status to determine if link is up.  If link is up, then
- *  set/determine 10base-T extended distance and polarity correction.  Read
- *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
- *  determine on the cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-	bool link;
-
-	DEBUGFUNC("e1000_get_phy_info_igp");
-
-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-	if (ret_val)
-		return ret_val;
-
-	if (!link) {
-		DEBUGOUT("Phy info is only valid if link is up\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	phy->polarity_correction = true;
-
-	ret_val = e1000_check_polarity_igp(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
-	if (ret_val)
-		return ret_val;
-
-	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
-
-	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
-	    IGP01E1000_PSSR_SPEED_1000MBPS) {
-		ret_val = phy->ops.get_cable_length(hw);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
-		if (ret_val)
-			return ret_val;
-
-		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
-				? e1000_1000t_rx_status_ok
-				: e1000_1000t_rx_status_not_ok;
-
-		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
-				 ? e1000_1000t_rx_status_ok
-				 : e1000_1000t_rx_status_not_ok;
-	} else {
-		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
-		phy->local_rx = e1000_1000t_rx_status_undefined;
-		phy->remote_rx = e1000_1000t_rx_status_undefined;
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
- *  @hw: pointer to the HW structure
- *
- *  Populates "phy" structure with various feature states.
- **/
-s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-	bool link;
-
-	DEBUGFUNC("e1000_get_phy_info_ife");
-
-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-	if (ret_val)
-		return ret_val;
-
-	if (!link) {
-		DEBUGOUT("Phy info is only valid if link is up\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
-	if (ret_val)
-		return ret_val;
-	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
-
-	if (phy->polarity_correction) {
-		ret_val = e1000_check_polarity_ife(hw);
-		if (ret_val)
-			return ret_val;
-	} else {
-		/* Polarity is forced */
-		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
-				       ? e1000_rev_polarity_reversed
-				       : e1000_rev_polarity_normal);
-	}
-
-	ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
-	if (ret_val)
-		return ret_val;
-
-	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
-
-	/* The following parameters are undefined for 10/100 operation. */
-	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
-	phy->local_rx = e1000_1000t_rx_status_undefined;
-	phy->remote_rx = e1000_1000t_rx_status_undefined;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_phy_sw_reset_generic - PHY software reset
- *  @hw: pointer to the HW structure
- *
- *  Does a software reset of the PHY by reading the PHY control register and
- *  setting/write the control register reset bit to the PHY.
- **/
-s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
-{
-	s32 ret_val;
-	u16 phy_ctrl;
-
-	DEBUGFUNC("e1000_phy_sw_reset_generic");
-
-	if (!hw->phy.ops.read_reg)
-		return E1000_SUCCESS;
-
-	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
-	if (ret_val)
-		return ret_val;
-
-	phy_ctrl |= MII_CR_RESET;
-	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
-	if (ret_val)
-		return ret_val;
-
-	usec_delay(1);
-
-	return ret_val;
-}
-
-/**
- *  e1000_phy_hw_reset_generic - PHY hardware reset
- *  @hw: pointer to the HW structure
- *
- *  Verify the reset block is not blocking us from resetting.  Acquire
- *  semaphore (if necessary) and read/set/write the device control reset
- *  bit in the PHY.  Wait the appropriate delay time for the device to
- *  reset and release the semaphore (if necessary).
- **/
-s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u32 ctrl;
-
-	DEBUGFUNC("e1000_phy_hw_reset_generic");
-
-	if (phy->ops.check_reset_block) {
-		ret_val = phy->ops.check_reset_block(hw);
-		if (ret_val)
-			return E1000_SUCCESS;
-	}
-
-	ret_val = phy->ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
-	E1000_WRITE_FLUSH(hw);
-
-	usec_delay(phy->reset_delay_us);
-
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-	E1000_WRITE_FLUSH(hw);
-
-	usec_delay(150);
-
-	phy->ops.release(hw);
-
-	return phy->ops.get_cfg_done(hw);
-}
-
-/**
- *  e1000_get_cfg_done_generic - Generic configuration done
- *  @hw: pointer to the HW structure
- *
- *  Generic function to wait 10 milli-seconds for configuration to complete
- *  and return success.
- **/
-s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	DEBUGFUNC("e1000_get_cfg_done_generic");
-	UNREFERENCED_1PARAMETER(hw);
-
-	msec_delay_irq(10);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_phy_init_script_igp3 - Inits the IGP3 PHY
- *  @hw: pointer to the HW structure
- *
- *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
- **/
-s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
-{
-	DEBUGOUT("Running IGP 3 PHY init script\n");
-
-	/* PHY init IGP 3 */
-	/* Enable rise/fall, 10-mode work in class-A */
-	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
-	/* Remove all caps from Replica path filter */
-	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
-	/* Bias trimming for ADC, AFE and Driver (Default) */
-	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
-	/* Increase Hybrid poly bias */
-	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
-	/* Add 4% to Tx amplitude in Gig mode */
-	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
-	/* Disable trimming (TTT) */
-	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
-	/* Poly DC correction to 94.6% + 2% for all channels */
-	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
-	/* ABS DC correction to 95.9% */
-	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
-	/* BG temp curve trim */
-	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
-	/* Increasing ADC OPAMP stage 1 currents to max */
-	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
-	/* Force 1000 ( required for enabling PHY regs configuration) */
-	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
-	/* Set upd_freq to 6 */
-	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
-	/* Disable NPDFE */
-	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
-	/* Disable adaptive fixed FFE (Default) */
-	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
-	/* Enable FFE hysteresis */
-	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
-	/* Fixed FFE for short cable lengths */
-	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
-	/* Fixed FFE for medium cable lengths */
-	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
-	/* Fixed FFE for long cable lengths */
-	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
-	/* Enable Adaptive Clip Threshold */
-	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
-	/* AHT reset limit to 1 */
-	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
-	/* Set AHT master delay to 127 msec */
-	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
-	/* Set scan bits for AHT */
-	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
-	/* Set AHT Preset bits */
-	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
-	/* Change integ_factor of channel A to 3 */
-	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
-	/* Change prop_factor of channels BCD to 8 */
-	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
-	/* Change cg_icount + enable integbp for channels BCD */
-	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
-	/* Change cg_icount + enable integbp + change prop_factor_master
-	 * to 8 for channel A
-	 */
-	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
-	/* Disable AHT in Slave mode on channel A */
-	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
-	/* Enable LPLU and disable AN to 1000 in non-D0a states,
-	 * Enable SPD+B2B
-	 */
-	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
-	/* Enable restart AN on an1000_dis change */
-	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
-	/* Enable wh_fifo read clock in 10/100 modes */
-	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
-	/* Restart AN, Speed selection is 1000 */
-	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_phy_type_from_id - Get PHY type from id
- *  @phy_id: phy_id read from the phy
- *
- *  Returns the phy type from the id.
- **/
-enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
-{
-	enum e1000_phy_type phy_type = e1000_phy_unknown;
-
-	switch (phy_id) {
-	case M88E1000_I_PHY_ID:
-	case M88E1000_E_PHY_ID:
-	case M88E1111_I_PHY_ID:
-	case M88E1011_I_PHY_ID:
-	case M88E1543_E_PHY_ID:
-	case M88E1512_E_PHY_ID:
-	case I347AT4_E_PHY_ID:
-	case M88E1112_E_PHY_ID:
-	case M88E1340M_E_PHY_ID:
-		phy_type = e1000_phy_m88;
-		break;
-	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
-		phy_type = e1000_phy_igp_2;
-		break;
-	case GG82563_E_PHY_ID:
-		phy_type = e1000_phy_gg82563;
-		break;
-	case IGP03E1000_E_PHY_ID:
-		phy_type = e1000_phy_igp_3;
-		break;
-	case IFE_E_PHY_ID:
-	case IFE_PLUS_E_PHY_ID:
-	case IFE_C_E_PHY_ID:
-		phy_type = e1000_phy_ife;
-		break;
-	case BME1000_E_PHY_ID:
-	case BME1000_E_PHY_ID_R2:
-		phy_type = e1000_phy_bm;
-		break;
-	case I82578_E_PHY_ID:
-		phy_type = e1000_phy_82578;
-		break;
-	case I82577_E_PHY_ID:
-		phy_type = e1000_phy_82577;
-		break;
-	case I82579_E_PHY_ID:
-		phy_type = e1000_phy_82579;
-		break;
-	case I217_E_PHY_ID:
-		phy_type = e1000_phy_i217;
-		break;
-	case I82580_I_PHY_ID:
-		phy_type = e1000_phy_82580;
-		break;
-	case I210_I_PHY_ID:
-		phy_type = e1000_phy_i210;
-		break;
-	default:
-		phy_type = e1000_phy_unknown;
-		break;
-	}
-	return phy_type;
-}
-
-/**
- *  e1000_determine_phy_address - Determines PHY address.
- *  @hw: pointer to the HW structure
- *
- *  This uses a trial and error method to loop through possible PHY
- *  addresses. It tests each by reading the PHY ID registers and
- *  checking for a match.
- **/
-s32 e1000_determine_phy_address(struct e1000_hw *hw)
-{
-	u32 phy_addr = 0;
-	u32 i;
-	enum e1000_phy_type phy_type = e1000_phy_unknown;
-
-	hw->phy.id = phy_type;
-
-	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
-		hw->phy.addr = phy_addr;
-		i = 0;
-
-		do {
-			e1000_get_phy_id(hw);
-			phy_type = e1000_get_phy_type_from_id(hw->phy.id);
-
-			/* If phy_type is valid, break - we found our
-			 * PHY address
-			 */
-			if (phy_type != e1000_phy_unknown)
-				return E1000_SUCCESS;
-
-			msec_delay(1);
-			i++;
-		} while (i < 10);
-	}
-
-	return -E1000_ERR_PHY_TYPE;
-}
-
-/**
- *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
- *  @page: page to access
- *
- *  Returns the phy address for the page requested.
- **/
-STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
-{
-	u32 phy_addr = 2;
-
-	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
-		phy_addr = 1;
-
-	return phy_addr;
-}
-
-/**
- *  e1000_write_phy_reg_bm - Write BM PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Acquires semaphore, if necessary, then writes the data to PHY register
- *  at the offset.  Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	s32 ret_val;
-	u32 page = offset >> IGP_PAGE_SHIFT;
-
-	DEBUGFUNC("e1000_write_phy_reg_bm");
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Page 800 works differently than the rest so it has its own func */
-	if (page == BM_WUC_PAGE) {
-		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
-							 false, false);
-		goto release;
-	}
-
-	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
-
-	if (offset > MAX_PHY_MULTI_PAGE_REG) {
-		u32 page_shift, page_select;
-
-		/* Page select is register 31 for phy address 1 and 22 for
-		 * phy address 2 and 3. Page select is shifted only for
-		 * phy address 1.
-		 */
-		if (hw->phy.addr == 1) {
-			page_shift = IGP_PAGE_SHIFT;
-			page_select = IGP01E1000_PHY_PAGE_SELECT;
-		} else {
-			page_shift = 0;
-			page_select = BM_PHY_PAGE_SELECT;
-		}
-
-		/* Page is shifted left, PHY expects (page x 32) */
-		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
-						   (page << page_shift));
-		if (ret_val)
-			goto release;
-	}
-
-	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
-					   data);
-
-release:
-	hw->phy.ops.release(hw);
-	return ret_val;
-}
-
-/**
- *  e1000_read_phy_reg_bm - Read BM PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Acquires semaphore, if necessary, then reads the PHY register at offset
- *  and storing the retrieved information in data.  Release any acquired
- *  semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	s32 ret_val;
-	u32 page = offset >> IGP_PAGE_SHIFT;
-
-	DEBUGFUNC("e1000_read_phy_reg_bm");
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Page 800 works differently than the rest so it has its own func */
-	if (page == BM_WUC_PAGE) {
-		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
-							 true, false);
-		goto release;
-	}
-
-	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
-
-	if (offset > MAX_PHY_MULTI_PAGE_REG) {
-		u32 page_shift, page_select;
-
-		/* Page select is register 31 for phy address 1 and 22 for
-		 * phy address 2 and 3. Page select is shifted only for
-		 * phy address 1.
-		 */
-		if (hw->phy.addr == 1) {
-			page_shift = IGP_PAGE_SHIFT;
-			page_select = IGP01E1000_PHY_PAGE_SELECT;
-		} else {
-			page_shift = 0;
-			page_select = BM_PHY_PAGE_SELECT;
-		}
-
-		/* Page is shifted left, PHY expects (page x 32) */
-		ret_val = e1000_write_phy_reg_mdic(hw, page_select,
-						   (page << page_shift));
-		if (ret_val)
-			goto release;
-	}
-
-	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
-					  data);
-release:
-	hw->phy.ops.release(hw);
-	return ret_val;
-}
-
-/**
- *  e1000_read_phy_reg_bm2 - Read BM PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Acquires semaphore, if necessary, then reads the PHY register at offset
- *  and storing the retrieved information in data.  Release any acquired
- *  semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	s32 ret_val;
-	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
-
-	DEBUGFUNC("e1000_read_phy_reg_bm2");
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Page 800 works differently than the rest so it has its own func */
-	if (page == BM_WUC_PAGE) {
-		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
-							 true, false);
-		goto release;
-	}
-
-	hw->phy.addr = 1;
-
-	if (offset > MAX_PHY_MULTI_PAGE_REG) {
-		/* Page is shifted left, PHY expects (page x 32) */
-		ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
-						   page);
-
-		if (ret_val)
-			goto release;
-	}
-
-	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
-					  data);
-release:
-	hw->phy.ops.release(hw);
-	return ret_val;
-}
-
-/**
- *  e1000_write_phy_reg_bm2 - Write BM PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Acquires semaphore, if necessary, then writes the data to PHY register
- *  at the offset.  Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	s32 ret_val;
-	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
-
-	DEBUGFUNC("e1000_write_phy_reg_bm2");
-
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	/* Page 800 works differently than the rest so it has its own func */
-	if (page == BM_WUC_PAGE) {
-		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
-							 false, false);
-		goto release;
-	}
-
-	hw->phy.addr = 1;
-
-	if (offset > MAX_PHY_MULTI_PAGE_REG) {
-		/* Page is shifted left, PHY expects (page x 32) */
-		ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
-						   page);
-
-		if (ret_val)
-			goto release;
-	}
-
-	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
-					   data);
-
-release:
-	hw->phy.ops.release(hw);
-	return ret_val;
-}
-
-/**
- *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
- *  @hw: pointer to the HW structure
- *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
- *
- *  Assumes semaphore already acquired and phy_reg points to a valid memory
- *  address to store contents of the BM_WUC_ENABLE_REG register.
- **/
-s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
-{
-	s32 ret_val;
-	u16 temp;
-
-	DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
-
-	if (!phy_reg)
-		return -E1000_ERR_PARAM;
-
-	/* All page select, port ctrl and wakeup registers use phy address 1 */
-	hw->phy.addr = 1;
-
-	/* Select Port Control Registers page */
-	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
-	if (ret_val) {
-		DEBUGOUT("Could not set Port Control page\n");
-		return ret_val;
-	}
-
-	ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
-	if (ret_val) {
-		DEBUGOUT2("Could not read PHY register %d.%d\n",
-			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
-		return ret_val;
-	}
-
-	/* Enable both PHY wakeup mode and Wakeup register page writes.
-	 * Prevent a power state change by disabling ME and Host PHY wakeup.
-	 */
-	temp = *phy_reg;
-	temp |= BM_WUC_ENABLE_BIT;
-	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
-
-	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
-	if (ret_val) {
-		DEBUGOUT2("Could not write PHY register %d.%d\n",
-			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
-		return ret_val;
-	}
-
-	/* Select Host Wakeup Registers page - caller now able to write
-	 * registers on the Wakeup registers page
-	 */
-	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
-}
-
-/**
- *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
- *  @hw: pointer to the HW structure
- *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
- *
- *  Restore BM_WUC_ENABLE_REG to its original value.
- *
- *  Assumes semaphore already acquired and *phy_reg is the contents of the
- *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
- *  caller.
- **/
-s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
-{
-	s32 ret_val;
-
-	DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
-
-	if (!phy_reg)
-		return -E1000_ERR_PARAM;
-
-	/* Select Port Control Registers page */
-	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
-	if (ret_val) {
-		DEBUGOUT("Could not set Port Control page\n");
-		return ret_val;
-	}
-
-	/* Restore 769.17 to its original value */
-	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
-	if (ret_val)
-		DEBUGOUT2("Could not restore PHY register %d.%d\n",
-			  BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
-
-	return ret_val;
-}
-
-/**
- *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read or written
- *  @data: pointer to the data to read or write
- *  @read: determines if operation is read or write
- *  @page_set: BM_WUC_PAGE already set and access enabled
- *
- *  Read the PHY register at offset and store the retrieved information in
- *  data, or write data to PHY register at offset.  Note the procedure to
- *  access the PHY wakeup registers is different than reading the other PHY
- *  registers. It works as such:
- *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
- *  2) Set page to 800 for host (801 if we were manageability)
- *  3) Write the address using the address opcode (0x11)
- *  4) Read or write the data using the data opcode (0x12)
- *  5) Restore 769.17.2 to its original value
- *
- *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
- *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
- *
- *  Assumes semaphore is already acquired.  When page_set==true, assumes
- *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
- *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
- **/
-STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
-					  u16 *data, bool read, bool page_set)
-{
-	s32 ret_val;
-	u16 reg = BM_PHY_REG_NUM(offset);
-	u16 page = BM_PHY_REG_PAGE(offset);
-	u16 phy_reg = 0;
-
-	DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
-
-	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
-	if ((hw->mac.type == e1000_pchlan) &&
-	   (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
-		DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
-			  page);
-
-	if (!page_set) {
-		/* Enable access to PHY wakeup registers */
-		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-		if (ret_val) {
-			DEBUGOUT("Could not enable PHY wakeup reg access\n");
-			return ret_val;
-		}
-	}
-
-	DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
-
-	/* Write the Wakeup register page offset value using opcode 0x11 */
-	ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
-	if (ret_val) {
-		DEBUGOUT1("Could not write address opcode to page %d\n", page);
-		return ret_val;
-	}
-
-	if (read) {
-		/* Read the Wakeup register page value using opcode 0x12 */
-		ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
-						  data);
-	} else {
-		/* Write the Wakeup register page value using opcode 0x12 */
-		ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
-						   *data);
-	}
-
-	if (ret_val) {
-		DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
-		return ret_val;
-	}
-
-	if (!page_set)
-		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
-	return ret_val;
-}
-
-/**
- * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_up_phy_copper(struct e1000_hw *hw)
-{
-	u16 mii_reg = 0;
-	u16 power_reg = 0;
-
-	/* The PHY will retain its settings across a power down/up cycle */
-	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
-	mii_reg &= ~MII_CR_POWER_DOWN;
-	if (hw->phy.type == e1000_phy_i210) {
-		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
-		power_reg &= ~GS40G_CS_POWER_DOWN;
-		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
-	}
-	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
-}
-
-/**
- * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_down_phy_copper(struct e1000_hw *hw)
-{
-	u16 mii_reg = 0;
-	u16 power_reg = 0;
-
-	/* The PHY will retain its settings across a power down/up cycle */
-	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
-	mii_reg |= MII_CR_POWER_DOWN;
-	/* i210 Phy requires an additional bit for power up/down */
-	if (hw->phy.type == e1000_phy_i210) {
-		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
-		power_reg |= GS40G_CS_POWER_DOWN;
-		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
-	}
-	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
-	msec_delay(1);
-}
-
-/**
- *  __e1000_read_phy_reg_hv -  Read HV PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *  @locked: semaphore has already been acquired or not
- *
- *  Acquires semaphore, if necessary, then reads the PHY register at offset
- *  and stores the retrieved information in data.  Release any acquired
- *  semaphore before exiting.
- **/
-STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
-				   bool locked, bool page_set)
-{
-	s32 ret_val;
-	u16 page = BM_PHY_REG_PAGE(offset);
-	u16 reg = BM_PHY_REG_NUM(offset);
-	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
-	DEBUGFUNC("__e1000_read_phy_reg_hv");
-
-	if (!locked) {
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Page 800 works differently than the rest so it has its own func */
-	if (page == BM_WUC_PAGE) {
-		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
-							 true, page_set);
-		goto out;
-	}
-
-	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
-		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
-							 data, true);
-		goto out;
-	}
-
-	if (!page_set) {
-		if (page == HV_INTC_FC_PAGE_START)
-			page = 0;
-
-		if (reg > MAX_PHY_MULTI_PAGE_REG) {
-			/* Page is shifted left, PHY expects (page x 32) */
-			ret_val = e1000_set_page_igp(hw,
-						     (page << IGP_PAGE_SHIFT));
-
-			hw->phy.addr = phy_addr;
-
-			if (ret_val)
-				goto out;
-		}
-	}
-
-	DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
-		  page << IGP_PAGE_SHIFT, reg);
-
-	ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
-					  data);
-out:
-	if (!locked)
-		hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_phy_reg_hv -  Read HV PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Acquires semaphore then reads the PHY register at offset and stores
- *  the retrieved information in data.  Release the acquired semaphore
- *  before exiting.
- **/
-s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
-}
-
-/**
- *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read
- *  @data: pointer to the read data
- *
- *  Reads the PHY register at offset and stores the retrieved information
- *  in data.  Assumes semaphore already acquired.
- **/
-s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
-}
-
-/**
- *  e1000_read_phy_reg_page_hv - Read HV PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Reads the PHY register at offset and stores the retrieved information
- *  in data.  Assumes semaphore already acquired and page already set.
- **/
-s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
-}
-
-/**
- *  __e1000_write_phy_reg_hv - Write HV PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *  @locked: semaphore has already been acquired or not
- *
- *  Acquires semaphore, if necessary, then writes the data to PHY register
- *  at the offset.  Release any acquired semaphores before exiting.
- **/
-STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
-				    bool locked, bool page_set)
-{
-	s32 ret_val;
-	u16 page = BM_PHY_REG_PAGE(offset);
-	u16 reg = BM_PHY_REG_NUM(offset);
-	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
-	DEBUGFUNC("__e1000_write_phy_reg_hv");
-
-	if (!locked) {
-		ret_val = hw->phy.ops.acquire(hw);
-		if (ret_val)
-			return ret_val;
-	}
-
-	/* Page 800 works differently than the rest so it has its own func */
-	if (page == BM_WUC_PAGE) {
-		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
-							 false, page_set);
-		goto out;
-	}
-
-	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
-		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
-							 &data, false);
-		goto out;
-	}
-
-	if (!page_set) {
-		if (page == HV_INTC_FC_PAGE_START)
-			page = 0;
-
-		/* Workaround MDIO accesses being disabled after entering IEEE
-		 * Power Down (when bit 11 of the PHY Control register is set)
-		 */
-		if ((hw->phy.type == e1000_phy_82578) &&
-		    (hw->phy.revision >= 1) &&
-		    (hw->phy.addr == 2) &&
-		    !(MAX_PHY_REG_ADDRESS & reg) &&
-		    (data & (1 << 11))) {
-			u16 data2 = 0x7EFF;
-			ret_val = e1000_access_phy_debug_regs_hv(hw,
-								 (1 << 6) | 0x3,
-								 &data2, false);
-			if (ret_val)
-				goto out;
-		}
-
-		if (reg > MAX_PHY_MULTI_PAGE_REG) {
-			/* Page is shifted left, PHY expects (page x 32) */
-			ret_val = e1000_set_page_igp(hw,
-						     (page << IGP_PAGE_SHIFT));
-
-			hw->phy.addr = phy_addr;
-
-			if (ret_val)
-				goto out;
-		}
-	}
-
-	DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
-		  page << IGP_PAGE_SHIFT, reg);
-
-	ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
-					   data);
-
-out:
-	if (!locked)
-		hw->phy.ops.release(hw);
-
-	return ret_val;
-}
-
-/**
- *  e1000_write_phy_reg_hv - Write HV PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Acquires semaphore then writes the data to PHY register at the offset.
- *  Release the acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
-}
-
-/**
- *  e1000_write_phy_reg_hv_locked - Write HV PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Writes the data to PHY register at the offset.  Assumes semaphore
- *  already acquired.
- **/
-s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
-}
-
-/**
- *  e1000_write_phy_reg_page_hv - Write HV PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Writes the data to PHY register at the offset.  Assumes semaphore
- *  already acquired and page already set.
- **/
-s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
-}
-
-/**
- *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
- *  @page: page to be accessed
- **/
-STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page)
-{
-	u32 phy_addr = 2;
-
-	if (page >= HV_INTC_FC_PAGE_START)
-		phy_addr = 1;
-
-	return phy_addr;
-}
-
-/**
- *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
- *  @hw: pointer to the HW structure
- *  @offset: register offset to be read or written
- *  @data: pointer to the data to be read or written
- *  @read: determines if operation is read or write
- *
- *  Reads the PHY register at offset and stores the retreived information
- *  in data.  Assumes semaphore already acquired.  Note that the procedure
- *  to access these regs uses the address port and data port to read/write.
- *  These accesses done with PHY address 2 and without using pages.
- **/
-STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
-					  u16 *data, bool read)
-{
-	s32 ret_val;
-	u32 addr_reg;
-	u32 data_reg;
-
-	DEBUGFUNC("e1000_access_phy_debug_regs_hv");
-
-	/* This takes care of the difference with desktop vs mobile phy */
-	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
-		    I82578_ADDR_REG : I82577_ADDR_REG);
-	data_reg = addr_reg + 1;
-
-	/* All operations in this function are phy address 2 */
-	hw->phy.addr = 2;
-
-	/* masking with 0x3F to remove the page from offset */
-	ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
-	if (ret_val) {
-		DEBUGOUT("Could not write the Address Offset port register\n");
-		return ret_val;
-	}
-
-	/* Read or write the data value next */
-	if (read)
-		ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
-	else
-		ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
-
-	if (ret_val)
-		DEBUGOUT("Could not access the Data port register\n");
-
-	return ret_val;
-}
-
-/**
- *  e1000_link_stall_workaround_hv - Si workaround
- *  @hw: pointer to the HW structure
- *
- *  This function works around a Si bug where the link partner can get
- *  a link up indication before the PHY does.  If small packets are sent
- *  by the link partner they can be placed in the packet buffer without
- *  being properly accounted for by the PHY and will stall preventing
- *  further packets from being received.  The workaround is to clear the
- *  packet buffer after the PHY detects link up.
- **/
-s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
-{
-	s32 ret_val = E1000_SUCCESS;
-	u16 data;
-
-	DEBUGFUNC("e1000_link_stall_workaround_hv");
-
-	if (hw->phy.type != e1000_phy_82578)
-		return E1000_SUCCESS;
-
-	/* Do not apply workaround if in PHY loopback bit 14 set */
-	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
-	if (data & PHY_CONTROL_LB)
-		return E1000_SUCCESS;
-
-	/* check if link is up and at 1Gbps */
-	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
-	if (ret_val)
-		return ret_val;
-
-	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
-		 BM_CS_STATUS_SPEED_MASK);
-
-	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
-		     BM_CS_STATUS_SPEED_1000))
-		return E1000_SUCCESS;
-
-	msec_delay(200);
-
-	/* flush the packets in the fifo buffer */
-	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
-					(HV_MUX_DATA_CTRL_GEN_TO_MAC |
-					 HV_MUX_DATA_CTRL_FORCE_SPEED));
-	if (ret_val)
-		return ret_val;
-
-	return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
-				     HV_MUX_DATA_CTRL_GEN_TO_MAC);
-}
-
-/**
- *  e1000_check_polarity_82577 - Checks the polarity.
- *  @hw: pointer to the HW structure
- *
- *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- *  Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_82577(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-
-	DEBUGFUNC("e1000_check_polarity_82577");
-
-	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
-
-	if (!ret_val)
-		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
-				       ? e1000_rev_polarity_reversed
-				       : e1000_rev_polarity_normal);
-
-	return ret_val;
-}
-
-/**
- *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
- *  @hw: pointer to the HW structure
- *
- *  Calls the PHY setup function to force speed and duplex.
- **/
-s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data;
-	bool link;
-
-	DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
-
-	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	e1000_phy_force_speed_duplex_setup(hw, &phy_data);
-
-	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
-	if (ret_val)
-		return ret_val;
-
-	usec_delay(1);
-
-	if (phy->autoneg_wait_to_complete) {
-		DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
-
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-		if (ret_val)
-			return ret_val;
-
-		if (!link)
-			DEBUGOUT("Link taking longer than expected.\n");
-
-		/* Try once more */
-		ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
-						     100000, &link);
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
- *  @hw: pointer to the HW structure
- *
- *  Read PHY status to determine if link is up.  If link is up, then
- *  set/determine 10base-T extended distance and polarity correction.  Read
- *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
- *  determine on the cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 data;
-	bool link;
-
-	DEBUGFUNC("e1000_get_phy_info_82577");
-
-	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
-	if (ret_val)
-		return ret_val;
-
-	if (!link) {
-		DEBUGOUT("Phy info is only valid if link is up\n");
-		return -E1000_ERR_CONFIG;
-	}
-
-	phy->polarity_correction = true;
-
-	ret_val = e1000_check_polarity_82577(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
-	if (ret_val)
-		return ret_val;
-
-	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
-
-	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
-	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
-		ret_val = hw->phy.ops.get_cable_length(hw);
-		if (ret_val)
-			return ret_val;
-
-		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
-		if (ret_val)
-			return ret_val;
-
-		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
-				? e1000_1000t_rx_status_ok
-				: e1000_1000t_rx_status_not_ok;
-
-		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
-				 ? e1000_1000t_rx_status_ok
-				 : e1000_1000t_rx_status_not_ok;
-	} else {
-		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
-		phy->local_rx = e1000_1000t_rx_status_undefined;
-		phy->remote_rx = e1000_1000t_rx_status_undefined;
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
- *  @hw: pointer to the HW structure
- *
- * Reads the diagnostic status register and verifies result is valid before
- * placing it in the phy_cable_length field.
- **/
-s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
-{
-	struct e1000_phy_info *phy = &hw->phy;
-	s32 ret_val;
-	u16 phy_data, length;
-
-	DEBUGFUNC("e1000_get_cable_length_82577");
-
-	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
-	if (ret_val)
-		return ret_val;
-
-	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
-		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
-
-	if (length == E1000_CABLE_LENGTH_UNDEFINED)
-		return -E1000_ERR_PHY;
-
-	phy->cable_length = length;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_phy_reg_gs40g - Write GS40G  PHY register
- *  @hw: pointer to the HW structure
- *  @offset: register offset to write to
- *  @data: data to write at register offset
- *
- *  Acquires semaphore, if necessary, then writes the data to PHY register
- *  at the offset.  Release any acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
-{
-	s32 ret_val;
-	u16 page = offset >> GS40G_PAGE_SHIFT;
-
-	DEBUGFUNC("e1000_write_phy_reg_gs40g");
-
-	offset = offset & GS40G_OFFSET_MASK;
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
-	if (ret_val)
-		goto release;
-	ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
-
-release:
-	hw->phy.ops.release(hw);
-	return ret_val;
-}
-
-/**
- *  e1000_read_phy_reg_gs40g - Read GS40G  PHY register
- *  @hw: pointer to the HW structure
- *  @offset: lower half is register offset to read to
- *     upper half is page to use.
- *  @data: data to read at register offset
- *
- *  Acquires semaphore, if necessary, then reads the data in the PHY register
- *  at the offset.  Release any acquired semaphores before exiting.
- **/
-s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
-{
-	s32 ret_val;
-	u16 page = offset >> GS40G_PAGE_SHIFT;
-
-	DEBUGFUNC("e1000_read_phy_reg_gs40g");
-
-	offset = offset & GS40G_OFFSET_MASK;
-	ret_val = hw->phy.ops.acquire(hw);
-	if (ret_val)
-		return ret_val;
-
-	ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
-	if (ret_val)
-		goto release;
-	ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
-
-release:
-	hw->phy.ops.release(hw);
-	return ret_val;
-}
-
-/**
- *  e1000_read_phy_reg_mphy - Read mPHY control register
- *  @hw: pointer to the HW structure
- *  @address: address to be read
- *  @data: pointer to the read data
- *
- *  Reads the mPHY control register in the PHY at offset and stores the
- *  information read to data.
- **/
-s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
-{
-	u32 mphy_ctrl = 0;
-	bool locked = false;
-	bool ready;
-
-	DEBUGFUNC("e1000_read_phy_reg_mphy");
-
-	/* Check if mPHY is ready to read/write operations */
-	ready = e1000_is_mphy_ready(hw);
-	if (!ready)
-		return -E1000_ERR_PHY;
-
-	/* Check if mPHY access is disabled and enable it if so */
-	mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
-	if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
-		locked = true;
-		ready = e1000_is_mphy_ready(hw);
-		if (!ready)
-			return -E1000_ERR_PHY;
-		mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
-		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
-	}
-
-	/* Set the address that we want to read */
-	ready = e1000_is_mphy_ready(hw);
-	if (!ready)
-		return -E1000_ERR_PHY;
-
-	/* We mask address, because we want to use only current lane */
-	mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
-		~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
-		(address & E1000_MPHY_ADDRESS_MASK);
-	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
-
-	/* Read data from the address */
-	ready = e1000_is_mphy_ready(hw);
-	if (!ready)
-		return -E1000_ERR_PHY;
-	*data = E1000_READ_REG(hw, E1000_MPHY_DATA);
-
-	/* Disable access to mPHY if it was originally disabled */
-	if (locked)
-		ready = e1000_is_mphy_ready(hw);
-		if (!ready)
-			return -E1000_ERR_PHY;
-		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
-				E1000_MPHY_DIS_ACCESS);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_write_phy_reg_mphy - Write mPHY control register
- *  @hw: pointer to the HW structure
- *  @address: address to write to
- *  @data: data to write to register at offset
- *  @line_override: used when we want to use different line than default one
- *
- *  Writes data to mPHY control register.
- **/
-s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
-			     bool line_override)
-{
-	u32 mphy_ctrl = 0;
-	bool locked = false;
-	bool ready;
-
-	DEBUGFUNC("e1000_write_phy_reg_mphy");
-
-	/* Check if mPHY is ready to read/write operations */
-	ready = e1000_is_mphy_ready(hw);
-	if (!ready)
-		return -E1000_ERR_PHY;
-
-	/* Check if mPHY access is disabled and enable it if so */
-	mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
-	if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
-		locked = true;
-		ready = e1000_is_mphy_ready(hw);
-		if (!ready)
-			return -E1000_ERR_PHY;
-		mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
-		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
-	}
-
-	/* Set the address that we want to read */
-	ready = e1000_is_mphy_ready(hw);
-	if (!ready)
-		return -E1000_ERR_PHY;
-
-	/* We mask address, because we want to use only current lane */
-	if (line_override)
-		mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
-	else
-		mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
-	mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
-		(address & E1000_MPHY_ADDRESS_MASK);
-	E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
-
-	/* Read data from the address */
-	ready = e1000_is_mphy_ready(hw);
-	if (!ready)
-		return -E1000_ERR_PHY;
-	E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
-
-	/* Disable access to mPHY if it was originally disabled */
-	if (locked)
-		ready = e1000_is_mphy_ready(hw);
-		if (!ready)
-			return -E1000_ERR_PHY;
-		E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
-				E1000_MPHY_DIS_ACCESS);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_is_mphy_ready - Check if mPHY control register is not busy
- *  @hw: pointer to the HW structure
- *
- *  Returns mPHY control register status.
- **/
-bool e1000_is_mphy_ready(struct e1000_hw *hw)
-{
-	u16 retry_count = 0;
-	u32 mphy_ctrl = 0;
-	bool ready = false;
-
-	while (retry_count < 2) {
-		mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
-		if (mphy_ctrl & E1000_MPHY_BUSY) {
-			usec_delay(20);
-			retry_count++;
-			continue;
-		}
-		ready = true;
-		break;
-	}
-
-	if (!ready)
-		DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
-
-	return ready;
-}
diff --git a/lib/librte_pmd_e1000/e1000/e1000_phy.h b/lib/librte_pmd_e1000/e1000/e1000_phy.h
deleted file mode 100644
index 73a9b1f..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_phy.h
+++ /dev/null
@@ -1,327 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_PHY_H_
-#define _E1000_PHY_H_
-
-void e1000_init_phy_ops_generic(struct e1000_hw *hw);
-s32  e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-void e1000_null_phy_generic(struct e1000_hw *hw);
-s32  e1000_null_lplu_state(struct e1000_hw *hw, bool active);
-s32  e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_null_set_page(struct e1000_hw *hw, u16 data);
-s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
-			     u8 dev_addr, u8 *data);
-s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset,
-			      u8 dev_addr, u8 data);
-s32  e1000_check_downshift_generic(struct e1000_hw *hw);
-s32  e1000_check_polarity_m88(struct e1000_hw *hw);
-s32  e1000_check_polarity_igp(struct e1000_hw *hw);
-s32  e1000_check_polarity_ife(struct e1000_hw *hw);
-s32  e1000_check_reset_block_generic(struct e1000_hw *hw);
-s32  e1000_phy_setup_autoneg(struct e1000_hw *hw);
-s32  e1000_copper_link_autoneg(struct e1000_hw *hw);
-s32  e1000_copper_link_setup_igp(struct e1000_hw *hw);
-s32  e1000_copper_link_setup_m88(struct e1000_hw *hw);
-s32  e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw);
-s32  e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
-s32  e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
-s32  e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
-s32  e1000_get_cable_length_m88(struct e1000_hw *hw);
-s32  e1000_get_cable_length_m88_gen2(struct e1000_hw *hw);
-s32  e1000_get_cable_length_igp_2(struct e1000_hw *hw);
-s32  e1000_get_cfg_done_generic(struct e1000_hw *hw);
-s32  e1000_get_phy_id(struct e1000_hw *hw);
-s32  e1000_get_phy_info_igp(struct e1000_hw *hw);
-s32  e1000_get_phy_info_m88(struct e1000_hw *hw);
-s32  e1000_get_phy_info_ife(struct e1000_hw *hw);
-s32  e1000_phy_sw_reset_generic(struct e1000_hw *hw);
-void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
-s32  e1000_phy_hw_reset_generic(struct e1000_hw *hw);
-s32  e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
-s32  e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_set_page_igp(struct e1000_hw *hw, u16 page);
-s32  e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
-s32  e1000_setup_copper_link_generic(struct e1000_hw *hw);
-s32  e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
-				u32 usec_interval, bool *success);
-s32  e1000_phy_init_script_igp3(struct e1000_hw *hw);
-enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
-s32  e1000_determine_phy_address(struct e1000_hw *hw);
-s32  e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
-s32  e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg);
-s32  e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
-void e1000_power_up_phy_copper(struct e1000_hw *hw);
-void e1000_power_down_phy_copper(struct e1000_hw *hw);
-s32  e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data);
-s32  e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data);
-s32  e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data);
-s32  e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_link_stall_workaround_hv(struct e1000_hw *hw);
-s32  e1000_copper_link_setup_82577(struct e1000_hw *hw);
-s32  e1000_check_polarity_82577(struct e1000_hw *hw);
-s32  e1000_get_phy_info_82577(struct e1000_hw *hw);
-s32  e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
-s32  e1000_get_cable_length_82577(struct e1000_hw *hw);
-s32  e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data);
-s32  e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data);
-s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data);
-s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
-			     bool line_override);
-bool e1000_is_mphy_ready(struct e1000_hw *hw);
-
-#define E1000_MAX_PHY_ADDR		8
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG	0x10 /* Port Config */
-#define IGP01E1000_PHY_PORT_STATUS	0x11 /* Status */
-#define IGP01E1000_PHY_PORT_CTRL	0x12 /* Control */
-#define IGP01E1000_PHY_LINK_HEALTH	0x13 /* PHY Link Health */
-#define IGP01E1000_GMII_FIFO		0x14 /* GMII FIFO */
-#define IGP02E1000_PHY_POWER_MGMT	0x19 /* Power Management */
-#define IGP01E1000_PHY_PAGE_SELECT	0x1F /* Page Select */
-#define BM_PHY_PAGE_SELECT		22   /* Page Select for BM */
-#define IGP_PAGE_SHIFT			5
-#define PHY_REG_MASK			0x1F
-
-/* GS40G - I210 PHY defines */
-#define GS40G_PAGE_SELECT		0x16
-#define GS40G_PAGE_SHIFT		16
-#define GS40G_OFFSET_MASK		0xFFFF
-#define GS40G_PAGE_2			0x20000
-#define GS40G_MAC_REG2			0x15
-#define GS40G_MAC_LB			0x4140
-#define GS40G_MAC_SPEED_1G		0X0006
-#define GS40G_COPPER_SPEC		0x0010
-#define GS40G_CS_POWER_DOWN		0x0002
-
-/* BM/HV Specific Registers */
-#define BM_PORT_CTRL_PAGE		769
-#define BM_WUC_PAGE			800
-#define BM_WUC_ADDRESS_OPCODE		0x11
-#define BM_WUC_DATA_OPCODE		0x12
-#define BM_WUC_ENABLE_PAGE		BM_PORT_CTRL_PAGE
-#define BM_WUC_ENABLE_REG		17
-#define BM_WUC_ENABLE_BIT		(1 << 2)
-#define BM_WUC_HOST_WU_BIT		(1 << 4)
-#define BM_WUC_ME_WU_BIT		(1 << 5)
-
-#define PHY_UPPER_SHIFT			21
-#define BM_PHY_REG(page, reg) \
-	(((reg) & MAX_PHY_REG_ADDRESS) |\
-	 (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
-	 (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
-#define BM_PHY_REG_PAGE(offset) \
-	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
-#define BM_PHY_REG_NUM(offset) \
-	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
-	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
-		~MAX_PHY_REG_ADDRESS)))
-
-#define HV_INTC_FC_PAGE_START		768
-#define I82578_ADDR_REG			29
-#define I82577_ADDR_REG			16
-#define I82577_CFG_REG			22
-#define I82577_CFG_ASSERT_CRS_ON_TX	(1 << 15)
-#define I82577_CFG_ENABLE_DOWNSHIFT	(3 << 10) /* auto downshift */
-#define I82577_CTRL_REG			23
-
-/* 82577 specific PHY registers */
-#define I82577_PHY_CTRL_2		18
-#define I82577_PHY_LBK_CTRL		19
-#define I82577_PHY_STATUS_2		26
-#define I82577_PHY_DIAG_STATUS		31
-
-/* I82577 PHY Status 2 */
-#define I82577_PHY_STATUS2_REV_POLARITY		0x0400
-#define I82577_PHY_STATUS2_MDIX			0x0800
-#define I82577_PHY_STATUS2_SPEED_MASK		0x0300
-#define I82577_PHY_STATUS2_SPEED_1000MBPS	0x0200
-
-/* I82577 PHY Control 2 */
-#define I82577_PHY_CTRL2_MANUAL_MDIX		0x0200
-#define I82577_PHY_CTRL2_AUTO_MDI_MDIX		0x0400
-#define I82577_PHY_CTRL2_MDIX_CFG_MASK		0x0600
-
-/* I82577 PHY Diagnostics Status */
-#define I82577_DSTATUS_CABLE_LENGTH		0x03FC
-#define I82577_DSTATUS_CABLE_LENGTH_SHIFT	2
-
-/* 82580 PHY Power Management */
-#define E1000_82580_PHY_POWER_MGMT	0xE14
-#define E1000_82580_PM_SPD		0x0001 /* Smart Power Down */
-#define E1000_82580_PM_D0_LPLU		0x0002 /* For D0a states */
-#define E1000_82580_PM_D3_LPLU		0x0004 /* For all other states */
-#define E1000_82580_PM_GO_LINKD		0x0020 /* Go Link Disconnect */
-
-#define E1000_MPHY_DIS_ACCESS		0x80000000 /* disable_access bit */
-#define E1000_MPHY_ENA_ACCESS		0x40000000 /* enable_access bit */
-#define E1000_MPHY_BUSY			0x00010000 /* busy bit */
-#define E1000_MPHY_ADDRESS_FNC_OVERRIDE	0x20000000 /* fnc_override bit */
-#define E1000_MPHY_ADDRESS_MASK		0x0000FFFF /* address mask */
-
-/* BM PHY Copper Specific Control 1 */
-#define BM_CS_CTRL1			16
-
-/* BM PHY Copper Specific Status */
-#define BM_CS_STATUS			17
-#define BM_CS_STATUS_LINK_UP		0x0400
-#define BM_CS_STATUS_RESOLVED		0x0800
-#define BM_CS_STATUS_SPEED_MASK		0xC000
-#define BM_CS_STATUS_SPEED_1000		0x8000
-
-/* 82577 Mobile Phy Status Register */
-#define HV_M_STATUS			26
-#define HV_M_STATUS_AUTONEG_COMPLETE	0x1000
-#define HV_M_STATUS_SPEED_MASK		0x0300
-#define HV_M_STATUS_SPEED_1000		0x0200
-#define HV_M_STATUS_SPEED_100		0x0100
-#define HV_M_STATUS_LINK_UP		0x0040
-
-#define IGP01E1000_PHY_PCS_INIT_REG	0x00B4
-#define IGP01E1000_PHY_POLARITY_MASK	0x0078
-
-#define IGP01E1000_PSCR_AUTO_MDIX	0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX	0x2000 /* 0=MDI, 1=MDIX */
-
-#define IGP01E1000_PSCFR_SMART_SPEED	0x0080
-
-/* Enable flexible speed on link-up */
-#define IGP01E1000_GMII_FLEX_SPD	0x0010
-#define IGP01E1000_GMII_SPD		0x0020 /* Enable SPD */
-
-#define IGP02E1000_PM_SPD		0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D0_LPLU		0x0002 /* For D0a states */
-#define IGP02E1000_PM_D3_LPLU		0x0004 /* For all other states */
-
-#define IGP01E1000_PLHR_SS_DOWNGRADE	0x8000
-
-#define IGP01E1000_PSSR_POLARITY_REVERSED	0x0002
-#define IGP01E1000_PSSR_MDIX		0x0800
-#define IGP01E1000_PSSR_SPEED_MASK	0xC000
-#define IGP01E1000_PSSR_SPEED_1000MBPS	0xC000
-
-#define IGP02E1000_PHY_CHANNEL_NUM	4
-#define IGP02E1000_PHY_AGC_A		0x11B1
-#define IGP02E1000_PHY_AGC_B		0x12B1
-#define IGP02E1000_PHY_AGC_C		0x14B1
-#define IGP02E1000_PHY_AGC_D		0x18B1
-
-#define IGP02E1000_AGC_LENGTH_SHIFT	9   /* Course=15:13, Fine=12:9 */
-#define IGP02E1000_AGC_LENGTH_MASK	0x7F
-#define IGP02E1000_AGC_RANGE		15
-
-#define E1000_CABLE_LENGTH_UNDEFINED	0xFF
-
-#define E1000_KMRNCTRLSTA_OFFSET	0x001F0000
-#define E1000_KMRNCTRLSTA_OFFSET_SHIFT	16
-#define E1000_KMRNCTRLSTA_REN		0x00200000
-#define E1000_KMRNCTRLSTA_CTRL_OFFSET	0x1    /* Kumeran Control */
-#define E1000_KMRNCTRLSTA_DIAG_OFFSET	0x3    /* Kumeran Diagnostic */
-#define E1000_KMRNCTRLSTA_TIMEOUTS	0x4    /* Kumeran Timeouts */
-#define E1000_KMRNCTRLSTA_INBAND_PARAM	0x9    /* Kumeran InBand Parameters */
-#define E1000_KMRNCTRLSTA_IBIST_DISABLE	0x0200 /* Kumeran IBIST Disable */
-#define E1000_KMRNCTRLSTA_DIAG_NELPBK	0x1000 /* Nearend Loopback mode */
-#define E1000_KMRNCTRLSTA_K1_CONFIG	0x7
-#define E1000_KMRNCTRLSTA_K1_ENABLE	0x0002 /* enable K1 */
-#define E1000_KMRNCTRLSTA_HD_CTRL	0x10   /* Kumeran HD Control */
-#define E1000_KMRNCTRLSTA_OP_MODES	0x1F   /* Kumeran Modes of Operation */
-#define E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC	0x0002 /* change LSC to CSC */
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL	0x10
-#define IFE_PHY_SPECIAL_CONTROL		0x11 /* 100BaseTx PHY Special Ctrl */
-#define IFE_PHY_SPECIAL_CONTROL_LED	0x1B /* PHY Special and LED Ctrl */
-#define IFE_PHY_MDIX_CONTROL		0x1C /* MDI/MDI-X Control */
-
-/* IFE PHY Extended Status Control */
-#define IFE_PESC_POLARITY_REVERSED	0x0100
-
-/* IFE PHY Special Control */
-#define IFE_PSC_AUTO_POLARITY_DISABLE	0x0010
-#define IFE_PSC_FORCE_POLARITY		0x0020
-
-/* IFE PHY Special Control and LED Control */
-#define IFE_PSCL_PROBE_MODE		0x0020
-#define IFE_PSCL_PROBE_LEDS_OFF		0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON		0x0007 /* Force LEDs 0 and 2 on */
-
-/* IFE PHY MDIX Control */
-#define IFE_PMC_MDIX_STATUS		0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_FORCE_MDIX		0x0040 /* 1=force MDI-X, 0=force MDI */
-#define IFE_PMC_AUTO_MDIX		0x0080 /* 1=enable auto, 0=disable */
-
-/* SFP modules ID memory locations */
-#define E1000_SFF_IDENTIFIER_OFFSET	0x00
-#define E1000_SFF_IDENTIFIER_SFF	0x02
-#define E1000_SFF_IDENTIFIER_SFP	0x03
-
-#define E1000_SFF_ETH_FLAGS_OFFSET	0x06
-/* Flags for SFP modules compatible with ETH up to 1Gb */
-struct sfp_e1000_flags {
-	u8 e1000_base_sx:1;
-	u8 e1000_base_lx:1;
-	u8 e1000_base_cx:1;
-	u8 e1000_base_t:1;
-	u8 e100_base_lx:1;
-	u8 e100_base_fx:1;
-	u8 e10_base_bx10:1;
-	u8 e10_base_px:1;
-};
-
-/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */
-#define E1000_SFF_VENDOR_OUI_TYCO	0x00407600
-#define E1000_SFF_VENDOR_OUI_FTL	0x00906500
-#define E1000_SFF_VENDOR_OUI_AVAGO	0x00176A00
-#define E1000_SFF_VENDOR_OUI_INTEL	0x001B2100
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_regs.h b/lib/librte_pmd_e1000/e1000/e1000_regs.h
deleted file mode 100644
index bde2a08..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_regs.h
+++ /dev/null
@@ -1,685 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_REGS_H_
-#define _E1000_REGS_H_
-
-#define E1000_CTRL	0x00000  /* Device Control - RW */
-#define E1000_CTRL_DUP	0x00004  /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS	0x00008  /* Device Status - RO */
-#define E1000_EECD	0x00010  /* EEPROM/Flash Control - RW */
-#define E1000_EERD	0x00014  /* EEPROM Read - RW */
-#define E1000_CTRL_EXT	0x00018  /* Extended Device Control - RW */
-#define E1000_FLA	0x0001C  /* Flash Access - RW */
-#define E1000_MDIC	0x00020  /* MDI Control - RW */
-#define E1000_MDICNFG	0x00E04  /* MDI Config - RW */
-#define E1000_REGISTER_SET_SIZE		0x20000 /* CSR Size */
-#define E1000_EEPROM_INIT_CTRL_WORD_2	0x0F /* EEPROM Init Ctrl Word 2 */
-#define E1000_EEPROM_PCIE_CTRL_WORD_2	0x28 /* EEPROM PCIe Ctrl Word 2 */
-#define E1000_BARCTRL			0x5BBC /* BAR ctrl reg */
-#define E1000_BARCTRL_FLSIZE		0x0700 /* BAR ctrl Flsize */
-#define E1000_BARCTRL_CSRSIZE		0x2000 /* BAR ctrl CSR size */
-#define E1000_MPHY_ADDR_CTRL	0x0024 /* GbE MPHY Address Control */
-#define E1000_MPHY_DATA		0x0E10 /* GBE MPHY Data */
-#define E1000_MPHY_STAT		0x0E0C /* GBE MPHY Statistics */
-#define E1000_PPHY_CTRL		0x5b48 /* PCIe PHY Control */
-#define E1000_I350_BARCTRL		0x5BFC /* BAR ctrl reg */
-#define E1000_I350_DTXMXPKTSZ		0x355C /* Maximum sent packet size reg*/
-#define E1000_SCTL	0x00024  /* SerDes Control - RW */
-#define E1000_FCAL	0x00028  /* Flow Control Address Low - RW */
-#define E1000_FCAH	0x0002C  /* Flow Control Address High -RW */
-#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT))
-#define E1000_FEXT	0x0002C  /* Future Extended - RW */
-#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */
-#define E1000_FEXTNVM	0x00028  /* Future Extended NVM - RW */
-#define E1000_FEXTNVM3	0x0003C  /* Future Extended NVM 3 - RW */
-#define E1000_FEXTNVM4	0x00024  /* Future Extended NVM 4 - RW */
-#define E1000_FEXTNVM6	0x00010  /* Future Extended NVM 6 - RW */
-#define E1000_FEXTNVM7	0x000E4  /* Future Extended NVM 7 - RW */
-#define E1000_FCT	0x00030  /* Flow Control Type - RW */
-#define E1000_CONNSW	0x00034  /* Copper/Fiber switch control - RW */
-#define E1000_VET	0x00038  /* VLAN Ether Type - RW */
-#define E1000_ICR	0x000C0  /* Interrupt Cause Read - R/clr */
-#define E1000_ITR	0x000C4  /* Interrupt Throttling Rate - RW */
-#define E1000_ICS	0x000C8  /* Interrupt Cause Set - WO */
-#define E1000_IMS	0x000D0  /* Interrupt Mask Set - RW */
-#define E1000_IMC	0x000D8  /* Interrupt Mask Clear - WO */
-#define E1000_IAM	0x000E0  /* Interrupt Acknowledge Auto Mask */
-#define E1000_IVAR	0x000E4  /* Interrupt Vector Allocation Register - RW */
-#define E1000_SVCR	0x000F0
-#define E1000_SVT	0x000F4
-#define E1000_LPIC	0x000FC  /* Low Power IDLE control */
-#define E1000_RCTL	0x00100  /* Rx Control - RW */
-#define E1000_FCTTV	0x00170  /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW	0x00178  /* Tx Configuration Word - RW */
-#define E1000_RXCW	0x00180  /* Rx Configuration Word - RO */
-#define E1000_PBA_ECC	0x01100  /* PBA ECC Register */
-#define E1000_EICR	0x01580  /* Ext. Interrupt Cause Read - R/clr */
-#define E1000_EITR(_n)	(0x01680 + (0x4 * (_n)))
-#define E1000_EICS	0x01520  /* Ext. Interrupt Cause Set - W0 */
-#define E1000_EIMS	0x01524  /* Ext. Interrupt Mask Set/Read - RW */
-#define E1000_EIMC	0x01528  /* Ext. Interrupt Mask Clear - WO */
-#define E1000_EIAC	0x0152C  /* Ext. Interrupt Auto Clear - RW */
-#define E1000_EIAM	0x01530  /* Ext. Interrupt Ack Auto Clear Mask - RW */
-#define E1000_GPIE	0x01514  /* General Purpose Interrupt Enable - RW */
-#define E1000_IVAR0	0x01700  /* Interrupt Vector Allocation (array) - RW */
-#define E1000_IVAR_MISC	0x01740 /* IVAR for "other" causes - RW */
-#define E1000_TCTL	0x00400  /* Tx Control - RW */
-#define E1000_TCTL_EXT	0x00404  /* Extended Tx Control - RW */
-#define E1000_TIPG	0x00410  /* Tx Inter-packet gap -RW */
-#define E1000_TBT	0x00448  /* Tx Burst Timer - RW */
-#define E1000_AIT	0x00458  /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL	0x00E00  /* LED Control - RW */
-#define E1000_LEDMUX	0x08130  /* LED MUX Control */
-#define E1000_EXTCNF_CTRL	0x00F00  /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE	0x00F08  /* Extended Configuration Size */
-#define E1000_PHY_CTRL	0x00F10  /* PHY Control Register in CSR */
-#define E1000_POEMB	E1000_PHY_CTRL /* PHY OEM Bits */
-#define E1000_PBA	0x01000  /* Packet Buffer Allocation - RW */
-#define E1000_PBS	0x01008  /* Packet Buffer Size */
-#define E1000_PBECCSTS	0x0100C  /* Packet Buffer ECC Status - RW */
-#define E1000_EEMNGCTL	0x01010  /* MNG EEprom Control */
-#define E1000_EEARBC	0x01024  /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT	0x01028  /* FLASH Timer Register */
-#define E1000_EEWR	0x0102C  /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL	0x01030  /* FLASH control register */
-#define E1000_FLSWDATA	0x01034  /* FLASH data register */
-#define E1000_FLSWCNT	0x01038  /* FLASH Access Counter */
-#define E1000_FLOP	0x0103C  /* FLASH Opcode Register */
-#define E1000_I2CCMD	0x01028  /* SFPI2C Command Register - RW */
-#define E1000_I2CPARAMS	0x0102C /* SFPI2C Parameters Register - RW */
-#define E1000_I2CBB_EN	0x00000100  /* I2C - Bit Bang Enable */
-#define E1000_I2C_CLK_OUT	0x00000200  /* I2C- Clock */
-#define E1000_I2C_DATA_OUT	0x00000400  /* I2C- Data Out */
-#define E1000_I2C_DATA_OE_N	0x00000800  /* I2C- Data Output Enable */
-#define E1000_I2C_DATA_IN	0x00001000  /* I2C- Data In */
-#define E1000_I2C_CLK_OE_N	0x00002000  /* I2C- Clock Output Enable */
-#define E1000_I2C_CLK_IN	0x00004000  /* I2C- Clock In */
-#define E1000_I2C_CLK_STRETCH_DIS	0x00008000 /* I2C- Dis Clk Stretching */
-#define E1000_WDSTP	0x01040  /* Watchdog Setup - RW */
-#define E1000_SWDSTS	0x01044  /* SW Device Status - RW */
-#define E1000_FRTIMER	0x01048  /* Free Running Timer - RW */
-#define E1000_TCPTIMER	0x0104C  /* TCP Timer - RW */
-#define E1000_VPDDIAG	0x01060  /* VPD Diagnostic - RO */
-#define E1000_ICR_V2	0x01500  /* Intr Cause - new location - RC */
-#define E1000_ICS_V2	0x01504  /* Intr Cause Set - new location - WO */
-#define E1000_IMS_V2	0x01508  /* Intr Mask Set/Read - new location - RW */
-#define E1000_IMC_V2	0x0150C  /* Intr Mask Clear - new location - WO */
-#define E1000_IAM_V2	0x01510  /* Intr Ack Auto Mask - new location - RW */
-#define E1000_ERT	0x02008  /* Early Rx Threshold - RW */
-#define E1000_FCRTL	0x02160  /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH	0x02168  /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL	0x02170  /* Packet Split Receive Control - RW */
-#define E1000_RDFH	0x02410  /* Rx Data FIFO Head - RW */
-#define E1000_RDFT	0x02418  /* Rx Data FIFO Tail - RW */
-#define E1000_RDFHS	0x02420  /* Rx Data FIFO Head Saved - RW */
-#define E1000_RDFTS	0x02428  /* Rx Data FIFO Tail Saved - RW */
-#define E1000_RDFPC	0x02430  /* Rx Data FIFO Packet Count - RW */
-#define E1000_PBRTH	0x02458  /* PB Rx Arbitration Threshold - RW */
-#define E1000_FCRTV	0x02460  /* Flow Control Refresh Timer Value - RW */
-/* Split and Replication Rx Control - RW */
-#define E1000_RDPUMB	0x025CC  /* DMA Rx Descriptor uC Mailbox - RW */
-#define E1000_RDPUAD	0x025D0  /* DMA Rx Descriptor uC Addr Command - RW */
-#define E1000_RDPUWD	0x025D4  /* DMA Rx Descriptor uC Data Write - RW */
-#define E1000_RDPURD	0x025D8  /* DMA Rx Descriptor uC Data Read - RW */
-#define E1000_RDPUCTL	0x025DC  /* DMA Rx Descriptor uC Control - RW */
-#define E1000_PBDIAG	0x02458  /* Packet Buffer Diagnostic - RW */
-#define E1000_RXPBS	0x02404  /* Rx Packet Buffer Size - RW */
-#define E1000_IRPBS	0x02404 /* Same as RXPBS, renamed for newer Si - RW */
-#define E1000_PBRWAC	0x024E8 /* Rx packet buffer wrap around counter - RO */
-#define E1000_RDTR	0x02820  /* Rx Delay Timer - RW */
-#define E1000_RADV	0x0282C  /* Rx Interrupt Absolute Delay Timer - RW */
-#define E1000_EMIADD	0x10     /* Extended Memory Indirect Address */
-#define E1000_EMIDATA	0x11     /* Extended Memory Indirect Data */
-#define E1000_SRWR		0x12018  /* Shadow Ram Write Register - RW */
-#define E1000_I210_FLMNGCTL	0x12038
-#define E1000_I210_FLMNGDATA	0x1203C
-#define E1000_I210_FLMNGCNT	0x12040
-
-#define E1000_I210_FLSWCTL	0x12048
-#define E1000_I210_FLSWDATA	0x1204C
-#define E1000_I210_FLSWCNT	0x12050
-
-#define E1000_I210_FLA		0x1201C
-
-#define E1000_INVM_DATA_REG(_n)	(0x12120 + 4*(_n))
-#define E1000_INVM_SIZE		64 /* Number of INVM Data Registers */
-
-/* QAV Tx mode control register */
-#define E1000_I210_TQAVCTRL	0x3570
-
-/* QAV Tx mode control register bitfields masks */
-/* QAV enable */
-#define E1000_TQAVCTRL_MODE			(1 << 0)
-/* Fetching arbitration type */
-#define E1000_TQAVCTRL_FETCH_ARB		(1 << 4)
-/* Fetching timer enable */
-#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE	(1 << 5)
-/* Launch arbitration type */
-#define E1000_TQAVCTRL_LAUNCH_ARB		(1 << 8)
-/* Launch timer enable */
-#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE	(1 << 9)
-/* SP waits for SR enable */
-#define E1000_TQAVCTRL_SP_WAIT_SR		(1 << 10)
-/* Fetching timer correction */
-#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET	16
-#define E1000_TQAVCTRL_FETCH_TIMER_DELTA	\
-			(0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET)
-
-/* High credit registers where _n can be 0 or 1. */
-#define E1000_I210_TQAVHC(_n)			(0x300C + 0x40 * (_n))
-
-/* Queues fetch arbitration priority control register */
-#define E1000_I210_TQAVARBCTRL			0x3574
-/* Queues priority masks where _n and _p can be 0-3. */
-#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p)	((_p) << (2 * _n))
-/* QAV Tx mode control registers where _n can be 0 or 1. */
-#define E1000_I210_TQAVCC(_n)			(0x3004 + 0x40 * (_n))
-
-/* QAV Tx mode control register bitfields masks */
-#define E1000_TQAVCC_IDLE_SLOPE		0xFFFF /* Idle slope */
-#define E1000_TQAVCC_KEEP_CREDITS	(1 << 30) /* Keep credits opt enable */
-#define E1000_TQAVCC_QUEUE_MODE		(1 << 31) /* SP vs. SR Tx mode */
-
-/* Good transmitted packets counter registers */
-#define E1000_PQGPTC(_n)		(0x010014 + (0x100 * (_n)))
-
-/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */
-#define E1000_I210_TXPBS_SIZE(_n, _s)	((_s) << (6 * _n))
-
-#define E1000_MMDAC			13 /* MMD Access Control */
-#define E1000_MMDAAD			14 /* MMD Access Address/Data */
-
-/* Convenience macros
- *
- * Note: "_n" is the queue number of the register to be written to.
- *
- * Example usage:
- * E1000_RDBAL_REG(current_rx_queue)
- */
-#define E1000_RDBAL(_n)	((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
-			 (0x0C000 + ((_n) * 0x40)))
-#define E1000_RDBAH(_n)	((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
-			 (0x0C004 + ((_n) * 0x40)))
-#define E1000_RDLEN(_n)	((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
-			 (0x0C008 + ((_n) * 0x40)))
-#define E1000_SRRCTL(_n)	((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
-				 (0x0C00C + ((_n) * 0x40)))
-#define E1000_RDH(_n)	((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
-			 (0x0C010 + ((_n) * 0x40)))
-#define E1000_RXCTL(_n)	((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \
-			 (0x0C014 + ((_n) * 0x40)))
-#define E1000_DCA_RXCTRL(_n)	E1000_RXCTL(_n)
-#define E1000_RDT(_n)	((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
-			 (0x0C018 + ((_n) * 0x40)))
-#define E1000_RXDCTL(_n)	((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
-				 (0x0C028 + ((_n) * 0x40)))
-#define E1000_RQDPC(_n)	((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \
-			 (0x0C030 + ((_n) * 0x40)))
-#define E1000_TDBAL(_n)	((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
-			 (0x0E000 + ((_n) * 0x40)))
-#define E1000_TDBAH(_n)	((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
-			 (0x0E004 + ((_n) * 0x40)))
-#define E1000_TDLEN(_n)	((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
-			 (0x0E008 + ((_n) * 0x40)))
-#define E1000_TDH(_n)	((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
-			 (0x0E010 + ((_n) * 0x40)))
-#define E1000_TXCTL(_n)	((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \
-			 (0x0E014 + ((_n) * 0x40)))
-#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n)
-#define E1000_TDT(_n)	((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
-			 (0x0E018 + ((_n) * 0x40)))
-#define E1000_TXDCTL(_n)	((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
-				 (0x0E028 + ((_n) * 0x40)))
-#define E1000_TDWBAL(_n)	((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \
-				 (0x0E038 + ((_n) * 0x40)))
-#define E1000_TDWBAH(_n)	((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \
-				 (0x0E03C + ((_n) * 0x40)))
-#define E1000_TARC(_n)		(0x03840 + ((_n) * 0x100))
-#define E1000_RSRPD		0x02C00  /* Rx Small Packet Detect - RW */
-#define E1000_RAID		0x02C08  /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC		0x03000  /* Tx DMA Control - RW */
-#define E1000_KABGTXD		0x03004  /* AFE Band Gap Transmit Ref Data */
-#define E1000_PSRTYPE(_i)	(0x05480 + ((_i) * 4))
-#define E1000_RAL(_i)		(((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
-				 (0x054E0 + ((_i - 16) * 8)))
-#define E1000_RAH(_i)		(((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
-				 (0x054E4 + ((_i - 16) * 8)))
-#define E1000_SHRAL(_i)		(0x05438 + ((_i) * 8))
-#define E1000_SHRAH(_i)		(0x0543C + ((_i) * 8))
-#define E1000_IP4AT_REG(_i)	(0x05840 + ((_i) * 8))
-#define E1000_IP6AT_REG(_i)	(0x05880 + ((_i) * 4))
-#define E1000_WUPM_REG(_i)	(0x05A00 + ((_i) * 4))
-#define E1000_FFMT_REG(_i)	(0x09000 + ((_i) * 8))
-#define E1000_FFVT_REG(_i)	(0x09800 + ((_i) * 8))
-#define E1000_FFLT_REG(_i)	(0x05F00 + ((_i) * 8))
-#define E1000_PBSLAC		0x03100  /* Pkt Buffer Slave Access Control */
-#define E1000_PBSLAD(_n)	(0x03110 + (0x4 * (_n)))  /* Pkt Buffer DWORD */
-#define E1000_TXPBS		0x03404  /* Tx Packet Buffer Size - RW */
-/* Same as TXPBS, renamed for newer Si - RW */
-#define E1000_ITPBS		0x03404
-#define E1000_TDFH		0x03410  /* Tx Data FIFO Head - RW */
-#define E1000_TDFT		0x03418  /* Tx Data FIFO Tail - RW */
-#define E1000_TDFHS		0x03420  /* Tx Data FIFO Head Saved - RW */
-#define E1000_TDFTS		0x03428  /* Tx Data FIFO Tail Saved - RW */
-#define E1000_TDFPC		0x03430  /* Tx Data FIFO Packet Count - RW */
-#define E1000_TDPUMB		0x0357C  /* DMA Tx Desc uC Mail Box - RW */
-#define E1000_TDPUAD		0x03580  /* DMA Tx Desc uC Addr Command - RW */
-#define E1000_TDPUWD		0x03584  /* DMA Tx Desc uC Data Write - RW */
-#define E1000_TDPURD		0x03588  /* DMA Tx Desc uC Data  Read  - RW */
-#define E1000_TDPUCTL		0x0358C  /* DMA Tx Desc uC Control - RW */
-#define E1000_DTXCTL		0x03590  /* DMA Tx Control - RW */
-#define E1000_DTXTCPFLGL	0x0359C /* DMA Tx Control flag low - RW */
-#define E1000_DTXTCPFLGH	0x035A0 /* DMA Tx Control flag high - RW */
-/* DMA Tx Max Total Allow Size Reqs - RW */
-#define E1000_DTXMXSZRQ		0x03540
-#define E1000_TIDV	0x03820  /* Tx Interrupt Delay Value - RW */
-#define E1000_TADV	0x0382C  /* Tx Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT	0x03830  /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_CRCERRS	0x04000  /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC	0x04004  /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS	0x04008  /* Symbol Error Count - R/clr */
-#define E1000_RXERRC	0x0400C  /* Receive Error Count - R/clr */
-#define E1000_MPC	0x04010  /* Missed Packet Count - R/clr */
-#define E1000_SCC	0x04014  /* Single Collision Count - R/clr */
-#define E1000_ECOL	0x04018  /* Excessive Collision Count - R/clr */
-#define E1000_MCC	0x0401C  /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL	0x04020  /* Late Collision Count - R/clr */
-#define E1000_COLC	0x04028  /* Collision Count - R/clr */
-#define E1000_DC	0x04030  /* Defer Count - R/clr */
-#define E1000_TNCRS	0x04034  /* Tx-No CRS - R/clr */
-#define E1000_SEC	0x04038  /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR	0x0403C  /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC	0x04040  /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC	0x04048  /* XON Rx Count - R/clr */
-#define E1000_XONTXC	0x0404C  /* XON Tx Count - R/clr */
-#define E1000_XOFFRXC	0x04050  /* XOFF Rx Count - R/clr */
-#define E1000_XOFFTXC	0x04054  /* XOFF Tx Count - R/clr */
-#define E1000_FCRUC	0x04058  /* Flow Control Rx Unsupported Count- R/clr */
-#define E1000_PRC64	0x0405C  /* Packets Rx (64 bytes) - R/clr */
-#define E1000_PRC127	0x04060  /* Packets Rx (65-127 bytes) - R/clr */
-#define E1000_PRC255	0x04064  /* Packets Rx (128-255 bytes) - R/clr */
-#define E1000_PRC511	0x04068  /* Packets Rx (255-511 bytes) - R/clr */
-#define E1000_PRC1023	0x0406C  /* Packets Rx (512-1023 bytes) - R/clr */
-#define E1000_PRC1522	0x04070  /* Packets Rx (1024-1522 bytes) - R/clr */
-#define E1000_GPRC	0x04074  /* Good Packets Rx Count - R/clr */
-#define E1000_BPRC	0x04078  /* Broadcast Packets Rx Count - R/clr */
-#define E1000_MPRC	0x0407C  /* Multicast Packets Rx Count - R/clr */
-#define E1000_GPTC	0x04080  /* Good Packets Tx Count - R/clr */
-#define E1000_GORCL	0x04088  /* Good Octets Rx Count Low - R/clr */
-#define E1000_GORCH	0x0408C  /* Good Octets Rx Count High - R/clr */
-#define E1000_GOTCL	0x04090  /* Good Octets Tx Count Low - R/clr */
-#define E1000_GOTCH	0x04094  /* Good Octets Tx Count High - R/clr */
-#define E1000_RNBC	0x040A0  /* Rx No Buffers Count - R/clr */
-#define E1000_RUC	0x040A4  /* Rx Undersize Count - R/clr */
-#define E1000_RFC	0x040A8  /* Rx Fragment Count - R/clr */
-#define E1000_ROC	0x040AC  /* Rx Oversize Count - R/clr */
-#define E1000_RJC	0x040B0  /* Rx Jabber Count - R/clr */
-#define E1000_MGTPRC	0x040B4  /* Management Packets Rx Count - R/clr */
-#define E1000_MGTPDC	0x040B8  /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC	0x040BC  /* Management Packets Tx Count - R/clr */
-#define E1000_TORL	0x040C0  /* Total Octets Rx Low - R/clr */
-#define E1000_TORH	0x040C4  /* Total Octets Rx High - R/clr */
-#define E1000_TOTL	0x040C8  /* Total Octets Tx Low - R/clr */
-#define E1000_TOTH	0x040CC  /* Total Octets Tx High - R/clr */
-#define E1000_TPR	0x040D0  /* Total Packets Rx - R/clr */
-#define E1000_TPT	0x040D4  /* Total Packets Tx - R/clr */
-#define E1000_PTC64	0x040D8  /* Packets Tx (64 bytes) - R/clr */
-#define E1000_PTC127	0x040DC  /* Packets Tx (65-127 bytes) - R/clr */
-#define E1000_PTC255	0x040E0  /* Packets Tx (128-255 bytes) - R/clr */
-#define E1000_PTC511	0x040E4  /* Packets Tx (256-511 bytes) - R/clr */
-#define E1000_PTC1023	0x040E8  /* Packets Tx (512-1023 bytes) - R/clr */
-#define E1000_PTC1522	0x040EC  /* Packets Tx (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC	0x040F0  /* Multicast Packets Tx Count - R/clr */
-#define E1000_BPTC	0x040F4  /* Broadcast Packets Tx Count - R/clr */
-#define E1000_TSCTC	0x040F8  /* TCP Segmentation Context Tx - R/clr */
-#define E1000_TSCTFC	0x040FC  /* TCP Segmentation Context Tx Fail - R/clr */
-#define E1000_IAC	0x04100  /* Interrupt Assertion Count */
-#define E1000_ICRXPTC	0x04104  /* Interrupt Cause Rx Pkt Timer Expire Count */
-#define E1000_ICRXATC	0x04108  /* Interrupt Cause Rx Abs Timer Expire Count */
-#define E1000_ICTXPTC	0x0410C  /* Interrupt Cause Tx Pkt Timer Expire Count */
-#define E1000_ICTXATC	0x04110  /* Interrupt Cause Tx Abs Timer Expire Count */
-#define E1000_ICTXQEC	0x04118  /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC	0x0411C  /* Interrupt Cause Tx Queue Min Thresh Count */
-#define E1000_ICRXDMTC	0x04120  /* Interrupt Cause Rx Desc Min Thresh Count */
-#define E1000_ICRXOC	0x04124  /* Interrupt Cause Receiver Overrun Count */
-#define E1000_CRC_OFFSET	0x05F50  /* CRC Offset register */
-
-#define E1000_VFGPRC	0x00F10
-#define E1000_VFGORC	0x00F18
-#define E1000_VFMPRC	0x00F3C
-#define E1000_VFGPTC	0x00F14
-#define E1000_VFGOTC	0x00F34
-#define E1000_VFGOTLBC	0x00F50
-#define E1000_VFGPTLBC	0x00F44
-#define E1000_VFGORLBC	0x00F48
-#define E1000_VFGPRLBC	0x00F40
-/* Virtualization statistical counters */
-#define E1000_PFVFGPRC(_n)	(0x010010 + (0x100 * (_n)))
-#define E1000_PFVFGPTC(_n)	(0x010014 + (0x100 * (_n)))
-#define E1000_PFVFGORC(_n)	(0x010018 + (0x100 * (_n)))
-#define E1000_PFVFGOTC(_n)	(0x010034 + (0x100 * (_n)))
-#define E1000_PFVFMPRC(_n)	(0x010038 + (0x100 * (_n)))
-#define E1000_PFVFGPRLBC(_n)	(0x010040 + (0x100 * (_n)))
-#define E1000_PFVFGPTLBC(_n)	(0x010044 + (0x100 * (_n)))
-#define E1000_PFVFGORLBC(_n)	(0x010048 + (0x100 * (_n)))
-#define E1000_PFVFGOTLBC(_n)	(0x010050 + (0x100 * (_n)))
-
-/* LinkSec */
-#define E1000_LSECTXUT		0x04300  /* Tx Untagged Pkt Cnt */
-#define E1000_LSECTXPKTE	0x04304  /* Encrypted Tx Pkts Cnt */
-#define E1000_LSECTXPKTP	0x04308  /* Protected Tx Pkt Cnt */
-#define E1000_LSECTXOCTE	0x0430C  /* Encrypted Tx Octets Cnt */
-#define E1000_LSECTXOCTP	0x04310  /* Protected Tx Octets Cnt */
-#define E1000_LSECRXUT		0x04314  /* Untagged non-Strict Rx Pkt Cnt */
-#define E1000_LSECRXOCTD	0x0431C  /* Rx Octets Decrypted Count */
-#define E1000_LSECRXOCTV	0x04320  /* Rx Octets Validated */
-#define E1000_LSECRXBAD		0x04324  /* Rx Bad Tag */
-#define E1000_LSECRXNOSCI	0x04328  /* Rx Packet No SCI Count */
-#define E1000_LSECRXUNSCI	0x0432C  /* Rx Packet Unknown SCI Count */
-#define E1000_LSECRXUNCH	0x04330  /* Rx Unchecked Packets Count */
-#define E1000_LSECRXDELAY	0x04340  /* Rx Delayed Packet Count */
-#define E1000_LSECRXLATE	0x04350  /* Rx Late Packets Count */
-#define E1000_LSECRXOK(_n)	(0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */
-#define E1000_LSECRXINV(_n)	(0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */
-#define E1000_LSECRXNV(_n)	(0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */
-#define E1000_LSECRXUNSA	0x043C0  /* Rx Unused SA Count */
-#define E1000_LSECRXNUSA	0x043D0  /* Rx Not Using SA Count */
-#define E1000_LSECTXCAP		0x0B000  /* Tx Capabilities Register - RO */
-#define E1000_LSECRXCAP		0x0B300  /* Rx Capabilities Register - RO */
-#define E1000_LSECTXCTRL	0x0B004  /* Tx Control - RW */
-#define E1000_LSECRXCTRL	0x0B304  /* Rx Control - RW */
-#define E1000_LSECTXSCL		0x0B008  /* Tx SCI Low - RW */
-#define E1000_LSECTXSCH		0x0B00C  /* Tx SCI High - RW */
-#define E1000_LSECTXSA		0x0B010  /* Tx SA0 - RW */
-#define E1000_LSECTXPN0		0x0B018  /* Tx SA PN 0 - RW */
-#define E1000_LSECTXPN1		0x0B01C  /* Tx SA PN 1 - RW */
-#define E1000_LSECRXSCL		0x0B3D0  /* Rx SCI Low - RW */
-#define E1000_LSECRXSCH		0x0B3E0  /* Rx SCI High - RW */
-/* LinkSec Tx 128-bit Key 0 - WO */
-#define E1000_LSECTXKEY0(_n)	(0x0B020 + (0x04 * (_n)))
-/* LinkSec Tx 128-bit Key 1 - WO */
-#define E1000_LSECTXKEY1(_n)	(0x0B030 + (0x04 * (_n)))
-#define E1000_LSECRXSA(_n)	(0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */
-#define E1000_LSECRXPN(_n)	(0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */
-/* LinkSec Rx Keys  - where _n is the SA no. and _m the 4 dwords of the 128 bit
- * key - RW.
- */
-#define E1000_LSECRXKEY(_n, _m)	(0x0B350 + (0x10 * (_n)) + (0x04 * (_m)))
-
-#define E1000_SSVPC		0x041A0 /* Switch Security Violation Pkt Cnt */
-#define E1000_IPSCTRL		0xB430  /* IpSec Control Register */
-#define E1000_IPSRXCMD		0x0B408 /* IPSec Rx Command Register - RW */
-#define E1000_IPSRXIDX		0x0B400 /* IPSec Rx Index - RW */
-/* IPSec Rx IPv4/v6 Address - RW */
-#define E1000_IPSRXIPADDR(_n)	(0x0B420 + (0x04 * (_n)))
-/* IPSec Rx 128-bit Key - RW */
-#define E1000_IPSRXKEY(_n)	(0x0B410 + (0x04 * (_n)))
-#define E1000_IPSRXSALT		0x0B404  /* IPSec Rx Salt - RW */
-#define E1000_IPSRXSPI		0x0B40C  /* IPSec Rx SPI - RW */
-/* IPSec Tx 128-bit Key - RW */
-#define E1000_IPSTXKEY(_n)	(0x0B460 + (0x04 * (_n)))
-#define E1000_IPSTXSALT		0x0B454  /* IPSec Tx Salt - RW */
-#define E1000_IPSTXIDX		0x0B450  /* IPSec Tx SA IDX - RW */
-#define E1000_PCS_CFG0	0x04200  /* PCS Configuration 0 - RW */
-#define E1000_PCS_LCTL	0x04208  /* PCS Link Control - RW */
-#define E1000_PCS_LSTAT	0x0420C  /* PCS Link Status - RO */
-#define E1000_CBTMPC	0x0402C  /* Circuit Breaker Tx Packet Count */
-#define E1000_HTDPMC	0x0403C  /* Host Transmit Discarded Packets */
-#define E1000_CBRDPC	0x04044  /* Circuit Breaker Rx Dropped Count */
-#define E1000_CBRMPC	0x040FC  /* Circuit Breaker Rx Packet Count */
-#define E1000_RPTHC	0x04104  /* Rx Packets To Host */
-#define E1000_HGPTC	0x04118  /* Host Good Packets Tx Count */
-#define E1000_HTCBDPC	0x04124  /* Host Tx Circuit Breaker Dropped Count */
-#define E1000_HGORCL	0x04128  /* Host Good Octets Received Count Low */
-#define E1000_HGORCH	0x0412C  /* Host Good Octets Received Count High */
-#define E1000_HGOTCL	0x04130  /* Host Good Octets Transmit Count Low */
-#define E1000_HGOTCH	0x04134  /* Host Good Octets Transmit Count High */
-#define E1000_LENERRS	0x04138  /* Length Errors Count */
-#define E1000_SCVPC	0x04228  /* SerDes/SGMII Code Violation Pkt Count */
-#define E1000_HRMPC	0x0A018  /* Header Redirection Missed Packet Count */
-#define E1000_PCS_ANADV	0x04218  /* AN advertisement - RW */
-#define E1000_PCS_LPAB	0x0421C  /* Link Partner Ability - RW */
-#define E1000_PCS_NPTX	0x04220  /* AN Next Page Transmit - RW */
-#define E1000_PCS_LPABNP	0x04224 /* Link Partner Ability Next Pg - RW */
-#define E1000_RXCSUM	0x05000  /* Rx Checksum Control - RW */
-#define E1000_RLPML	0x05004  /* Rx Long Packet Max Length */
-#define E1000_RFCTL	0x05008  /* Receive Filter Control*/
-#define E1000_MTA	0x05200  /* Multicast Table Array - RW Array */
-#define E1000_RA	0x05400  /* Receive Address - RW Array */
-#define E1000_RA2	0x054E0  /* 2nd half of Rx address array - RW Array */
-#define E1000_VFTA	0x05600  /* VLAN Filter Table Array - RW Array */
-#define E1000_VT_CTL	0x0581C  /* VMDq Control - RW */
-#define E1000_CIAA	0x05B88  /* Config Indirect Access Address - RW */
-#define E1000_CIAD	0x05B8C  /* Config Indirect Access Data - RW */
-#define E1000_VFQA0	0x0B000  /* VLAN Filter Queue Array 0 - RW Array */
-#define E1000_VFQA1	0x0B200  /* VLAN Filter Queue Array 1 - RW Array */
-#define E1000_WUC	0x05800  /* Wakeup Control - RW */
-#define E1000_WUFC	0x05808  /* Wakeup Filter Control - RW */
-#define E1000_WUS	0x05810  /* Wakeup Status - RO */
-#define E1000_MANC	0x05820  /* Management Control - RW */
-#define E1000_IPAV	0x05838  /* IP Address Valid - RW */
-#define E1000_IP4AT	0x05840  /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT	0x05880  /* IPv6 Address Table - RW Array */
-#define E1000_WUPL	0x05900  /* Wakeup Packet Length - RW */
-#define E1000_WUPM	0x05A00  /* Wakeup Packet Memory - RO A */
-#define E1000_PBACL	0x05B68  /* MSIx PBA Clear - Read/Write 1's to clear */
-#define E1000_FFLT	0x05F00  /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF	0x08800  /* Host Interface */
-#define E1000_HIBBA	0x8F40   /* Host Interface Buffer Base Address */
-/* Flexible Host Filter Table */
-#define E1000_FHFT(_n)	(0x09000 + ((_n) * 0x100))
-/* Ext Flexible Host Filter Table */
-#define E1000_FHFT_EXT(_n)	(0x09A00 + ((_n) * 0x100))
-
-
-#define E1000_KMRNCTRLSTA	0x00034 /* MAC-PHY interface - RW */
-#define E1000_MANC2H		0x05860 /* Management Control To Host - RW */
-/* Management Decision Filters */
-#define E1000_MDEF(_n)		(0x05890 + (4 * (_n)))
-#define E1000_SW_FW_SYNC	0x05B5C /* SW-FW Synchronization - RW */
-#define E1000_CCMCTL	0x05B48 /* CCM Control Register */
-#define E1000_GIOCTL	0x05B44 /* GIO Analog Control Register */
-#define E1000_SCCTL	0x05B4C /* PCIc PLL Configuration Register */
-#define E1000_GCR	0x05B00 /* PCI-Ex Control */
-#define E1000_GCR2	0x05B64 /* PCI-Ex Control #2 */
-#define E1000_GSCL_1	0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2	0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3	0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4	0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS	0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM	0x05B50 /* SW Semaphore */
-#define E1000_FWSM	0x05B54 /* FW Semaphore */
-/* Driver-only SW semaphore (not used by BOOT agents) */
-#define E1000_SWSM2	0x05B58
-#define E1000_DCA_ID	0x05B70 /* DCA Requester ID Information - RO */
-#define E1000_DCA_CTRL	0x05B74 /* DCA Control - RW */
-#define E1000_UFUSE	0x05B78 /* UFUSE - RO */
-#define E1000_FFLT_DBG	0x05F04 /* Debug Register */
-#define E1000_HICR	0x08F00 /* Host Interface Control */
-#define E1000_FWSTS	0x08F0C /* FW Status */
-
-/* RSS registers */
-#define E1000_CPUVEC	0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC	0x05818 /* Multiple Receive Control - RW */
-#define E1000_IMIR(_i)	(0x05A80 + ((_i) * 4))  /* Immediate Interrupt */
-#define E1000_IMIREXT(_i)	(0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/
-#define E1000_IMIRVP		0x05AC0 /* Immediate INT Rx VLAN Priority -RW */
-#define E1000_MSIXBM(_i)	(0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */
-#define E1000_RETA(_i)	(0x05C00 + ((_i) * 4)) /* Redirection Table - RW */
-#define E1000_RSSRK(_i)	(0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */
-#define E1000_RSSIM	0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR	0x05868 /* RSS Interrupt Request */
-/* VT Registers */
-#define E1000_SWPBS	0x03004 /* Switch Packet Buffer Size - RW */
-#define E1000_MBVFICR	0x00C80 /* Mailbox VF Cause - RWC */
-#define E1000_MBVFIMR	0x00C84 /* Mailbox VF int Mask - RW */
-#define E1000_VFLRE	0x00C88 /* VF Register Events - RWC */
-#define E1000_VFRE	0x00C8C /* VF Receive Enables */
-#define E1000_VFTE	0x00C90 /* VF Transmit Enables */
-#define E1000_QDE	0x02408 /* Queue Drop Enable - RW */
-#define E1000_DTXSWC	0x03500 /* DMA Tx Switch Control - RW */
-#define E1000_WVBR	0x03554 /* VM Wrong Behavior - RWS */
-#define E1000_RPLOLR	0x05AF0 /* Replication Offload - RW */
-#define E1000_UTA	0x0A000 /* Unicast Table Array - RW */
-#define E1000_IOVTCL	0x05BBC /* IOV Control Register */
-#define E1000_VMRCTL	0X05D80 /* Virtual Mirror Rule Control */
-#define E1000_VMRVLAN	0x05D90 /* Virtual Mirror Rule VLAN */
-#define E1000_VMRVM	0x05DA0 /* Virtual Mirror Rule VM */
-#define E1000_MDFB	0x03558 /* Malicious Driver free block */
-#define E1000_LVMMC	0x03548 /* Last VM Misbehavior cause */
-#define E1000_TXSWC	0x05ACC /* Tx Switch Control */
-#define E1000_SCCRL	0x05DB0 /* Storm Control Control */
-#define E1000_BSCTRH	0x05DB8 /* Broadcast Storm Control Threshold */
-#define E1000_MSCTRH	0x05DBC /* Multicast Storm Control Threshold */
-/* These act per VF so an array friendly macro is used */
-#define E1000_V2PMAILBOX(_n)	(0x00C40 + (4 * (_n)))
-#define E1000_P2VMAILBOX(_n)	(0x00C00 + (4 * (_n)))
-#define E1000_VMBMEM(_n)	(0x00800 + (64 * (_n)))
-#define E1000_VFVMBMEM(_n)	(0x00800 + (_n))
-#define E1000_VMOLR(_n)		(0x05AD0 + (4 * (_n)))
-/* VLAN Virtual Machine Filter - RW */
-#define E1000_VLVF(_n)		(0x05D00 + (4 * (_n)))
-#define E1000_VMVIR(_n)		(0x03700 + (4 * (_n)))
-#define E1000_DVMOLR(_n)	(0x0C038 + (0x40 * (_n))) /* DMA VM offload */
-#define E1000_VTCTRL(_n)	(0x10000 + (0x100 * (_n))) /* VT Control */
-#define E1000_TSYNCRXCTL	0x0B620 /* Rx Time Sync Control register - RW */
-#define E1000_TSYNCTXCTL	0x0B614 /* Tx Time Sync Control register - RW */
-#define E1000_TSYNCRXCFG	0x05F50 /* Time Sync Rx Configuration - RW */
-#define E1000_RXSTMPL	0x0B624 /* Rx timestamp Low - RO */
-#define E1000_RXSTMPH	0x0B628 /* Rx timestamp High - RO */
-#define E1000_RXSATRL	0x0B62C /* Rx timestamp attribute low - RO */
-#define E1000_RXSATRH	0x0B630 /* Rx timestamp attribute high - RO */
-#define E1000_TXSTMPL	0x0B618 /* Tx timestamp value Low - RO */
-#define E1000_TXSTMPH	0x0B61C /* Tx timestamp value High - RO */
-#define E1000_SYSTIML	0x0B600 /* System time register Low - RO */
-#define E1000_SYSTIMH	0x0B604 /* System time register High - RO */
-#define E1000_TIMINCA	0x0B608 /* Increment attributes register - RW */
-#define E1000_TIMADJL	0x0B60C /* Time sync time adjustment offset Low - RW */
-#define E1000_TIMADJH	0x0B610 /* Time sync time adjustment offset High - RW */
-#define E1000_TSAUXC	0x0B640 /* Timesync Auxiliary Control register */
-#define E1000_SYSTIMR	0x0B6F8 /* System time register Residue */
-#define E1000_TSICR	0x0B66C /* Interrupt Cause Register */
-#define E1000_TSIM	0x0B674 /* Interrupt Mask Register */
-#define E1000_RXMTRL	0x0B634 /* Time sync Rx EtherType and Msg Type - RW */
-#define E1000_RXUDP	0x0B638 /* Time Sync Rx UDP Port - RW */
-
-/* Filtering Registers */
-#define E1000_SAQF(_n)	(0x05980 + (4 * (_n))) /* Source Address Queue Fltr */
-#define E1000_DAQF(_n)	(0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */
-#define E1000_SPQF(_n)	(0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */
-#define E1000_FTQF(_n)	(0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */
-#define E1000_TTQF(_n)	(0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */
-#define E1000_SYNQF(_n)	(0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */
-#define E1000_ETQF(_n)	(0x05CB0 + (4 * (_n))) /* EType Queue Fltr */
-
-#define E1000_RTTDCS	0x3600 /* Reedtown Tx Desc plane control and status */
-#define E1000_RTTPCS	0x3474 /* Reedtown Tx Packet Plane control and status */
-#define E1000_RTRPCS	0x2474 /* Rx packet plane control and status */
-#define E1000_RTRUP2TC	0x05AC4 /* Rx User Priority to Traffic Class */
-#define E1000_RTTUP2TC	0x0418 /* Transmit User Priority to Traffic Class */
-/* Tx Desc plane TC Rate-scheduler config */
-#define E1000_RTTDTCRC(_n)	(0x3610 + ((_n) * 4))
-/* Tx Packet plane TC Rate-Scheduler Config */
-#define E1000_RTTPTCRC(_n)	(0x3480 + ((_n) * 4))
-/* Rx Packet plane TC Rate-Scheduler Config */
-#define E1000_RTRPTCRC(_n)	(0x2480 + ((_n) * 4))
-/* Tx Desc Plane TC Rate-Scheduler Status */
-#define E1000_RTTDTCRS(_n)	(0x3630 + ((_n) * 4))
-/* Tx Desc Plane TC Rate-Scheduler MMW */
-#define E1000_RTTDTCRM(_n)	(0x3650 + ((_n) * 4))
-/* Tx Packet plane TC Rate-Scheduler Status */
-#define E1000_RTTPTCRS(_n)	(0x34A0 + ((_n) * 4))
-/* Tx Packet plane TC Rate-scheduler MMW */
-#define E1000_RTTPTCRM(_n)	(0x34C0 + ((_n) * 4))
-/* Rx Packet plane TC Rate-Scheduler Status */
-#define E1000_RTRPTCRS(_n)	(0x24A0 + ((_n) * 4))
-/* Rx Packet plane TC Rate-Scheduler MMW */
-#define E1000_RTRPTCRM(_n)	(0x24C0 + ((_n) * 4))
-/* Tx Desc plane VM Rate-Scheduler MMW*/
-#define E1000_RTTDVMRM(_n)	(0x3670 + ((_n) * 4))
-/* Tx BCN Rate-Scheduler MMW */
-#define E1000_RTTBCNRM(_n)	(0x3690 + ((_n) * 4))
-#define E1000_RTTDQSEL	0x3604  /* Tx Desc Plane Queue Select */
-#define E1000_RTTDVMRC	0x3608  /* Tx Desc Plane VM Rate-Scheduler Config */
-#define E1000_RTTDVMRS	0x360C  /* Tx Desc Plane VM Rate-Scheduler Status */
-#define E1000_RTTBCNRC	0x36B0  /* Tx BCN Rate-Scheduler Config */
-#define E1000_RTTBCNRS	0x36B4  /* Tx BCN Rate-Scheduler Status */
-#define E1000_RTTBCNCR	0xB200  /* Tx BCN Control Register */
-#define E1000_RTTBCNTG	0x35A4  /* Tx BCN Tagging */
-#define E1000_RTTBCNCP	0xB208  /* Tx BCN Congestion point */
-#define E1000_RTRBCNCR	0xB20C  /* Rx BCN Control Register */
-#define E1000_RTTBCNRD	0x36B8  /* Tx BCN Rate Drift */
-#define E1000_PFCTOP	0x1080  /* Priority Flow Control Type and Opcode */
-#define E1000_RTTBCNIDX	0xB204  /* Tx BCN Congestion Point */
-#define E1000_RTTBCNACH	0x0B214 /* Tx BCN Control High */
-#define E1000_RTTBCNACL	0x0B210 /* Tx BCN Control Low */
-
-/* DMA Coalescing registers */
-#define E1000_DMACR	0x02508 /* Control Register */
-#define E1000_DMCTXTH	0x03550 /* Transmit Threshold */
-#define E1000_DMCTLX	0x02514 /* Time to Lx Request */
-#define E1000_DMCRTRH	0x05DD0 /* Receive Packet Rate Threshold */
-#define E1000_DMCCNT	0x05DD4 /* Current Rx Count */
-#define E1000_FCRTC	0x02170 /* Flow Control Rx high watermark */
-#define E1000_PCIEMISC	0x05BB8 /* PCIE misc config register */
-
-/* PCIe Parity Status Register */
-#define E1000_PCIEERRSTS	0x05BA8
-
-#define E1000_PROXYS	0x5F64 /* Proxying Status */
-#define E1000_PROXYFC	0x5F60 /* Proxying Filter Control */
-/* Thermal sensor configuration and status registers */
-#define E1000_THMJT	0x08100 /* Junction Temperature */
-#define E1000_THLOWTC	0x08104 /* Low Threshold Control */
-#define E1000_THMIDTC	0x08108 /* Mid Threshold Control */
-#define E1000_THHIGHTC	0x0810C /* High Threshold Control */
-#define E1000_THSTAT	0x08110 /* Thermal Sensor Status */
-
-/* Energy Efficient Ethernet "EEE" registers */
-#define E1000_IPCNFG	0x0E38 /* Internal PHY Configuration */
-#define E1000_LTRC	0x01A0 /* Latency Tolerance Reporting Control */
-#define E1000_EEER	0x0E30 /* Energy Efficient Ethernet "EEE"*/
-#define E1000_EEE_SU	0x0E34 /* EEE Setup */
-#define E1000_TLPIC	0x4148 /* EEE Tx LPI Count - TLPIC */
-#define E1000_RLPIC	0x414C /* EEE Rx LPI Count - RLPIC */
-
-/* OS2BMC Registers */
-#define E1000_B2OSPC	0x08FE0 /* BMC2OS packets sent by BMC */
-#define E1000_B2OGPRC	0x04158 /* BMC2OS packets received by host */
-#define E1000_O2BGPTC	0x08FE4 /* OS2BMC packets received by BMC */
-#define E1000_O2BSPC	0x0415C /* OS2BMC packets transmitted by host */
-
-
-
-#endif
diff --git a/lib/librte_pmd_e1000/e1000/e1000_vf.c b/lib/librte_pmd_e1000/e1000/e1000_vf.c
deleted file mode 100644
index 778561e..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_vf.c
+++ /dev/null
@@ -1,586 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-
-#include "e1000_api.h"
-
-
-STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
-STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
-STATIC void e1000_release_vf(struct e1000_hw *hw);
-STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
-STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
-STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
-STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
-STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
-STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
-				     u16 *duplex);
-STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
-STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
-STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
-STATIC void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
-STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);
-
-/**
- *  e1000_init_phy_params_vf - Inits PHY params
- *  @hw: pointer to the HW structure
- *
- *  Doesn't do much - there's no PHY available to the VF.
- **/
-STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_phy_params_vf");
-	hw->phy.type = e1000_phy_vf;
-	hw->phy.ops.acquire = e1000_acquire_vf;
-	hw->phy.ops.release = e1000_release_vf;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_nvm_params_vf - Inits NVM params
- *  @hw: pointer to the HW structure
- *
- *  Doesn't do much - there's no NVM available to the VF.
- **/
-STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_nvm_params_vf");
-	hw->nvm.type = e1000_nvm_none;
-	hw->nvm.ops.acquire = e1000_acquire_vf;
-	hw->nvm.ops.release = e1000_release_vf;
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_mac_params_vf - Inits MAC params
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
-{
-	struct e1000_mac_info *mac = &hw->mac;
-
-	DEBUGFUNC("e1000_init_mac_params_vf");
-
-	/* Set media type */
-	/*
-	 * Virtual functions don't care what they're media type is as they
-	 * have no direct access to the PHY, or the media.  That is handled
-	 * by the physical function driver.
-	 */
-	hw->phy.media_type = e1000_media_type_unknown;
-
-	/* No ASF features for the VF driver */
-	mac->asf_firmware_present = false;
-	/* ARC subsystem not supported */
-	mac->arc_subsystem_valid = false;
-	/* Disable adaptive IFS mode so the generic funcs don't do anything */
-	mac->adaptive_ifs = false;
-	/* VF's have no MTA Registers - PF feature only */
-	mac->mta_reg_count = 128;
-	/* VF's have no access to RAR entries  */
-	mac->rar_entry_count = 1;
-
-	/* Function pointers */
-	/* link setup */
-	mac->ops.setup_link = e1000_setup_link_vf;
-	/* bus type/speed/width */
-	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
-	/* reset */
-	mac->ops.reset_hw = e1000_reset_hw_vf;
-	/* hw initialization */
-	mac->ops.init_hw = e1000_init_hw_vf;
-	/* check for link */
-	mac->ops.check_for_link = e1000_check_for_link_vf;
-	/* link info */
-	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
-	/* multicast address update */
-	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
-	/* set mac address */
-	mac->ops.rar_set = e1000_rar_set_vf;
-	/* read mac address */
-	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
-
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_init_function_pointers_vf - Inits function pointers
- *  @hw: pointer to the HW structure
- **/
-void e1000_init_function_pointers_vf(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_function_pointers_vf");
-
-	hw->mac.ops.init_params = e1000_init_mac_params_vf;
-	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
-	hw->phy.ops.init_params = e1000_init_phy_params_vf;
-	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
-}
-
-/**
- *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
- *  @hw: pointer to the HW structure
- *
- *  There is no PHY or NVM so we want all attempts to acquire these to fail.
- *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
- *  even want any SW to attempt to use them.
- **/
-STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	UNREFERENCED_1PARAMETER(hw);
-	return -E1000_ERR_PHY;
-}
-
-/**
- *  e1000_release_vf - Release PHY or NVM
- *  @hw: pointer to the HW structure
- *
- *  There is no PHY or NVM so we want all attempts to acquire these to fail.
- *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
- *  even want any SW to attempt to use them.
- **/
-STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	UNREFERENCED_1PARAMETER(hw);
-	return;
-}
-
-/**
- *  e1000_setup_link_vf - Sets up link.
- *  @hw: pointer to the HW structure
- *
- *  Virtual functions cannot change link.
- **/
-STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
-{
-	DEBUGFUNC("e1000_setup_link_vf");
-	UNREFERENCED_1PARAMETER(hw);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_get_bus_info_pcie_vf - Gets the bus info.
- *  @hw: pointer to the HW structure
- *
- *  Virtual functions are not really on their own bus.
- **/
-STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
-{
-	struct e1000_bus_info *bus = &hw->bus;
-
-	DEBUGFUNC("e1000_get_bus_info_pcie_vf");
-
-	/* Do not set type PCI-E because we don't want disable master to run */
-	bus->type = e1000_bus_type_reserved;
-	bus->speed = e1000_bus_speed_2500;
-
-	return 0;
-}
-
-/**
- *  e1000_get_link_up_info_vf - Gets link info.
- *  @hw: pointer to the HW structure
- *  @speed: pointer to 16 bit value to store link speed.
- *  @duplex: pointer to 16 bit value to store duplex.
- *
- *  Since we cannot read the PHY and get accurate link info, we must rely upon
- *  the status register's data which is often stale and inaccurate.
- **/
-STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
-				     u16 *duplex)
-{
-	s32 status;
-
-	DEBUGFUNC("e1000_get_link_up_info_vf");
-
-	status = E1000_READ_REG(hw, E1000_STATUS);
-	if (status & E1000_STATUS_SPEED_1000) {
-		*speed = SPEED_1000;
-		DEBUGOUT("1000 Mbs, ");
-	} else if (status & E1000_STATUS_SPEED_100) {
-		*speed = SPEED_100;
-		DEBUGOUT("100 Mbs, ");
-	} else {
-		*speed = SPEED_10;
-		DEBUGOUT("10 Mbs, ");
-	}
-
-	if (status & E1000_STATUS_FD) {
-		*duplex = FULL_DUPLEX;
-		DEBUGOUT("Full Duplex\n");
-	} else {
-		*duplex = HALF_DUPLEX;
-		DEBUGOUT("Half Duplex\n");
-	}
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_reset_hw_vf - Resets the HW
- *  @hw: pointer to the HW structure
- *
- *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
- *  This is all the reset we can perform on a VF.
- **/
-STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	u32 timeout = E1000_VF_INIT_TIMEOUT;
-	s32 ret_val = -E1000_ERR_MAC_INIT;
-	u32 ctrl, msgbuf[3];
-	u8 *addr = (u8 *)(&msgbuf[1]);
-
-	DEBUGFUNC("e1000_reset_hw_vf");
-
-	DEBUGOUT("Issuing a function level reset to MAC\n");
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
-
-	/* we cannot reset while the RSTI / RSTD bits are asserted */
-	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
-		timeout--;
-		usec_delay(5);
-	}
-
-	if (timeout) {
-		/* mailbox timeout can now become active */
-		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
-
-		msgbuf[0] = E1000_VF_RESET;
-		mbx->ops.write_posted(hw, msgbuf, 1, 0);
-
-		msec_delay(10);
-
-		/* set our "perm_addr" based on info provided by PF */
-		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
-		if (!ret_val) {
-			if (msgbuf[0] == (E1000_VF_RESET |
-			    E1000_VT_MSGTYPE_ACK))
-				memcpy(hw->mac.perm_addr, addr, 6);
-			else
-				ret_val = -E1000_ERR_MAC_INIT;
-		}
-	}
-
-	return ret_val;
-}
-
-/**
- *  e1000_init_hw_vf - Inits the HW
- *  @hw: pointer to the HW structure
- *
- *  Not much to do here except clear the PF Reset indication if there is one.
- **/
-STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
-{
-	DEBUGFUNC("e1000_init_hw_vf");
-
-	/* attempt to set and restore our mac address */
-	e1000_rar_set_vf(hw, hw->mac.addr, 0);
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_rar_set_vf - set device MAC address
- *  @hw: pointer to the HW structure
- *  @addr: pointer to the receive address
- *  @index receive address array register
- **/
-STATIC void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
-			     u32 E1000_UNUSEDARG index)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	u32 msgbuf[3];
-	u8 *msg_addr = (u8 *)(&msgbuf[1]);
-	s32 ret_val;
-
-	UNREFERENCED_1PARAMETER(index);
-	memset(msgbuf, 0, 12);
-	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
-	memcpy(msg_addr, addr, 6);
-	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
-
-	if (!ret_val)
-		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
-
-	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
-
-	/* if nacked the address was rejected, use "perm_addr" */
-	if (!ret_val &&
-	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
-		e1000_read_mac_addr_vf(hw);
-}
-
-/**
- *  e1000_hash_mc_addr_vf - Generate a multicast hash value
- *  @hw: pointer to the HW structure
- *  @mc_addr: pointer to a multicast address
- *
- *  Generates a multicast address hash value which is used to determine
- *  the multicast filter table array address and new table value.
- **/
-STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
-{
-	u32 hash_value, hash_mask;
-	u8 bit_shift = 0;
-
-	DEBUGFUNC("e1000_hash_mc_addr_generic");
-
-	/* Register count multiplied by bits per register */
-	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
-	/*
-	 * The bit_shift is the number of left-shifts
-	 * where 0xFF would still fall within the hash mask.
-	 */
-	while (hash_mask >> bit_shift != 0xFF)
-		bit_shift++;
-
-	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
-				  (((u16) mc_addr[5]) << bit_shift)));
-
-	return hash_value;
-}
-
-STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
-				     u32 *msg, u16 size)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	u32 retmsg[E1000_VFMAILBOX_SIZE];
-	s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
-
-	if (!retval)
-		mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
-}
-
-/**
- *  e1000_update_mc_addr_list_vf - Update Multicast addresses
- *  @hw: pointer to the HW structure
- *  @mc_addr_list: array of multicast addresses to program
- *  @mc_addr_count: number of multicast addresses to program
- *
- *  Updates the Multicast Table Array.
- *  The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
-				  u8 *mc_addr_list, u32 mc_addr_count)
-{
-	u32 msgbuf[E1000_VFMAILBOX_SIZE];
-	u16 *hash_list = (u16 *)&msgbuf[1];
-	u32 hash_value;
-	u32 i;
-
-	DEBUGFUNC("e1000_update_mc_addr_list_vf");
-
-	/* Each entry in the list uses 1 16 bit word.  We have 30
-	 * 16 bit words available in our HW msg buffer (minus 1 for the
-	 * msg type).  That's 30 hash values if we pack 'em right.  If
-	 * there are more than 30 MC addresses to add then punt the
-	 * extras for now and then add code to handle more than 30 later.
-	 * It would be unusual for a server to request that many multi-cast
-	 * addresses except for in large enterprise network environments.
-	 */
-
-	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
-
-	if (mc_addr_count > 30) {
-		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
-		mc_addr_count = 30;
-	}
-
-	msgbuf[0] = E1000_VF_SET_MULTICAST;
-	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
-
-	for (i = 0; i < mc_addr_count; i++) {
-		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
-		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
-		hash_list[i] = hash_value & 0x0FFF;
-		mc_addr_list += ETH_ADDR_LEN;
-	}
-
-	e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
-}
-
-/**
- *  e1000_vfta_set_vf - Set/Unset vlan filter table address
- *  @hw: pointer to the HW structure
- *  @vid: determines the vfta register and bit to set/unset
- *  @set: if true then set bit, else clear bit
- **/
-void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
-{
-	u32 msgbuf[2];
-
-	msgbuf[0] = E1000_VF_SET_VLAN;
-	msgbuf[1] = vid;
-	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
-	if (set)
-		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
-
-	e1000_write_msg_read_ack(hw, msgbuf, 2);
-}
-
-/** e1000_rlpml_set_vf - Set the maximum receive packet length
- *  @hw: pointer to the HW structure
- *  @max_size: value to assign to max frame size
- **/
-void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
-{
-	u32 msgbuf[2];
-
-	msgbuf[0] = E1000_VF_SET_LPE;
-	msgbuf[1] = max_size;
-
-	e1000_write_msg_read_ack(hw, msgbuf, 2);
-}
-
-/**
- *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
- *  @hw: pointer to the HW structure
- *  @uni: boolean indicating unicast promisc status
- *  @multi: boolean indicating multicast promisc status
- **/
-s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	u32 msgbuf = E1000_VF_SET_PROMISC;
-	s32 ret_val;
-
-	switch (type) {
-	case e1000_promisc_multicast:
-		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
-		break;
-	case e1000_promisc_enabled:
-		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
-	case e1000_promisc_unicast:
-		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
-	case e1000_promisc_disabled:
-		break;
-	default:
-		return -E1000_ERR_MAC_INIT;
-	}
-
-	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
-
-	if (!ret_val)
-		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
-
-	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
-		ret_val = -E1000_ERR_MAC_INIT;
-
-	return ret_val;
-}
-
-/**
- *  e1000_read_mac_addr_vf - Read device MAC address
- *  @hw: pointer to the HW structure
- **/
-STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
-{
-	int i;
-
-	for (i = 0; i < ETH_ADDR_LEN; i++)
-		hw->mac.addr[i] = hw->mac.perm_addr[i];
-
-	return E1000_SUCCESS;
-}
-
-/**
- *  e1000_check_for_link_vf - Check for link for a virtual interface
- *  @hw: pointer to the HW structure
- *
- *  Checks to see if the underlying PF is still talking to the VF and
- *  if it is then it reports the link state to the hardware, otherwise
- *  it reports link down and returns an error.
- **/
-STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	struct e1000_mac_info *mac = &hw->mac;
-	s32 ret_val = E1000_SUCCESS;
-	u32 in_msg = 0;
-
-	DEBUGFUNC("e1000_check_for_link_vf");
-
-	/*
-	 * We only want to run this if there has been a rst asserted.
-	 * in this case that could mean a link change, device reset,
-	 * or a virtual function reset
-	 */
-
-	/* If we were hit with a reset or timeout drop the link */
-	if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
-		mac->get_link_status = true;
-
-	if (!mac->get_link_status)
-		goto out;
-
-	/* if link status is down no point in checking to see if pf is up */
-	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
-		goto out;
-
-	/* if the read failed it could just be a mailbox collision, best wait
-	 * until we are called again and don't report an error */
-	if (mbx->ops.read(hw, &in_msg, 1, 0))
-		goto out;
-
-	/* if incoming message isn't clear to send we are waiting on response */
-	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
-		/* message is not CTS and is NACK we have lost CTS status */
-		if (in_msg & E1000_VT_MSGTYPE_NACK)
-			ret_val = -E1000_ERR_MAC_INIT;
-		goto out;
-	}
-
-	/* at this point we know the PF is talking to us, check and see if
-	 * we are still accepting timeout or if we had a timeout failure.
-	 * if we failed then we will need to reinit */
-	if (!mbx->timeout) {
-		ret_val = -E1000_ERR_MAC_INIT;
-		goto out;
-	}
-
-	/* if we passed all the tests above then the link is up and we no
-	 * longer need to check for link */
-	mac->get_link_status = false;
-
-out:
-	return ret_val;
-}
-
diff --git a/lib/librte_pmd_e1000/e1000/e1000_vf.h b/lib/librte_pmd_e1000/e1000/e1000_vf.h
deleted file mode 100644
index 6d5bd99..0000000
--- a/lib/librte_pmd_e1000/e1000/e1000_vf.h
+++ /dev/null
@@ -1,295 +0,0 @@
-/*******************************************************************************
-
-Copyright (c) 2001-2014, Intel Corporation
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
- 1. Redistributions of source code must retain the above copyright notice,
-    this list of conditions and the following disclaimer.
-
- 2. Redistributions in binary form must reproduce the above copyright
-    notice, this list of conditions and the following disclaimer in the
-    documentation and/or other materials provided with the distribution.
-
- 3. Neither the name of the Intel Corporation nor the names of its
-    contributors may be used to endorse or promote products derived from
-    this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-
-***************************************************************************/
-
-#ifndef _E1000_VF_H_
-#define _E1000_VF_H_
-
-#include "e1000_osdep.h"
-#include "e1000_regs.h"
-#include "e1000_defines.h"
-
-struct e1000_hw;
-
-#define E1000_DEV_ID_82576_VF		0x10CA
-#define E1000_DEV_ID_I350_VF		0x1520
-
-#define E1000_VF_INIT_TIMEOUT		200 /* Num of retries to clear RSTI */
-
-/* Additional Descriptor Control definitions */
-#define E1000_TXDCTL_QUEUE_ENABLE	0x02000000 /* Ena specific Tx Queue */
-#define E1000_RXDCTL_QUEUE_ENABLE	0x02000000 /* Ena specific Rx Queue */
-
-/* SRRCTL bit definitions */
-#define E1000_SRRCTL(_n)	((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
-				 (0x0C00C + ((_n) * 0x40)))
-#define E1000_SRRCTL_BSIZEPKT_SHIFT		10 /* Shift _right_ */
-#define E1000_SRRCTL_BSIZEHDRSIZE_MASK		0x00000F00
-#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT		2  /* Shift _left_ */
-#define E1000_SRRCTL_DESCTYPE_LEGACY		0x00000000
-#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF	0x02000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT		0x04000000
-#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS	0x0A000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION	0x06000000
-#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
-#define E1000_SRRCTL_DESCTYPE_MASK		0x0E000000
-#define E1000_SRRCTL_DROP_EN			0x80000000
-
-#define E1000_SRRCTL_BSIZEPKT_MASK	0x0000007F
-#define E1000_SRRCTL_BSIZEHDR_MASK	0x00003F00
-
-/* Interrupt Defines */
-#define E1000_EICR		0x01580 /* Ext. Interrupt Cause Read - R/clr */
-#define E1000_EITR(_n)		(0x01680 + ((_n) << 2))
-#define E1000_EICS		0x01520 /* Ext. Intr Cause Set -W0 */
-#define E1000_EIMS		0x01524 /* Ext. Intr Mask Set/Read -RW */
-#define E1000_EIMC		0x01528 /* Ext. Intr Mask Clear -WO */
-#define E1000_EIAC		0x0152C /* Ext. Intr Auto Clear -RW */
-#define E1000_EIAM		0x01530 /* Ext. Intr Ack Auto Clear Mask -RW */
-#define E1000_IVAR0		0x01700 /* Intr Vector Alloc (array) -RW */
-#define E1000_IVAR_MISC		0x01740 /* IVAR for "other" causes -RW */
-#define E1000_IVAR_VALID	0x80
-
-/* Receive Descriptor - Advanced */
-union e1000_adv_rx_desc {
-	struct {
-		u64 pkt_addr; /* Packet buffer address */
-		u64 hdr_addr; /* Header buffer address */
-	} read;
-	struct {
-		struct {
-			union {
-				u32 data;
-				struct {
-					/* RSS type, Packet type */
-					u16 pkt_info;
-					/* Split Header, header buffer len */
-					u16 hdr_info;
-				} hs_rss;
-			} lo_dword;
-			union {
-				u32 rss; /* RSS Hash */
-				struct {
-					u16 ip_id; /* IP id */
-					u16 csum; /* Packet Checksum */
-				} csum_ip;
-			} hi_dword;
-		} lower;
-		struct {
-			u32 status_error; /* ext status/error */
-			u16 length; /* Packet length */
-			u16 vlan; /* VLAN tag */
-		} upper;
-	} wb;  /* writeback */
-};
-
-#define E1000_RXDADV_HDRBUFLEN_MASK	0x7FE0
-#define E1000_RXDADV_HDRBUFLEN_SHIFT	5
-
-/* Transmit Descriptor - Advanced */
-union e1000_adv_tx_desc {
-	struct {
-		u64 buffer_addr;    /* Address of descriptor's data buf */
-		u32 cmd_type_len;
-		u32 olinfo_status;
-	} read;
-	struct {
-		u64 rsvd;       /* Reserved */
-		u32 nxtseq_seed;
-		u32 status;
-	} wb;
-};
-
-/* Adv Transmit Descriptor Config Masks */
-#define E1000_ADVTXD_DTYP_CTXT	0x00200000 /* Advanced Context Descriptor */
-#define E1000_ADVTXD_DTYP_DATA	0x00300000 /* Advanced Data Descriptor */
-#define E1000_ADVTXD_DCMD_EOP	0x01000000 /* End of Packet */
-#define E1000_ADVTXD_DCMD_IFCS	0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_ADVTXD_DCMD_RS	0x08000000 /* Report Status */
-#define E1000_ADVTXD_DCMD_DEXT	0x20000000 /* Descriptor extension (1=Adv) */
-#define E1000_ADVTXD_DCMD_VLE	0x40000000 /* VLAN pkt enable */
-#define E1000_ADVTXD_DCMD_TSE	0x80000000 /* TCP Seg enable */
-#define E1000_ADVTXD_PAYLEN_SHIFT	14 /* Adv desc PAYLEN shift */
-
-/* Context descriptors */
-struct e1000_adv_tx_context_desc {
-	u32 vlan_macip_lens;
-	u32 seqnum_seed;
-	u32 type_tucmd_mlhl;
-	u32 mss_l4len_idx;
-};
-
-#define E1000_ADVTXD_MACLEN_SHIFT	9  /* Adv ctxt desc mac len shift */
-#define E1000_ADVTXD_TUCMD_IPV4		0x00000400  /* IP Packet Type: 1=IPv4 */
-#define E1000_ADVTXD_TUCMD_L4T_TCP	0x00000800  /* L4 Packet TYPE of TCP */
-#define E1000_ADVTXD_L4LEN_SHIFT	8  /* Adv ctxt L4LEN shift */
-#define E1000_ADVTXD_MSS_SHIFT		16  /* Adv ctxt MSS shift */
-
-enum e1000_mac_type {
-	e1000_undefined = 0,
-	e1000_vfadapt,
-	e1000_vfadapt_i350,
-	e1000_num_macs  /* List is 1-based, so subtract 1 for true count. */
-};
-
-struct e1000_vf_stats {
-	u64 base_gprc;
-	u64 base_gptc;
-	u64 base_gorc;
-	u64 base_gotc;
-	u64 base_mprc;
-	u64 base_gotlbc;
-	u64 base_gptlbc;
-	u64 base_gorlbc;
-	u64 base_gprlbc;
-
-	u32 last_gprc;
-	u32 last_gptc;
-	u32 last_gorc;
-	u32 last_gotc;
-	u32 last_mprc;
-	u32 last_gotlbc;
-	u32 last_gptlbc;
-	u32 last_gorlbc;
-	u32 last_gprlbc;
-
-	u64 gprc;
-	u64 gptc;
-	u64 gorc;
-	u64 gotc;
-	u64 mprc;
-	u64 gotlbc;
-	u64 gptlbc;
-	u64 gorlbc;
-	u64 gprlbc;
-};
-
-#include "e1000_mbx.h"
-
-struct e1000_mac_operations {
-	/* Function pointers for the MAC. */
-	s32  (*init_params)(struct e1000_hw *);
-	s32  (*check_for_link)(struct e1000_hw *);
-	void (*clear_vfta)(struct e1000_hw *);
-	s32  (*get_bus_info)(struct e1000_hw *);
-	s32  (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
-	void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
-	s32  (*reset_hw)(struct e1000_hw *);
-	s32  (*init_hw)(struct e1000_hw *);
-	s32  (*setup_link)(struct e1000_hw *);
-	void (*write_vfta)(struct e1000_hw *, u32, u32);
-	void (*rar_set)(struct e1000_hw *, u8*, u32);
-	s32  (*read_mac_addr)(struct e1000_hw *);
-};
-
-struct e1000_mac_info {
-	struct e1000_mac_operations ops;
-	u8 addr[6];
-	u8 perm_addr[6];
-
-	enum e1000_mac_type type;
-
-	u16 mta_reg_count;
-	u16 rar_entry_count;
-
-	bool get_link_status;
-};
-
-struct e1000_mbx_operations {
-	s32 (*init_params)(struct e1000_hw *hw);
-	s32 (*read)(struct e1000_hw *, u32 *, u16,  u16);
-	s32 (*write)(struct e1000_hw *, u32 *, u16, u16);
-	s32 (*read_posted)(struct e1000_hw *, u32 *, u16,  u16);
-	s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16);
-	s32 (*check_for_msg)(struct e1000_hw *, u16);
-	s32 (*check_for_ack)(struct e1000_hw *, u16);
-	s32 (*check_for_rst)(struct e1000_hw *, u16);
-};
-
-struct e1000_mbx_stats {
-	u32 msgs_tx;
-	u32 msgs_rx;
-
-	u32 acks;
-	u32 reqs;
-	u32 rsts;
-};
-
-struct e1000_mbx_info {
-	struct e1000_mbx_operations ops;
-	struct e1000_mbx_stats stats;
-	u32 timeout;
-	u32 usec_delay;
-	u16 size;
-};
-
-struct e1000_dev_spec_vf {
-	u32 vf_number;
-	u32 v2p_mailbox;
-};
-
-struct e1000_hw {
-	void *back;
-
-	u8 *hw_addr;
-	u8 *flash_address;
-	unsigned long io_base;
-
-	struct e1000_mac_info  mac;
-	struct e1000_mbx_info mbx;
-
-	union {
-		struct e1000_dev_spec_vf vf;
-	} dev_spec;
-
-	u16 device_id;
-	u16 subsystem_vendor_id;
-	u16 subsystem_device_id;
-	u16 vendor_id;
-
-	u8  revision_id;
-};
-
-enum e1000_promisc_type {
-	e1000_promisc_disabled = 0,   /* all promisc modes disabled */
-	e1000_promisc_unicast = 1,    /* unicast promiscuous enabled */
-	e1000_promisc_multicast = 2,  /* multicast promiscuous enabled */
-	e1000_promisc_enabled = 3,    /* both uni and multicast promisc */
-	e1000_num_promisc_types
-};
-
-/* These functions must be implemented by drivers */
-s32  e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
-void e1000_vfta_set_vf(struct e1000_hw *, u16, bool);
-void e1000_rlpml_set_vf(struct e1000_hw *, u16);
-s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type);
-#endif /* _E1000_VF_H_ */
diff --git a/lib/librte_pmd_e1000/e1000_ethdev.h b/lib/librte_pmd_e1000/e1000_ethdev.h
deleted file mode 100644
index c451faa..0000000
--- a/lib/librte_pmd_e1000/e1000_ethdev.h
+++ /dev/null
@@ -1,340 +0,0 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#ifndef _E1000_ETHDEV_H_
-#define _E1000_ETHDEV_H_
-
-/* need update link, bit flag */
-#define E1000_FLAG_NEED_LINK_UPDATE (uint32_t)(1 << 0)
-#define E1000_FLAG_MAILBOX          (uint32_t)(1 << 1)
-
-/*
- * Defines that were not part of e1000_hw.h as they are not used by the FreeBSD
- * driver.
- */
-#define E1000_ADVTXD_POPTS_TXSM     0x00000200 /* L4 Checksum offload request */
-#define E1000_ADVTXD_POPTS_IXSM     0x00000100 /* IP Checksum offload request */
-#define E1000_ADVTXD_TUCMD_L4T_RSV  0x00001800 /* L4 Packet TYPE of Reserved */
-#define E1000_RXD_STAT_TMST         0x10000    /* Timestamped Packet indication */
-#define E1000_RXD_ERR_CKSUM_BIT     29
-#define E1000_RXD_ERR_CKSUM_MSK     3
-#define E1000_ADVTXD_MACLEN_SHIFT   9          /* Bit shift for l2_len */
-#define E1000_CTRL_EXT_EXTEND_VLAN  (1<<26)    /* EXTENDED VLAN */
-#define IGB_VFTA_SIZE 128
-
-#define IGB_MAX_RX_QUEUE_NUM           8
-#define IGB_MAX_RX_QUEUE_NUM_82576     16
-
-#define E1000_SYN_FILTER_ENABLE        0x00000001 /* syn filter enable field */
-#define E1000_SYN_FILTER_QUEUE         0x0000000E /* syn filter queue field */
-#define E1000_SYN_FILTER_QUEUE_SHIFT   1          /* syn filter queue field */
-#define E1000_RFCTL_SYNQFP             0x00080000 /* SYNQFP in RFCTL register */
-
-#define E1000_ETQF_ETHERTYPE           0x0000FFFF
-#define E1000_ETQF_QUEUE               0x00070000
-#define E1000_ETQF_QUEUE_SHIFT         16
-#define E1000_MAX_ETQF_FILTERS         8
-
-#define E1000_IMIR_DSTPORT             0x0000FFFF
-#define E1000_IMIR_PRIORITY            0xE0000000
-#define E1000_MAX_TTQF_FILTERS         8
-#define E1000_2TUPLE_MAX_PRI           7
-
-#define E1000_MAX_FLEX_FILTERS           8
-#define E1000_MAX_FHFT                   4
-#define E1000_MAX_FHFT_EXT               4
-#define E1000_FHFT_SIZE_IN_DWD           64
-#define E1000_MAX_FLEX_FILTER_PRI        7
-#define E1000_MAX_FLEX_FILTER_LEN        128
-#define E1000_MAX_FLEX_FILTER_DWDS \
-	(E1000_MAX_FLEX_FILTER_LEN / sizeof(uint32_t))
-#define E1000_FLEX_FILTERS_MASK_SIZE \
-	(E1000_MAX_FLEX_FILTER_DWDS / 4)
-#define E1000_FHFT_QUEUEING_LEN          0x0000007F
-#define E1000_FHFT_QUEUEING_QUEUE        0x00000700
-#define E1000_FHFT_QUEUEING_PRIO         0x00070000
-#define E1000_FHFT_QUEUEING_OFFSET       0xFC
-#define E1000_FHFT_QUEUEING_QUEUE_SHIFT  8
-#define E1000_FHFT_QUEUEING_PRIO_SHIFT   16
-#define E1000_WUFC_FLEX_HQ               0x00004000
-
-#define E1000_SPQF_SRCPORT               0x0000FFFF
-
-#define E1000_MAX_FTQF_FILTERS           8
-#define E1000_FTQF_PROTOCOL_MASK         0x000000FF
-#define E1000_FTQF_5TUPLE_MASK_SHIFT     28
-#define E1000_FTQF_QUEUE_MASK            0x03ff0000
-#define E1000_FTQF_QUEUE_SHIFT           16
-#define E1000_FTQF_QUEUE_ENABLE          0x00000100
-
-#define IGB_RSS_OFFLOAD_ALL ( \
-	ETH_RSS_IPV4 | \
-	ETH_RSS_NONFRAG_IPV4_TCP | \
-	ETH_RSS_NONFRAG_IPV4_UDP | \
-	ETH_RSS_IPV6 | \
-	ETH_RSS_NONFRAG_IPV6_TCP | \
-	ETH_RSS_NONFRAG_IPV6_UDP | \
-	ETH_RSS_IPV6_EX | \
-	ETH_RSS_IPV6_TCP_EX | \
-	ETH_RSS_IPV6_UDP_EX)
-
-/* structure for interrupt relative data */
-struct e1000_interrupt {
-	uint32_t flags;
-	uint32_t mask;
-};
-
-/* local vfta copy */
-struct e1000_vfta {
-	uint32_t vfta[IGB_VFTA_SIZE];
-};
-
-/*
- * VF data which used by PF host only
- */
-#define E1000_MAX_VF_MC_ENTRIES         30
-struct e1000_vf_info {
-	uint8_t vf_mac_addresses[ETHER_ADDR_LEN];
-	uint16_t vf_mc_hashes[E1000_MAX_VF_MC_ENTRIES];
-	uint16_t num_vf_mc_hashes;
-	uint16_t default_vf_vlan_id;
-	uint16_t vlans_enabled;
-	uint16_t pf_qos;
-	uint16_t vlan_count;
-	uint16_t tx_rate;
-};
-
-TAILQ_HEAD(e1000_flex_filter_list, e1000_flex_filter);
-
-struct e1000_flex_filter_info {
-	uint16_t len;
-	uint32_t dwords[E1000_MAX_FLEX_FILTER_DWDS]; /* flex bytes in dword. */
-	/* if mask bit is 1b, do not compare corresponding byte in dwords. */
-	uint8_t mask[E1000_FLEX_FILTERS_MASK_SIZE];
-	uint8_t priority;
-};
-
-/* Flex filter structure */
-struct e1000_flex_filter {
-	TAILQ_ENTRY(e1000_flex_filter) entries;
-	uint16_t index; /* index of flex filter */
-	struct e1000_flex_filter_info filter_info;
-	uint16_t queue; /* rx queue assigned to */
-};
-
-TAILQ_HEAD(e1000_5tuple_filter_list, e1000_5tuple_filter);
-TAILQ_HEAD(e1000_2tuple_filter_list, e1000_2tuple_filter);
-
-struct e1000_5tuple_filter_info {
-	uint32_t dst_ip;
-	uint32_t src_ip;
-	uint16_t dst_port;
-	uint16_t src_port;
-	uint8_t proto;           /* l4 protocol. */
-	/* the packet matched above 5tuple and contain any set bit will hit this filter. */
-	uint8_t tcp_flags;
-	uint8_t priority;        /* seven levels (001b-111b), 111b is highest,
-				      used when more than one filter matches. */
-	uint8_t dst_ip_mask:1,   /* if mask is 1b, do not compare dst ip. */
-		src_ip_mask:1,   /* if mask is 1b, do not compare src ip. */
-		dst_port_mask:1, /* if mask is 1b, do not compare dst port. */
-		src_port_mask:1, /* if mask is 1b, do not compare src port. */
-		proto_mask:1;    /* if mask is 1b, do not compare protocol. */
-};
-
-struct e1000_2tuple_filter_info {
-	uint16_t dst_port;
-	uint8_t proto;           /* l4 protocol. */
-	/* the packet matched above 2tuple and contain any set bit will hit this filter. */
-	uint8_t tcp_flags;
-	uint8_t priority;        /* seven levels (001b-111b), 111b is highest,
-				      used when more than one filter matches. */
-	uint8_t dst_ip_mask:1,   /* if mask is 1b, do not compare dst ip. */
-		src_ip_mask:1,   /* if mask is 1b, do not compare src ip. */
-		dst_port_mask:1, /* if mask is 1b, do not compare dst port. */
-		src_port_mask:1, /* if mask is 1b, do not compare src port. */
-		proto_mask:1;    /* if mask is 1b, do not compare protocol. */
-};
-
-/* 5tuple filter structure */
-struct e1000_5tuple_filter {
-	TAILQ_ENTRY(e1000_5tuple_filter) entries;
-	uint16_t index;       /* the index of 5tuple filter */
-	struct e1000_5tuple_filter_info filter_info;
-	uint16_t queue;       /* rx queue assigned to */
-};
-
-/* 2tuple filter structure */
-struct e1000_2tuple_filter {
-	TAILQ_ENTRY(e1000_2tuple_filter) entries;
-	uint16_t index;         /* the index of 2tuple filter */
-	struct e1000_2tuple_filter_info filter_info;
-	uint16_t queue;       /* rx queue assigned to */
-};
-
-/*
- * Structure to store filters' info.
- */
-struct e1000_filter_info {
-	uint8_t ethertype_mask; /* Bit mask for every used ethertype filter */
-	/* store used ethertype filters*/
-	uint16_t ethertype_filters[E1000_MAX_ETQF_FILTERS];
-	uint8_t flex_mask;	/* Bit mask for every used flex filter */
-	struct e1000_flex_filter_list flex_list;
-	/* Bit mask for every used 5tuple filter */
-	uint8_t fivetuple_mask;
-	struct e1000_5tuple_filter_list fivetuple_list;
-	/* Bit mask for every used 2tuple filter */
-	uint8_t twotuple_mask;
-	struct e1000_2tuple_filter_list twotuple_list;
-};
-
-/*
- * Structure to store private data for each driver instance (for each port).
- */
-struct e1000_adapter {
-	struct e1000_hw         hw;
-	struct e1000_hw_stats   stats;
-	struct e1000_interrupt  intr;
-	struct e1000_vfta       shadow_vfta;
-	struct e1000_vf_info    *vfdata;
-	struct e1000_filter_info filter;
-};
-
-#define E1000_DEV_PRIVATE_TO_HW(adapter) \
-	(&((struct e1000_adapter *)adapter)->hw)
-
-#define E1000_DEV_PRIVATE_TO_STATS(adapter) \
-	(&((struct e1000_adapter *)adapter)->stats)
-
-#define E1000_DEV_PRIVATE_TO_INTR(adapter) \
-	(&((struct e1000_adapter *)adapter)->intr)
-
-#define E1000_DEV_PRIVATE_TO_VFTA(adapter) \
-	(&((struct e1000_adapter *)adapter)->shadow_vfta)
-
-#define E1000_DEV_PRIVATE_TO_P_VFDATA(adapter) \
-        (&((struct e1000_adapter *)adapter)->vfdata)
-
-#define E1000_DEV_PRIVATE_TO_FILTER_INFO(adapter) \
-	(&((struct e1000_adapter *)adapter)->filter)
-
-/*
- * RX/TX IGB function prototypes
- */
-void eth_igb_tx_queue_release(void *txq);
-void eth_igb_rx_queue_release(void *rxq);
-void igb_dev_clear_queues(struct rte_eth_dev *dev);
-
-int eth_igb_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
-		uint16_t nb_rx_desc, unsigned int socket_id,
-		const struct rte_eth_rxconf *rx_conf,
-		struct rte_mempool *mb_pool);
-
-uint32_t eth_igb_rx_queue_count(struct rte_eth_dev *dev,
-		uint16_t rx_queue_id);
-
-int eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset);
-
-int eth_igb_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
-		uint16_t nb_tx_desc, unsigned int socket_id,
-		const struct rte_eth_txconf *tx_conf);
-
-int eth_igb_rx_init(struct rte_eth_dev *dev);
-
-void eth_igb_tx_init(struct rte_eth_dev *dev);
-
-uint16_t eth_igb_xmit_pkts(void *txq, struct rte_mbuf **tx_pkts,
-		uint16_t nb_pkts);
-
-uint16_t eth_igb_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts,
-		uint16_t nb_pkts);
-
-uint16_t eth_igb_recv_scattered_pkts(void *rxq,
-		struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
-
-int eth_igb_rss_hash_update(struct rte_eth_dev *dev,
-			    struct rte_eth_rss_conf *rss_conf);
-
-int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
-			      struct rte_eth_rss_conf *rss_conf);
-
-int eth_igbvf_rx_init(struct rte_eth_dev *dev);
-
-void eth_igbvf_tx_init(struct rte_eth_dev *dev);
-
-/*
- * misc function prototypes
- */
-void igb_pf_host_init(struct rte_eth_dev *eth_dev);
-
-void igb_pf_mbx_process(struct rte_eth_dev *eth_dev);
-
-int igb_pf_host_configure(struct rte_eth_dev *eth_dev);
-
-/*
- * RX/TX EM function prototypes
- */
-void eth_em_tx_queue_release(void *txq);
-void eth_em_rx_queue_release(void *rxq);
-
-void em_dev_clear_queues(struct rte_eth_dev *dev);
-
-int eth_em_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
-		uint16_t nb_rx_desc, unsigned int socket_id,
-		const struct rte_eth_rxconf *rx_conf,
-		struct rte_mempool *mb_pool);
-
-uint32_t eth_em_rx_queue_count(struct rte_eth_dev *dev,
-		uint16_t rx_queue_id);
-
-int eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset);
-
-int eth_em_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
-		uint16_t nb_tx_desc, unsigned int socket_id,
-		const struct rte_eth_txconf *tx_conf);
-
-int eth_em_rx_init(struct rte_eth_dev *dev);
-
-void eth_em_tx_init(struct rte_eth_dev *dev);
-
-uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
-		uint16_t nb_pkts);
-
-uint16_t eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
-		uint16_t nb_pkts);
-
-uint16_t eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
-		uint16_t nb_pkts);
-
-#endif /* _E1000_ETHDEV_H_ */
diff --git a/lib/librte_pmd_e1000/e1000_logs.h b/lib/librte_pmd_e1000/e1000_logs.h
deleted file mode 100644
index 4a92804..0000000
--- a/lib/librte_pmd_e1000/e1000_logs.h
+++ /dev/null
@@ -1,78 +0,0 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#ifndef _E1000_LOGS_H_
-#define _E1000_LOGS_H_
-
-#define PMD_INIT_LOG(level, fmt, args...) \
-	rte_log(RTE_LOG_ ## level, RTE_LOGTYPE_PMD, \
-		"PMD: %s(): " fmt "\n", __func__, ##args)
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_INIT
-#define PMD_INIT_FUNC_TRACE() PMD_INIT_LOG(DEBUG, " >>")
-#else
-#define PMD_INIT_FUNC_TRACE() do { } while (0)
-#endif
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_RX
-#define PMD_RX_LOG(level, fmt, args...) \
-	RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_RX_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_TX
-#define PMD_TX_LOG(level, fmt, args...) \
-	RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_TX_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_TX_FREE
-#define PMD_TX_FREE_LOG(level, fmt, args...) \
-	RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args)
-#else
-#define PMD_TX_FREE_LOG(level, fmt, args...) do { } while(0)
-#endif
-
-#ifdef RTE_LIBRTE_E1000_DEBUG_DRIVER
-#define PMD_DRV_LOG_RAW(level, fmt, args...) \
-	RTE_LOG(level, PMD, "%s(): " fmt, __func__, ## args)
-#else
-#define PMD_DRV_LOG_RAW(level, fmt, args...) do { } while (0)
-#endif
-
-#define PMD_DRV_LOG(level, fmt, args...) \
-	PMD_DRV_LOG_RAW(level, fmt "\n", ## args)
-
-#endif /* _E1000_LOGS_H_ */
diff --git a/lib/librte_pmd_e1000/em_ethdev.c b/lib/librte_pmd_e1000/em_ethdev.c
deleted file mode 100644
index da02988..0000000
--- a/lib/librte_pmd_e1000/em_ethdev.c
+++ /dev/null
@@ -1,1530 +0,0 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/queue.h>
-#include <stdio.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-
-#include <rte_common.h>
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_memory.h>
-#include <rte_memzone.h>
-#include <rte_eal.h>
-#include <rte_atomic.h>
-#include <rte_malloc.h>
-#include <rte_dev.h>
-
-#include "e1000_logs.h"
-#include "e1000/e1000_api.h"
-#include "e1000_ethdev.h"
-
-#define EM_EIAC			0x000DC
-
-#define PMD_ROUNDUP(x,y)	(((x) + (y) - 1)/(y) * (y))
-
-
-static int eth_em_configure(struct rte_eth_dev *dev);
-static int eth_em_start(struct rte_eth_dev *dev);
-static void eth_em_stop(struct rte_eth_dev *dev);
-static void eth_em_close(struct rte_eth_dev *dev);
-static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
-static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
-static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
-static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
-static int eth_em_link_update(struct rte_eth_dev *dev,
-				int wait_to_complete);
-static void eth_em_stats_get(struct rte_eth_dev *dev,
-				struct rte_eth_stats *rte_stats);
-static void eth_em_stats_reset(struct rte_eth_dev *dev);
-static void eth_em_infos_get(struct rte_eth_dev *dev,
-				struct rte_eth_dev_info *dev_info);
-static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
-				struct rte_eth_fc_conf *fc_conf);
-static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
-				struct rte_eth_fc_conf *fc_conf);
-static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
-static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
-static int eth_em_interrupt_action(struct rte_eth_dev *dev);
-static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
-							void *param);
-
-static int em_hw_init(struct e1000_hw *hw);
-static int em_hardware_init(struct e1000_hw *hw);
-static void em_hw_control_acquire(struct e1000_hw *hw);
-static void em_hw_control_release(struct e1000_hw *hw);
-static void em_init_manageability(struct e1000_hw *hw);
-static void em_release_manageability(struct e1000_hw *hw);
-
-static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
-
-static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
-		uint16_t vlan_id, int on);
-static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
-static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
-static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
-static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
-static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
-
-/*
-static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
-					uint16_t vlan_id, int on);
-*/
-static int eth_em_led_on(struct rte_eth_dev *dev);
-static int eth_em_led_off(struct rte_eth_dev *dev);
-
-static void em_intr_disable(struct e1000_hw *hw);
-static int em_get_rx_buffer_size(struct e1000_hw *hw);
-static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
-		uint32_t index, uint32_t pool);
-static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
-
-#define EM_FC_PAUSE_TIME 0x0680
-#define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
-#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
-
-static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
-
-/*
- * The set of PCI devices this driver supports
- */
-static const struct rte_pci_id pci_id_em_map[] = {
-
-#define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
-#include "rte_pci_dev_ids.h"
-
-{0},
-};
-
-static const struct eth_dev_ops eth_em_ops = {
-	.dev_configure        = eth_em_configure,
-	.dev_start            = eth_em_start,
-	.dev_stop             = eth_em_stop,
-	.dev_close            = eth_em_close,
-	.promiscuous_enable   = eth_em_promiscuous_enable,
-	.promiscuous_disable  = eth_em_promiscuous_disable,
-	.allmulticast_enable  = eth_em_allmulticast_enable,
-	.allmulticast_disable = eth_em_allmulticast_disable,
-	.link_update          = eth_em_link_update,
-	.stats_get            = eth_em_stats_get,
-	.stats_reset          = eth_em_stats_reset,
-	.dev_infos_get        = eth_em_infos_get,
-	.mtu_set              = eth_em_mtu_set,
-	.vlan_filter_set      = eth_em_vlan_filter_set,
-	.vlan_offload_set     = eth_em_vlan_offload_set,
-	.rx_queue_setup       = eth_em_rx_queue_setup,
-	.rx_queue_release     = eth_em_rx_queue_release,
-	.rx_queue_count       = eth_em_rx_queue_count,
-	.rx_descriptor_done   = eth_em_rx_descriptor_done,
-	.tx_queue_setup       = eth_em_tx_queue_setup,
-	.tx_queue_release     = eth_em_tx_queue_release,
-	.dev_led_on           = eth_em_led_on,
-	.dev_led_off          = eth_em_led_off,
-	.flow_ctrl_get        = eth_em_flow_ctrl_get,
-	.flow_ctrl_set        = eth_em_flow_ctrl_set,
-	.mac_addr_add         = eth_em_rar_set,
-	.mac_addr_remove      = eth_em_rar_clear,
-};
-
-/**
- * Atomically reads the link status information from global
- * structure rte_eth_dev.
- *
- * @param dev
- *   - Pointer to the structure rte_eth_dev to read from.
- *   - Pointer to the buffer to be saved with the link status.
- *
- * @return
- *   - On success, zero.
- *   - On failure, negative value.
- */
-static inline int
-rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
-				struct rte_eth_link *link)
-{
-	struct rte_eth_link *dst = link;
-	struct rte_eth_link *src = &(dev->data->dev_link);
-
-	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
-					*(uint64_t *)src) == 0)
-		return -1;
-
-	return 0;
-}
-
-/**
- * Atomically writes the link status information into global
- * structure rte_eth_dev.
- *
- * @param dev
- *   - Pointer to the structure rte_eth_dev to read from.
- *   - Pointer to the buffer to be saved with the link status.
- *
- * @return
- *   - On success, zero.
- *   - On failure, negative value.
- */
-static inline int
-rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
-				struct rte_eth_link *link)
-{
-	struct rte_eth_link *dst = &(dev->data->dev_link);
-	struct rte_eth_link *src = link;
-
-	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
-					*(uint64_t *)src) == 0)
-		return -1;
-
-	return 0;
-}
-
-static int
-eth_em_dev_init(struct rte_eth_dev *eth_dev)
-{
-	struct rte_pci_device *pci_dev;
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
-	struct e1000_vfta * shadow_vfta =
-		E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
-
-	pci_dev = eth_dev->pci_dev;
-	eth_dev->dev_ops = &eth_em_ops;
-	eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
-	eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
-
-	/* for secondary processes, we don't initialise any further as primary
-	 * has already done this work. Only check we don't need a different
-	 * RX function */
-	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
-		if (eth_dev->data->scattered_rx)
-			eth_dev->rx_pkt_burst =
-				(eth_rx_burst_t)&eth_em_recv_scattered_pkts;
-		return 0;
-	}
-
-	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
-	hw->device_id = pci_dev->id.device_id;
-
-	/* For ICH8 support we'll need to map the flash memory BAR */
-
-	if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
-			em_hw_init(hw) != 0) {
-		PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
-			"failed to init HW",
-			eth_dev->data->port_id, pci_dev->id.vendor_id,
-			pci_dev->id.device_id);
-		return -(ENODEV);
-	}
-
-	/* Allocate memory for storing MAC addresses */
-	eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
-			hw->mac.rar_entry_count, 0);
-	if (eth_dev->data->mac_addrs == NULL) {
-		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
-			"store MAC addresses",
-			ETHER_ADDR_LEN * hw->mac.rar_entry_count);
-		return -(ENOMEM);
-	}
-
-	/* Copy the permanent MAC address */
-	ether_addr_copy((struct ether_addr *) hw->mac.addr,
-		eth_dev->data->mac_addrs);
-
-	/* initialize the vfta */
-	memset(shadow_vfta, 0, sizeof(*shadow_vfta));
-
-	PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
-		     eth_dev->data->port_id, pci_dev->id.vendor_id,
-		     pci_dev->id.device_id);
-
-	rte_intr_callback_register(&(pci_dev->intr_handle),
-		eth_em_interrupt_handler, (void *)eth_dev);
-
-	return (0);
-}
-
-static struct eth_driver rte_em_pmd = {
-	{
-		.name = "rte_em_pmd",
-		.id_table = pci_id_em_map,
-		.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
-	},
-	.eth_dev_init = eth_em_dev_init,
-	.dev_private_size = sizeof(struct e1000_adapter),
-};
-
-static int
-rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
-{
-	rte_eth_driver_register(&rte_em_pmd);
-	return 0;
-}
-
-static int
-em_hw_init(struct e1000_hw *hw)
-{
-	int diag;
-
-	diag = hw->mac.ops.init_params(hw);
-	if (diag != 0) {
-		PMD_INIT_LOG(ERR, "MAC Initialization Error");
-		return diag;
-	}
-	diag = hw->nvm.ops.init_params(hw);
-	if (diag != 0) {
-		PMD_INIT_LOG(ERR, "NVM Initialization Error");
-		return diag;
-	}
-	diag = hw->phy.ops.init_params(hw);
-	if (diag != 0) {
-		PMD_INIT_LOG(ERR, "PHY Initialization Error");
-		return diag;
-	}
-	(void) e1000_get_bus_info(hw);
-
-	hw->mac.autoneg = 1;
-	hw->phy.autoneg_wait_to_complete = 0;
-	hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
-
-	e1000_init_script_state_82541(hw, TRUE);
-	e1000_set_tbi_compatibility_82543(hw, TRUE);
-
-	/* Copper options */
-	if (hw->phy.media_type == e1000_media_type_copper) {
-		hw->phy.mdix = 0; /* AUTO_ALL_MODES */
-		hw->phy.disable_polarity_correction = 0;
-		hw->phy.ms_type = e1000_ms_hw_default;
-	}
-
-	/*
-	 * Start from a known state, this is important in reading the nvm
-	 * and mac from that.
-	 */
-	e1000_reset_hw(hw);
-
-	/* Make sure we have a good EEPROM before we read from it */
-	if (e1000_validate_nvm_checksum(hw) < 0) {
-		/*
-		 * Some PCI-E parts fail the first check due to
-		 * the link being in sleep state, call it again,
-		 * if it fails a second time its a real issue.
-		 */
-		diag = e1000_validate_nvm_checksum(hw);
-		if (diag < 0) {
-			PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
-			goto error;
-		}
-	}
-
-	/* Read the permanent MAC address out of the EEPROM */
-	diag = e1000_read_mac_addr(hw);
-	if (diag != 0) {
-		PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
-		goto error;
-	}
-
-	/* Now initialize the hardware */
-	diag = em_hardware_init(hw);
-	if (diag != 0) {
-		PMD_INIT_LOG(ERR, "Hardware initialization failed");
-		goto error;
-	}
-
-	hw->mac.get_link_status = 1;
-
-	/* Indicate SOL/IDER usage */
-	diag = e1000_check_reset_block(hw);
-	if (diag < 0) {
-		PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
-			"SOL/IDER session");
-	}
-	return (0);
-
-error:
-	em_hw_control_release(hw);
-	return (diag);
-}
-
-static int
-eth_em_configure(struct rte_eth_dev *dev)
-{
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
-	PMD_INIT_FUNC_TRACE();
-	intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
-	PMD_INIT_FUNC_TRACE();
-
-	return (0);
-}
-
-static void
-em_set_pba(struct e1000_hw *hw)
-{
-	uint32_t pba;
-
-	/*
-	 * Packet Buffer Allocation (PBA)
-	 * Writing PBA sets the receive portion of the buffer
-	 * the remainder is used for the transmit buffer.
-	 * Devices before the 82547 had a Packet Buffer of 64K.
-	 * After the 82547 the buffer was reduced to 40K.
-	 */
-	switch (hw->mac.type) {
-		case e1000_82547:
-		case e1000_82547_rev_2:
-		/* 82547: Total Packet Buffer is 40K */
-			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
-			break;
-		case e1000_82571:
-		case e1000_82572:
-		case e1000_80003es2lan:
-			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
-			break;
-		case e1000_82573: /* 82573: Total Packet Buffer is 32K */
-			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
-			break;
-		case e1000_82574:
-		case e1000_82583:
-			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
-			break;
-		case e1000_ich8lan:
-			pba = E1000_PBA_8K;
-			break;
-		case e1000_ich9lan:
-		case e1000_ich10lan:
-			pba = E1000_PBA_10K;
-			break;
-		case e1000_pchlan:
-		case e1000_pch2lan:
-			pba = E1000_PBA_26K;
-			break;
-		default:
-			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
-	}
-
-	E1000_WRITE_REG(hw, E1000_PBA, pba);
-}
-
-static int
-eth_em_start(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	int ret, mask;
-
-	PMD_INIT_FUNC_TRACE();
-
-	eth_em_stop(dev);
-
-	e1000_power_up_phy(hw);
-
-	/* Set default PBA value */
-	em_set_pba(hw);
-
-	/* Put the address into the Receive Address Array */
-	e1000_rar_set(hw, hw->mac.addr, 0);
-
-	/*
-	 * With the 82571 adapter, RAR[0] may be overwritten
-	 * when the other port is reset, we make a duplicate
-	 * in RAR[14] for that eventuality, this assures
-	 * the interface continues to function.
-	 */
-	if (hw->mac.type == e1000_82571) {
-		e1000_set_laa_state_82571(hw, TRUE);
-		e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
-	}
-
-	/* Initialize the hardware */
-	if (em_hardware_init(hw)) {
-		PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
-		return (-EIO);
-	}
-
-	E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
-
-	/* Configure for OS presence */
-	em_init_manageability(hw);
-
-	eth_em_tx_init(dev);
-
-	ret = eth_em_rx_init(dev);
-	if (ret) {
-		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
-		em_dev_clear_queues(dev);
-		return ret;
-	}
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
-			ETH_VLAN_EXTEND_MASK;
-	eth_em_vlan_offload_set(dev, mask);
-
-	/* Set Interrupt Throttling Rate to maximum allowed value. */
-	E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
-
-	/* Setup link speed and duplex */
-	switch (dev->data->dev_conf.link_speed) {
-	case ETH_LINK_SPEED_AUTONEG:
-		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
-		else if (dev->data->dev_conf.link_duplex ==
-					ETH_LINK_HALF_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
-		else if (dev->data->dev_conf.link_duplex ==
-					ETH_LINK_FULL_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
-		else
-			goto error_invalid_config;
-		break;
-	case ETH_LINK_SPEED_10:
-		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
-		else if (dev->data->dev_conf.link_duplex ==
-					ETH_LINK_HALF_DUPLEX)
-			hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
-		else if (dev->data->dev_conf.link_duplex ==
-					ETH_LINK_FULL_DUPLEX)
-			hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
-		else
-			goto error_invalid_config;
-		break;
-	case ETH_LINK_SPEED_100:
-		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
-		else if (dev->data->dev_conf.link_duplex ==
-					ETH_LINK_HALF_DUPLEX)
-			hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
-		else if (dev->data->dev_conf.link_duplex ==
-					ETH_LINK_FULL_DUPLEX)
-			hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
-		else
-			goto error_invalid_config;
-		break;
-	case ETH_LINK_SPEED_1000:
-		if ((dev->data->dev_conf.link_duplex ==
-				ETH_LINK_AUTONEG_DUPLEX) ||
-			(dev->data->dev_conf.link_duplex ==
-					ETH_LINK_FULL_DUPLEX))
-			hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
-		else
-			goto error_invalid_config;
-		break;
-	case ETH_LINK_SPEED_10000:
-	default:
-		goto error_invalid_config;
-	}
-	e1000_setup_link(hw);
-
-	/* check if lsc interrupt feature is enabled */
-	if (dev->data->dev_conf.intr_conf.lsc != 0) {
-		ret = eth_em_interrupt_setup(dev);
-		if (ret) {
-			PMD_INIT_LOG(ERR, "Unable to setup interrupts");
-			em_dev_clear_queues(dev);
-			return ret;
-		}
-	}
-
-	PMD_INIT_LOG(DEBUG, "<<");
-
-	return (0);
-
-error_invalid_config:
-	PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
-		     dev->data->dev_conf.link_speed,
-		     dev->data->dev_conf.link_duplex, dev->data->port_id);
-	em_dev_clear_queues(dev);
-	return (-EINVAL);
-}
-
-/*********************************************************************
- *
- *  This routine disables all traffic on the adapter by issuing a
- *  global reset on the MAC.
- *
- **********************************************************************/
-static void
-eth_em_stop(struct rte_eth_dev *dev)
-{
-	struct rte_eth_link link;
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	em_intr_disable(hw);
-	e1000_reset_hw(hw);
-	if (hw->mac.type >= e1000_82544)
-		E1000_WRITE_REG(hw, E1000_WUC, 0);
-
-	/* Power down the phy. Needed to make the link go down */
-	e1000_power_down_phy(hw);
-
-	em_dev_clear_queues(dev);
-
-	/* clear the recorded link status */
-	memset(&link, 0, sizeof(link));
-	rte_em_dev_atomic_write_link_status(dev, &link);
-}
-
-static void
-eth_em_close(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	eth_em_stop(dev);
-	e1000_phy_hw_reset(hw);
-	em_release_manageability(hw);
-	em_hw_control_release(hw);
-}
-
-static int
-em_get_rx_buffer_size(struct e1000_hw *hw)
-{
-	uint32_t rx_buf_size;
-
-	rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
-	return rx_buf_size;
-}
-
-/*********************************************************************
- *
- *  Initialize the hardware
- *
- **********************************************************************/
-static int
-em_hardware_init(struct e1000_hw *hw)
-{
-	uint32_t rx_buf_size;
-	int diag;
-
-	/* Issue a global reset */
-	e1000_reset_hw(hw);
-
-	/* Let the firmware know the OS is in control */
-	em_hw_control_acquire(hw);
-
-	/*
-	 * These parameters control the automatic generation (Tx) and
-	 * response (Rx) to Ethernet PAUSE frames.
-	 * - High water mark should allow for at least two standard size (1518)
-	 *   frames to be received after sending an XOFF.
-	 * - Low water mark works best when it is very near the high water mark.
-	 *   This allows the receiver to restart by sending XON when it has
-	 *   drained a bit. Here we use an arbitrary value of 1500 which will
-	 *   restart after one full frame is pulled from the buffer. There
-	 *   could be several smaller frames in the buffer and if so they will
-	 *   not trigger the XON until their total number reduces the buffer
-	 *   by 1500.
-	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
-	 */
-	rx_buf_size = em_get_rx_buffer_size(hw);
-
-	hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
-	hw->fc.low_water = hw->fc.high_water - 1500;
-
-	if (hw->mac.type == e1000_80003es2lan)
-		hw->fc.pause_time = UINT16_MAX;
-	else
-		hw->fc.pause_time = EM_FC_PAUSE_TIME;
-
-	hw->fc.send_xon = 1;
-
-	/* Set Flow control, use the tunable location if sane */
-	if (em_fc_setting <= e1000_fc_full)
-		hw->fc.requested_mode = em_fc_setting;
-	else
-		hw->fc.requested_mode = e1000_fc_none;
-
-	/* Workaround: no TX flow ctrl for PCH */
-	if (hw->mac.type == e1000_pchlan)
-		hw->fc.requested_mode = e1000_fc_rx_pause;
-
-	/* Override - settings for PCH2LAN, ya its magic :) */
-	if (hw->mac.type == e1000_pch2lan) {
-		hw->fc.high_water = 0x5C20;
-		hw->fc.low_water = 0x5048;
-		hw->fc.pause_time = 0x0650;
-		hw->fc.refresh_time = 0x0400;
-	}
-
-	diag = e1000_init_hw(hw);
-	if (diag < 0)
-		return (diag);
-	e1000_check_for_link(hw);
-	return (0);
-}
-
-/* This function is based on em_update_stats_counters() in e1000/if_em.c */
-static void
-eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_hw_stats *stats =
-			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-	int pause_frames;
-
-	if(hw->phy.media_type == e1000_media_type_copper ||
-			(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
-		stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
-		stats->sec += E1000_READ_REG(hw, E1000_SEC);
-	}
-
-	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
-	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
-	stats->scc += E1000_READ_REG(hw, E1000_SCC);
-	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
-
-	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
-	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
-	stats->colc += E1000_READ_REG(hw, E1000_COLC);
-	stats->dc += E1000_READ_REG(hw, E1000_DC);
-	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
-	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
-	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
-
-	/*
-	 * For watchdog management we need to know if we have been
-	 * paused during the last interval, so capture that here.
-	 */
-	pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
-	stats->xoffrxc += pause_frames;
-	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
-	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
-	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
-	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
-	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
-	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
-	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
-	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
-	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
-	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
-	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
-	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
-
-	/*
-	 * For the 64-bit byte counters the low dword must be read first.
-	 * Both registers clear on the read of the high dword.
-	 */
-
-	stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
-	stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
-	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
-	stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
-
-	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
-	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
-	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
-	stats->roc += E1000_READ_REG(hw, E1000_ROC);
-	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
-
-	stats->tor += E1000_READ_REG(hw, E1000_TORH);
-	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
-
-	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
-	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
-	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
-	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
-	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
-	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
-	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
-	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
-	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
-	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
-
-	/* Interrupt Counts */
-
-	if (hw->mac.type >= e1000_82571) {
-		stats->iac += E1000_READ_REG(hw, E1000_IAC);
-		stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
-		stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
-		stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
-		stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
-		stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
-		stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
-		stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
-		stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
-	}
-
-	if (hw->mac.type >= e1000_82543) {
-		stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
-		stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
-		stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
-		stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
-		stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
-		stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
-	}
-
-	if (rte_stats == NULL)
-		return;
-
-	/* Rx Errors */
-	rte_stats->ibadcrc = stats->crcerrs;
-	rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
-	rte_stats->imissed = stats->mpc;
-	rte_stats->ierrors = rte_stats->ibadcrc +
-	                     rte_stats->ibadlen +
-	                     rte_stats->imissed +
-	                     stats->rxerrc + stats->algnerrc + stats->cexterr;
-
-	/* Tx Errors */
-	rte_stats->oerrors = stats->ecol + stats->latecol;
-
-	rte_stats->ipackets = stats->gprc;
-	rte_stats->opackets = stats->gptc;
-	rte_stats->ibytes   = stats->gorc;
-	rte_stats->obytes   = stats->gotc;
-
-	/* XON/XOFF pause frames stats registers */
-	rte_stats->tx_pause_xon  = stats->xontxc;
-	rte_stats->rx_pause_xon  = stats->xonrxc;
-	rte_stats->tx_pause_xoff = stats->xofftxc;
-	rte_stats->rx_pause_xoff = stats->xoffrxc;
-}
-
-static void
-eth_em_stats_reset(struct rte_eth_dev *dev)
-{
-	struct e1000_hw_stats *hw_stats =
-			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
-	/* HW registers are cleared on read */
-	eth_em_stats_get(dev, NULL);
-
-	/* Reset software totals */
-	memset(hw_stats, 0, sizeof(*hw_stats));
-}
-
-static uint32_t
-em_get_max_pktlen(const struct e1000_hw *hw)
-{
-	switch (hw->mac.type) {
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_ich9lan:
-	case e1000_ich10lan:
-	case e1000_pch2lan:
-	case e1000_82574:
-	case e1000_80003es2lan: /* 9K Jumbo Frame size */
-		return (0x2412);
-	case e1000_pchlan:
-		return (0x1000);
-	/* Adapters that do not support jumbo frames */
-	case e1000_82583:
-	case e1000_ich8lan:
-		return (ETHER_MAX_LEN);
-	default:
-		return (MAX_JUMBO_FRAME_SIZE);
-	}
-}
-
-static void
-eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
-	dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
-	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
-
-	/*
-	 * Starting with 631xESB hw supports 2 TX/RX queues per port.
-	 * Unfortunatelly, all these nics have just one TX context.
-	 * So we have few choises for TX:
-	 * - Use just one TX queue.
-	 * - Allow cksum offload only for one TX queue.
-	 * - Don't allow TX cksum offload at all.
-	 * For now, option #1 was chosen.
-	 * To use second RX queue we have to use extended RX descriptor
-	 * (Multiple Receive Queues are mutually exclusive with UDP
-	 * fragmentation and are not supported when a legacy receive
-	 * descriptor format is used).
-	 * Which means separate RX routinies - as legacy nics (82540, 82545)
-	 * don't support extended RXD.
-	 * To avoid it we support just one RX queue for now (no RSS).
-	 */
-
-	dev_info->max_rx_queues = 1;
-	dev_info->max_tx_queues = 1;
-}
-
-/* return 0 means link status changed, -1 means not changed */
-static int
-eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct rte_eth_link link, old;
-	int link_check, count;
-
-	link_check = 0;
-	hw->mac.get_link_status = 1;
-
-	/* possible wait-to-complete in up to 9 seconds */
-	for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
-		/* Read the real link status */
-		switch (hw->phy.media_type) {
-		case e1000_media_type_copper:
-			/* Do the work to read phy */
-			e1000_check_for_link(hw);
-			link_check = !hw->mac.get_link_status;
-			break;
-
-		case e1000_media_type_fiber:
-			e1000_check_for_link(hw);
-			link_check = (E1000_READ_REG(hw, E1000_STATUS) &
-					E1000_STATUS_LU);
-			break;
-
-		case e1000_media_type_internal_serdes:
-			e1000_check_for_link(hw);
-			link_check = hw->mac.serdes_has_link;
-			break;
-
-		default:
-			break;
-		}
-		if (link_check || wait_to_complete == 0)
-			break;
-		rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
-	}
-	memset(&link, 0, sizeof(link));
-	rte_em_dev_atomic_read_link_status(dev, &link);
-	old = link;
-
-	/* Now we check if a transition has happened */
-	if (link_check && (link.link_status == 0)) {
-		hw->mac.ops.get_link_up_info(hw, &link.link_speed,
-			&link.link_duplex);
-		link.link_status = 1;
-	} else if (!link_check && (link.link_status == 1)) {
-		link.link_speed = 0;
-		link.link_duplex = 0;
-		link.link_status = 0;
-	}
-	rte_em_dev_atomic_write_link_status(dev, &link);
-
-	/* not changed */
-	if (old.link_status == link.link_status)
-		return -1;
-
-	/* changed */
-	return 0;
-}
-
-/*
- * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means
- * that the driver is loaded. For AMT version type f/w
- * this means that the network i/f is open.
- */
-static void
-em_hw_control_acquire(struct e1000_hw *hw)
-{
-	uint32_t ctrl_ext, swsm;
-
-	/* Let firmware know the driver has taken over */
-	if (hw->mac.type == e1000_82573) {
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
-
-	} else {
-		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
-			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
-	}
-}
-
-/*
- * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded. For AMT versions of the
- * f/w this means that the network i/f is closed.
- */
-static void
-em_hw_control_release(struct e1000_hw *hw)
-{
-	uint32_t ctrl_ext, swsm;
-
-	/* Let firmware taken over control of h/w */
-	if (hw->mac.type == e1000_82573) {
-		swsm = E1000_READ_REG(hw, E1000_SWSM);
-		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
-	} else {
-		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
-			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
-	}
-}
-
-/*
- * Bit of a misnomer, what this really means is
- * to enable OS management of the system... aka
- * to disable special hardware management features.
- */
-static void
-em_init_manageability(struct e1000_hw *hw)
-{
-	if (e1000_enable_mng_pass_thru(hw)) {
-		uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
-		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
-
-		/* disable hardware interception of ARP */
-		manc &= ~(E1000_MANC_ARP_EN);
-
-		/* enable receiving management packets to the host */
-		manc |= E1000_MANC_EN_MNG2HOST;
-		manc2h |= 1 << 5;  /* Mng Port 623 */
-		manc2h |= 1 << 6;  /* Mng Port 664 */
-		E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
-		E1000_WRITE_REG(hw, E1000_MANC, manc);
-	}
-}
-
-/*
- * Give control back to hardware management
- * controller if there is one.
- */
-static void
-em_release_manageability(struct e1000_hw *hw)
-{
-	uint32_t manc;
-
-	if (e1000_enable_mng_pass_thru(hw)) {
-		manc = E1000_READ_REG(hw, E1000_MANC);
-
-		/* re-enable hardware interception of ARP */
-		manc |= E1000_MANC_ARP_EN;
-		manc &= ~E1000_MANC_EN_MNG2HOST;
-
-		E1000_WRITE_REG(hw, E1000_MANC, manc);
-	}
-}
-
-static void
-eth_em_promiscuous_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rctl;
-
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_em_promiscuous_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rctl;
-
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
-	if (dev->data->all_multicast == 1)
-		rctl |= E1000_RCTL_MPE;
-	else
-		rctl &= (~E1000_RCTL_MPE);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_em_allmulticast_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rctl;
-
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl |= E1000_RCTL_MPE;
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_em_allmulticast_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rctl;
-
-	if (dev->data->promiscuous == 1)
-		return; /* must remain in all_multicast mode */
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl &= (~E1000_RCTL_MPE);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static int
-eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vfta * shadow_vfta =
-		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
-	uint32_t vfta;
-	uint32_t vid_idx;
-	uint32_t vid_bit;
-
-	vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
-			      E1000_VFTA_ENTRY_MASK);
-	vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
-	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
-	if (on)
-		vfta |= vid_bit;
-	else
-		vfta &= ~vid_bit;
-	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
-
-	/* update local VFTA copy */
-	shadow_vfta->vfta[vid_idx] = vfta;
-
-	return 0;
-}
-
-static void
-em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* Filter Table Disable */
-	reg = E1000_READ_REG(hw, E1000_RCTL);
-	reg &= ~E1000_RCTL_CFIEN;
-	reg &= ~E1000_RCTL_VFE;
-	E1000_WRITE_REG(hw, E1000_RCTL, reg);
-}
-
-static void
-em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vfta * shadow_vfta =
-		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
-	uint32_t reg;
-	int i;
-
-	/* Filter Table Enable, CFI not used for packet acceptance */
-	reg = E1000_READ_REG(hw, E1000_RCTL);
-	reg &= ~E1000_RCTL_CFIEN;
-	reg |= E1000_RCTL_VFE;
-	E1000_WRITE_REG(hw, E1000_RCTL, reg);
-
-	/* restore vfta from local copy */
-	for (i = 0; i < IGB_VFTA_SIZE; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
-}
-
-static void
-em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* VLAN Mode Disable */
-	reg = E1000_READ_REG(hw, E1000_CTRL);
-	reg &= ~E1000_CTRL_VME;
-	E1000_WRITE_REG(hw, E1000_CTRL, reg);
-
-}
-
-static void
-em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* VLAN Mode Enable */
-	reg = E1000_READ_REG(hw, E1000_CTRL);
-	reg |= E1000_CTRL_VME;
-	E1000_WRITE_REG(hw, E1000_CTRL, reg);
-}
-
-static void
-eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
-{
-	if(mask & ETH_VLAN_STRIP_MASK){
-		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
-			em_vlan_hw_strip_enable(dev);
-		else
-			em_vlan_hw_strip_disable(dev);
-	}
-
-	if(mask & ETH_VLAN_FILTER_MASK){
-		if (dev->data->dev_conf.rxmode.hw_vlan_filter)
-			em_vlan_hw_filter_enable(dev);
-		else
-			em_vlan_hw_filter_disable(dev);
-	}
-}
-
-static void
-em_intr_disable(struct e1000_hw *hw)
-{
-	E1000_WRITE_REG(hw, E1000_IMC, ~0);
-}
-
-/**
- * It enables the interrupt mask and then enable the interrupt.
- *
- * @param dev
- *  Pointer to struct rte_eth_dev.
- *
- * @return
- *  - On success, zero.
- *  - On failure, a negative value.
- */
-static int
-eth_em_interrupt_setup(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC);
-	rte_intr_enable(&(dev->pci_dev->intr_handle));
-	return (0);
-}
-
-/*
- * It reads ICR and gets interrupt causes, check it and set a bit flag
- * to update link status.
- *
- * @param dev
- *  Pointer to struct rte_eth_dev.
- *
- * @return
- *  - On success, zero.
- *  - On failure, a negative value.
- */
-static int
-eth_em_interrupt_get_status(struct rte_eth_dev *dev)
-{
-	uint32_t icr;
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
-	/* read-on-clear nic registers here */
-	icr = E1000_READ_REG(hw, E1000_ICR);
-	if (icr & E1000_ICR_LSC) {
-		intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
-	}
-
-	return 0;
-}
-
-/*
- * It executes link_update after knowing an interrupt is prsent.
- *
- * @param dev
- *  Pointer to struct rte_eth_dev.
- *
- * @return
- *  - On success, zero.
- *  - On failure, a negative value.
- */
-static int
-eth_em_interrupt_action(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-	uint32_t tctl, rctl;
-	struct rte_eth_link link;
-	int ret;
-
-	if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
-		return -1;
-
-	intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
-	rte_intr_enable(&(dev->pci_dev->intr_handle));
-
-	/* set get_link_status to check register later */
-	hw->mac.get_link_status = 1;
-	ret = eth_em_link_update(dev, 0);
-
-	/* check if link has changed */
-	if (ret < 0)
-		return 0;
-
-	memset(&link, 0, sizeof(link));
-	rte_em_dev_atomic_read_link_status(dev, &link);
-	if (link.link_status) {
-		PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
-			     dev->data->port_id, (unsigned)link.link_speed,
-			     link.link_duplex == ETH_LINK_FULL_DUPLEX ?
-			     "full-duplex" : "half-duplex");
-	} else {
-		PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
-	}
-	PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
-		     dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
-		     dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
-	tctl = E1000_READ_REG(hw, E1000_TCTL);
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	if (link.link_status) {
-		/* enable Tx/Rx */
-		tctl |= E1000_TCTL_EN;
-		rctl |= E1000_RCTL_EN;
-	} else {
-		/* disable Tx/Rx */
-		tctl &= ~E1000_TCTL_EN;
-		rctl &= ~E1000_RCTL_EN;
-	}
-	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-	E1000_WRITE_FLUSH(hw);
-
-	return 0;
-}
-
-/**
- * Interrupt handler which shall be registered at first.
- *
- * @param handle
- *  Pointer to interrupt handle.
- * @param param
- *  The address of parameter (struct rte_eth_dev *) regsitered before.
- *
- * @return
- *  void
- */
-static void
-eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
-							void *param)
-{
-	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
-
-	eth_em_interrupt_get_status(dev);
-	eth_em_interrupt_action(dev);
-	_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
-}
-
-static int
-eth_em_led_on(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_em_led_off(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
-	struct e1000_hw *hw;
-	uint32_t ctrl;
-	int tx_pause;
-	int rx_pause;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	fc_conf->pause_time = hw->fc.pause_time;
-	fc_conf->high_water = hw->fc.high_water;
-	fc_conf->low_water = hw->fc.low_water;
-	fc_conf->send_xon = hw->fc.send_xon;
-	fc_conf->autoneg = hw->mac.autoneg;
-
-	/*
-	 * Return rx_pause and tx_pause status according to actual setting of
-	 * the TFCE and RFCE bits in the CTRL register.
-	 */
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	if (ctrl & E1000_CTRL_TFCE)
-		tx_pause = 1;
-	else
-		tx_pause = 0;
-
-	if (ctrl & E1000_CTRL_RFCE)
-		rx_pause = 1;
-	else
-		rx_pause = 0;
-
-	if (rx_pause && tx_pause)
-		fc_conf->mode = RTE_FC_FULL;
-	else if (rx_pause)
-		fc_conf->mode = RTE_FC_RX_PAUSE;
-	else if (tx_pause)
-		fc_conf->mode = RTE_FC_TX_PAUSE;
-	else
-		fc_conf->mode = RTE_FC_NONE;
-
-	return 0;
-}
-
-static int
-eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
-	struct e1000_hw *hw;
-	int err;
-	enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
-		e1000_fc_none,
-		e1000_fc_rx_pause,
-		e1000_fc_tx_pause,
-		e1000_fc_full
-	};
-	uint32_t rx_buf_size;
-	uint32_t max_high_water;
-	uint32_t rctl;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	if (fc_conf->autoneg != hw->mac.autoneg)
-		return -ENOTSUP;
-	rx_buf_size = em_get_rx_buffer_size(hw);
-	PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
-
-	/* At least reserve one Ethernet frame for watermark */
-	max_high_water = rx_buf_size - ETHER_MAX_LEN;
-	if ((fc_conf->high_water > max_high_water) ||
-	    (fc_conf->high_water < fc_conf->low_water)) {
-		PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
-		PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
-		return (-EINVAL);
-	}
-
-	hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
-	hw->fc.pause_time     = fc_conf->pause_time;
-	hw->fc.high_water     = fc_conf->high_water;
-	hw->fc.low_water      = fc_conf->low_water;
-	hw->fc.send_xon	      = fc_conf->send_xon;
-
-	err = e1000_setup_link_generic(hw);
-	if (err == E1000_SUCCESS) {
-
-		/* check if we want to forward MAC frames - driver doesn't have native
-		 * capability to do that, so we'll write the registers ourselves */
-
-		rctl = E1000_READ_REG(hw, E1000_RCTL);
-
-		/* set or clear MFLCN.PMCF bit depending on configuration */
-		if (fc_conf->mac_ctrl_frame_fwd != 0)
-			rctl |= E1000_RCTL_PMCF;
-		else
-			rctl &= ~E1000_RCTL_PMCF;
-
-		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-		E1000_WRITE_FLUSH(hw);
-
-		return 0;
-	}
-
-	PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
-	return (-EIO);
-}
-
-static void
-eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
-		uint32_t index, __rte_unused uint32_t pool)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	e1000_rar_set(hw, mac_addr->addr_bytes, index);
-}
-
-static void
-eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
-{
-	uint8_t addr[ETHER_ADDR_LEN];
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	memset(addr, 0, sizeof(addr));
-
-	e1000_rar_set(hw, addr, index);
-}
-
-static int
-eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
-{
-	struct rte_eth_dev_info dev_info;
-	struct e1000_hw *hw;
-	uint32_t frame_size;
-	uint32_t rctl;
-
-	eth_em_infos_get(dev, &dev_info);
-	frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
-
-	/* check that mtu is within the allowed range */
-	if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
-		return -EINVAL;
-
-	/* refuse mtu that requires the support of scattered packets when this
-	 * feature has not been enabled before. */
-	if (!dev->data->scattered_rx &&
-	    frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
-		return -EINVAL;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-
-	/* switch to jumbo mode if needed */
-	if (frame_size > ETHER_MAX_LEN) {
-		dev->data->dev_conf.rxmode.jumbo_frame = 1;
-		rctl |= E1000_RCTL_LPE;
-	} else {
-		dev->data->dev_conf.rxmode.jumbo_frame = 0;
-		rctl &= ~E1000_RCTL_LPE;
-	}
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
-	/* update max frame size */
-	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
-	return 0;
-}
-
-struct rte_driver em_pmd_drv = {
-	.type = PMD_PDEV,
-	.init = rte_em_pmd_init,
-};
-
-PMD_REGISTER_DRIVER(em_pmd_drv);
diff --git a/lib/librte_pmd_e1000/em_rxtx.c b/lib/librte_pmd_e1000/em_rxtx.c
deleted file mode 100644
index 64d067c..0000000
--- a/lib/librte_pmd_e1000/em_rxtx.c
+++ /dev/null
@@ -1,1865 +0,0 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/queue.h>
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-#include <inttypes.h>
-
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_common.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_memory.h>
-#include <rte_memcpy.h>
-#include <rte_memzone.h>
-#include <rte_launch.h>
-#include <rte_eal.h>
-#include <rte_per_lcore.h>
-#include <rte_lcore.h>
-#include <rte_atomic.h>
-#include <rte_branch_prediction.h>
-#include <rte_ring.h>
-#include <rte_mempool.h>
-#include <rte_malloc.h>
-#include <rte_mbuf.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_prefetch.h>
-#include <rte_ip.h>
-#include <rte_udp.h>
-#include <rte_tcp.h>
-#include <rte_sctp.h>
-#include <rte_string_fns.h>
-
-#include "e1000_logs.h"
-#include "e1000/e1000_api.h"
-#include "e1000_ethdev.h"
-#include "e1000/e1000_osdep.h"
-
-#define	E1000_TXD_VLAN_SHIFT	16
-
-#define E1000_RXDCTL_GRAN	0x01000000 /* RXDCTL Granularity */
-
-static inline struct rte_mbuf *
-rte_rxmbuf_alloc(struct rte_mempool *mp)
-{
-	struct rte_mbuf *m;
-
-	m = __rte_mbuf_raw_alloc(mp);
-	__rte_mbuf_sanity_check_raw(m, 0);
-	return (m);
-}
-
-#define RTE_MBUF_DATA_DMA_ADDR(mb)             \
-	(uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
-
-#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
-	(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
-
-/**
- * Structure associated with each descriptor of the RX ring of a RX queue.
- */
-struct em_rx_entry {
-	struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
-};
-
-/**
- * Structure associated with each descriptor of the TX ring of a TX queue.
- */
-struct em_tx_entry {
-	struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
-	uint16_t next_id; /**< Index of next descriptor in ring. */
-	uint16_t last_id; /**< Index of last scattered descriptor. */
-};
-
-/**
- * Structure associated with each RX queue.
- */
-struct em_rx_queue {
-	struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
-	volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
-	uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
-	volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
-	volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
-	struct em_rx_entry *sw_ring;   /**< address of RX software ring. */
-	struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
-	struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
-	uint16_t            nb_rx_desc; /**< number of RX descriptors. */
-	uint16_t            rx_tail;    /**< current value of RDT register. */
-	uint16_t            nb_rx_hold; /**< number of held free RX desc. */
-	uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
-	uint16_t            queue_id;   /**< RX queue index. */
-	uint8_t             port_id;    /**< Device port identifier. */
-	uint8_t             pthresh;    /**< Prefetch threshold register. */
-	uint8_t             hthresh;    /**< Host threshold register. */
-	uint8_t             wthresh;    /**< Write-back threshold register. */
-	uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
-};
-
-/**
- * Hardware context number
- */
-enum {
-	EM_CTX_0    = 0, /**< CTX0 */
-	EM_CTX_NUM  = 1, /**< CTX NUM */
-};
-
-/** Offload features */
-union em_vlan_macip {
-	uint32_t data;
-	struct {
-		uint16_t l3_len:9; /**< L3 (IP) Header Length. */
-		uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
-		uint16_t vlan_tci;
-		/**< VLAN Tag Control Identifier (CPU order). */
-	} f;
-};
-
-/*
- * Compare mask for vlan_macip_len.data,
- * should be in sync with em_vlan_macip.f layout.
- * */
-#define TX_VLAN_CMP_MASK        0xFFFF0000  /**< VLAN length - 16-bits. */
-#define TX_MAC_LEN_CMP_MASK     0x0000FE00  /**< MAC length - 7-bits. */
-#define TX_IP_LEN_CMP_MASK      0x000001FF  /**< IP  length - 9-bits. */
-/** MAC+IP  length. */
-#define TX_MACIP_LEN_CMP_MASK   (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
-
-/**
- * Structure to check if new context need be built
- */
-struct em_ctx_info {
-	uint64_t flags;              /**< ol_flags related to context build. */
-	uint32_t cmp_mask;           /**< compare mask */
-	union em_vlan_macip hdrlen;  /**< L2 and L3 header lenghts */
-};
-
-/**
- * Structure associated with each TX queue.
- */
-struct em_tx_queue {
-	volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
-	uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
-	struct em_tx_entry    *sw_ring; /**< virtual address of SW ring. */
-	volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
-	uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
-	uint16_t               tx_tail;  /**< Current value of TDT register. */
-	uint16_t               tx_free_thresh;/**< minimum TX before freeing. */
-	/**< Number of TX descriptors to use before RS bit is set. */
-	uint16_t               tx_rs_thresh;
-	/** Number of TX descriptors used since RS bit was set. */
-	uint16_t               nb_tx_used;
-	/** Index to last TX descriptor to have been cleaned. */
-	uint16_t	       last_desc_cleaned;
-	/** Total number of TX descriptors ready to be allocated. */
-	uint16_t               nb_tx_free;
-	uint16_t               queue_id; /**< TX queue index. */
-	uint8_t                port_id;  /**< Device port identifier. */
-	uint8_t                pthresh;  /**< Prefetch threshold register. */
-	uint8_t                hthresh;  /**< Host threshold register. */
-	uint8_t                wthresh;  /**< Write-back threshold register. */
-	struct em_ctx_info ctx_cache;
-	/**< Hardware context history.*/
-};
-
-#if 1
-#define RTE_PMD_USE_PREFETCH
-#endif
-
-#ifdef RTE_PMD_USE_PREFETCH
-#define rte_em_prefetch(p)	rte_prefetch0(p)
-#else
-#define rte_em_prefetch(p)	do {} while(0)
-#endif
-
-#ifdef RTE_PMD_PACKET_PREFETCH
-#define rte_packet_prefetch(p) rte_prefetch1(p)
-#else
-#define rte_packet_prefetch(p)	do {} while(0)
-#endif
-
-#ifndef DEFAULT_TX_FREE_THRESH
-#define DEFAULT_TX_FREE_THRESH  32
-#endif /* DEFAULT_TX_FREE_THRESH */
-
-#ifndef DEFAULT_TX_RS_THRESH
-#define DEFAULT_TX_RS_THRESH  32
-#endif /* DEFAULT_TX_RS_THRESH */
-
-
-/*********************************************************************
- *
- *  TX function
- *
- **********************************************************************/
-
-/*
- * Populates TX context descriptor.
- */
-static inline void
-em_set_xmit_ctx(struct em_tx_queue* txq,
-		volatile struct e1000_context_desc *ctx_txd,
-		uint64_t flags,
-		union em_vlan_macip hdrlen)
-{
-	uint32_t cmp_mask, cmd_len;
-	uint16_t ipcse, l2len;
-	struct e1000_context_desc ctx;
-
-	cmp_mask = 0;
-	cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
-
-	l2len = hdrlen.f.l2_len;
-	ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
-
-	/* setup IPCS* fields */
-	ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
-	ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
-			offsetof(struct ipv4_hdr, hdr_checksum));
-
-	/*
-	 * When doing checksum or TCP segmentation with IPv6 headers,
-	 * IPCSE field should be set t0 0.
-	 */
-	if (flags & PKT_TX_IP_CKSUM) {
-		ctx.lower_setup.ip_fields.ipcse =
-			(uint16_t)rte_cpu_to_le_16(ipcse - 1);
-		cmd_len |= E1000_TXD_CMD_IP;
-		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
-	} else {
-		ctx.lower_setup.ip_fields.ipcse = 0;
-	}
-
-	/* setup TUCS* fields */
-	ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
-	ctx.upper_setup.tcp_fields.tucse = 0;
-
-	switch (flags & PKT_TX_L4_MASK) {
-	case PKT_TX_UDP_CKSUM:
-		ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
-				offsetof(struct udp_hdr, dgram_cksum));
-		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
-		break;
-	case PKT_TX_TCP_CKSUM:
-		ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
-				offsetof(struct tcp_hdr, cksum));
-		cmd_len |= E1000_TXD_CMD_TCP;
-		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
-		break;
-	default:
-		ctx.upper_setup.tcp_fields.tucso = 0;
-	}
-
-	ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
-	ctx.tcp_seg_setup.data = 0;
-
-	*ctx_txd = ctx;
-
-	txq->ctx_cache.flags = flags;
-	txq->ctx_cache.cmp_mask = cmp_mask;
-	txq->ctx_cache.hdrlen = hdrlen;
-}
-
-/*
- * Check which hardware context can be used. Use the existing match
- * or create a new context descriptor.
- */
-static inline uint32_t
-what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
-		union em_vlan_macip hdrlen)
-{
-	/* If match with the current context */
-	if (likely (txq->ctx_cache.flags == flags &&
-			((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
-			txq->ctx_cache.cmp_mask) == 0))
-		return (EM_CTX_0);
-
-	/* Mismatch */
-	return (EM_CTX_NUM);
-}
-
-/* Reset transmit descriptors after they have been used */
-static inline int
-em_xmit_cleanup(struct em_tx_queue *txq)
-{
-	struct em_tx_entry *sw_ring = txq->sw_ring;
-	volatile struct e1000_data_desc *txr = txq->tx_ring;
-	uint16_t last_desc_cleaned = txq->last_desc_cleaned;
-	uint16_t nb_tx_desc = txq->nb_tx_desc;
-	uint16_t desc_to_clean_to;
-	uint16_t nb_tx_to_clean;
-
-	/* Determine the last descriptor needing to be cleaned */
-	desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
-	if (desc_to_clean_to >= nb_tx_desc)
-		desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
-
-	/* Check to make sure the last descriptor to clean is done */
-	desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
-	if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
-	{
-		PMD_TX_FREE_LOG(DEBUG,
-				"TX descriptor %4u is not done"
-				"(port=%d queue=%d)", desc_to_clean_to,
-				txq->port_id, txq->queue_id);
-		/* Failed to clean any descriptors, better luck next time */
-		return -(1);
-	}
-
-	/* Figure out how many descriptors will be cleaned */
-	if (last_desc_cleaned > desc_to_clean_to)
-		nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
-							desc_to_clean_to);
-	else
-		nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
-						last_desc_cleaned);
-
-	PMD_TX_FREE_LOG(DEBUG,
-			"Cleaning %4u TX descriptors: %4u to %4u "
-			"(port=%d queue=%d)", nb_tx_to_clean,
-			last_desc_cleaned, desc_to_clean_to, txq->port_id,
-			txq->queue_id);
-
-	/*
-	 * The last descriptor to clean is done, so that means all the
-	 * descriptors from the last descriptor that was cleaned
-	 * up to the last descriptor with the RS bit set
-	 * are done. Only reset the threshold descriptor.
-	 */
-	txr[desc_to_clean_to].upper.fields.status = 0;
-
-	/* Update the txq to reflect the last descriptor that was cleaned */
-	txq->last_desc_cleaned = desc_to_clean_to;
-	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
-
-	/* No Error */
-	return (0);
-}
-
-static inline uint32_t
-tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
-{
-	static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
-	static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
-	uint32_t tmp;
-
-	tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
-	tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
-	return (tmp);
-}
-
-uint16_t
-eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
-		uint16_t nb_pkts)
-{
-	struct em_tx_queue *txq;
-	struct em_tx_entry *sw_ring;
-	struct em_tx_entry *txe, *txn;
-	volatile struct e1000_data_desc *txr;
-	volatile struct e1000_data_desc *txd;
-	struct rte_mbuf     *tx_pkt;
-	struct rte_mbuf     *m_seg;
-	uint64_t buf_dma_addr;
-	uint32_t popts_spec;
-	uint32_t cmd_type_len;
-	uint16_t slen;
-	uint64_t ol_flags;
-	uint16_t tx_id;
-	uint16_t tx_last;
-	uint16_t nb_tx;
-	uint16_t nb_used;
-	uint64_t tx_ol_req;
-	uint32_t ctx;
-	uint32_t new_ctx;
-	union em_vlan_macip hdrlen;
-
-	txq = tx_queue;
-	sw_ring = txq->sw_ring;
-	txr     = txq->tx_ring;
-	tx_id   = txq->tx_tail;
-	txe = &sw_ring[tx_id];
-
-	/* Determine if the descriptor ring needs to be cleaned. */
-	if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) {
-		em_xmit_cleanup(txq);
-	}
-
-	/* TX loop */
-	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
-		new_ctx = 0;
-		tx_pkt = *tx_pkts++;
-
-		RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
-
-		/*
-		 * Determine how many (if any) context descriptors
-		 * are needed for offload functionality.
-		 */
-		ol_flags = tx_pkt->ol_flags;
-
-		/* If hardware offload required */
-		tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
-		if (tx_ol_req) {
-			hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
-			hdrlen.f.l2_len = tx_pkt->l2_len;
-			hdrlen.f.l3_len = tx_pkt->l3_len;
-			/* If new context to be built or reuse the exist ctx. */
-			ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
-
-			/* Only allocate context descriptor if required*/
-			new_ctx = (ctx == EM_CTX_NUM);
-		}
-
-		/*
-		 * Keep track of how many descriptors are used this loop
-		 * This will always be the number of segments + the number of
-		 * Context descriptors required to transmit the packet
-		 */
-		nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
-
-		/*
-		 * The number of descriptors that must be allocated for a
-		 * packet is the number of segments of that packet, plus 1
-		 * Context Descriptor for the hardware offload, if any.
-		 * Determine the last TX descriptor to allocate in the TX ring
-		 * for the packet, starting from the current position (tx_id)
-		 * in the ring.
-		 */
-		tx_last = (uint16_t) (tx_id + nb_used - 1);
-
-		/* Circular ring */
-		if (tx_last >= txq->nb_tx_desc)
-			tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
-
-		PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
-			   " tx_first=%u tx_last=%u",
-			   (unsigned) txq->port_id,
-			   (unsigned) txq->queue_id,
-			   (unsigned) tx_pkt->pkt_len,
-			   (unsigned) tx_id,
-			   (unsigned) tx_last);
-
-		/*
-		 * Make sure there are enough TX descriptors available to
-		 * transmit the entire packet.
-		 * nb_used better be less than or equal to txq->tx_rs_thresh
-		 */
-		while (unlikely (nb_used > txq->nb_tx_free)) {
-			PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
-					"nb_used=%4u nb_free=%4u "
-					"(port=%d queue=%d)",
-					nb_used, txq->nb_tx_free,
-					txq->port_id, txq->queue_id);
-
-			if (em_xmit_cleanup(txq) != 0) {
-				/* Could not clean any descriptors */
-				if (nb_tx == 0)
-					return (0);
-				goto end_of_tx;
-			}
-		}
-
-		/*
-		 * By now there are enough free TX descriptors to transmit
-		 * the packet.
-		 */
-
-		/*
-		 * Set common flags of all TX Data Descriptors.
-		 *
-		 * The following bits must be set in all Data Descriptors:
-		 *    - E1000_TXD_DTYP_DATA
-		 *    - E1000_TXD_DTYP_DEXT
-		 *
-		 * The following bits must be set in the first Data Descriptor
-		 * and are ignored in the other ones:
-		 *    - E1000_TXD_POPTS_IXSM
-		 *    - E1000_TXD_POPTS_TXSM
-		 *
-		 * The following bits must be set in the last Data Descriptor
-		 * and are ignored in the other ones:
-		 *    - E1000_TXD_CMD_VLE
-		 *    - E1000_TXD_CMD_IFCS
-		 *
-		 * The following bits must only be set in the last Data
-		 * Descriptor:
-		 *   - E1000_TXD_CMD_EOP
-		 *
-		 * The following bits can be set in any Data Descriptor, but
-		 * are only set in the last Data Descriptor:
-		 *   - E1000_TXD_CMD_RS
-		 */
-		cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
-			E1000_TXD_CMD_IFCS;
-		popts_spec = 0;
-
-		/* Set VLAN Tag offload fields. */
-		if (ol_flags & PKT_TX_VLAN_PKT) {
-			cmd_type_len |= E1000_TXD_CMD_VLE;
-			popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
-		}
-
-		if (tx_ol_req) {
-			/*
-			 * Setup the TX Context Descriptor if required
-			 */
-			if (new_ctx) {
-				volatile struct e1000_context_desc *ctx_txd;
-
-				ctx_txd = (volatile struct e1000_context_desc *)
-					&txr[tx_id];
-
-				txn = &sw_ring[txe->next_id];
-				RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
-
-				if (txe->mbuf != NULL) {
-					rte_pktmbuf_free_seg(txe->mbuf);
-					txe->mbuf = NULL;
-				}
-
-				em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
-					hdrlen);
-
-				txe->last_id = tx_last;
-				tx_id = txe->next_id;
-				txe = txn;
-			}
-
-			/*
-			 * Setup the TX Data Descriptor,
-			 * This path will go through
-			 * whatever new/reuse the context descriptor
-			 */
-			popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
-		}
-
-		m_seg = tx_pkt;
-		do {
-			txd = &txr[tx_id];
-			txn = &sw_ring[txe->next_id];
-
-			if (txe->mbuf != NULL)
-				rte_pktmbuf_free_seg(txe->mbuf);
-			txe->mbuf = m_seg;
-
-			/*
-			 * Set up Transmit Data Descriptor.
-			 */
-			slen = m_seg->data_len;
-			buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
-
-			txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
-			txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
-			txd->upper.data = rte_cpu_to_le_32(popts_spec);
-
-			txe->last_id = tx_last;
-			tx_id = txe->next_id;
-			txe = txn;
-			m_seg = m_seg->next;
-		} while (m_seg != NULL);
-
-		/*
-		 * The last packet data descriptor needs End Of Packet (EOP)
-		 */
-		cmd_type_len |= E1000_TXD_CMD_EOP;
-		txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
-		txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
-
-		/* Set RS bit only on threshold packets' last descriptor */
-		if (txq->nb_tx_used >= txq->tx_rs_thresh) {
-			PMD_TX_FREE_LOG(DEBUG,
-					"Setting RS bit on TXD id=%4u "
-					"(port=%d queue=%d)",
-					tx_last, txq->port_id, txq->queue_id);
-
-			cmd_type_len |= E1000_TXD_CMD_RS;
-
-			/* Update txq RS bit counters */
-			txq->nb_tx_used = 0;
-		}
-		txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
-	}
-end_of_tx:
-	rte_wmb();
-
-	/*
-	 * Set the Transmit Descriptor Tail (TDT)
-	 */
-	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
-		(unsigned) txq->port_id, (unsigned) txq->queue_id,
-		(unsigned) tx_id, (unsigned) nb_tx);
-	E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
-	txq->tx_tail = tx_id;
-
-	return (nb_tx);
-}
-
-/*********************************************************************
- *
- *  RX functions
- *
- **********************************************************************/
-
-static inline uint64_t
-rx_desc_status_to_pkt_flags(uint32_t rx_status)
-{
-	uint64_t pkt_flags;
-
-	/* Check if VLAN present */
-	pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?  PKT_RX_VLAN_PKT : 0);
-
-	return pkt_flags;
-}
-
-static inline uint64_t
-rx_desc_error_to_pkt_flags(uint32_t rx_error)
-{
-	uint64_t pkt_flags = 0;
-
-	if (rx_error & E1000_RXD_ERR_IPE)
-		pkt_flags |= PKT_RX_IP_CKSUM_BAD;
-	if (rx_error & E1000_RXD_ERR_TCPE)
-		pkt_flags |= PKT_RX_L4_CKSUM_BAD;
-	return (pkt_flags);
-}
-
-uint16_t
-eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
-		uint16_t nb_pkts)
-{
-	volatile struct e1000_rx_desc *rx_ring;
-	volatile struct e1000_rx_desc *rxdp;
-	struct em_rx_queue *rxq;
-	struct em_rx_entry *sw_ring;
-	struct em_rx_entry *rxe;
-	struct rte_mbuf *rxm;
-	struct rte_mbuf *nmb;
-	struct e1000_rx_desc rxd;
-	uint64_t dma_addr;
-	uint16_t pkt_len;
-	uint16_t rx_id;
-	uint16_t nb_rx;
-	uint16_t nb_hold;
-	uint8_t status;
-
-	rxq = rx_queue;
-
-	nb_rx = 0;
-	nb_hold = 0;
-	rx_id = rxq->rx_tail;
-	rx_ring = rxq->rx_ring;
-	sw_ring = rxq->sw_ring;
-	while (nb_rx < nb_pkts) {
-		/*
-		 * The order of operations here is important as the DD status
-		 * bit must not be read after any other descriptor fields.
-		 * rx_ring and rxdp are pointing to volatile data so the order
-		 * of accesses cannot be reordered by the compiler. If they were
-		 * not volatile, they could be reordered which could lead to
-		 * using invalid descriptor fields when read from rxd.
-		 */
-		rxdp = &rx_ring[rx_id];
-		status = rxdp->status;
-		if (! (status & E1000_RXD_STAT_DD))
-			break;
-		rxd = *rxdp;
-
-		/*
-		 * End of packet.
-		 *
-		 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
-		 * likely to be invalid and to be dropped by the various
-		 * validation checks performed by the network stack.
-		 *
-		 * Allocate a new mbuf to replenish the RX ring descriptor.
-		 * If the allocation fails:
-		 *    - arrange for that RX descriptor to be the first one
-		 *      being parsed the next time the receive function is
-		 *      invoked [on the same queue].
-		 *
-		 *    - Stop parsing the RX ring and return immediately.
-		 *
-		 * This policy do not drop the packet received in the RX
-		 * descriptor for which the allocation of a new mbuf failed.
-		 * Thus, it allows that packet to be later retrieved if
-		 * mbuf have been freed in the mean time.
-		 * As a side effect, holding RX descriptors instead of
-		 * systematically giving them back to the NIC may lead to
-		 * RX ring exhaustion situations.
-		 * However, the NIC can gracefully prevent such situations
-		 * to happen by sending specific "back-pressure" flow control
-		 * frames to its peer(s).
-		 */
-		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
-			   "status=0x%x pkt_len=%u",
-			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
-			   (unsigned) rx_id, (unsigned) status,
-			   (unsigned) rte_le_to_cpu_16(rxd.length));
-
-		nmb = rte_rxmbuf_alloc(rxq->mb_pool);
-		if (nmb == NULL) {
-			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
-				   "queue_id=%u",
-				   (unsigned) rxq->port_id,
-				   (unsigned) rxq->queue_id);
-			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
-			break;
-		}
-
-		nb_hold++;
-		rxe = &sw_ring[rx_id];
-		rx_id++;
-		if (rx_id == rxq->nb_rx_desc)
-			rx_id = 0;
-
-		/* Prefetch next mbuf while processing current one. */
-		rte_em_prefetch(sw_ring[rx_id].mbuf);
-
-		/*
-		 * When next RX descriptor is on a cache-line boundary,
-		 * prefetch the next 4 RX descriptors and the next 8 pointers
-		 * to mbufs.
-		 */
-		if ((rx_id & 0x3) == 0) {
-			rte_em_prefetch(&rx_ring[rx_id]);
-			rte_em_prefetch(&sw_ring[rx_id]);
-		}
-
-		/* Rearm RXD: attach new mbuf and reset status to zero. */
-
-		rxm = rxe->mbuf;
-		rxe->mbuf = nmb;
-		dma_addr =
-			rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
-		rxdp->buffer_addr = dma_addr;
-		rxdp->status = 0;
-
-		/*
-		 * Initialize the returned mbuf.
-		 * 1) setup generic mbuf fields:
-		 *    - number of segments,
-		 *    - next segment,
-		 *    - packet length,
-		 *    - RX port identifier.
-		 * 2) integrate hardware offload data, if any:
-		 *    - RSS flag & hash,
-		 *    - IP checksum flag,
-		 *    - VLAN TCI, if any,
-		 *    - error flags.
-		 */
-		pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
-				rxq->crc_len);
-		rxm->data_off = RTE_PKTMBUF_HEADROOM;
-		rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
-		rxm->nb_segs = 1;
-		rxm->next = NULL;
-		rxm->pkt_len = pkt_len;
-		rxm->data_len = pkt_len;
-		rxm->port = rxq->port_id;
-
-		rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
-		rxm->ol_flags = rxm->ol_flags |
-				rx_desc_error_to_pkt_flags(rxd.errors);
-
-		/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
-		rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
-
-		/*
-		 * Store the mbuf address into the next entry of the array
-		 * of returned packets.
-		 */
-		rx_pkts[nb_rx++] = rxm;
-	}
-	rxq->rx_tail = rx_id;
-
-	/*
-	 * If the number of free RX descriptors is greater than the RX free
-	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
-	 * register.
-	 * Update the RDT with the value of the last processed RX descriptor
-	 * minus 1, to guarantee that the RDT register is never equal to the
-	 * RDH register, which creates a "full" ring situtation from the
-	 * hardware point of view...
-	 */
-	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
-	if (nb_hold > rxq->rx_free_thresh) {
-		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
-			   "nb_hold=%u nb_rx=%u",
-			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
-			   (unsigned) rx_id, (unsigned) nb_hold,
-			   (unsigned) nb_rx);
-		rx_id = (uint16_t) ((rx_id == 0) ?
-			(rxq->nb_rx_desc - 1) : (rx_id - 1));
-		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
-		nb_hold = 0;
-	}
-	rxq->nb_rx_hold = nb_hold;
-	return (nb_rx);
-}
-
-uint16_t
-eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
-			 uint16_t nb_pkts)
-{
-	struct em_rx_queue *rxq;
-	volatile struct e1000_rx_desc *rx_ring;
-	volatile struct e1000_rx_desc *rxdp;
-	struct em_rx_entry *sw_ring;
-	struct em_rx_entry *rxe;
-	struct rte_mbuf *first_seg;
-	struct rte_mbuf *last_seg;
-	struct rte_mbuf *rxm;
-	struct rte_mbuf *nmb;
-	struct e1000_rx_desc rxd;
-	uint64_t dma; /* Physical address of mbuf data buffer */
-	uint16_t rx_id;
-	uint16_t nb_rx;
-	uint16_t nb_hold;
-	uint16_t data_len;
-	uint8_t status;
-
-	rxq = rx_queue;
-
-	nb_rx = 0;
-	nb_hold = 0;
-	rx_id = rxq->rx_tail;
-	rx_ring = rxq->rx_ring;
-	sw_ring = rxq->sw_ring;
-
-	/*
-	 * Retrieve RX context of current packet, if any.
-	 */
-	first_seg = rxq->pkt_first_seg;
-	last_seg = rxq->pkt_last_seg;
-
-	while (nb_rx < nb_pkts) {
-	next_desc:
-		/*
-		 * The order of operations here is important as the DD status
-		 * bit must not be read after any other descriptor fields.
-		 * rx_ring and rxdp are pointing to volatile data so the order
-		 * of accesses cannot be reordered by the compiler. If they were
-		 * not volatile, they could be reordered which could lead to
-		 * using invalid descriptor fields when read from rxd.
-		 */
-		rxdp = &rx_ring[rx_id];
-		status = rxdp->status;
-		if (! (status & E1000_RXD_STAT_DD))
-			break;
-		rxd = *rxdp;
-
-		/*
-		 * Descriptor done.
-		 *
-		 * Allocate a new mbuf to replenish the RX ring descriptor.
-		 * If the allocation fails:
-		 *    - arrange for that RX descriptor to be the first one
-		 *      being parsed the next time the receive function is
-		 *      invoked [on the same queue].
-		 *
-		 *    - Stop parsing the RX ring and return immediately.
-		 *
-		 * This policy does not drop the packet received in the RX
-		 * descriptor for which the allocation of a new mbuf failed.
-		 * Thus, it allows that packet to be later retrieved if
-		 * mbuf have been freed in the mean time.
-		 * As a side effect, holding RX descriptors instead of
-		 * systematically giving them back to the NIC may lead to
-		 * RX ring exhaustion situations.
-		 * However, the NIC can gracefully prevent such situations
-		 * to happen by sending specific "back-pressure" flow control
-		 * frames to its peer(s).
-		 */
-		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
-			   "status=0x%x data_len=%u",
-			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
-			   (unsigned) rx_id, (unsigned) status,
-			   (unsigned) rte_le_to_cpu_16(rxd.length));
-
-		nmb = rte_rxmbuf_alloc(rxq->mb_pool);
-		if (nmb == NULL) {
-			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
-				   "queue_id=%u", (unsigned) rxq->port_id,
-				   (unsigned) rxq->queue_id);
-			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
-			break;
-		}
-
-		nb_hold++;
-		rxe = &sw_ring[rx_id];
-		rx_id++;
-		if (rx_id == rxq->nb_rx_desc)
-			rx_id = 0;
-
-		/* Prefetch next mbuf while processing current one. */
-		rte_em_prefetch(sw_ring[rx_id].mbuf);
-
-		/*
-		 * When next RX descriptor is on a cache-line boundary,
-		 * prefetch the next 4 RX descriptors and the next 8 pointers
-		 * to mbufs.
-		 */
-		if ((rx_id & 0x3) == 0) {
-			rte_em_prefetch(&rx_ring[rx_id]);
-			rte_em_prefetch(&sw_ring[rx_id]);
-		}
-
-		/*
-		 * Update RX descriptor with the physical address of the new
-		 * data buffer of the new allocated mbuf.
-		 */
-		rxm = rxe->mbuf;
-		rxe->mbuf = nmb;
-		dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
-		rxdp->buffer_addr = dma;
-		rxdp->status = 0;
-
-		/*
-		 * Set data length & data buffer address of mbuf.
-		 */
-		data_len = rte_le_to_cpu_16(rxd.length);
-		rxm->data_len = data_len;
-		rxm->data_off = RTE_PKTMBUF_HEADROOM;
-
-		/*
-		 * If this is the first buffer of the received packet,
-		 * set the pointer to the first mbuf of the packet and
-		 * initialize its context.
-		 * Otherwise, update the total length and the number of segments
-		 * of the current scattered packet, and update the pointer to
-		 * the last mbuf of the current packet.
-		 */
-		if (first_seg == NULL) {
-			first_seg = rxm;
-			first_seg->pkt_len = data_len;
-			first_seg->nb_segs = 1;
-		} else {
-			first_seg->pkt_len += data_len;
-			first_seg->nb_segs++;
-			last_seg->next = rxm;
-		}
-
-		/*
-		 * If this is not the last buffer of the received packet,
-		 * update the pointer to the last mbuf of the current scattered
-		 * packet and continue to parse the RX ring.
-		 */
-		if (! (status & E1000_RXD_STAT_EOP)) {
-			last_seg = rxm;
-			goto next_desc;
-		}
-
-		/*
-		 * This is the last buffer of the received packet.
-		 * If the CRC is not stripped by the hardware:
-		 *   - Subtract the CRC	length from the total packet length.
-		 *   - If the last buffer only contains the whole CRC or a part
-		 *     of it, free the mbuf associated to the last buffer.
-		 *     If part of the CRC is also contained in the previous
-		 *     mbuf, subtract the length of that CRC part from the
-		 *     data length of the previous mbuf.
-		 */
-		rxm->next = NULL;
-		if (unlikely(rxq->crc_len > 0)) {
-			first_seg->pkt_len -= ETHER_CRC_LEN;
-			if (data_len <= ETHER_CRC_LEN) {
-				rte_pktmbuf_free_seg(rxm);
-				first_seg->nb_segs--;
-				last_seg->data_len = (uint16_t)
-					(last_seg->data_len -
-					 (ETHER_CRC_LEN - data_len));
-				last_seg->next = NULL;
-			} else
-				rxm->data_len =
-					(uint16_t) (data_len - ETHER_CRC_LEN);
-		}
-
-		/*
-		 * Initialize the first mbuf of the returned packet:
-		 *    - RX port identifier,
-		 *    - hardware offload data, if any:
-		 *      - IP checksum flag,
-		 *      - error flags.
-		 */
-		first_seg->port = rxq->port_id;
-
-		first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
-		first_seg->ol_flags = first_seg->ol_flags |
-					rx_desc_error_to_pkt_flags(rxd.errors);
-
-		/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
-		rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
-
-		/* Prefetch data of first segment, if configured to do so. */
-		rte_packet_prefetch((char *)first_seg->buf_addr +
-			first_seg->data_off);
-
-		/*
-		 * Store the mbuf address into the next entry of the array
-		 * of returned packets.
-		 */
-		rx_pkts[nb_rx++] = first_seg;
-
-		/*
-		 * Setup receipt context for a new packet.
-		 */
-		first_seg = NULL;
-	}
-
-	/*
-	 * Record index of the next RX descriptor to probe.
-	 */
-	rxq->rx_tail = rx_id;
-
-	/*
-	 * Save receive context.
-	 */
-	rxq->pkt_first_seg = first_seg;
-	rxq->pkt_last_seg = last_seg;
-
-	/*
-	 * If the number of free RX descriptors is greater than the RX free
-	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
-	 * register.
-	 * Update the RDT with the value of the last processed RX descriptor
-	 * minus 1, to guarantee that the RDT register is never equal to the
-	 * RDH register, which creates a "full" ring situtation from the
-	 * hardware point of view...
-	 */
-	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
-	if (nb_hold > rxq->rx_free_thresh) {
-		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
-			   "nb_hold=%u nb_rx=%u",
-			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
-			   (unsigned) rx_id, (unsigned) nb_hold,
-			   (unsigned) nb_rx);
-		rx_id = (uint16_t) ((rx_id == 0) ?
-			(rxq->nb_rx_desc - 1) : (rx_id - 1));
-		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
-		nb_hold = 0;
-	}
-	rxq->nb_rx_hold = nb_hold;
-	return (nb_rx);
-}
-
-/*
- * Rings setup and release.
- *
- * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
- * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
- * This will also optimize cache line size effect.
- * H/W supports up to cache line size 128.
- */
-#define EM_ALIGN 128
-
-/*
- * Maximum number of Ring Descriptors.
- *
- * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring
- * desscriptors should meet the following condition:
- * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
- */
-#define EM_MIN_RING_DESC 32
-#define EM_MAX_RING_DESC 4096
-
-#define	EM_MAX_BUF_SIZE     16384
-#define EM_RCTL_FLXBUF_STEP 1024
-
-static const struct rte_memzone *
-ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
-		uint16_t queue_id, uint32_t ring_size, int socket_id)
-{
-	const struct rte_memzone *mz;
-	char z_name[RTE_MEMZONE_NAMESIZE];
-
-	snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
-		dev->driver->pci_drv.name, ring_name, dev->data->port_id,
-		queue_id);
-
-	if ((mz = rte_memzone_lookup(z_name)) != 0)
-		return (mz);
-
-#ifdef RTE_LIBRTE_XEN_DOM0
-	return rte_memzone_reserve_bounded(z_name, ring_size,
-			socket_id, 0, RTE_CACHE_LINE_SIZE, RTE_PGSIZE_2M);
-#else
-	return rte_memzone_reserve(z_name, ring_size, socket_id, 0);
-#endif
-}
-
-static void
-em_tx_queue_release_mbufs(struct em_tx_queue *txq)
-{
-	unsigned i;
-
-	if (txq->sw_ring != NULL) {
-		for (i = 0; i != txq->nb_tx_desc; i++) {
-			if (txq->sw_ring[i].mbuf != NULL) {
-				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
-				txq->sw_ring[i].mbuf = NULL;
-			}
-		}
-	}
-}
-
-static void
-em_tx_queue_release(struct em_tx_queue *txq)
-{
-	if (txq != NULL) {
-		em_tx_queue_release_mbufs(txq);
-		rte_free(txq->sw_ring);
-		rte_free(txq);
-	}
-}
-
-void
-eth_em_tx_queue_release(void *txq)
-{
-	em_tx_queue_release(txq);
-}
-
-/* (Re)set dynamic em_tx_queue fields to defaults */
-static void
-em_reset_tx_queue(struct em_tx_queue *txq)
-{
-	uint16_t i, nb_desc, prev;
-	static const struct e1000_data_desc txd_init = {
-		.upper.fields = {.status = E1000_TXD_STAT_DD},
-	};
-
-	nb_desc = txq->nb_tx_desc;
-
-	/* Initialize ring entries */
-
-	prev = (uint16_t) (nb_desc - 1);
-
-	for (i = 0; i < nb_desc; i++) {
-		txq->tx_ring[i] = txd_init;
-		txq->sw_ring[i].mbuf = NULL;
-		txq->sw_ring[i].last_id = i;
-		txq->sw_ring[prev].next_id = i;
-		prev = i;
-	}
-
-	/*
-	 * Always allow 1 descriptor to be un-allocated to avoid
-	 * a H/W race condition
-	 */
-	txq->nb_tx_free = (uint16_t)(nb_desc - 1);
-	txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
-	txq->nb_tx_used = 0;
-	txq->tx_tail = 0;
-
-	memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
-}
-
-int
-eth_em_tx_queue_setup(struct rte_eth_dev *dev,
-			 uint16_t queue_idx,
-			 uint16_t nb_desc,
-			 unsigned int socket_id,
-			 const struct rte_eth_txconf *tx_conf)
-{
-	const struct rte_memzone *tz;
-	struct em_tx_queue *txq;
-	struct e1000_hw     *hw;
-	uint32_t tsize;
-	uint16_t tx_rs_thresh, tx_free_thresh;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/*
-	 * Validate number of transmit descriptors.
-	 * It must not exceed hardware maximum, and must be multiple
-	 * of EM_ALIGN.
-	 */
-	if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 ||
-			(nb_desc > EM_MAX_RING_DESC) ||
-			(nb_desc < EM_MIN_RING_DESC)) {
-		return -(EINVAL);
-	}
-
-	tx_free_thresh = tx_conf->tx_free_thresh;
-	if (tx_free_thresh == 0)
-		tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
-					DEFAULT_TX_FREE_THRESH);
-
-	tx_rs_thresh = tx_conf->tx_rs_thresh;
-	if (tx_rs_thresh == 0)
-		tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
-					DEFAULT_TX_RS_THRESH);
-
-	if (tx_free_thresh >= (nb_desc - 3)) {
-		PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
-			     "number of TX descriptors minus 3. "
-			     "(tx_free_thresh=%u port=%d queue=%d)",
-			     (unsigned int)tx_free_thresh,
-			     (int)dev->data->port_id, (int)queue_idx);
-		return -(EINVAL);
-	}
-	if (tx_rs_thresh > tx_free_thresh) {
-		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
-			     "tx_free_thresh. (tx_free_thresh=%u "
-			     "tx_rs_thresh=%u port=%d queue=%d)",
-			     (unsigned int)tx_free_thresh,
-			     (unsigned int)tx_rs_thresh,
-			     (int)dev->data->port_id,
-			     (int)queue_idx);
-		return -(EINVAL);
-	}
-
-	/*
-	 * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
-	 * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
-	 * by the NIC and all descriptors are written back after the NIC
-	 * accumulates WTHRESH descriptors.
-	 */
-	if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
-		PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
-			     "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
-			     "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
-			     (int)dev->data->port_id, (int)queue_idx);
-		return -(EINVAL);
-	}
-
-	/* Free memory prior to re-allocation if needed... */
-	if (dev->data->tx_queues[queue_idx] != NULL) {
-		em_tx_queue_release(dev->data->tx_queues[queue_idx]);
-		dev->data->tx_queues[queue_idx] = NULL;
-	}
-
-	/*
-	 * Allocate TX ring hardware descriptors. A memzone large enough to
-	 * handle the maximum ring size is allocated in order to allow for
-	 * resizing in later calls to the queue setup function.
-	 */
-	tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC;
-	if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
-			socket_id)) == NULL)
-		return (-ENOMEM);
-
-	/* Allocate the tx queue data structure. */
-	if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
-			RTE_CACHE_LINE_SIZE)) == NULL)
-		return (-ENOMEM);
-
-	/* Allocate software ring */
-	if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
-			sizeof(txq->sw_ring[0]) * nb_desc,
-			RTE_CACHE_LINE_SIZE)) == NULL) {
-		em_tx_queue_release(txq);
-		return (-ENOMEM);
-	}
-
-	txq->nb_tx_desc = nb_desc;
-	txq->tx_free_thresh = tx_free_thresh;
-	txq->tx_rs_thresh = tx_rs_thresh;
-	txq->pthresh = tx_conf->tx_thresh.pthresh;
-	txq->hthresh = tx_conf->tx_thresh.hthresh;
-	txq->wthresh = tx_conf->tx_thresh.wthresh;
-	txq->queue_id = queue_idx;
-	txq->port_id = dev->data->port_id;
-
-	txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
-#ifndef RTE_LIBRTE_XEN_DOM0
-	txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
-#else
-	txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
-#endif
-	txq->tx_ring = (struct e1000_data_desc *) tz->addr;
-
-	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
-		     txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
-
-	em_reset_tx_queue(txq);
-
-	dev->data->tx_queues[queue_idx] = txq;
-	return (0);
-}
-
-static void
-em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
-{
-	unsigned i;
-
-	if (rxq->sw_ring != NULL) {
-		for (i = 0; i != rxq->nb_rx_desc; i++) {
-			if (rxq->sw_ring[i].mbuf != NULL) {
-				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
-				rxq->sw_ring[i].mbuf = NULL;
-			}
-		}
-	}
-}
-
-static void
-em_rx_queue_release(struct em_rx_queue *rxq)
-{
-	if (rxq != NULL) {
-		em_rx_queue_release_mbufs(rxq);
-		rte_free(rxq->sw_ring);
-		rte_free(rxq);
-	}
-}
-
-void
-eth_em_rx_queue_release(void *rxq)
-{
-	em_rx_queue_release(rxq);
-}
-
-/* Reset dynamic em_rx_queue fields back to defaults */
-static void
-em_reset_rx_queue(struct em_rx_queue *rxq)
-{
-	rxq->rx_tail = 0;
-	rxq->nb_rx_hold = 0;
-	rxq->pkt_first_seg = NULL;
-	rxq->pkt_last_seg = NULL;
-}
-
-int
-eth_em_rx_queue_setup(struct rte_eth_dev *dev,
-		uint16_t queue_idx,
-		uint16_t nb_desc,
-		unsigned int socket_id,
-		const struct rte_eth_rxconf *rx_conf,
-		struct rte_mempool *mp)
-{
-	const struct rte_memzone *rz;
-	struct em_rx_queue *rxq;
-	struct e1000_hw     *hw;
-	uint32_t rsize;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/*
-	 * Validate number of receive descriptors.
-	 * It must not exceed hardware maximum, and must be multiple
-	 * of EM_ALIGN.
-	 */
-	if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 ||
-			(nb_desc > EM_MAX_RING_DESC) ||
-			(nb_desc < EM_MIN_RING_DESC)) {
-		return (-EINVAL);
-	}
-
-	/*
-	 * EM devices don't support drop_en functionality
-	 */
-	if (rx_conf->rx_drop_en) {
-		PMD_INIT_LOG(ERR, "drop_en functionality not supported by "
-			     "device");
-		return (-EINVAL);
-	}
-
-	/* Free memory prior to re-allocation if needed. */
-	if (dev->data->rx_queues[queue_idx] != NULL) {
-		em_rx_queue_release(dev->data->rx_queues[queue_idx]);
-		dev->data->rx_queues[queue_idx] = NULL;
-	}
-
-	/* Allocate RX ring for max possible mumber of hardware descriptors. */
-	rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC;
-	if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
-			socket_id)) == NULL)
-		return (-ENOMEM);
-
-	/* Allocate the RX queue data structure. */
-	if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
-			RTE_CACHE_LINE_SIZE)) == NULL)
-		return (-ENOMEM);
-
-	/* Allocate software ring. */
-	if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
-			sizeof (rxq->sw_ring[0]) * nb_desc,
-			RTE_CACHE_LINE_SIZE)) == NULL) {
-		em_rx_queue_release(rxq);
-		return (-ENOMEM);
-	}
-
-	rxq->mb_pool = mp;
-	rxq->nb_rx_desc = nb_desc;
-	rxq->pthresh = rx_conf->rx_thresh.pthresh;
-	rxq->hthresh = rx_conf->rx_thresh.hthresh;
-	rxq->wthresh = rx_conf->rx_thresh.wthresh;
-	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
-	rxq->queue_id = queue_idx;
-	rxq->port_id = dev->data->port_id;
-	rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
-				0 : ETHER_CRC_LEN);
-
-	rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
-	rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
-#ifndef RTE_LIBRTE_XEN_DOM0
-	rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
-#else
-	rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
-#endif
-	rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
-
-	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
-		     rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
-
-	dev->data->rx_queues[queue_idx] = rxq;
-	em_reset_rx_queue(rxq);
-
-	return (0);
-}
-
-uint32_t
-eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
-{
-#define EM_RXQ_SCAN_INTERVAL 4
-	volatile struct e1000_rx_desc *rxdp;
-	struct em_rx_queue *rxq;
-	uint32_t desc = 0;
-
-	if (rx_queue_id >= dev->data->nb_rx_queues) {
-		PMD_RX_LOG(DEBUG, "Invalid RX queue_id=%d", rx_queue_id);
-		return 0;
-	}
-
-	rxq = dev->data->rx_queues[rx_queue_id];
-	rxdp = &(rxq->rx_ring[rxq->rx_tail]);
-
-	while ((desc < rxq->nb_rx_desc) &&
-		(rxdp->status & E1000_RXD_STAT_DD)) {
-		desc += EM_RXQ_SCAN_INTERVAL;
-		rxdp += EM_RXQ_SCAN_INTERVAL;
-		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
-			rxdp = &(rxq->rx_ring[rxq->rx_tail +
-				desc - rxq->nb_rx_desc]);
-	}
-
-	return desc;
-}
-
-int
-eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
-{
-	volatile struct e1000_rx_desc *rxdp;
-	struct em_rx_queue *rxq = rx_queue;
-	uint32_t desc;
-
-	if (unlikely(offset >= rxq->nb_rx_desc))
-		return 0;
-	desc = rxq->rx_tail + offset;
-	if (desc >= rxq->nb_rx_desc)
-		desc -= rxq->nb_rx_desc;
-
-	rxdp = &rxq->rx_ring[desc];
-	return !!(rxdp->status & E1000_RXD_STAT_DD);
-}
-
-void
-em_dev_clear_queues(struct rte_eth_dev *dev)
-{
-	uint16_t i;
-	struct em_tx_queue *txq;
-	struct em_rx_queue *rxq;
-
-	for (i = 0; i < dev->data->nb_tx_queues; i++) {
-		txq = dev->data->tx_queues[i];
-		if (txq != NULL) {
-			em_tx_queue_release_mbufs(txq);
-			em_reset_tx_queue(txq);
-		}
-	}
-
-	for (i = 0; i < dev->data->nb_rx_queues; i++) {
-		rxq = dev->data->rx_queues[i];
-		if (rxq != NULL) {
-			em_rx_queue_release_mbufs(rxq);
-			em_reset_rx_queue(rxq);
-		}
-	}
-}
-
-/*
- * Takes as input/output parameter RX buffer size.
- * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
- */
-static uint32_t
-em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
-{
-	/*
-	 * For BSIZE & BSEX all configurable sizes are:
-	 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
-	 *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
-	 *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
-	 *  2048: rctl |= E1000_RCTL_SZ_2048;
-	 *  1024: rctl |= E1000_RCTL_SZ_1024;
-	 *   512: rctl |= E1000_RCTL_SZ_512;
-	 *   256: rctl |= E1000_RCTL_SZ_256;
-	 */
-	static const struct {
-		uint32_t bufsz;
-		uint32_t rctl;
-	} bufsz_to_rctl[] = {
-		{16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
-		{8192,  (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX)},
-		{4096,  (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX)},
-		{2048,  E1000_RCTL_SZ_2048},
-		{1024,  E1000_RCTL_SZ_1024},
-		{512,   E1000_RCTL_SZ_512},
-		{256,   E1000_RCTL_SZ_256},
-	};
-
-	int i;
-	uint32_t rctl_bsize;
-
-	rctl_bsize = *bufsz;
-
-	/*
-	 * Starting from 82571 it is possible to specify RX buffer size
-	 * by RCTL.FLXBUF. When this field is different from zero, the
-	 * RX buffer size = RCTL.FLXBUF * 1K
-	 * (e.g. t is possible to specify RX buffer size  1,2,...,15KB).
-	 * It is working ok on real HW, but by some reason doesn't work
-	 * on VMware emulated 82574L.
-	 * So for now, always use BSIZE/BSEX to setup RX buffer size.
-	 * If you don't plan to use it on VMware emulated 82574L and
-	 * would like to specify RX buffer size in 1K granularity,
-	 * uncomment the following lines:
-	 * ***************************************************************
-	 * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
-	 *		rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
-	 *	rctl_bsize /= EM_RCTL_FLXBUF_STEP;
-	 *	*bufsz = rctl_bsize;
-	 *	return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
-	 *		E1000_RCTL_FLXBUF_MASK);
-	 * }
-	 * ***************************************************************
-	 */
-
-	for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
-			i++) {
-		if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
-			*bufsz = bufsz_to_rctl[i].bufsz;
-			return (bufsz_to_rctl[i].rctl);
-		}
-	}
-
-	/* Should never happen. */
-	return (-EINVAL);
-}
-
-static int
-em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
-{
-	struct em_rx_entry *rxe = rxq->sw_ring;
-	uint64_t dma_addr;
-	unsigned i;
-	static const struct e1000_rx_desc rxd_init = {
-		.buffer_addr = 0,
-	};
-
-	/* Initialize software ring entries */
-	for (i = 0; i < rxq->nb_rx_desc; i++) {
-		volatile struct e1000_rx_desc *rxd;
-		struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
-
-		if (mbuf == NULL) {
-			PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
-				     "queue_id=%hu", rxq->queue_id);
-			return (-ENOMEM);
-		}
-
-		dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
-
-		/* Clear HW ring memory */
-		rxq->rx_ring[i] = rxd_init;
-
-		rxd = &rxq->rx_ring[i];
-		rxd->buffer_addr = dma_addr;
-		rxe[i].mbuf = mbuf;
-	}
-
-	return 0;
-}
-
-/*********************************************************************
- *
- *  Enable receive unit.
- *
- **********************************************************************/
-int
-eth_em_rx_init(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw;
-	struct em_rx_queue *rxq;
-	uint32_t rctl;
-	uint32_t rfctl;
-	uint32_t rxcsum;
-	uint32_t rctl_bsize;
-	uint16_t i;
-	int ret;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/*
-	 * Make sure receives are disabled while setting
-	 * up the descriptor ring.
-	 */
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
-
-	rfctl = E1000_READ_REG(hw, E1000_RFCTL);
-
-	/* Disable extended descriptor type. */
-	rfctl &= ~E1000_RFCTL_EXTEN;
-	/* Disable accelerated acknowledge */
-	if (hw->mac.type == e1000_82574)
-		rfctl |= E1000_RFCTL_ACK_DIS;
-
-	E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
-
-	/*
-	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
-	 * long latencies are observed, like Lenovo X60. This
-	 * change eliminates the problem, but since having positive
-	 * values in RDTR is a known source of problems on other
-	 * platforms another solution is being sought.
-	 */
-	if (hw->mac.type == e1000_82573)
-		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
-
-	dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
-
-	/* Determine RX bufsize. */
-	rctl_bsize = EM_MAX_BUF_SIZE;
-	for (i = 0; i < dev->data->nb_rx_queues; i++) {
-		uint32_t buf_size;
-
-		rxq = dev->data->rx_queues[i];
-		buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
-			RTE_PKTMBUF_HEADROOM;
-		rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
-	}
-
-	rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
-
-	/* Configure and enable each RX queue. */
-	for (i = 0; i < dev->data->nb_rx_queues; i++) {
-		uint64_t bus_addr;
-		uint32_t rxdctl;
-
-		rxq = dev->data->rx_queues[i];
-
-		/* Allocate buffers for descriptor rings and setup queue */
-		ret = em_alloc_rx_queue_mbufs(rxq);
-		if (ret)
-			return ret;
-
-		/*
-		 * Reset crc_len in case it was changed after queue setup by a
-		 *  call to configure
-		 */
-		rxq->crc_len =
-			(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
-							0 : ETHER_CRC_LEN);
-
-		bus_addr = rxq->rx_ring_phys_addr;
-		E1000_WRITE_REG(hw, E1000_RDLEN(i),
-				rxq->nb_rx_desc *
-				sizeof(*rxq->rx_ring));
-		E1000_WRITE_REG(hw, E1000_RDBAH(i),
-				(uint32_t)(bus_addr >> 32));
-		E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
-
-		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
-		E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
-
-		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
-		rxdctl &= 0xFE000000;
-		rxdctl |= rxq->pthresh & 0x3F;
-		rxdctl |= (rxq->hthresh & 0x3F) << 8;
-		rxdctl |= (rxq->wthresh & 0x3F) << 16;
-		rxdctl |= E1000_RXDCTL_GRAN;
-		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
-
-		/*
-		 * Due to EM devices not having any sort of hardware
-		 * limit for packet length, jumbo frame of any size
-		 * can be accepted, thus we have to enable scattered
-		 * rx if jumbo frames are enabled (or if buffer size
-		 * is too small to accommodate non-jumbo packets)
-		 * to avoid splitting packets that don't fit into
-		 * one buffer.
-		 */
-		if (dev->data->dev_conf.rxmode.jumbo_frame ||
-				rctl_bsize < ETHER_MAX_LEN) {
-			if (!dev->data->scattered_rx)
-				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
-			dev->rx_pkt_burst =
-				(eth_rx_burst_t)eth_em_recv_scattered_pkts;
-			dev->data->scattered_rx = 1;
-		}
-	}
-
-	if (dev->data->dev_conf.rxmode.enable_scatter) {
-		if (!dev->data->scattered_rx)
-			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
-		dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
-		dev->data->scattered_rx = 1;
-	}
-
-	/*
-	 * Setup the Checksum Register.
-	 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
-	 */
-	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
-
-	if (dev->data->dev_conf.rxmode.hw_ip_checksum)
-		rxcsum |= E1000_RXCSUM_IPOFL;
-	else
-		rxcsum &= ~E1000_RXCSUM_IPOFL;
-	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
-
-	/* No MRQ or RSS support for now */
-
-	/* Set early receive threshold on appropriate hw */
-	if ((hw->mac.type == e1000_ich9lan ||
-			hw->mac.type == e1000_pch2lan ||
-			hw->mac.type == e1000_ich10lan) &&
-			dev->data->dev_conf.rxmode.jumbo_frame == 1) {
-		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
-		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
-		E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
-	}
-
-	if (hw->mac.type == e1000_pch2lan) {
-		if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
-			e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
-		else
-			e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
-	}
-
-	/* Setup the Receive Control Register. */
-	if (dev->data->dev_conf.rxmode.hw_strip_crc)
-		rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
-	else
-		rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
-
-	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
-	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
-		E1000_RCTL_RDMTS_HALF |
-		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
-
-	/* Make sure VLAN Filters are off. */
-	rctl &= ~E1000_RCTL_VFE;
-	/* Don't store bad packets. */
-	rctl &= ~E1000_RCTL_SBP;
-	/* Legacy descriptor type. */
-	rctl &= ~E1000_RCTL_DTYP_MASK;
-
-	/*
-	 * Configure support of jumbo frames, if any.
-	 */
-	if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
-		rctl |= E1000_RCTL_LPE;
-	else
-		rctl &= ~E1000_RCTL_LPE;
-
-	/* Enable Receives. */
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
-	return 0;
-}
-
-/*********************************************************************
- *
- *  Enable transmit unit.
- *
- **********************************************************************/
-void
-eth_em_tx_init(struct rte_eth_dev *dev)
-{
-	struct e1000_hw     *hw;
-	struct em_tx_queue *txq;
-	uint32_t tctl;
-	uint32_t txdctl;
-	uint16_t i;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/* Setup the Base and Length of the Tx Descriptor Rings. */
-	for (i = 0; i < dev->data->nb_tx_queues; i++) {
-		uint64_t bus_addr;
-
-		txq = dev->data->tx_queues[i];
-		bus_addr = txq->tx_ring_phys_addr;
-		E1000_WRITE_REG(hw, E1000_TDLEN(i),
-				txq->nb_tx_desc *
-				sizeof(*txq->tx_ring));
-		E1000_WRITE_REG(hw, E1000_TDBAH(i),
-				(uint32_t)(bus_addr >> 32));
-		E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
-
-		/* Setup the HW Tx Head and Tail descriptor pointers. */
-		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
-		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
-
-		/* Setup Transmit threshold registers. */
-		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
-		/*
-		 * bit 22 is reserved, on some models should always be 0,
-		 * on others  - always 1.
-		 */
-		txdctl &= E1000_TXDCTL_COUNT_DESC;
-		txdctl |= txq->pthresh & 0x3F;
-		txdctl |= (txq->hthresh & 0x3F) << 8;
-		txdctl |= (txq->wthresh & 0x3F) << 16;
-		txdctl |= E1000_TXDCTL_GRAN;
-		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
-	}
-
-	/* Program the Transmit Control Register. */
-	tctl = E1000_READ_REG(hw, E1000_TCTL);
-	tctl &= ~E1000_TCTL_CT;
-	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
-		 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
-
-	/* This write will effectively turn on the transmit unit. */
-	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-}
-
diff --git a/lib/librte_pmd_e1000/igb_ethdev.c b/lib/librte_pmd_e1000/igb_ethdev.c
deleted file mode 100644
index 4415155..0000000
--- a/lib/librte_pmd_e1000/igb_ethdev.c
+++ /dev/null
@@ -1,3656 +0,0 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/queue.h>
-#include <stdio.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-
-#include <rte_common.h>
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_memory.h>
-#include <rte_memzone.h>
-#include <rte_eal.h>
-#include <rte_atomic.h>
-#include <rte_malloc.h>
-#include <rte_dev.h>
-
-#include "e1000_logs.h"
-#include "e1000/e1000_api.h"
-#include "e1000_ethdev.h"
-
-/*
- * Default values for port configuration
- */
-#define IGB_DEFAULT_RX_FREE_THRESH  32
-#define IGB_DEFAULT_RX_PTHRESH      8
-#define IGB_DEFAULT_RX_HTHRESH      8
-#define IGB_DEFAULT_RX_WTHRESH      0
-
-#define IGB_DEFAULT_TX_PTHRESH      32
-#define IGB_DEFAULT_TX_HTHRESH      0
-#define IGB_DEFAULT_TX_WTHRESH      0
-
-/* Bit shift and mask */
-#define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
-#define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
-#define IGB_8_BIT_WIDTH  CHAR_BIT
-#define IGB_8_BIT_MASK   UINT8_MAX
-
-static int  eth_igb_configure(struct rte_eth_dev *dev);
-static int  eth_igb_start(struct rte_eth_dev *dev);
-static void eth_igb_stop(struct rte_eth_dev *dev);
-static void eth_igb_close(struct rte_eth_dev *dev);
-static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
-static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
-static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
-static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
-static int  eth_igb_link_update(struct rte_eth_dev *dev,
-				int wait_to_complete);
-static void eth_igb_stats_get(struct rte_eth_dev *dev,
-				struct rte_eth_stats *rte_stats);
-static void eth_igb_stats_reset(struct rte_eth_dev *dev);
-static void eth_igb_infos_get(struct rte_eth_dev *dev,
-			      struct rte_eth_dev_info *dev_info);
-static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
-				struct rte_eth_dev_info *dev_info);
-static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
-				struct rte_eth_fc_conf *fc_conf);
-static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
-				struct rte_eth_fc_conf *fc_conf);
-static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
-static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
-static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
-static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
-							void *param);
-static int  igb_hardware_init(struct e1000_hw *hw);
-static void igb_hw_control_acquire(struct e1000_hw *hw);
-static void igb_hw_control_release(struct e1000_hw *hw);
-static void igb_init_manageability(struct e1000_hw *hw);
-static void igb_release_manageability(struct e1000_hw *hw);
-
-static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
-
-static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
-		uint16_t vlan_id, int on);
-static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
-static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
-
-static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
-static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
-
-static int eth_igb_led_on(struct rte_eth_dev *dev);
-static int eth_igb_led_off(struct rte_eth_dev *dev);
-
-static void igb_intr_disable(struct e1000_hw *hw);
-static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
-static void eth_igb_rar_set(struct rte_eth_dev *dev,
-		struct ether_addr *mac_addr,
-		uint32_t index, uint32_t pool);
-static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
-
-static void igbvf_intr_disable(struct e1000_hw *hw);
-static int igbvf_dev_configure(struct rte_eth_dev *dev);
-static int igbvf_dev_start(struct rte_eth_dev *dev);
-static void igbvf_dev_stop(struct rte_eth_dev *dev);
-static void igbvf_dev_close(struct rte_eth_dev *dev);
-static int eth_igbvf_link_update(struct e1000_hw *hw);
-static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
-static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
-static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
-		uint16_t vlan_id, int on);
-static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
-static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
-static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
-				   struct rte_eth_rss_reta_entry64 *reta_conf,
-				   uint16_t reta_size);
-static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
-				  struct rte_eth_rss_reta_entry64 *reta_conf,
-				  uint16_t reta_size);
-
-static int eth_igb_syn_filter_set(struct rte_eth_dev *dev,
-			struct rte_eth_syn_filter *filter,
-			bool add);
-static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
-			struct rte_eth_syn_filter *filter);
-static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
-			enum rte_filter_op filter_op,
-			void *arg);
-static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter);
-static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter);
-static int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
-			struct rte_eth_flex_filter *filter,
-			bool add);
-static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
-			struct rte_eth_flex_filter *filter);
-static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
-			enum rte_filter_op filter_op,
-			void *arg);
-static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter);
-static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter);
-static int igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *filter,
-			bool add);
-static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *filter);
-static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
-				enum rte_filter_op filter_op,
-				void *arg);
-static int igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ethertype_filter *filter,
-			bool add);
-static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
-				enum rte_filter_op filter_op,
-				void *arg);
-static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ethertype_filter *filter);
-static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
-		     enum rte_filter_type filter_type,
-		     enum rte_filter_op filter_op,
-		     void *arg);
-
-/*
- * Define VF Stats MACRO for Non "cleared on read" register
- */
-#define UPDATE_VF_STAT(reg, last, cur)            \
-{                                                 \
-	u32 latest = E1000_READ_REG(hw, reg);     \
-	cur += latest - last;                     \
-	last = latest;                            \
-}
-
-
-#define IGB_FC_PAUSE_TIME 0x0680
-#define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
-#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
-
-#define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
-
-static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
-
-/*
- * The set of PCI devices this driver supports
- */
-static const struct rte_pci_id pci_id_igb_map[] = {
-
-#define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
-#include "rte_pci_dev_ids.h"
-
-{0},
-};
-
-/*
- * The set of PCI devices this driver supports (for 82576&I350 VF)
- */
-static const struct rte_pci_id pci_id_igbvf_map[] = {
-
-#define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
-#include "rte_pci_dev_ids.h"
-
-{0},
-};
-
-static const struct eth_dev_ops eth_igb_ops = {
-	.dev_configure        = eth_igb_configure,
-	.dev_start            = eth_igb_start,
-	.dev_stop             = eth_igb_stop,
-	.dev_close            = eth_igb_close,
-	.promiscuous_enable   = eth_igb_promiscuous_enable,
-	.promiscuous_disable  = eth_igb_promiscuous_disable,
-	.allmulticast_enable  = eth_igb_allmulticast_enable,
-	.allmulticast_disable = eth_igb_allmulticast_disable,
-	.link_update          = eth_igb_link_update,
-	.stats_get            = eth_igb_stats_get,
-	.stats_reset          = eth_igb_stats_reset,
-	.dev_infos_get        = eth_igb_infos_get,
-	.mtu_set              = eth_igb_mtu_set,
-	.vlan_filter_set      = eth_igb_vlan_filter_set,
-	.vlan_tpid_set        = eth_igb_vlan_tpid_set,
-	.vlan_offload_set     = eth_igb_vlan_offload_set,
-	.rx_queue_setup       = eth_igb_rx_queue_setup,
-	.rx_queue_release     = eth_igb_rx_queue_release,
-	.rx_queue_count       = eth_igb_rx_queue_count,
-	.rx_descriptor_done   = eth_igb_rx_descriptor_done,
-	.tx_queue_setup       = eth_igb_tx_queue_setup,
-	.tx_queue_release     = eth_igb_tx_queue_release,
-	.dev_led_on           = eth_igb_led_on,
-	.dev_led_off          = eth_igb_led_off,
-	.flow_ctrl_get        = eth_igb_flow_ctrl_get,
-	.flow_ctrl_set        = eth_igb_flow_ctrl_set,
-	.mac_addr_add         = eth_igb_rar_set,
-	.mac_addr_remove      = eth_igb_rar_clear,
-	.reta_update          = eth_igb_rss_reta_update,
-	.reta_query           = eth_igb_rss_reta_query,
-	.rss_hash_update      = eth_igb_rss_hash_update,
-	.rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
-	.filter_ctrl          = eth_igb_filter_ctrl,
-};
-
-/*
- * dev_ops for virtual function, bare necessities for basic vf
- * operation have been implemented
- */
-static const struct eth_dev_ops igbvf_eth_dev_ops = {
-	.dev_configure        = igbvf_dev_configure,
-	.dev_start            = igbvf_dev_start,
-	.dev_stop             = igbvf_dev_stop,
-	.dev_close            = igbvf_dev_close,
-	.link_update          = eth_igb_link_update,
-	.stats_get            = eth_igbvf_stats_get,
-	.stats_reset          = eth_igbvf_stats_reset,
-	.vlan_filter_set      = igbvf_vlan_filter_set,
-	.dev_infos_get        = eth_igbvf_infos_get,
-	.rx_queue_setup       = eth_igb_rx_queue_setup,
-	.rx_queue_release     = eth_igb_rx_queue_release,
-	.tx_queue_setup       = eth_igb_tx_queue_setup,
-	.tx_queue_release     = eth_igb_tx_queue_release,
-};
-
-/**
- * Atomically reads the link status information from global
- * structure rte_eth_dev.
- *
- * @param dev
- *   - Pointer to the structure rte_eth_dev to read from.
- *   - Pointer to the buffer to be saved with the link status.
- *
- * @return
- *   - On success, zero.
- *   - On failure, negative value.
- */
-static inline int
-rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
-				struct rte_eth_link *link)
-{
-	struct rte_eth_link *dst = link;
-	struct rte_eth_link *src = &(dev->data->dev_link);
-
-	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
-					*(uint64_t *)src) == 0)
-		return -1;
-
-	return 0;
-}
-
-/**
- * Atomically writes the link status information into global
- * structure rte_eth_dev.
- *
- * @param dev
- *   - Pointer to the structure rte_eth_dev to read from.
- *   - Pointer to the buffer to be saved with the link status.
- *
- * @return
- *   - On success, zero.
- *   - On failure, negative value.
- */
-static inline int
-rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
-				struct rte_eth_link *link)
-{
-	struct rte_eth_link *dst = &(dev->data->dev_link);
-	struct rte_eth_link *src = link;
-
-	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
-					*(uint64_t *)src) == 0)
-		return -1;
-
-	return 0;
-}
-
-static inline void
-igb_intr_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
-	E1000_WRITE_FLUSH(hw);
-}
-
-static void
-igb_intr_disable(struct e1000_hw *hw)
-{
-	E1000_WRITE_REG(hw, E1000_IMC, ~0);
-	E1000_WRITE_FLUSH(hw);
-}
-
-static inline int32_t
-igb_pf_reset_hw(struct e1000_hw *hw)
-{
-	uint32_t ctrl_ext;
-	int32_t status;
-
-	status = e1000_reset_hw(hw);
-
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
-	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	E1000_WRITE_FLUSH(hw);
-
-	return status;
-}
-
-static void
-igb_identify_hardware(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	hw->vendor_id = dev->pci_dev->id.vendor_id;
-	hw->device_id = dev->pci_dev->id.device_id;
-	hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
-	hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
-
-	e1000_set_mac_type(hw);
-
-	/* need to check if it is a vf device below */
-}
-
-static int
-igb_reset_swfw_lock(struct e1000_hw *hw)
-{
-	int ret_val;
-
-	/*
-	 * Do mac ops initialization manually here, since we will need
-	 * some function pointers set by this call.
-	 */
-	ret_val = e1000_init_mac_params(hw);
-	if (ret_val)
-		return ret_val;
-
-	/*
-	 * SMBI lock should not fail in this early stage. If this is the case,
-	 * it is due to an improper exit of the application.
-	 * So force the release of the faulty lock.
-	 */
-	if (e1000_get_hw_semaphore_generic(hw) < 0) {
-		PMD_DRV_LOG(DEBUG, "SMBI lock released");
-	}
-	e1000_put_hw_semaphore_generic(hw);
-
-	if (hw->mac.ops.acquire_swfw_sync != NULL) {
-		uint16_t mask;
-
-		/*
-		 * Phy lock should not fail in this early stage. If this is the case,
-		 * it is due to an improper exit of the application.
-		 * So force the release of the faulty lock.
-		 */
-		mask = E1000_SWFW_PHY0_SM << hw->bus.func;
-		if (hw->bus.func > E1000_FUNC_1)
-			mask <<= 2;
-		if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
-			PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
-				    hw->bus.func);
-		}
-		hw->mac.ops.release_swfw_sync(hw, mask);
-
-		/*
-		 * This one is more tricky since it is common to all ports; but
-		 * swfw_sync retries last long enough (1s) to be almost sure that if
-		 * lock can not be taken it is due to an improper lock of the
-		 * semaphore.
-		 */
-		mask = E1000_SWFW_EEP_SM;
-		if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
-			PMD_DRV_LOG(DEBUG, "SWFW common locks released");
-		}
-		hw->mac.ops.release_swfw_sync(hw, mask);
-	}
-
-	return E1000_SUCCESS;
-}
-
-static int
-eth_igb_dev_init(struct rte_eth_dev *eth_dev)
-{
-	int error = 0;
-	struct rte_pci_device *pci_dev;
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
-	struct e1000_vfta * shadow_vfta =
-			E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
-	uint32_t ctrl_ext;
-
-	pci_dev = eth_dev->pci_dev;
-	eth_dev->dev_ops = &eth_igb_ops;
-	eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
-	eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
-
-	/* for secondary processes, we don't initialise any further as primary
-	 * has already done this work. Only check we don't need a different
-	 * RX function */
-	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
-		if (eth_dev->data->scattered_rx)
-			eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
-		return 0;
-	}
-
-	hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
-
-	igb_identify_hardware(eth_dev);
-	if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
-		error = -EIO;
-		goto err_late;
-	}
-
-	e1000_get_bus_info(hw);
-
-	/* Reset any pending lock */
-	if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
-		error = -EIO;
-		goto err_late;
-	}
-
-	/* Finish initialization */
-	if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
-		error = -EIO;
-		goto err_late;
-	}
-
-	hw->mac.autoneg = 1;
-	hw->phy.autoneg_wait_to_complete = 0;
-	hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
-
-	/* Copper options */
-	if (hw->phy.media_type == e1000_media_type_copper) {
-		hw->phy.mdix = 0; /* AUTO_ALL_MODES */
-		hw->phy.disable_polarity_correction = 0;
-		hw->phy.ms_type = e1000_ms_hw_default;
-	}
-
-	/*
-	 * Start from a known state, this is important in reading the nvm
-	 * and mac from that.
-	 */
-	igb_pf_reset_hw(hw);
-
-	/* Make sure we have a good EEPROM before we read from it */
-	if (e1000_validate_nvm_checksum(hw) < 0) {
-		/*
-		 * Some PCI-E parts fail the first check due to
-		 * the link being in sleep state, call it again,
-		 * if it fails a second time its a real issue.
-		 */
-		if (e1000_validate_nvm_checksum(hw) < 0) {
-			PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
-			error = -EIO;
-			goto err_late;
-		}
-	}
-
-	/* Read the permanent MAC address out of the EEPROM */
-	if (e1000_read_mac_addr(hw) != 0) {
-		PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
-		error = -EIO;
-		goto err_late;
-	}
-
-	/* Allocate memory for storing MAC addresses */
-	eth_dev->data->mac_addrs = rte_zmalloc("e1000",
-		ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
-	if (eth_dev->data->mac_addrs == NULL) {
-		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
-						"store MAC addresses",
-				ETHER_ADDR_LEN * hw->mac.rar_entry_count);
-		error = -ENOMEM;
-		goto err_late;
-	}
-
-	/* Copy the permanent MAC address */
-	ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
-
-	/* initialize the vfta */
-	memset(shadow_vfta, 0, sizeof(*shadow_vfta));
-
-	/* Now initialize the hardware */
-	if (igb_hardware_init(hw) != 0) {
-		PMD_INIT_LOG(ERR, "Hardware initialization failed");
-		rte_free(eth_dev->data->mac_addrs);
-		eth_dev->data->mac_addrs = NULL;
-		error = -ENODEV;
-		goto err_late;
-	}
-	hw->mac.get_link_status = 1;
-
-	/* Indicate SOL/IDER usage */
-	if (e1000_check_reset_block(hw) < 0) {
-		PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
-					"SOL/IDER session");
-	}
-
-	/* initialize PF if max_vfs not zero */
-	igb_pf_host_init(eth_dev);
-
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
-	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	E1000_WRITE_FLUSH(hw);
-
-	PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x",
-		     eth_dev->data->port_id, pci_dev->id.vendor_id,
-		     pci_dev->id.device_id);
-
-	rte_intr_callback_register(&(pci_dev->intr_handle),
-		eth_igb_interrupt_handler, (void *)eth_dev);
-
-	/* enable uio intr after callback register */
-	rte_intr_enable(&(pci_dev->intr_handle));
-
-	/* enable support intr */
-	igb_intr_enable(eth_dev);
-
-	TAILQ_INIT(&filter_info->flex_list);
-	filter_info->flex_mask = 0;
-	TAILQ_INIT(&filter_info->twotuple_list);
-	filter_info->twotuple_mask = 0;
-	TAILQ_INIT(&filter_info->fivetuple_list);
-	filter_info->fivetuple_mask = 0;
-
-	return 0;
-
-err_late:
-	igb_hw_control_release(hw);
-
-	return (error);
-}
-
-/*
- * Virtual Function device init
- */
-static int
-eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
-{
-	struct rte_pci_device *pci_dev;
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
-	int diag;
-
-	PMD_INIT_FUNC_TRACE();
-
-	eth_dev->dev_ops = &igbvf_eth_dev_ops;
-	eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
-	eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
-
-	/* for secondary processes, we don't initialise any further as primary
-	 * has already done this work. Only check we don't need a different
-	 * RX function */
-	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
-		if (eth_dev->data->scattered_rx)
-			eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
-		return 0;
-	}
-
-	pci_dev = eth_dev->pci_dev;
-
-	hw->device_id = pci_dev->id.device_id;
-	hw->vendor_id = pci_dev->id.vendor_id;
-	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
-
-	/* Initialize the shared code (base driver) */
-	diag = e1000_setup_init_funcs(hw, TRUE);
-	if (diag != 0) {
-		PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
-			diag);
-		return -EIO;
-	}
-
-	/* init_mailbox_params */
-	hw->mbx.ops.init_params(hw);
-
-	/* Disable the interrupts for VF */
-	igbvf_intr_disable(hw);
-
-	diag = hw->mac.ops.reset_hw(hw);
-
-	/* Allocate memory for storing MAC addresses */
-	eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
-		hw->mac.rar_entry_count, 0);
-	if (eth_dev->data->mac_addrs == NULL) {
-		PMD_INIT_LOG(ERR,
-			"Failed to allocate %d bytes needed to store MAC "
-			"addresses",
-			ETHER_ADDR_LEN * hw->mac.rar_entry_count);
-		return -ENOMEM;
-	}
-
-	/* Copy the permanent MAC address */
-	ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
-			&eth_dev->data->mac_addrs[0]);
-
-	PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
-		     "mac.type=%s",
-		     eth_dev->data->port_id, pci_dev->id.vendor_id,
-		     pci_dev->id.device_id, "igb_mac_82576_vf");
-
-	return 0;
-}
-
-static struct eth_driver rte_igb_pmd = {
-	{
-		.name = "rte_igb_pmd",
-		.id_table = pci_id_igb_map,
-		.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
-	},
-	.eth_dev_init = eth_igb_dev_init,
-	.dev_private_size = sizeof(struct e1000_adapter),
-};
-
-/*
- * virtual function driver struct
- */
-static struct eth_driver rte_igbvf_pmd = {
-	{
-		.name = "rte_igbvf_pmd",
-		.id_table = pci_id_igbvf_map,
-		.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
-	},
-	.eth_dev_init = eth_igbvf_dev_init,
-	.dev_private_size = sizeof(struct e1000_adapter),
-};
-
-static int
-rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
-{
-	rte_eth_driver_register(&rte_igb_pmd);
-	return 0;
-}
-
-static void
-igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	/* RCTL: enable VLAN filter since VMDq always use VLAN filter */
-	uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl |= E1000_RCTL_VFE;
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-/*
- * VF Driver initialization routine.
- * Invoked one at EAL init time.
- * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
- */
-static int
-rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
-{
-	PMD_INIT_FUNC_TRACE();
-
-	rte_eth_driver_register(&rte_igbvf_pmd);
-	return (0);
-}
-
-static int
-eth_igb_configure(struct rte_eth_dev *dev)
-{
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
-	PMD_INIT_FUNC_TRACE();
-	intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
-	PMD_INIT_FUNC_TRACE();
-
-	return (0);
-}
-
-static int
-eth_igb_start(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	int ret, i, mask;
-	uint32_t ctrl_ext;
-
-	PMD_INIT_FUNC_TRACE();
-
-	/* Power up the phy. Needed to make the link go Up */
-	e1000_power_up_phy(hw);
-
-	/*
-	 * Packet Buffer Allocation (PBA)
-	 * Writing PBA sets the receive portion of the buffer
-	 * the remainder is used for the transmit buffer.
-	 */
-	if (hw->mac.type == e1000_82575) {
-		uint32_t pba;
-
-		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
-		E1000_WRITE_REG(hw, E1000_PBA, pba);
-	}
-
-	/* Put the address into the Receive Address Array */
-	e1000_rar_set(hw, hw->mac.addr, 0);
-
-	/* Initialize the hardware */
-	if (igb_hardware_init(hw)) {
-		PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
-		return (-EIO);
-	}
-
-	E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
-
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
-	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
-	E1000_WRITE_FLUSH(hw);
-
-	/* configure PF module if SRIOV enabled */
-	igb_pf_host_configure(dev);
-
-	/* Configure for OS presence */
-	igb_init_manageability(hw);
-
-	eth_igb_tx_init(dev);
-
-	/* This can fail when allocating mbufs for descriptor rings */
-	ret = eth_igb_rx_init(dev);
-	if (ret) {
-		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
-		igb_dev_clear_queues(dev);
-		return ret;
-	}
-
-	e1000_clear_hw_cntrs_base_generic(hw);
-
-	/*
-	 * VLAN Offload Settings
-	 */
-	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
-			ETH_VLAN_EXTEND_MASK;
-	eth_igb_vlan_offload_set(dev, mask);
-
-	if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
-		/* Enable VLAN filter since VMDq always use VLAN filter */
-		igb_vmdq_vlan_hw_filter_enable(dev);
-	}
-
-	/*
-	 * Configure the Interrupt Moderation register (EITR) with the maximum
-	 * possible value (0xFFFF) to minimize "System Partial Write" issued by
-	 * spurious [DMA] memory updates of RX and TX ring descriptors.
-	 *
-	 * With a EITR granularity of 2 microseconds in the 82576, only 7/8
-	 * spurious memory updates per second should be expected.
-	 * ((65535 * 2) / 1000.1000 ~= 0.131 second).
-	 *
-	 * Because interrupts are not used at all, the MSI-X is not activated
-	 * and interrupt moderation is controlled by EITR[0].
-	 *
-	 * Note that having [almost] disabled memory updates of RX and TX ring
-	 * descriptors through the Interrupt Moderation mechanism, memory
-	 * updates of ring descriptors are now moderated by the configurable
-	 * value of Write-Back Threshold registers.
-	 */
-	if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
-		(hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
-		(hw->mac.type == e1000_i211)) {
-		uint32_t ivar;
-
-		/* Enable all RX & TX queues in the IVAR registers */
-		ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
-		for (i = 0; i < 8; i++)
-			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
-
-		/* Configure EITR with the maximum possible value (0xFFFF) */
-		E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
-	}
-
-	/* Setup link speed and duplex */
-	switch (dev->data->dev_conf.link_speed) {
-	case ETH_LINK_SPEED_AUTONEG:
-		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
-		else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
-		else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
-		else
-			goto error_invalid_config;
-		break;
-	case ETH_LINK_SPEED_10:
-		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
-		else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
-			hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
-		else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
-			hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
-		else
-			goto error_invalid_config;
-		break;
-	case ETH_LINK_SPEED_100:
-		if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
-			hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
-		else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
-			hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
-		else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
-			hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
-		else
-			goto error_invalid_config;
-		break;
-	case ETH_LINK_SPEED_1000:
-		if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
-				(dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
-			hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
-		else
-			goto error_invalid_config;
-		break;
-	case ETH_LINK_SPEED_10000:
-	default:
-		goto error_invalid_config;
-	}
-	e1000_setup_link(hw);
-
-	/* check if lsc interrupt feature is enabled */
-	if (dev->data->dev_conf.intr_conf.lsc != 0)
-		ret = eth_igb_lsc_interrupt_setup(dev);
-
-	/* resume enabled intr since hw reset */
-	igb_intr_enable(dev);
-
-	PMD_INIT_LOG(DEBUG, "<<");
-
-	return (0);
-
-error_invalid_config:
-	PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
-		     dev->data->dev_conf.link_speed,
-		     dev->data->dev_conf.link_duplex, dev->data->port_id);
-	igb_dev_clear_queues(dev);
-	return (-EINVAL);
-}
-
-/*********************************************************************
- *
- *  This routine disables all traffic on the adapter by issuing a
- *  global reset on the MAC.
- *
- **********************************************************************/
-static void
-eth_igb_stop(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	struct rte_eth_link link;
-	struct e1000_flex_filter *p_flex;
-	struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
-	struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
-
-	igb_intr_disable(hw);
-	igb_pf_reset_hw(hw);
-	E1000_WRITE_REG(hw, E1000_WUC, 0);
-
-	/* Set bit for Go Link disconnect */
-	if (hw->mac.type >= e1000_82580) {
-		uint32_t phpm_reg;
-
-		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-		phpm_reg |= E1000_82580_PM_GO_LINKD;
-		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
-	}
-
-	/* Power down the phy. Needed to make the link go Down */
-	if (hw->phy.media_type == e1000_media_type_copper)
-		e1000_power_down_phy(hw);
-	else
-		e1000_shutdown_fiber_serdes_link(hw);
-
-	igb_dev_clear_queues(dev);
-
-	/* clear the recorded link status */
-	memset(&link, 0, sizeof(link));
-	rte_igb_dev_atomic_write_link_status(dev, &link);
-
-	/* Remove all flex filters of the device */
-	while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
-		TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
-		rte_free(p_flex);
-	}
-	filter_info->flex_mask = 0;
-
-	/* Remove all ntuple filters of the device */
-	for (p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list);
-	     p_5tuple != NULL; p_5tuple = p_5tuple_next) {
-		p_5tuple_next = TAILQ_NEXT(p_5tuple, entries);
-		TAILQ_REMOVE(&filter_info->fivetuple_list,
-			     p_5tuple, entries);
-		rte_free(p_5tuple);
-	}
-	filter_info->fivetuple_mask = 0;
-	for (p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list);
-	     p_2tuple != NULL; p_2tuple = p_2tuple_next) {
-		p_2tuple_next = TAILQ_NEXT(p_2tuple, entries);
-		TAILQ_REMOVE(&filter_info->twotuple_list,
-			     p_2tuple, entries);
-		rte_free(p_2tuple);
-	}
-	filter_info->twotuple_mask = 0;
-}
-
-static void
-eth_igb_close(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct rte_eth_link link;
-
-	eth_igb_stop(dev);
-	e1000_phy_hw_reset(hw);
-	igb_release_manageability(hw);
-	igb_hw_control_release(hw);
-
-	/* Clear bit for Go Link disconnect */
-	if (hw->mac.type >= e1000_82580) {
-		uint32_t phpm_reg;
-
-		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
-		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
-		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
-	}
-
-	igb_dev_clear_queues(dev);
-
-	memset(&link, 0, sizeof(link));
-	rte_igb_dev_atomic_write_link_status(dev, &link);
-}
-
-static int
-igb_get_rx_buffer_size(struct e1000_hw *hw)
-{
-	uint32_t rx_buf_size;
-	if (hw->mac.type == e1000_82576) {
-		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
-	} else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
-		/* PBS needs to be translated according to a lookup table */
-		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
-		rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
-		rx_buf_size = (rx_buf_size << 10);
-	} else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
-		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
-	} else {
-		rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
-	}
-
-	return rx_buf_size;
-}
-
-/*********************************************************************
- *
- *  Initialize the hardware
- *
- **********************************************************************/
-static int
-igb_hardware_init(struct e1000_hw *hw)
-{
-	uint32_t rx_buf_size;
-	int diag;
-
-	/* Let the firmware know the OS is in control */
-	igb_hw_control_acquire(hw);
-
-	/*
-	 * These parameters control the automatic generation (Tx) and
-	 * response (Rx) to Ethernet PAUSE frames.
-	 * - High water mark should allow for at least two standard size (1518)
-	 *   frames to be received after sending an XOFF.
-	 * - Low water mark works best when it is very near the high water mark.
-	 *   This allows the receiver to restart by sending XON when it has
-	 *   drained a bit. Here we use an arbitrary value of 1500 which will
-	 *   restart after one full frame is pulled from the buffer. There
-	 *   could be several smaller frames in the buffer and if so they will
-	 *   not trigger the XON until their total number reduces the buffer
-	 *   by 1500.
-	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
-	 */
-	rx_buf_size = igb_get_rx_buffer_size(hw);
-
-	hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
-	hw->fc.low_water = hw->fc.high_water - 1500;
-	hw->fc.pause_time = IGB_FC_PAUSE_TIME;
-	hw->fc.send_xon = 1;
-
-	/* Set Flow control, use the tunable location if sane */
-	if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
-		hw->fc.requested_mode = igb_fc_setting;
-	else
-		hw->fc.requested_mode = e1000_fc_none;
-
-	/* Issue a global reset */
-	igb_pf_reset_hw(hw);
-	E1000_WRITE_REG(hw, E1000_WUC, 0);
-
-	diag = e1000_init_hw(hw);
-	if (diag < 0)
-		return (diag);
-
-	E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
-	e1000_get_phy_info(hw);
-	e1000_check_for_link(hw);
-
-	return (0);
-}
-
-/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
-static void
-eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_hw_stats *stats =
-			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-	int pause_frames;
-
-	if(hw->phy.media_type == e1000_media_type_copper ||
-	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
-		stats->symerrs +=
-		    E1000_READ_REG(hw,E1000_SYMERRS);
-		stats->sec += E1000_READ_REG(hw, E1000_SEC);
-	}
-
-	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
-	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
-	stats->scc += E1000_READ_REG(hw, E1000_SCC);
-	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
-
-	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
-	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
-	stats->colc += E1000_READ_REG(hw, E1000_COLC);
-	stats->dc += E1000_READ_REG(hw, E1000_DC);
-	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
-	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
-	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
-	/*
-	** For watchdog management we need to know if we have been
-	** paused during the last interval, so capture that here.
-	*/
-	pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
-	stats->xoffrxc += pause_frames;
-	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
-	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
-	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
-	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
-	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
-	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
-	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
-	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
-	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
-	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
-	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
-	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
-
-	/* For the 64-bit byte counters the low dword must be read first. */
-	/* Both registers clear on the read of the high dword */
-
-	stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
-	stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
-	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
-	stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
-
-	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
-	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
-	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
-	stats->roc += E1000_READ_REG(hw, E1000_ROC);
-	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
-
-	stats->tor += E1000_READ_REG(hw, E1000_TORH);
-	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
-
-	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
-	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
-	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
-	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
-	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
-	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
-	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
-	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
-	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
-	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
-
-	/* Interrupt Counts */
-
-	stats->iac += E1000_READ_REG(hw, E1000_IAC);
-	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
-	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
-	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
-	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
-	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
-	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
-	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
-	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
-
-	/* Host to Card Statistics */
-
-	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
-	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
-	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
-	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
-	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
-	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
-	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
-	stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
-	stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
-	stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
-	stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
-	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
-	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
-	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
-
-	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
-	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
-	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
-	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
-	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
-	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
-
-	if (rte_stats == NULL)
-		return;
-
-	/* Rx Errors */
-	rte_stats->ibadcrc = stats->crcerrs;
-	rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
-	rte_stats->imissed = stats->mpc;
-	rte_stats->ierrors = rte_stats->ibadcrc +
-	                     rte_stats->ibadlen +
-	                     rte_stats->imissed +
-	                     stats->rxerrc + stats->algnerrc + stats->cexterr;
-
-	/* Tx Errors */
-	rte_stats->oerrors = stats->ecol + stats->latecol;
-
-	/* XON/XOFF pause frames */
-	rte_stats->tx_pause_xon  = stats->xontxc;
-	rte_stats->rx_pause_xon  = stats->xonrxc;
-	rte_stats->tx_pause_xoff = stats->xofftxc;
-	rte_stats->rx_pause_xoff = stats->xoffrxc;
-
-	rte_stats->ipackets = stats->gprc;
-	rte_stats->opackets = stats->gptc;
-	rte_stats->ibytes   = stats->gorc;
-	rte_stats->obytes   = stats->gotc;
-}
-
-static void
-eth_igb_stats_reset(struct rte_eth_dev *dev)
-{
-	struct e1000_hw_stats *hw_stats =
-			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
-	/* HW registers are cleared on read */
-	eth_igb_stats_get(dev, NULL);
-
-	/* Reset software totals */
-	memset(hw_stats, 0, sizeof(*hw_stats));
-}
-
-static void
-eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
-			  E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
-	/* Good Rx packets, include VF loopback */
-	UPDATE_VF_STAT(E1000_VFGPRC,
-	    hw_stats->last_gprc, hw_stats->gprc);
-
-	/* Good Rx octets, include VF loopback */
-	UPDATE_VF_STAT(E1000_VFGORC,
-	    hw_stats->last_gorc, hw_stats->gorc);
-
-	/* Good Tx packets, include VF loopback */
-	UPDATE_VF_STAT(E1000_VFGPTC,
-	    hw_stats->last_gptc, hw_stats->gptc);
-
-	/* Good Tx octets, include VF loopback */
-	UPDATE_VF_STAT(E1000_VFGOTC,
-	    hw_stats->last_gotc, hw_stats->gotc);
-
-	/* Rx Multicst packets */
-	UPDATE_VF_STAT(E1000_VFMPRC,
-	    hw_stats->last_mprc, hw_stats->mprc);
-
-	/* Good Rx loopback packets */
-	UPDATE_VF_STAT(E1000_VFGPRLBC,
-	    hw_stats->last_gprlbc, hw_stats->gprlbc);
-
-	/* Good Rx loopback octets */
-	UPDATE_VF_STAT(E1000_VFGORLBC,
-	    hw_stats->last_gorlbc, hw_stats->gorlbc);
-
-	/* Good Tx loopback packets */
-	UPDATE_VF_STAT(E1000_VFGPTLBC,
-	    hw_stats->last_gptlbc, hw_stats->gptlbc);
-
-	/* Good Tx loopback octets */
-	UPDATE_VF_STAT(E1000_VFGOTLBC,
-	    hw_stats->last_gotlbc, hw_stats->gotlbc);
-
-	if (rte_stats == NULL)
-		return;
-
-	rte_stats->ipackets = hw_stats->gprc;
-	rte_stats->ibytes = hw_stats->gorc;
-	rte_stats->opackets = hw_stats->gptc;
-	rte_stats->obytes = hw_stats->gotc;
-	rte_stats->imcasts = hw_stats->mprc;
-	rte_stats->ilbpackets = hw_stats->gprlbc;
-	rte_stats->ilbbytes = hw_stats->gorlbc;
-	rte_stats->olbpackets = hw_stats->gptlbc;
-	rte_stats->olbbytes = hw_stats->gotlbc;
-
-}
-
-static void
-eth_igbvf_stats_reset(struct rte_eth_dev *dev)
-{
-	struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
-			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
-
-	/* Sync HW register to the last stats */
-	eth_igbvf_stats_get(dev, NULL);
-
-	/* reset HW current stats*/
-	memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
-	       offsetof(struct e1000_vf_stats, gprc));
-
-}
-
-static void
-eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
-	dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
-	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
-	dev_info->rx_offload_capa =
-		DEV_RX_OFFLOAD_VLAN_STRIP |
-		DEV_RX_OFFLOAD_IPV4_CKSUM |
-		DEV_RX_OFFLOAD_UDP_CKSUM  |
-		DEV_RX_OFFLOAD_TCP_CKSUM;
-	dev_info->tx_offload_capa =
-		DEV_TX_OFFLOAD_VLAN_INSERT |
-		DEV_TX_OFFLOAD_IPV4_CKSUM  |
-		DEV_TX_OFFLOAD_UDP_CKSUM   |
-		DEV_TX_OFFLOAD_TCP_CKSUM   |
-		DEV_TX_OFFLOAD_SCTP_CKSUM;
-
-	switch (hw->mac.type) {
-	case e1000_82575:
-		dev_info->max_rx_queues = 4;
-		dev_info->max_tx_queues = 4;
-		dev_info->max_vmdq_pools = 0;
-		break;
-
-	case e1000_82576:
-		dev_info->max_rx_queues = 16;
-		dev_info->max_tx_queues = 16;
-		dev_info->max_vmdq_pools = ETH_8_POOLS;
-		dev_info->vmdq_queue_num = 16;
-		break;
-
-	case e1000_82580:
-		dev_info->max_rx_queues = 8;
-		dev_info->max_tx_queues = 8;
-		dev_info->max_vmdq_pools = ETH_8_POOLS;
-		dev_info->vmdq_queue_num = 8;
-		break;
-
-	case e1000_i350:
-		dev_info->max_rx_queues = 8;
-		dev_info->max_tx_queues = 8;
-		dev_info->max_vmdq_pools = ETH_8_POOLS;
-		dev_info->vmdq_queue_num = 8;
-		break;
-
-	case e1000_i354:
-		dev_info->max_rx_queues = 8;
-		dev_info->max_tx_queues = 8;
-		break;
-
-	case e1000_i210:
-		dev_info->max_rx_queues = 4;
-		dev_info->max_tx_queues = 4;
-		dev_info->max_vmdq_pools = 0;
-		break;
-
-	case e1000_i211:
-		dev_info->max_rx_queues = 2;
-		dev_info->max_tx_queues = 2;
-		dev_info->max_vmdq_pools = 0;
-		break;
-
-	default:
-		/* Should not happen */
-		break;
-	}
-	dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
-	dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
-
-	dev_info->default_rxconf = (struct rte_eth_rxconf) {
-		.rx_thresh = {
-			.pthresh = IGB_DEFAULT_RX_PTHRESH,
-			.hthresh = IGB_DEFAULT_RX_HTHRESH,
-			.wthresh = IGB_DEFAULT_RX_WTHRESH,
-		},
-		.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
-		.rx_drop_en = 0,
-	};
-
-	dev_info->default_txconf = (struct rte_eth_txconf) {
-		.tx_thresh = {
-			.pthresh = IGB_DEFAULT_TX_PTHRESH,
-			.hthresh = IGB_DEFAULT_TX_HTHRESH,
-			.wthresh = IGB_DEFAULT_TX_WTHRESH,
-		},
-		.txq_flags = 0,
-	};
-}
-
-static void
-eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
-	dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
-	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
-	dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
-				DEV_RX_OFFLOAD_IPV4_CKSUM |
-				DEV_RX_OFFLOAD_UDP_CKSUM  |
-				DEV_RX_OFFLOAD_TCP_CKSUM;
-	dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
-				DEV_TX_OFFLOAD_IPV4_CKSUM  |
-				DEV_TX_OFFLOAD_UDP_CKSUM   |
-				DEV_TX_OFFLOAD_TCP_CKSUM   |
-				DEV_TX_OFFLOAD_SCTP_CKSUM;
-	switch (hw->mac.type) {
-	case e1000_vfadapt:
-		dev_info->max_rx_queues = 2;
-		dev_info->max_tx_queues = 2;
-		break;
-	case e1000_vfadapt_i350:
-		dev_info->max_rx_queues = 1;
-		dev_info->max_tx_queues = 1;
-		break;
-	default:
-		/* Should not happen */
-		break;
-	}
-
-	dev_info->default_rxconf = (struct rte_eth_rxconf) {
-		.rx_thresh = {
-			.pthresh = IGB_DEFAULT_RX_PTHRESH,
-			.hthresh = IGB_DEFAULT_RX_HTHRESH,
-			.wthresh = IGB_DEFAULT_RX_WTHRESH,
-		},
-		.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
-		.rx_drop_en = 0,
-	};
-
-	dev_info->default_txconf = (struct rte_eth_txconf) {
-		.tx_thresh = {
-			.pthresh = IGB_DEFAULT_TX_PTHRESH,
-			.hthresh = IGB_DEFAULT_TX_HTHRESH,
-			.wthresh = IGB_DEFAULT_TX_WTHRESH,
-		},
-		.txq_flags = 0,
-	};
-}
-
-/* return 0 means link status changed, -1 means not changed */
-static int
-eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct rte_eth_link link, old;
-	int link_check, count;
-
-	link_check = 0;
-	hw->mac.get_link_status = 1;
-
-	/* possible wait-to-complete in up to 9 seconds */
-	for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
-		/* Read the real link status */
-		switch (hw->phy.media_type) {
-		case e1000_media_type_copper:
-			/* Do the work to read phy */
-			e1000_check_for_link(hw);
-			link_check = !hw->mac.get_link_status;
-			break;
-
-		case e1000_media_type_fiber:
-			e1000_check_for_link(hw);
-			link_check = (E1000_READ_REG(hw, E1000_STATUS) &
-				      E1000_STATUS_LU);
-			break;
-
-		case e1000_media_type_internal_serdes:
-			e1000_check_for_link(hw);
-			link_check = hw->mac.serdes_has_link;
-			break;
-
-		/* VF device is type_unknown */
-		case e1000_media_type_unknown:
-			eth_igbvf_link_update(hw);
-			link_check = !hw->mac.get_link_status;
-			break;
-
-		default:
-			break;
-		}
-		if (link_check || wait_to_complete == 0)
-			break;
-		rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
-	}
-	memset(&link, 0, sizeof(link));
-	rte_igb_dev_atomic_read_link_status(dev, &link);
-	old = link;
-
-	/* Now we check if a transition has happened */
-	if (link_check) {
-		hw->mac.ops.get_link_up_info(hw, &link.link_speed,
-					  &link.link_duplex);
-		link.link_status = 1;
-	} else if (!link_check) {
-		link.link_speed = 0;
-		link.link_duplex = 0;
-		link.link_status = 0;
-	}
-	rte_igb_dev_atomic_write_link_status(dev, &link);
-
-	/* not changed */
-	if (old.link_status == link.link_status)
-		return -1;
-
-	/* changed */
-	return 0;
-}
-
-/*
- * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means
- * that the driver is loaded.
- */
-static void
-igb_hw_control_acquire(struct e1000_hw *hw)
-{
-	uint32_t ctrl_ext;
-
-	/* Let firmware know the driver has taken over */
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
-}
-
-/*
- * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded.
- */
-static void
-igb_hw_control_release(struct e1000_hw *hw)
-{
-	uint32_t ctrl_ext;
-
-	/* Let firmware taken over control of h/w */
-	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
-			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
-}
-
-/*
- * Bit of a misnomer, what this really means is
- * to enable OS management of the system... aka
- * to disable special hardware management features.
- */
-static void
-igb_init_manageability(struct e1000_hw *hw)
-{
-	if (e1000_enable_mng_pass_thru(hw)) {
-		uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
-		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
-
-		/* disable hardware interception of ARP */
-		manc &= ~(E1000_MANC_ARP_EN);
-
-		/* enable receiving management packets to the host */
-		manc |= E1000_MANC_EN_MNG2HOST;
-		manc2h |= 1 << 5;  /* Mng Port 623 */
-		manc2h |= 1 << 6;  /* Mng Port 664 */
-		E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
-		E1000_WRITE_REG(hw, E1000_MANC, manc);
-	}
-}
-
-static void
-igb_release_manageability(struct e1000_hw *hw)
-{
-	if (e1000_enable_mng_pass_thru(hw)) {
-		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
-
-		manc |= E1000_MANC_ARP_EN;
-		manc &= ~E1000_MANC_EN_MNG2HOST;
-
-		E1000_WRITE_REG(hw, E1000_MANC, manc);
-	}
-}
-
-static void
-eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rctl;
-
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rctl;
-
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl &= (~E1000_RCTL_UPE);
-	if (dev->data->all_multicast == 1)
-		rctl |= E1000_RCTL_MPE;
-	else
-		rctl &= (~E1000_RCTL_MPE);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rctl;
-
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl |= E1000_RCTL_MPE;
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static void
-eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rctl;
-
-	if (dev->data->promiscuous == 1)
-		return; /* must remain in all_multicast mode */
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl &= (~E1000_RCTL_MPE);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-}
-
-static int
-eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vfta * shadow_vfta =
-		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
-	uint32_t vfta;
-	uint32_t vid_idx;
-	uint32_t vid_bit;
-
-	vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
-			      E1000_VFTA_ENTRY_MASK);
-	vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
-	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
-	if (on)
-		vfta |= vid_bit;
-	else
-		vfta &= ~vid_bit;
-	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
-
-	/* update local VFTA copy */
-	shadow_vfta->vfta[vid_idx] = vfta;
-
-	return 0;
-}
-
-static void
-eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg = ETHER_TYPE_VLAN ;
-
-	reg |= (tpid << 16);
-	E1000_WRITE_REG(hw, E1000_VET, reg);
-}
-
-static void
-igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* Filter Table Disable */
-	reg = E1000_READ_REG(hw, E1000_RCTL);
-	reg &= ~E1000_RCTL_CFIEN;
-	reg &= ~E1000_RCTL_VFE;
-	E1000_WRITE_REG(hw, E1000_RCTL, reg);
-}
-
-static void
-igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vfta * shadow_vfta =
-		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
-	uint32_t reg;
-	int i;
-
-	/* Filter Table Enable, CFI not used for packet acceptance */
-	reg = E1000_READ_REG(hw, E1000_RCTL);
-	reg &= ~E1000_RCTL_CFIEN;
-	reg |= E1000_RCTL_VFE;
-	E1000_WRITE_REG(hw, E1000_RCTL, reg);
-
-	/* restore VFTA table */
-	for (i = 0; i < IGB_VFTA_SIZE; i++)
-		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
-}
-
-static void
-igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* VLAN Mode Disable */
-	reg = E1000_READ_REG(hw, E1000_CTRL);
-	reg &= ~E1000_CTRL_VME;
-	E1000_WRITE_REG(hw, E1000_CTRL, reg);
-}
-
-static void
-igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* VLAN Mode Enable */
-	reg = E1000_READ_REG(hw, E1000_CTRL);
-	reg |= E1000_CTRL_VME;
-	E1000_WRITE_REG(hw, E1000_CTRL, reg);
-}
-
-static void
-igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* CTRL_EXT: Extended VLAN */
-	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
-	/* Update maximum packet length */
-	if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
-		E1000_WRITE_REG(hw, E1000_RLPML,
-			dev->data->dev_conf.rxmode.max_rx_pkt_len +
-						VLAN_TAG_SIZE);
-}
-
-static void
-igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* CTRL_EXT: Extended VLAN */
-	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
-	reg |= E1000_CTRL_EXT_EXTEND_VLAN;
-	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
-
-	/* Update maximum packet length */
-	if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
-		E1000_WRITE_REG(hw, E1000_RLPML,
-			dev->data->dev_conf.rxmode.max_rx_pkt_len +
-						2 * VLAN_TAG_SIZE);
-}
-
-static void
-eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
-{
-	if(mask & ETH_VLAN_STRIP_MASK){
-		if (dev->data->dev_conf.rxmode.hw_vlan_strip)
-			igb_vlan_hw_strip_enable(dev);
-		else
-			igb_vlan_hw_strip_disable(dev);
-	}
-
-	if(mask & ETH_VLAN_FILTER_MASK){
-		if (dev->data->dev_conf.rxmode.hw_vlan_filter)
-			igb_vlan_hw_filter_enable(dev);
-		else
-			igb_vlan_hw_filter_disable(dev);
-	}
-
-	if(mask & ETH_VLAN_EXTEND_MASK){
-		if (dev->data->dev_conf.rxmode.hw_vlan_extend)
-			igb_vlan_hw_extend_enable(dev);
-		else
-			igb_vlan_hw_extend_disable(dev);
-	}
-}
-
-
-/**
- * It enables the interrupt mask and then enable the interrupt.
- *
- * @param dev
- *  Pointer to struct rte_eth_dev.
- *
- * @return
- *  - On success, zero.
- *  - On failure, a negative value.
- */
-static int
-eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
-{
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
-	intr->mask |= E1000_ICR_LSC;
-
-	return 0;
-}
-
-/*
- * It reads ICR and gets interrupt causes, check it and set a bit flag
- * to update link status.
- *
- * @param dev
- *  Pointer to struct rte_eth_dev.
- *
- * @return
- *  - On success, zero.
- *  - On failure, a negative value.
- */
-static int
-eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
-{
-	uint32_t icr;
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
-	igb_intr_disable(hw);
-
-	/* read-on-clear nic registers here */
-	icr = E1000_READ_REG(hw, E1000_ICR);
-
-	intr->flags = 0;
-	if (icr & E1000_ICR_LSC) {
-		intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
-	}
-
-	if (icr & E1000_ICR_VMMB)
-		intr->flags |= E1000_FLAG_MAILBOX;
-
-	return 0;
-}
-
-/*
- * It executes link_update after knowing an interrupt is prsent.
- *
- * @param dev
- *  Pointer to struct rte_eth_dev.
- *
- * @return
- *  - On success, zero.
- *  - On failure, a negative value.
- */
-static int
-eth_igb_interrupt_action(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-	uint32_t tctl, rctl;
-	struct rte_eth_link link;
-	int ret;
-
-	if (intr->flags & E1000_FLAG_MAILBOX) {
-		igb_pf_mbx_process(dev);
-		intr->flags &= ~E1000_FLAG_MAILBOX;
-	}
-
-	igb_intr_enable(dev);
-	rte_intr_enable(&(dev->pci_dev->intr_handle));
-
-	if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
-		intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
-
-		/* set get_link_status to check register later */
-		hw->mac.get_link_status = 1;
-		ret = eth_igb_link_update(dev, 0);
-
-		/* check if link has changed */
-		if (ret < 0)
-			return 0;
-
-		memset(&link, 0, sizeof(link));
-		rte_igb_dev_atomic_read_link_status(dev, &link);
-		if (link.link_status) {
-			PMD_INIT_LOG(INFO,
-				     " Port %d: Link Up - speed %u Mbps - %s",
-				     dev->data->port_id,
-				     (unsigned)link.link_speed,
-				     link.link_duplex == ETH_LINK_FULL_DUPLEX ?
-				     "full-duplex" : "half-duplex");
-		} else {
-			PMD_INIT_LOG(INFO, " Port %d: Link Down",
-				     dev->data->port_id);
-		}
-		PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
-			     dev->pci_dev->addr.domain,
-			     dev->pci_dev->addr.bus,
-			     dev->pci_dev->addr.devid,
-			     dev->pci_dev->addr.function);
-		tctl = E1000_READ_REG(hw, E1000_TCTL);
-		rctl = E1000_READ_REG(hw, E1000_RCTL);
-		if (link.link_status) {
-			/* enable Tx/Rx */
-			tctl |= E1000_TCTL_EN;
-			rctl |= E1000_RCTL_EN;
-		} else {
-			/* disable Tx/Rx */
-			tctl &= ~E1000_TCTL_EN;
-			rctl &= ~E1000_RCTL_EN;
-		}
-		E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-		E1000_WRITE_FLUSH(hw);
-		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
-	}
-
-	return 0;
-}
-
-/**
- * Interrupt handler which shall be registered at first.
- *
- * @param handle
- *  Pointer to interrupt handle.
- * @param param
- *  The address of parameter (struct rte_eth_dev *) regsitered before.
- *
- * @return
- *  void
- */
-static void
-eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
-							void *param)
-{
-	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
-
-	eth_igb_interrupt_get_status(dev);
-	eth_igb_interrupt_action(dev);
-}
-
-static int
-eth_igb_led_on(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_igb_led_off(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
-}
-
-static int
-eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
-	struct e1000_hw *hw;
-	uint32_t ctrl;
-	int tx_pause;
-	int rx_pause;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	fc_conf->pause_time = hw->fc.pause_time;
-	fc_conf->high_water = hw->fc.high_water;
-	fc_conf->low_water = hw->fc.low_water;
-	fc_conf->send_xon = hw->fc.send_xon;
-	fc_conf->autoneg = hw->mac.autoneg;
-
-	/*
-	 * Return rx_pause and tx_pause status according to actual setting of
-	 * the TFCE and RFCE bits in the CTRL register.
-	 */
-	ctrl = E1000_READ_REG(hw, E1000_CTRL);
-	if (ctrl & E1000_CTRL_TFCE)
-		tx_pause = 1;
-	else
-		tx_pause = 0;
-
-	if (ctrl & E1000_CTRL_RFCE)
-		rx_pause = 1;
-	else
-		rx_pause = 0;
-
-	if (rx_pause && tx_pause)
-		fc_conf->mode = RTE_FC_FULL;
-	else if (rx_pause)
-		fc_conf->mode = RTE_FC_RX_PAUSE;
-	else if (tx_pause)
-		fc_conf->mode = RTE_FC_TX_PAUSE;
-	else
-		fc_conf->mode = RTE_FC_NONE;
-
-	return 0;
-}
-
-static int
-eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
-{
-	struct e1000_hw *hw;
-	int err;
-	enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
-		e1000_fc_none,
-		e1000_fc_rx_pause,
-		e1000_fc_tx_pause,
-		e1000_fc_full
-	};
-	uint32_t rx_buf_size;
-	uint32_t max_high_water;
-	uint32_t rctl;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	if (fc_conf->autoneg != hw->mac.autoneg)
-		return -ENOTSUP;
-	rx_buf_size = igb_get_rx_buffer_size(hw);
-	PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
-
-	/* At least reserve one Ethernet frame for watermark */
-	max_high_water = rx_buf_size - ETHER_MAX_LEN;
-	if ((fc_conf->high_water > max_high_water) ||
-	    (fc_conf->high_water < fc_conf->low_water)) {
-		PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
-		PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
-		return (-EINVAL);
-	}
-
-	hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
-	hw->fc.pause_time     = fc_conf->pause_time;
-	hw->fc.high_water     = fc_conf->high_water;
-	hw->fc.low_water      = fc_conf->low_water;
-	hw->fc.send_xon	      = fc_conf->send_xon;
-
-	err = e1000_setup_link_generic(hw);
-	if (err == E1000_SUCCESS) {
-
-		/* check if we want to forward MAC frames - driver doesn't have native
-		 * capability to do that, so we'll write the registers ourselves */
-
-		rctl = E1000_READ_REG(hw, E1000_RCTL);
-
-		/* set or clear MFLCN.PMCF bit depending on configuration */
-		if (fc_conf->mac_ctrl_frame_fwd != 0)
-			rctl |= E1000_RCTL_PMCF;
-		else
-			rctl &= ~E1000_RCTL_PMCF;
-
-		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-		E1000_WRITE_FLUSH(hw);
-
-		return 0;
-	}
-
-	PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
-	return (-EIO);
-}
-
-#define E1000_RAH_POOLSEL_SHIFT      (18)
-static void
-eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
-	        uint32_t index, __rte_unused uint32_t pool)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t rah;
-
-	e1000_rar_set(hw, mac_addr->addr_bytes, index);
-	rah = E1000_READ_REG(hw, E1000_RAH(index));
-	rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
-	E1000_WRITE_REG(hw, E1000_RAH(index), rah);
-}
-
-static void
-eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
-{
-	uint8_t addr[ETHER_ADDR_LEN];
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	memset(addr, 0, sizeof(addr));
-
-	e1000_rar_set(hw, addr, index);
-}
-
-/*
- * Virtual Function operations
- */
-static void
-igbvf_intr_disable(struct e1000_hw *hw)
-{
-	PMD_INIT_FUNC_TRACE();
-
-	/* Clear interrupt mask to stop from interrupts being generated */
-	E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
-
-	E1000_WRITE_FLUSH(hw);
-}
-
-static void
-igbvf_stop_adapter(struct rte_eth_dev *dev)
-{
-	u32 reg_val;
-	u16 i;
-	struct rte_eth_dev_info dev_info;
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	memset(&dev_info, 0, sizeof(dev_info));
-	eth_igbvf_infos_get(dev, &dev_info);
-
-	/* Clear interrupt mask to stop from interrupts being generated */
-	igbvf_intr_disable(hw);
-
-	/* Clear any pending interrupts, flush previous writes */
-	E1000_READ_REG(hw, E1000_EICR);
-
-	/* Disable the transmit unit.  Each queue must be disabled. */
-	for (i = 0; i < dev_info.max_tx_queues; i++)
-		E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
-
-	/* Disable the receive unit by stopping each queue */
-	for (i = 0; i < dev_info.max_rx_queues; i++) {
-		reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
-		reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
-		E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
-		while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
-			;
-	}
-
-	/* flush all queues disables */
-	E1000_WRITE_FLUSH(hw);
-	msec_delay(2);
-}
-
-static int eth_igbvf_link_update(struct e1000_hw *hw)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	struct e1000_mac_info *mac = &hw->mac;
-	int ret_val = E1000_SUCCESS;
-
-	PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
-
-	/*
-	 * We only want to run this if there has been a rst asserted.
-	 * in this case that could mean a link change, device reset,
-	 * or a virtual function reset
-	 */
-
-	/* If we were hit with a reset or timeout drop the link */
-	if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
-		mac->get_link_status = TRUE;
-
-	if (!mac->get_link_status)
-		goto out;
-
-	/* if link status is down no point in checking to see if pf is up */
-	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
-		goto out;
-
-	/* if we passed all the tests above then the link is up and we no
-	 * longer need to check for link */
-	mac->get_link_status = FALSE;
-
-out:
-	return ret_val;
-}
-
-
-static int
-igbvf_dev_configure(struct rte_eth_dev *dev)
-{
-	struct rte_eth_conf* conf = &dev->data->dev_conf;
-
-	PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
-		     dev->data->port_id);
-
-	/*
-	 * VF has no ability to enable/disable HW CRC
-	 * Keep the persistent behavior the same as Host PF
-	 */
-#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
-	if (!conf->rxmode.hw_strip_crc) {
-		PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip");
-		conf->rxmode.hw_strip_crc = 1;
-	}
-#else
-	if (conf->rxmode.hw_strip_crc) {
-		PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip");
-		conf->rxmode.hw_strip_crc = 0;
-	}
-#endif
-
-	return 0;
-}
-
-static int
-igbvf_dev_start(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	int ret;
-
-	PMD_INIT_FUNC_TRACE();
-
-	hw->mac.ops.reset_hw(hw);
-
-	/* Set all vfta */
-	igbvf_set_vfta_all(dev,1);
-
-	eth_igbvf_tx_init(dev);
-
-	/* This can fail when allocating mbufs for descriptor rings */
-	ret = eth_igbvf_rx_init(dev);
-	if (ret) {
-		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
-		igb_dev_clear_queues(dev);
-		return ret;
-	}
-
-	return 0;
-}
-
-static void
-igbvf_dev_stop(struct rte_eth_dev *dev)
-{
-	PMD_INIT_FUNC_TRACE();
-
-	igbvf_stop_adapter(dev);
-
-	/*
-	  * Clear what we set, but we still keep shadow_vfta to
-	  * restore after device starts
-	  */
-	igbvf_set_vfta_all(dev,0);
-
-	igb_dev_clear_queues(dev);
-}
-
-static void
-igbvf_dev_close(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	PMD_INIT_FUNC_TRACE();
-
-	e1000_reset_hw(hw);
-
-	igbvf_dev_stop(dev);
-}
-
-static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
-{
-	struct e1000_mbx_info *mbx = &hw->mbx;
-	uint32_t msgbuf[2];
-
-	/* After set vlan, vlan strip will also be enabled in igb driver*/
-	msgbuf[0] = E1000_VF_SET_VLAN;
-	msgbuf[1] = vid;
-	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
-	if (on)
-		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
-
-	return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
-}
-
-static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vfta * shadow_vfta =
-		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
-	int i = 0, j = 0, vfta = 0, mask = 1;
-
-	for (i = 0; i < IGB_VFTA_SIZE; i++){
-		vfta = shadow_vfta->vfta[i];
-		if(vfta){
-			mask = 1;
-			for (j = 0; j < 32; j++){
-				if(vfta & mask)
-					igbvf_set_vfta(hw,
-						(uint16_t)((i<<5)+j), on);
-				mask<<=1;
-			}
-		}
-	}
-
-}
-
-static int
-igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vfta * shadow_vfta =
-		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
-	uint32_t vid_idx = 0;
-	uint32_t vid_bit = 0;
-	int ret = 0;
-
-	PMD_INIT_FUNC_TRACE();
-
-	/*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
-	ret = igbvf_set_vfta(hw, vlan_id, !!on);
-	if(ret){
-		PMD_INIT_LOG(ERR, "Unable to set VF vlan");
-		return ret;
-	}
-	vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
-	vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
-
-	/*Save what we set and retore it after device reset*/
-	if (on)
-		shadow_vfta->vfta[vid_idx] |= vid_bit;
-	else
-		shadow_vfta->vfta[vid_idx] &= ~vid_bit;
-
-	return 0;
-}
-
-static int
-eth_igb_rss_reta_update(struct rte_eth_dev *dev,
-			struct rte_eth_rss_reta_entry64 *reta_conf,
-			uint16_t reta_size)
-{
-	uint8_t i, j, mask;
-	uint32_t reta, r;
-	uint16_t idx, shift;
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	if (reta_size != ETH_RSS_RETA_SIZE_128) {
-		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
-			"(%d) doesn't match the number hardware can supported "
-			"(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
-		return -EINVAL;
-	}
-
-	for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
-		idx = i / RTE_RETA_GROUP_SIZE;
-		shift = i % RTE_RETA_GROUP_SIZE;
-		mask = (uint8_t)((reta_conf[idx].mask >> shift) &
-						IGB_4_BIT_MASK);
-		if (!mask)
-			continue;
-		if (mask == IGB_4_BIT_MASK)
-			r = 0;
-		else
-			r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
-		for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
-			if (mask & (0x1 << j))
-				reta |= reta_conf[idx].reta[shift + j] <<
-							(CHAR_BIT * j);
-			else
-				reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
-		}
-		E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
-	}
-
-	return 0;
-}
-
-static int
-eth_igb_rss_reta_query(struct rte_eth_dev *dev,
-		       struct rte_eth_rss_reta_entry64 *reta_conf,
-		       uint16_t reta_size)
-{
-	uint8_t i, j, mask;
-	uint32_t reta;
-	uint16_t idx, shift;
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	if (reta_size != ETH_RSS_RETA_SIZE_128) {
-		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
-			"(%d) doesn't match the number hardware can supported "
-			"(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
-		return -EINVAL;
-	}
-
-	for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
-		idx = i / RTE_RETA_GROUP_SIZE;
-		shift = i % RTE_RETA_GROUP_SIZE;
-		mask = (uint8_t)((reta_conf[idx].mask >> shift) &
-						IGB_4_BIT_MASK);
-		if (!mask)
-			continue;
-		reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
-		for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
-			if (mask & (0x1 << j))
-				reta_conf[idx].reta[shift + j] =
-					((reta >> (CHAR_BIT * j)) &
-						IGB_8_BIT_MASK);
-		}
-	}
-
-	return 0;
-}
-
-#define MAC_TYPE_FILTER_SUP(type)    do {\
-	if ((type) != e1000_82580 && (type) != e1000_i350 &&\
-		(type) != e1000_82576)\
-		return -ENOTSUP;\
-} while (0)
-
-static int
-eth_igb_syn_filter_set(struct rte_eth_dev *dev,
-			struct rte_eth_syn_filter *filter,
-			bool add)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t synqf, rfctl;
-
-	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
-		return -EINVAL;
-
-	synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
-
-	if (add) {
-		if (synqf & E1000_SYN_FILTER_ENABLE)
-			return -EINVAL;
-
-		synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
-			E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
-
-		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
-		if (filter->hig_pri)
-			rfctl |= E1000_RFCTL_SYNQFP;
-		else
-			rfctl &= ~E1000_RFCTL_SYNQFP;
-
-		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
-	} else {
-		if (!(synqf & E1000_SYN_FILTER_ENABLE))
-			return -ENOENT;
-		synqf = 0;
-	}
-
-	E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
-	E1000_WRITE_FLUSH(hw);
-	return 0;
-}
-
-static int
-eth_igb_syn_filter_get(struct rte_eth_dev *dev,
-			struct rte_eth_syn_filter *filter)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t synqf, rfctl;
-
-	synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
-	if (synqf & E1000_SYN_FILTER_ENABLE) {
-		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
-		filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
-		filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
-				E1000_SYN_FILTER_QUEUE_SHIFT);
-		return 0;
-	}
-
-	return -ENOENT;
-}
-
-static int
-eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
-			enum rte_filter_op filter_op,
-			void *arg)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	int ret;
-
-	MAC_TYPE_FILTER_SUP(hw->mac.type);
-
-	if (filter_op == RTE_ETH_FILTER_NOP)
-		return 0;
-
-	if (arg == NULL) {
-		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
-			    filter_op);
-		return -EINVAL;
-	}
-
-	switch (filter_op) {
-	case RTE_ETH_FILTER_ADD:
-		ret = eth_igb_syn_filter_set(dev,
-				(struct rte_eth_syn_filter *)arg,
-				TRUE);
-		break;
-	case RTE_ETH_FILTER_DELETE:
-		ret = eth_igb_syn_filter_set(dev,
-				(struct rte_eth_syn_filter *)arg,
-				FALSE);
-		break;
-	case RTE_ETH_FILTER_GET:
-		ret = eth_igb_syn_filter_get(dev,
-				(struct rte_eth_syn_filter *)arg);
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
-		ret = -EINVAL;
-		break;
-	}
-
-	return ret;
-}
-
-#define MAC_TYPE_FILTER_SUP_EXT(type)    do {\
-	if ((type) != e1000_82580 && (type) != e1000_i350)\
-		return -ENOSYS; \
-} while (0)
-
-/* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
-static inline int
-ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
-			struct e1000_2tuple_filter_info *filter_info)
-{
-	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
-		return -EINVAL;
-	if (filter->priority > E1000_2TUPLE_MAX_PRI)
-		return -EINVAL;  /* filter index is out of range. */
-	if (filter->tcp_flags > TCP_FLAG_ALL)
-		return -EINVAL;  /* flags is invalid. */
-
-	switch (filter->dst_port_mask) {
-	case UINT16_MAX:
-		filter_info->dst_port_mask = 0;
-		filter_info->dst_port = filter->dst_port;
-		break;
-	case 0:
-		filter_info->dst_port_mask = 1;
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
-		return -EINVAL;
-	}
-
-	switch (filter->proto_mask) {
-	case UINT8_MAX:
-		filter_info->proto_mask = 0;
-		filter_info->proto = filter->proto;
-		break;
-	case 0:
-		filter_info->proto_mask = 1;
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "invalid protocol mask.");
-		return -EINVAL;
-	}
-
-	filter_info->priority = (uint8_t)filter->priority;
-	if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
-		filter_info->tcp_flags = filter->tcp_flags;
-	else
-		filter_info->tcp_flags = 0;
-
-	return 0;
-}
-
-static inline struct e1000_2tuple_filter *
-igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
-			struct e1000_2tuple_filter_info *key)
-{
-	struct e1000_2tuple_filter *it;
-
-	TAILQ_FOREACH(it, filter_list, entries) {
-		if (memcmp(key, &it->filter_info,
-			sizeof(struct e1000_2tuple_filter_info)) == 0) {
-			return it;
-		}
-	}
-	return NULL;
-}
-
-/*
- * igb_add_2tuple_filter - add a 2tuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: ponter to the filter that will be added.
- *
- * @return
- *    - On success, zero.
- *    - On failure, a negative value.
- */
-static int
-igb_add_2tuple_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	struct e1000_2tuple_filter *filter;
-	uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
-	uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
-	int i, ret;
-
-	filter = rte_zmalloc("e1000_2tuple_filter",
-			sizeof(struct e1000_2tuple_filter), 0);
-	if (filter == NULL)
-		return -ENOMEM;
-
-	ret = ntuple_filter_to_2tuple(ntuple_filter,
-				      &filter->filter_info);
-	if (ret < 0) {
-		rte_free(filter);
-		return ret;
-	}
-	if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
-					 &filter->filter_info) != NULL) {
-		PMD_DRV_LOG(ERR, "filter exists.");
-		rte_free(filter);
-		return -EEXIST;
-	}
-	filter->queue = ntuple_filter->queue;
-
-	/*
-	 * look for an unused 2tuple filter index,
-	 * and insert the filter to list.
-	 */
-	for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
-		if (!(filter_info->twotuple_mask & (1 << i))) {
-			filter_info->twotuple_mask |= 1 << i;
-			filter->index = i;
-			TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
-					  filter,
-					  entries);
-			break;
-		}
-	}
-	if (i >= E1000_MAX_TTQF_FILTERS) {
-		PMD_DRV_LOG(ERR, "2tuple filters are full.");
-		rte_free(filter);
-		return -ENOSYS;
-	}
-
-	imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
-	if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
-		imir |= E1000_IMIR_PORT_BP;
-	else
-		imir &= ~E1000_IMIR_PORT_BP;
-
-	imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
-
-	ttqf |= E1000_TTQF_QUEUE_ENABLE;
-	ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
-	ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK);
-	if (filter->filter_info.proto_mask == 0)
-		ttqf &= ~E1000_TTQF_MASK_ENABLE;
-
-	/* tcp flags bits setting. */
-	if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
-		if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_URG;
-		if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_ACK;
-		if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_PSH;
-		if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_RST;
-		if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_SYN;
-		if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_FIN;
-	} else
-		imir_ext |= E1000_IMIREXT_CTRL_BP;
-	E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
-	E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
-	E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
-	return 0;
-}
-
-/*
- * igb_remove_2tuple_filter - remove a 2tuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: ponter to the filter that will be removed.
- *
- * @return
- *    - On success, zero.
- *    - On failure, a negative value.
- */
-static int
-igb_remove_2tuple_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	struct e1000_2tuple_filter_info filter_2tuple;
-	struct e1000_2tuple_filter *filter;
-	int ret;
-
-	memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
-	ret = ntuple_filter_to_2tuple(ntuple_filter,
-				      &filter_2tuple);
-	if (ret < 0)
-		return ret;
-
-	filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
-					 &filter_2tuple);
-	if (filter == NULL) {
-		PMD_DRV_LOG(ERR, "filter doesn't exist.");
-		return -ENOENT;
-	}
-
-	filter_info->twotuple_mask &= ~(1 << filter->index);
-	TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
-	rte_free(filter);
-
-	E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
-	E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
-	E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
-	return 0;
-}
-
-static inline struct e1000_flex_filter *
-eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
-			struct e1000_flex_filter_info *key)
-{
-	struct e1000_flex_filter *it;
-
-	TAILQ_FOREACH(it, filter_list, entries) {
-		if (memcmp(key, &it->filter_info,
-			sizeof(struct e1000_flex_filter_info)) == 0)
-			return it;
-	}
-
-	return NULL;
-}
-
-static int
-eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
-			struct rte_eth_flex_filter *filter,
-			bool add)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	struct e1000_flex_filter *flex_filter, *it;
-	uint32_t wufc, queueing, mask;
-	uint32_t reg_off;
-	uint8_t shift, i, j = 0;
-
-	flex_filter = rte_zmalloc("e1000_flex_filter",
-			sizeof(struct e1000_flex_filter), 0);
-	if (flex_filter == NULL)
-		return -ENOMEM;
-
-	flex_filter->filter_info.len = filter->len;
-	flex_filter->filter_info.priority = filter->priority;
-	memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
-	for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
-		mask = 0;
-		/* reverse bits in flex filter's mask*/
-		for (shift = 0; shift < CHAR_BIT; shift++) {
-			if (filter->mask[i] & (0x01 << shift))
-				mask |= (0x80 >> shift);
-		}
-		flex_filter->filter_info.mask[i] = mask;
-	}
-
-	wufc = E1000_READ_REG(hw, E1000_WUFC);
-	if (flex_filter->index < E1000_MAX_FHFT)
-		reg_off = E1000_FHFT(flex_filter->index);
-	else
-		reg_off = E1000_FHFT_EXT(flex_filter->index - E1000_MAX_FHFT);
-
-	if (add) {
-		if (eth_igb_flex_filter_lookup(&filter_info->flex_list,
-				&flex_filter->filter_info) != NULL) {
-			PMD_DRV_LOG(ERR, "filter exists.");
-			rte_free(flex_filter);
-			return -EEXIST;
-		}
-		flex_filter->queue = filter->queue;
-		/*
-		 * look for an unused flex filter index
-		 * and insert the filter into the list.
-		 */
-		for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
-			if (!(filter_info->flex_mask & (1 << i))) {
-				filter_info->flex_mask |= 1 << i;
-				flex_filter->index = i;
-				TAILQ_INSERT_TAIL(&filter_info->flex_list,
-					flex_filter,
-					entries);
-				break;
-			}
-		}
-		if (i >= E1000_MAX_FLEX_FILTERS) {
-			PMD_DRV_LOG(ERR, "flex filters are full.");
-			rte_free(flex_filter);
-			return -ENOSYS;
-		}
-
-		E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
-				(E1000_WUFC_FLX0 << flex_filter->index));
-		queueing = filter->len |
-			(filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
-			(filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT);
-		E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
-				queueing);
-		for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
-			E1000_WRITE_REG(hw, reg_off,
-					flex_filter->filter_info.dwords[j]);
-			reg_off += sizeof(uint32_t);
-			E1000_WRITE_REG(hw, reg_off,
-					flex_filter->filter_info.dwords[++j]);
-			reg_off += sizeof(uint32_t);
-			E1000_WRITE_REG(hw, reg_off,
-				(uint32_t)flex_filter->filter_info.mask[i]);
-			reg_off += sizeof(uint32_t) * 2;
-			++j;
-		}
-	} else {
-		it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
-				&flex_filter->filter_info);
-		if (it == NULL) {
-			PMD_DRV_LOG(ERR, "filter doesn't exist.");
-			rte_free(flex_filter);
-			return -ENOENT;
-		}
-
-		for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
-			E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
-		E1000_WRITE_REG(hw, E1000_WUFC, wufc &
-			(~(E1000_WUFC_FLX0 << it->index)));
-
-		filter_info->flex_mask &= ~(1 << it->index);
-		TAILQ_REMOVE(&filter_info->flex_list, it, entries);
-		rte_free(it);
-		rte_free(flex_filter);
-	}
-
-	return 0;
-}
-
-static int
-eth_igb_get_flex_filter(struct rte_eth_dev *dev,
-			struct rte_eth_flex_filter *filter)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	struct e1000_flex_filter flex_filter, *it;
-	uint32_t wufc, queueing, wufc_en = 0;
-
-	memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
-	flex_filter.filter_info.len = filter->len;
-	flex_filter.filter_info.priority = filter->priority;
-	memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
-	memcpy(flex_filter.filter_info.mask, filter->mask,
-			RTE_ALIGN(filter->len, sizeof(char)) / sizeof(char));
-
-	it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
-				&flex_filter.filter_info);
-	if (it == NULL) {
-		PMD_DRV_LOG(ERR, "filter doesn't exist.");
-		return -ENOENT;
-	}
-
-	wufc = E1000_READ_REG(hw, E1000_WUFC);
-	wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
-
-	if ((wufc & wufc_en) == wufc_en) {
-		uint32_t reg_off = 0;
-		if (it->index < E1000_MAX_FHFT)
-			reg_off = E1000_FHFT(it->index);
-		else
-			reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
-
-		queueing = E1000_READ_REG(hw,
-				reg_off + E1000_FHFT_QUEUEING_OFFSET);
-		filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
-		filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
-			E1000_FHFT_QUEUEING_PRIO_SHIFT;
-		filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
-			E1000_FHFT_QUEUEING_QUEUE_SHIFT;
-		return 0;
-	}
-	return -ENOENT;
-}
-
-static int
-eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
-			enum rte_filter_op filter_op,
-			void *arg)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct rte_eth_flex_filter *filter;
-	int ret = 0;
-
-	MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
-
-	if (filter_op == RTE_ETH_FILTER_NOP)
-		return ret;
-
-	if (arg == NULL) {
-		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
-			    filter_op);
-		return -EINVAL;
-	}
-
-	filter = (struct rte_eth_flex_filter *)arg;
-	if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
-	    || filter->len % sizeof(uint64_t) != 0) {
-		PMD_DRV_LOG(ERR, "filter's length is out of range");
-		return -EINVAL;
-	}
-	if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
-		PMD_DRV_LOG(ERR, "filter's priority is out of range");
-		return -EINVAL;
-	}
-
-	switch (filter_op) {
-	case RTE_ETH_FILTER_ADD:
-		ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
-		break;
-	case RTE_ETH_FILTER_DELETE:
-		ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
-		break;
-	case RTE_ETH_FILTER_GET:
-		ret = eth_igb_get_flex_filter(dev, filter);
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
-		ret = -EINVAL;
-		break;
-	}
-
-	return ret;
-}
-
-/* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
-static inline int
-ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
-			struct e1000_5tuple_filter_info *filter_info)
-{
-	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
-		return -EINVAL;
-	if (filter->priority > E1000_2TUPLE_MAX_PRI)
-		return -EINVAL;  /* filter index is out of range. */
-	if (filter->tcp_flags > TCP_FLAG_ALL)
-		return -EINVAL;  /* flags is invalid. */
-
-	switch (filter->dst_ip_mask) {
-	case UINT32_MAX:
-		filter_info->dst_ip_mask = 0;
-		filter_info->dst_ip = filter->dst_ip;
-		break;
-	case 0:
-		filter_info->dst_ip_mask = 1;
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
-		return -EINVAL;
-	}
-
-	switch (filter->src_ip_mask) {
-	case UINT32_MAX:
-		filter_info->src_ip_mask = 0;
-		filter_info->src_ip = filter->src_ip;
-		break;
-	case 0:
-		filter_info->src_ip_mask = 1;
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
-		return -EINVAL;
-	}
-
-	switch (filter->dst_port_mask) {
-	case UINT16_MAX:
-		filter_info->dst_port_mask = 0;
-		filter_info->dst_port = filter->dst_port;
-		break;
-	case 0:
-		filter_info->dst_port_mask = 1;
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
-		return -EINVAL;
-	}
-
-	switch (filter->src_port_mask) {
-	case UINT16_MAX:
-		filter_info->src_port_mask = 0;
-		filter_info->src_port = filter->src_port;
-		break;
-	case 0:
-		filter_info->src_port_mask = 1;
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "invalid src_port mask.");
-		return -EINVAL;
-	}
-
-	switch (filter->proto_mask) {
-	case UINT8_MAX:
-		filter_info->proto_mask = 0;
-		filter_info->proto = filter->proto;
-		break;
-	case 0:
-		filter_info->proto_mask = 1;
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "invalid protocol mask.");
-		return -EINVAL;
-	}
-
-	filter_info->priority = (uint8_t)filter->priority;
-	if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
-		filter_info->tcp_flags = filter->tcp_flags;
-	else
-		filter_info->tcp_flags = 0;
-
-	return 0;
-}
-
-static inline struct e1000_5tuple_filter *
-igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
-			struct e1000_5tuple_filter_info *key)
-{
-	struct e1000_5tuple_filter *it;
-
-	TAILQ_FOREACH(it, filter_list, entries) {
-		if (memcmp(key, &it->filter_info,
-			sizeof(struct e1000_5tuple_filter_info)) == 0) {
-			return it;
-		}
-	}
-	return NULL;
-}
-
-/*
- * igb_add_5tuple_filter_82576 - add a 5tuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: ponter to the filter that will be added.
- *
- * @return
- *    - On success, zero.
- *    - On failure, a negative value.
- */
-static int
-igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	struct e1000_5tuple_filter *filter;
-	uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
-	uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
-	uint8_t i;
-	int ret;
-
-	filter = rte_zmalloc("e1000_5tuple_filter",
-			sizeof(struct e1000_5tuple_filter), 0);
-	if (filter == NULL)
-		return -ENOMEM;
-
-	ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
-					    &filter->filter_info);
-	if (ret < 0) {
-		rte_free(filter);
-		return ret;
-	}
-
-	if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
-					 &filter->filter_info) != NULL) {
-		PMD_DRV_LOG(ERR, "filter exists.");
-		rte_free(filter);
-		return -EEXIST;
-	}
-	filter->queue = ntuple_filter->queue;
-
-	/*
-	 * look for an unused 5tuple filter index,
-	 * and insert the filter to list.
-	 */
-	for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
-		if (!(filter_info->fivetuple_mask & (1 << i))) {
-			filter_info->fivetuple_mask |= 1 << i;
-			filter->index = i;
-			TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
-					  filter,
-					  entries);
-			break;
-		}
-	}
-	if (i >= E1000_MAX_FTQF_FILTERS) {
-		PMD_DRV_LOG(ERR, "5tuple filters are full.");
-		rte_free(filter);
-		return -ENOSYS;
-	}
-
-	ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
-	if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
-		ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
-	if (filter->filter_info.dst_ip_mask == 0)
-		ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
-	if (filter->filter_info.src_port_mask == 0)
-		ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
-	if (filter->filter_info.proto_mask == 0)
-		ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
-	ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
-		E1000_FTQF_QUEUE_MASK;
-	ftqf |= E1000_FTQF_QUEUE_ENABLE;
-	E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
-	E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
-	E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
-
-	spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
-	E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
-
-	imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
-	if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
-		imir |= E1000_IMIR_PORT_BP;
-	else
-		imir &= ~E1000_IMIR_PORT_BP;
-	imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
-
-	/* tcp flags bits setting. */
-	if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
-		if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_URG;
-		if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_ACK;
-		if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_PSH;
-		if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_RST;
-		if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_SYN;
-		if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
-			imir_ext |= E1000_IMIREXT_CTRL_FIN;
-	} else
-		imir_ext |= E1000_IMIREXT_CTRL_BP;
-	E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
-	E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
-	return 0;
-}
-
-/*
- * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: ponter to the filter that will be removed.
- *
- * @return
- *    - On success, zero.
- *    - On failure, a negative value.
- */
-static int
-igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
-				struct rte_eth_ntuple_filter *ntuple_filter)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	struct e1000_5tuple_filter_info filter_5tuple;
-	struct e1000_5tuple_filter *filter;
-	int ret;
-
-	memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
-	ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
-					    &filter_5tuple);
-	if (ret < 0)
-		return ret;
-
-	filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
-					 &filter_5tuple);
-	if (filter == NULL) {
-		PMD_DRV_LOG(ERR, "filter doesn't exist.");
-		return -ENOENT;
-	}
-
-	filter_info->fivetuple_mask &= ~(1 << filter->index);
-	TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
-	rte_free(filter);
-
-	E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
-			E1000_FTQF_VF_BP | E1000_FTQF_MASK);
-	E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
-	E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
-	E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
-	E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
-	E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
-	return 0;
-}
-
-static int
-eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
-{
-	uint32_t rctl;
-	struct e1000_hw *hw;
-	struct rte_eth_dev_info dev_info;
-	uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
-				     VLAN_TAG_SIZE);
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-#ifdef RTE_LIBRTE_82571_SUPPORT
-	/* XXX: not bigger than max_rx_pktlen */
-	if (hw->mac.type == e1000_82571)
-		return -ENOTSUP;
-#endif
-	eth_igb_infos_get(dev, &dev_info);
-
-	/* check that mtu is within the allowed range */
-	if ((mtu < ETHER_MIN_MTU) ||
-	    (frame_size > dev_info.max_rx_pktlen))
-		return -EINVAL;
-
-	/* refuse mtu that requires the support of scattered packets when this
-	 * feature has not been enabled before. */
-	if (!dev->data->scattered_rx &&
-	    frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
-		return -EINVAL;
-
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-
-	/* switch to jumbo mode if needed */
-	if (frame_size > ETHER_MAX_LEN) {
-		dev->data->dev_conf.rxmode.jumbo_frame = 1;
-		rctl |= E1000_RCTL_LPE;
-	} else {
-		dev->data->dev_conf.rxmode.jumbo_frame = 0;
-		rctl &= ~E1000_RCTL_LPE;
-	}
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
-	/* update max frame size */
-	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
-
-	E1000_WRITE_REG(hw, E1000_RLPML,
-			dev->data->dev_conf.rxmode.max_rx_pkt_len);
-
-	return 0;
-}
-
-/*
- * igb_add_del_ntuple_filter - add or delete a ntuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
- * add: if true, add filter, if false, remove filter
- *
- * @return
- *    - On success, zero.
- *    - On failure, a negative value.
- */
-static int
-igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter,
-			bool add)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	int ret;
-
-	switch (ntuple_filter->flags) {
-	case RTE_5TUPLE_FLAGS:
-	case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
-		if (hw->mac.type != e1000_82576)
-			return -ENOTSUP;
-		if (add)
-			ret = igb_add_5tuple_filter_82576(dev,
-							  ntuple_filter);
-		else
-			ret = igb_remove_5tuple_filter_82576(dev,
-							     ntuple_filter);
-		break;
-	case RTE_2TUPLE_FLAGS:
-	case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
-		if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
-			return -ENOTSUP;
-		if (add)
-			ret = igb_add_2tuple_filter(dev, ntuple_filter);
-		else
-			ret = igb_remove_2tuple_filter(dev, ntuple_filter);
-		break;
-	default:
-		ret = -EINVAL;
-		break;
-	}
-
-	return ret;
-}
-
-/*
- * igb_get_ntuple_filter - get a ntuple filter
- *
- * @param
- * dev: Pointer to struct rte_eth_dev.
- * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
- *
- * @return
- *    - On success, zero.
- *    - On failure, a negative value.
- */
-static int
-igb_get_ntuple_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ntuple_filter *ntuple_filter)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	struct e1000_5tuple_filter_info filter_5tuple;
-	struct e1000_2tuple_filter_info filter_2tuple;
-	struct e1000_5tuple_filter *p_5tuple_filter;
-	struct e1000_2tuple_filter *p_2tuple_filter;
-	int ret;
-
-	switch (ntuple_filter->flags) {
-	case RTE_5TUPLE_FLAGS:
-	case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
-		if (hw->mac.type != e1000_82576)
-			return -ENOTSUP;
-		memset(&filter_5tuple,
-			0,
-			sizeof(struct e1000_5tuple_filter_info));
-		ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
-						    &filter_5tuple);
-		if (ret < 0)
-			return ret;
-		p_5tuple_filter = igb_5tuple_filter_lookup_82576(
-					&filter_info->fivetuple_list,
-					&filter_5tuple);
-		if (p_5tuple_filter == NULL) {
-			PMD_DRV_LOG(ERR, "filter doesn't exist.");
-			return -ENOENT;
-		}
-		ntuple_filter->queue = p_5tuple_filter->queue;
-		break;
-	case RTE_2TUPLE_FLAGS:
-	case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
-		if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
-			return -ENOTSUP;
-		memset(&filter_2tuple,
-			0,
-			sizeof(struct e1000_2tuple_filter_info));
-		ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
-		if (ret < 0)
-			return ret;
-		p_2tuple_filter = igb_2tuple_filter_lookup(
-					&filter_info->twotuple_list,
-					&filter_2tuple);
-		if (p_2tuple_filter == NULL) {
-			PMD_DRV_LOG(ERR, "filter doesn't exist.");
-			return -ENOENT;
-		}
-		ntuple_filter->queue = p_2tuple_filter->queue;
-		break;
-	default:
-		ret = -EINVAL;
-		break;
-	}
-
-	return 0;
-}
-
-/*
- * igb_ntuple_filter_handle - Handle operations for ntuple filter.
- * @dev: pointer to rte_eth_dev structure
- * @filter_op:operation will be taken.
- * @arg: a pointer to specific structure corresponding to the filter_op
- */
-static int
-igb_ntuple_filter_handle(struct rte_eth_dev *dev,
-				enum rte_filter_op filter_op,
-				void *arg)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	int ret;
-
-	MAC_TYPE_FILTER_SUP(hw->mac.type);
-
-	if (filter_op == RTE_ETH_FILTER_NOP)
-		return 0;
-
-	if (arg == NULL) {
-		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
-			    filter_op);
-		return -EINVAL;
-	}
-
-	switch (filter_op) {
-	case RTE_ETH_FILTER_ADD:
-		ret = igb_add_del_ntuple_filter(dev,
-			(struct rte_eth_ntuple_filter *)arg,
-			TRUE);
-		break;
-	case RTE_ETH_FILTER_DELETE:
-		ret = igb_add_del_ntuple_filter(dev,
-			(struct rte_eth_ntuple_filter *)arg,
-			FALSE);
-		break;
-	case RTE_ETH_FILTER_GET:
-		ret = igb_get_ntuple_filter(dev,
-			(struct rte_eth_ntuple_filter *)arg);
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
-		ret = -EINVAL;
-		break;
-	}
-	return ret;
-}
-
-static inline int
-igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
-			uint16_t ethertype)
-{
-	int i;
-
-	for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
-		if (filter_info->ethertype_filters[i] == ethertype &&
-		    (filter_info->ethertype_mask & (1 << i)))
-			return i;
-	}
-	return -1;
-}
-
-static inline int
-igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
-			uint16_t ethertype)
-{
-	int i;
-
-	for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
-		if (!(filter_info->ethertype_mask & (1 << i))) {
-			filter_info->ethertype_mask |= 1 << i;
-			filter_info->ethertype_filters[i] = ethertype;
-			return i;
-		}
-	}
-	return -1;
-}
-
-static inline int
-igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
-			uint8_t idx)
-{
-	if (idx >= E1000_MAX_ETQF_FILTERS)
-		return -1;
-	filter_info->ethertype_mask &= ~(1 << idx);
-	filter_info->ethertype_filters[idx] = 0;
-	return idx;
-}
-
-
-static int
-igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ethertype_filter *filter,
-			bool add)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	uint32_t etqf = 0;
-	int ret;
-
-	if (filter->ether_type == ETHER_TYPE_IPv4 ||
-		filter->ether_type == ETHER_TYPE_IPv6) {
-		PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
-			" ethertype filter.", filter->ether_type);
-		return -EINVAL;
-	}
-
-	if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
-		PMD_DRV_LOG(ERR, "mac compare is unsupported.");
-		return -EINVAL;
-	}
-	if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
-		PMD_DRV_LOG(ERR, "drop option is unsupported.");
-		return -EINVAL;
-	}
-
-	ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
-	if (ret >= 0 && add) {
-		PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
-			    filter->ether_type);
-		return -EEXIST;
-	}
-	if (ret < 0 && !add) {
-		PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
-			    filter->ether_type);
-		return -ENOENT;
-	}
-
-	if (add) {
-		ret = igb_ethertype_filter_insert(filter_info,
-			filter->ether_type);
-		if (ret < 0) {
-			PMD_DRV_LOG(ERR, "ethertype filters are full.");
-			return -ENOSYS;
-		}
-
-		etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
-		etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
-		etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
-	} else {
-		ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
-		if (ret < 0)
-			return -ENOSYS;
-	}
-	E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
-	E1000_WRITE_FLUSH(hw);
-
-	return 0;
-}
-
-static int
-igb_get_ethertype_filter(struct rte_eth_dev *dev,
-			struct rte_eth_ethertype_filter *filter)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_filter_info *filter_info =
-		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
-	uint32_t etqf;
-	int ret;
-
-	ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
-	if (ret < 0) {
-		PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
-			    filter->ether_type);
-		return -ENOENT;
-	}
-
-	etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
-	if (etqf & E1000_ETQF_FILTER_ENABLE) {
-		filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
-		filter->flags = 0;
-		filter->queue = (etqf & E1000_ETQF_QUEUE) >>
-				E1000_ETQF_QUEUE_SHIFT;
-		return 0;
-	}
-
-	return -ENOENT;
-}
-
-/*
- * igb_ethertype_filter_handle - Handle operations for ethertype filter.
- * @dev: pointer to rte_eth_dev structure
- * @filter_op:operation will be taken.
- * @arg: a pointer to specific structure corresponding to the filter_op
- */
-static int
-igb_ethertype_filter_handle(struct rte_eth_dev *dev,
-				enum rte_filter_op filter_op,
-				void *arg)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	int ret;
-
-	MAC_TYPE_FILTER_SUP(hw->mac.type);
-
-	if (filter_op == RTE_ETH_FILTER_NOP)
-		return 0;
-
-	if (arg == NULL) {
-		PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
-			    filter_op);
-		return -EINVAL;
-	}
-
-	switch (filter_op) {
-	case RTE_ETH_FILTER_ADD:
-		ret = igb_add_del_ethertype_filter(dev,
-			(struct rte_eth_ethertype_filter *)arg,
-			TRUE);
-		break;
-	case RTE_ETH_FILTER_DELETE:
-		ret = igb_add_del_ethertype_filter(dev,
-			(struct rte_eth_ethertype_filter *)arg,
-			FALSE);
-		break;
-	case RTE_ETH_FILTER_GET:
-		ret = igb_get_ethertype_filter(dev,
-			(struct rte_eth_ethertype_filter *)arg);
-		break;
-	default:
-		PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
-		ret = -EINVAL;
-		break;
-	}
-	return ret;
-}
-
-static int
-eth_igb_filter_ctrl(struct rte_eth_dev *dev,
-		     enum rte_filter_type filter_type,
-		     enum rte_filter_op filter_op,
-		     void *arg)
-{
-	int ret = -EINVAL;
-
-	switch (filter_type) {
-	case RTE_ETH_FILTER_NTUPLE:
-		ret = igb_ntuple_filter_handle(dev, filter_op, arg);
-		break;
-	case RTE_ETH_FILTER_ETHERTYPE:
-		ret = igb_ethertype_filter_handle(dev, filter_op, arg);
-		break;
-	case RTE_ETH_FILTER_SYN:
-		ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
-		break;
-	case RTE_ETH_FILTER_FLEXIBLE:
-		ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
-		break;
-	default:
-		PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
-							filter_type);
-		break;
-	}
-
-	return ret;
-}
-
-static struct rte_driver pmd_igb_drv = {
-	.type = PMD_PDEV,
-	.init = rte_igb_pmd_init,
-};
-
-static struct rte_driver pmd_igbvf_drv = {
-	.type = PMD_PDEV,
-	.init = rte_igbvf_pmd_init,
-};
-
-PMD_REGISTER_DRIVER(pmd_igb_drv);
-PMD_REGISTER_DRIVER(pmd_igbvf_drv);
diff --git a/lib/librte_pmd_e1000/igb_pf.c b/lib/librte_pmd_e1000/igb_pf.c
deleted file mode 100644
index 2d49379..0000000
--- a/lib/librte_pmd_e1000/igb_pf.c
+++ /dev/null
@@ -1,511 +0,0 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <stdio.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <unistd.h>
-#include <stdarg.h>
-#include <inttypes.h>
-
-#include <rte_interrupts.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_eal.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_memcpy.h>
-#include <rte_malloc.h>
-#include <rte_random.h>
-
-#include "e1000/e1000_defines.h"
-#include "e1000/e1000_regs.h"
-#include "e1000/e1000_hw.h"
-#include "e1000_ethdev.h"
-
-static inline uint16_t
-dev_num_vf(struct rte_eth_dev *eth_dev)
-{
-	return eth_dev->pci_dev->max_vfs;
-}
-
-static inline
-int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
-{
-	unsigned char vf_mac_addr[ETHER_ADDR_LEN];
-	struct e1000_vf_info *vfinfo =
-		*E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
-	uint16_t vfn;
-
-	for (vfn = 0; vfn < vf_num; vfn++) {
-		eth_random_addr(vf_mac_addr);
-		/* keep the random address as default */
-		memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
-				ETHER_ADDR_LEN);
-	}
-
-	return 0;
-}
-
-static inline int
-igb_mb_intr_setup(struct rte_eth_dev *dev)
-{
-	struct e1000_interrupt *intr =
-		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
-
-	intr->mask |= E1000_ICR_VMMB;
-
-	return 0;
-}
-
-void igb_pf_host_init(struct rte_eth_dev *eth_dev)
-{
-	struct e1000_vf_info **vfinfo =
-		E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
-	uint16_t vf_num;
-	uint8_t nb_queue;
-
-	RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
-	if (0 == (vf_num = dev_num_vf(eth_dev)))
-		return;
-
-	if (hw->mac.type == e1000_i350)
-		nb_queue = 1;
-	else if(hw->mac.type == e1000_82576)
-		/* per datasheet, it should be 2, but 1 seems correct */
-		nb_queue = 1;
-	else
-		return;
-
-	*vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
-	if (*vfinfo == NULL)
-		rte_panic("Cannot allocate memory for private VF data\n");
-
-	RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
-	RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
-	RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
-	RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
-
-	igb_vf_perm_addr_gen(eth_dev, vf_num);
-
-	/* set mb interrupt mask */
-	igb_mb_intr_setup(eth_dev);
-
-	return;
-}
-
-#define E1000_RAH_POOLSEL_SHIFT    (18)
-int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
-{
-	uint32_t vtctl;
-	uint16_t vf_num;
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
-	uint32_t vlanctrl;
-	int i;
-	uint32_t rah;
-
-	if (0 == (vf_num = dev_num_vf(eth_dev)))
-		return -1;
-
-	/* enable VMDq and set the default pool for PF */
-	vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
-	vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
-	vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
-		<< E1000_VT_CTL_DEFAULT_POOL_SHIFT;
-	vtctl |= E1000_VT_CTL_VM_REPL_EN;
-	E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
-
-	/* Enable pools reserved to PF only */
-	E1000_WRITE_REG(hw, E1000_VFRE, (~0) << vf_num);
-	E1000_WRITE_REG(hw, E1000_VFTE, (~0) << vf_num);
-
-	/* PFDMA Tx General Switch Control Enables VMDQ loopback */
-	if (hw->mac.type == e1000_i350)
-		E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
-	else
-		E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
-
-	/* clear VMDq map to perment rar 0 */
-	rah = E1000_READ_REG(hw, E1000_RAH(0));
-	rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
-	E1000_WRITE_REG(hw, E1000_RAH(0), rah);
-
-	/* clear VMDq map to scan rar 32 */
-	rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
-	rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
-	E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
-
-	/* set VMDq map to default PF pool */
-	rah = E1000_READ_REG(hw, E1000_RAH(0));
-	rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
-			E1000_RAH_POOLSEL_SHIFT));
-	E1000_WRITE_REG(hw, E1000_RAH(0), rah);
-
-	/*
-	 * enable vlan filtering and allow all vlan tags through
-	 */
-	vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
-	vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
-	E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
-
-	/* VFTA - enable all vlan filters */
-	for (i = 0; i < IGB_VFTA_SIZE; i++) {
-		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
-	}
-
-	/* Enable/Disable MAC Anti-Spoofing */
-	e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
-
-	return 0;
-}
-
-static void
-set_rx_mode(struct rte_eth_dev *dev)
-{
-	struct rte_eth_dev_data *dev_data =
-		(struct rte_eth_dev_data*)dev->data->dev_private;
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
-	uint16_t vfn = dev_num_vf(dev);
-
-	/* Check for Promiscuous and All Multicast modes */
-	fctrl = E1000_READ_REG(hw, E1000_RCTL);
-
-	/* set all bits that we expect to always be set */
-	fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
-	fctrl |= E1000_RCTL_BAM;;
-
-	/* clear the bits we are changing the status of */
-	fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
-
-	if (dev_data->promiscuous) {
-		fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
-		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
-	} else {
-		if (dev_data->all_multicast) {
-			fctrl |= E1000_RCTL_MPE;
-			vmolr |= E1000_VMOLR_MPME;
-		} else {
-			vmolr |= E1000_VMOLR_ROMPE;
-		}
-	}
-
-	if ((hw->mac.type == e1000_82576) ||
-		(hw->mac.type == e1000_i350)) {
-		vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
-			 ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
-			   E1000_VMOLR_ROPE);
-		E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
-	}
-
-	E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
-}
-
-static inline void
-igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vf_info *vfinfo =
-		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
-	uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
-
-	vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
-			E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
-	E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
-
-	E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
-
-	/* reset multicast table array for vf */
-	vfinfo[vf].num_vf_mc_hashes = 0;
-
-	/* reset rx mode */
-	set_rx_mode(dev);
-}
-
-static inline void
-igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t reg;
-
-	/* enable transmit and receive for vf */
-	reg = E1000_READ_REG(hw, E1000_VFTE);
-	reg |= (reg | (1 << vf));
-	E1000_WRITE_REG(hw, E1000_VFTE, reg);
-
-	reg = E1000_READ_REG(hw, E1000_VFRE);
-	reg |= (reg | (1 << vf));
-	E1000_WRITE_REG(hw, E1000_VFRE, reg);
-
-	igb_vf_reset_event(dev, vf);
-}
-
-static int
-igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vf_info *vfinfo =
-		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
-	unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
-	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
-	uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
-	uint32_t rah;
-
-	igb_vf_reset_msg(dev, vf);
-
-	hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
-	rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
-	rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
-	E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
-
-	/* reply to reset with ack and vf mac address */
-	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
-	rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
-	e1000_write_mbx(hw, msgbuf, 3, vf);
-
-	return 0;
-}
-
-static int
-igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vf_info *vfinfo =
-		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
-	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
-	uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
-
-	if (is_valid_assigned_ether_addr((struct ether_addr*)new_mac)) {
-		rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, 6);
-		hw->mac.ops.rar_set(hw, new_mac, rar_entry);
-		return 0;
-	}
-	return -1;
-}
-
-static int
-igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
-{
-	int i;
-	uint32_t vector_bit;
-	uint32_t vector_reg;
-	uint32_t mta_reg;
-	int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
-		E1000_VT_MSGINFO_SHIFT;
-	uint16_t *hash_list = (uint16_t *)&msgbuf[1];
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vf_info *vfinfo =
-		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
-
-	/* only so many hash values supported */
-	entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
-
-	/*
-	 * salt away the number of multi cast addresses assigned
-	 * to this VF for later use to restore when the PF multi cast
-	 * list changes
-	 */
-	vfinfo->num_vf_mc_hashes = (uint16_t)entries;
-
-	/*
-	 * VFs are limited to using the MTA hash table for their multicast
-	 * addresses
-	 */
-	for (i = 0; i < entries; i++) {
-		vfinfo->vf_mc_hashes[i] = hash_list[i];
-	}
-
-	for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
-		vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
-		vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
-		mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
-		mta_reg |= (1 << vector_bit);
-		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
-	}
-
-	return 0;
-}
-
-static int
-igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
-{
-	int add, vid;
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	struct e1000_vf_info *vfinfo =
-		*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
-	uint32_t vid_idx, vid_bit, vfta;
-
-	add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
-		>> E1000_VT_MSGINFO_SHIFT;
-	vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
-
-	if (add)
-		vfinfo[vf].vlan_count++;
-	else if (vfinfo[vf].vlan_count)
-		vfinfo[vf].vlan_count--;
-
-	vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
-			     E1000_VFTA_ENTRY_MASK);
-	vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
-	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
-	if (add)
-		vfta |= vid_bit;
-	else
-		vfta &= ~vid_bit;
-
-	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
-	E1000_WRITE_FLUSH(hw);
-
-	return 0;
-}
-
-static int
-igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
-{
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
-	uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
-	uint32_t vmolr;
-
-	if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
-		return -1;
-
-	vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
-
-	vmolr &= ~E1000_VMOLR_RLPML_MASK;
-	vmolr |= rlpml;
-
-	/* Enable Long Packet support */
-	vmolr |= E1000_VMOLR_LPE;
-
-	E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
-	E1000_WRITE_FLUSH(hw);
-
-	return 0;
-}
-
-static int
-igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
-{
-	uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
-	uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
-	int32_t retval;
-	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
-	if (retval) {
-		PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
-		return retval;
-	}
-
-	/* do nothing with the message already processed */
-	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
-		return retval;
-
-	/* flush the ack before we write any messages back */
-	E1000_WRITE_FLUSH(hw);
-
-	/* perform VF reset */
-	if (msgbuf[0] == E1000_VF_RESET) {
-		return igb_vf_reset(dev, vf, msgbuf);
-	}
-
-	/* check & process VF to PF mailbox message */
-	switch ((msgbuf[0] & 0xFFFF)) {
-	case E1000_VF_SET_MAC_ADDR:
-		retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
-		break;
-	case E1000_VF_SET_MULTICAST:
-		retval = igb_vf_set_multicast(dev, vf, msgbuf);
-		break;
-	case E1000_VF_SET_LPE:
-		retval = igb_vf_set_rlpml(dev, vf, msgbuf);
-		break;
-	case E1000_VF_SET_VLAN:
-		retval = igb_vf_set_vlan(dev, vf, msgbuf);
-		break;
-	default:
-		PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
-			     (unsigned) msgbuf[0]);
-		retval = E1000_ERR_MBX;
-		break;
-	}
-
-	/* response the VF according to the message process result */
-	if (retval)
-		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
-	else
-		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
-
-	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
-
-	e1000_write_mbx(hw, msgbuf, 1, vf);
-
-	return retval;
-}
-
-static inline void
-igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
-{
-	uint32_t msg = E1000_VT_MSGTYPE_NACK;
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	e1000_write_mbx(hw, &msg, 1, vf);
-}
-
-void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
-{
-	uint16_t vf;
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
-
-	for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
-		/* check & process vf function level reset */
-		if (!e1000_check_for_rst(hw, vf))
-			igb_vf_reset_event(eth_dev, vf);
-
-		/* check & process vf mailbox messages */
-		if (!e1000_check_for_msg(hw, vf))
-			igb_rcv_msg_from_vf(eth_dev, vf);
-
-		/* check & process acks from vf */
-		if (!e1000_check_for_ack(hw, vf))
-			igb_rcv_ack_from_vf(eth_dev, vf);
-	}
-}
diff --git a/lib/librte_pmd_e1000/igb_rxtx.c b/lib/librte_pmd_e1000/igb_rxtx.c
deleted file mode 100644
index 80d05c0..0000000
--- a/lib/librte_pmd_e1000/igb_rxtx.c
+++ /dev/null
@@ -1,2397 +0,0 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <sys/queue.h>
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-#include <inttypes.h>
-
-#include <rte_interrupts.h>
-#include <rte_byteorder.h>
-#include <rte_common.h>
-#include <rte_log.h>
-#include <rte_debug.h>
-#include <rte_pci.h>
-#include <rte_memory.h>
-#include <rte_memcpy.h>
-#include <rte_memzone.h>
-#include <rte_launch.h>
-#include <rte_eal.h>
-#include <rte_per_lcore.h>
-#include <rte_lcore.h>
-#include <rte_atomic.h>
-#include <rte_branch_prediction.h>
-#include <rte_ring.h>
-#include <rte_mempool.h>
-#include <rte_malloc.h>
-#include <rte_mbuf.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_prefetch.h>
-#include <rte_udp.h>
-#include <rte_tcp.h>
-#include <rte_sctp.h>
-#include <rte_string_fns.h>
-
-#include "e1000_logs.h"
-#include "e1000/e1000_api.h"
-#include "e1000_ethdev.h"
-
-/* Bit Mask to indicate what bits required for building TX context */
-#define IGB_TX_OFFLOAD_MASK (			 \
-		PKT_TX_VLAN_PKT |		 \
-		PKT_TX_IP_CKSUM |		 \
-		PKT_TX_L4_MASK)
-
-static inline struct rte_mbuf *
-rte_rxmbuf_alloc(struct rte_mempool *mp)
-{
-	struct rte_mbuf *m;
-
-	m = __rte_mbuf_raw_alloc(mp);
-	__rte_mbuf_sanity_check_raw(m, 0);
-	return (m);
-}
-
-#define RTE_MBUF_DATA_DMA_ADDR(mb) \
-	(uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
-
-#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
-	(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
-
-/**
- * Structure associated with each descriptor of the RX ring of a RX queue.
- */
-struct igb_rx_entry {
-	struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
-};
-
-/**
- * Structure associated with each descriptor of the TX ring of a TX queue.
- */
-struct igb_tx_entry {
-	struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
-	uint16_t next_id; /**< Index of next descriptor in ring. */
-	uint16_t last_id; /**< Index of last scattered descriptor. */
-};
-
-/**
- * Structure associated with each RX queue.
- */
-struct igb_rx_queue {
-	struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
-	volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
-	uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
-	volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
-	volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
-	struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
-	struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
-	struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
-	uint16_t            nb_rx_desc; /**< number of RX descriptors. */
-	uint16_t            rx_tail;    /**< current value of RDT register. */
-	uint16_t            nb_rx_hold; /**< number of held free RX desc. */
-	uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
-	uint16_t            queue_id;   /**< RX queue index. */
-	uint16_t            reg_idx;    /**< RX queue register index. */
-	uint8_t             port_id;    /**< Device port identifier. */
-	uint8_t             pthresh;    /**< Prefetch threshold register. */
-	uint8_t             hthresh;    /**< Host threshold register. */
-	uint8_t             wthresh;    /**< Write-back threshold register. */
-	uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
-	uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
-};
-
-/**
- * Hardware context number
- */
-enum igb_advctx_num {
-	IGB_CTX_0    = 0, /**< CTX0    */
-	IGB_CTX_1    = 1, /**< CTX1    */
-	IGB_CTX_NUM  = 2, /**< CTX_NUM */
-};
-
-/** Offload features */
-union igb_vlan_macip {
-	uint32_t data;
-	struct {
-		uint16_t l2_l3_len; /**< 7bit L2 and 9b L3 lengths combined */
-		uint16_t vlan_tci;
-		/**< VLAN Tag Control Identifier (CPU order). */
-	} f;
-};
-
-/*
- * Compare mask for vlan_macip_len.data,
- * should be in sync with igb_vlan_macip.f layout.
- * */
-#define TX_VLAN_CMP_MASK        0xFFFF0000  /**< VLAN length - 16-bits. */
-#define TX_MAC_LEN_CMP_MASK     0x0000FE00  /**< MAC length - 7-bits. */
-#define TX_IP_LEN_CMP_MASK      0x000001FF  /**< IP  length - 9-bits. */
-/** MAC+IP  length. */
-#define TX_MACIP_LEN_CMP_MASK   (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
-
-/**
- * Strucutre to check if new context need be built
- */
-struct igb_advctx_info {
-	uint64_t flags;           /**< ol_flags related to context build. */
-	uint32_t cmp_mask;        /**< compare mask for vlan_macip_lens */
-	union igb_vlan_macip vlan_macip_lens; /**< vlan, mac & ip length. */
-};
-
-/**
- * Structure associated with each TX queue.
- */
-struct igb_tx_queue {
-	volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
-	uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
-	struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
-	volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
-	uint32_t               txd_type;      /**< Device-specific TXD type */
-	uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
-	uint16_t               tx_tail; /**< Current value of TDT register. */
-	uint16_t               tx_head;
-	/**< Index of first used TX descriptor. */
-	uint16_t               queue_id; /**< TX queue index. */
-	uint16_t               reg_idx;  /**< TX queue register index. */
-	uint8_t                port_id;  /**< Device port identifier. */
-	uint8_t                pthresh;  /**< Prefetch threshold register. */
-	uint8_t                hthresh;  /**< Host threshold register. */
-	uint8_t                wthresh;  /**< Write-back threshold register. */
-	uint32_t               ctx_curr;
-	/**< Current used hardware descriptor. */
-	uint32_t               ctx_start;
-	/**< Start context position for transmit queue. */
-	struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
-	/**< Hardware context history.*/
-};
-
-#if 1
-#define RTE_PMD_USE_PREFETCH
-#endif
-
-#ifdef RTE_PMD_USE_PREFETCH
-#define rte_igb_prefetch(p)	rte_prefetch0(p)
-#else
-#define rte_igb_prefetch(p)	do {} while(0)
-#endif
-
-#ifdef RTE_PMD_PACKET_PREFETCH
-#define rte_packet_prefetch(p) rte_prefetch1(p)
-#else
-#define rte_packet_prefetch(p)	do {} while(0)
-#endif
-
-/*
- * Macro for VMDq feature for 1 GbE NIC.
- */
-#define E1000_VMOLR_SIZE			(8)
-
-/*********************************************************************
- *
- *  TX function
- *
- **********************************************************************/
-
-/*
- * Advanced context descriptor are almost same between igb/ixgbe
- * This is a separate function, looking for optimization opportunity here
- * Rework required to go with the pre-defined values.
- */
-
-static inline void
-igbe_set_xmit_ctx(struct igb_tx_queue* txq,
-		volatile struct e1000_adv_tx_context_desc *ctx_txd,
-		uint64_t ol_flags, uint32_t vlan_macip_lens)
-{
-	uint32_t type_tucmd_mlhl;
-	uint32_t mss_l4len_idx;
-	uint32_t ctx_idx, ctx_curr;
-	uint32_t cmp_mask;
-
-	ctx_curr = txq->ctx_curr;
-	ctx_idx = ctx_curr + txq->ctx_start;
-
-	cmp_mask = 0;
-	type_tucmd_mlhl = 0;
-
-	if (ol_flags & PKT_TX_VLAN_PKT) {
-		cmp_mask |= TX_VLAN_CMP_MASK;
-	}
-
-	if (ol_flags & PKT_TX_IP_CKSUM) {
-		type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
-		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
-	}
-
-	/* Specify which HW CTX to upload. */
-	mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
-	switch (ol_flags & PKT_TX_L4_MASK) {
-	case PKT_TX_UDP_CKSUM:
-		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
-				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
-		mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
-		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
-		break;
-	case PKT_TX_TCP_CKSUM:
-		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
-				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
-		mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
-		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
-		break;
-	case PKT_TX_SCTP_CKSUM:
-		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
-				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
-		mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
-		cmp_mask |= TX_MACIP_LEN_CMP_MASK;
-		break;
-	default:
-		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
-				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
-		break;
-	}
-
-	txq->ctx_cache[ctx_curr].flags           = ol_flags;
-	txq->ctx_cache[ctx_curr].cmp_mask        = cmp_mask;
-	txq->ctx_cache[ctx_curr].vlan_macip_lens.data =
-		vlan_macip_lens & cmp_mask;
-
-	ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
-	ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
-	ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
-	ctx_txd->seqnum_seed     = 0;
-}
-
-/*
- * Check which hardware context can be used. Use the existing match
- * or create a new context descriptor.
- */
-static inline uint32_t
-what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
-		uint32_t vlan_macip_lens)
-{
-	/* If match with the current context */
-	if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
-		(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
-		(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
-			return txq->ctx_curr;
-	}
-
-	/* If match with the second context */
-	txq->ctx_curr ^= 1;
-	if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
-		(txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
-		(txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
-			return txq->ctx_curr;
-	}
-
-	/* Mismatch, use the previous context */
-	return (IGB_CTX_NUM);
-}
-
-static inline uint32_t
-tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
-{
-	static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
-	static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
-	uint32_t tmp;
-
-	tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
-	tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
-	return tmp;
-}
-
-static inline uint32_t
-tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
-{
-	static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
-	return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
-}
-
-uint16_t
-eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
-	       uint16_t nb_pkts)
-{
-	struct igb_tx_queue *txq;
-	struct igb_tx_entry *sw_ring;
-	struct igb_tx_entry *txe, *txn;
-	volatile union e1000_adv_tx_desc *txr;
-	volatile union e1000_adv_tx_desc *txd;
-	struct rte_mbuf     *tx_pkt;
-	struct rte_mbuf     *m_seg;
-	union igb_vlan_macip vlan_macip_lens;
-	union {
-		uint16_t u16;
-		struct {
-			uint16_t l3_len:9;
-			uint16_t l2_len:7;
-		};
-	} l2_l3_len;
-	uint64_t buf_dma_addr;
-	uint32_t olinfo_status;
-	uint32_t cmd_type_len;
-	uint32_t pkt_len;
-	uint16_t slen;
-	uint64_t ol_flags;
-	uint16_t tx_end;
-	uint16_t tx_id;
-	uint16_t tx_last;
-	uint16_t nb_tx;
-	uint64_t tx_ol_req;
-	uint32_t new_ctx = 0;
-	uint32_t ctx = 0;
-
-	txq = tx_queue;
-	sw_ring = txq->sw_ring;
-	txr     = txq->tx_ring;
-	tx_id   = txq->tx_tail;
-	txe = &sw_ring[tx_id];
-
-	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
-		tx_pkt = *tx_pkts++;
-		pkt_len = tx_pkt->pkt_len;
-
-		RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
-
-		/*
-		 * The number of descriptors that must be allocated for a
-		 * packet is the number of segments of that packet, plus 1
-		 * Context Descriptor for the VLAN Tag Identifier, if any.
-		 * Determine the last TX descriptor to allocate in the TX ring
-		 * for the packet, starting from the current position (tx_id)
-		 * in the ring.
-		 */
-		tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
-
-		ol_flags = tx_pkt->ol_flags;
-		l2_l3_len.l2_len = tx_pkt->l2_len;
-		l2_l3_len.l3_len = tx_pkt->l3_len;
-		vlan_macip_lens.f.vlan_tci = tx_pkt->vlan_tci;
-		vlan_macip_lens.f.l2_l3_len = l2_l3_len.u16;
-		tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
-
-		/* If a Context Descriptor need be built . */
-		if (tx_ol_req) {
-			ctx = what_advctx_update(txq, tx_ol_req,
-				vlan_macip_lens.data);
-			/* Only allocate context descriptor if required*/
-			new_ctx = (ctx == IGB_CTX_NUM);
-			ctx = txq->ctx_curr;
-			tx_last = (uint16_t) (tx_last + new_ctx);
-		}
-		if (tx_last >= txq->nb_tx_desc)
-			tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
-
-		PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
-			   " tx_first=%u tx_last=%u",
-			   (unsigned) txq->port_id,
-			   (unsigned) txq->queue_id,
-			   (unsigned) pkt_len,
-			   (unsigned) tx_id,
-			   (unsigned) tx_last);
-
-		/*
-		 * Check if there are enough free descriptors in the TX ring
-		 * to transmit the next packet.
-		 * This operation is based on the two following rules:
-		 *
-		 *   1- Only check that the last needed TX descriptor can be
-		 *      allocated (by construction, if that descriptor is free,
-		 *      all intermediate ones are also free).
-		 *
-		 *      For this purpose, the index of the last TX descriptor
-		 *      used for a packet (the "last descriptor" of a packet)
-		 *      is recorded in the TX entries (the last one included)
-		 *      that are associated with all TX descriptors allocated
-		 *      for that packet.
-		 *
-		 *   2- Avoid to allocate the last free TX descriptor of the
-		 *      ring, in order to never set the TDT register with the
-		 *      same value stored in parallel by the NIC in the TDH
-		 *      register, which makes the TX engine of the NIC enter
-		 *      in a deadlock situation.
-		 *
-		 *      By extension, avoid to allocate a free descriptor that
-		 *      belongs to the last set of free descriptors allocated
-		 *      to the same packet previously transmitted.
-		 */
-
-		/*
-		 * The "last descriptor" of the previously sent packet, if any,
-		 * which used the last descriptor to allocate.
-		 */
-		tx_end = sw_ring[tx_last].last_id;
-
-		/*
-		 * The next descriptor following that "last descriptor" in the
-		 * ring.
-		 */
-		tx_end = sw_ring[tx_end].next_id;
-
-		/*
-		 * The "last descriptor" associated with that next descriptor.
-		 */
-		tx_end = sw_ring[tx_end].last_id;
-
-		/*
-		 * Check that this descriptor is free.
-		 */
-		if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
-			if (nb_tx == 0)
-				return (0);
-			goto end_of_tx;
-		}
-
-		/*
-		 * Set common flags of all TX Data Descriptors.
-		 *
-		 * The following bits must be set in all Data Descriptors:
-		 *   - E1000_ADVTXD_DTYP_DATA
-		 *   - E1000_ADVTXD_DCMD_DEXT
-		 *
-		 * The following bits must be set in the first Data Descriptor
-		 * and are ignored in the other ones:
-		 *   - E1000_ADVTXD_DCMD_IFCS
-		 *   - E1000_ADVTXD_MAC_1588
-		 *   - E1000_ADVTXD_DCMD_VLE
-		 *
-		 * The following bits must only be set in the last Data
-		 * Descriptor:
-		 *   - E1000_TXD_CMD_EOP
-		 *
-		 * The following bits can be set in any Data Descriptor, but
-		 * are only set in the last Data Descriptor:
-		 *   - E1000_TXD_CMD_RS
-		 */
-		cmd_type_len = txq->txd_type |
-			E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
-		olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
-#if defined(RTE_LIBRTE_IEEE1588)
-		if (ol_flags & PKT_TX_IEEE1588_TMST)
-			cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
-#endif
-		if (tx_ol_req) {
-			/* Setup TX Advanced context descriptor if required */
-			if (new_ctx) {
-				volatile struct e1000_adv_tx_context_desc *
-				    ctx_txd;
-
-				ctx_txd = (volatile struct
-				    e1000_adv_tx_context_desc *)
-				    &txr[tx_id];
-
-				txn = &sw_ring[txe->next_id];
-				RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
-
-				if (txe->mbuf != NULL) {
-					rte_pktmbuf_free_seg(txe->mbuf);
-					txe->mbuf = NULL;
-				}
-
-				igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
-				    vlan_macip_lens.data);
-
-				txe->last_id = tx_last;
-				tx_id = txe->next_id;
-				txe = txn;
-			}
-
-			/* Setup the TX Advanced Data Descriptor */
-			cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
-			olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
-			olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
-		}
-
-		m_seg = tx_pkt;
-		do {
-			txn = &sw_ring[txe->next_id];
-			txd = &txr[tx_id];
-
-			if (txe->mbuf != NULL)
-				rte_pktmbuf_free_seg(txe->mbuf);
-			txe->mbuf = m_seg;
-
-			/*
-			 * Set up transmit descriptor.
-			 */
-			slen = (uint16_t) m_seg->data_len;
-			buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
-			txd->read.buffer_addr =
-				rte_cpu_to_le_64(buf_dma_addr);
-			txd->read.cmd_type_len =
-				rte_cpu_to_le_32(cmd_type_len | slen);
-			txd->read.olinfo_status =
-				rte_cpu_to_le_32(olinfo_status);
-			txe->last_id = tx_last;
-			tx_id = txe->next_id;
-			txe = txn;
-			m_seg = m_seg->next;
-		} while (m_seg != NULL);
-
-		/*
-		 * The last packet data descriptor needs End Of Packet (EOP)
-		 * and Report Status (RS).
-		 */
-		txd->read.cmd_type_len |=
-			rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
-	}
- end_of_tx:
-	rte_wmb();
-
-	/*
-	 * Set the Transmit Descriptor Tail (TDT).
-	 */
-	E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
-	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
-		   (unsigned) txq->port_id, (unsigned) txq->queue_id,
-		   (unsigned) tx_id, (unsigned) nb_tx);
-	txq->tx_tail = tx_id;
-
-	return (nb_tx);
-}
-
-/*********************************************************************
- *
- *  RX functions
- *
- **********************************************************************/
-static inline uint64_t
-rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
-{
-	uint64_t pkt_flags;
-
-	static uint64_t ip_pkt_types_map[16] = {
-		0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
-		PKT_RX_IPV6_HDR, 0, 0, 0,
-		PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
-		PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
-	};
-
-#if defined(RTE_LIBRTE_IEEE1588)
-	static uint32_t ip_pkt_etqf_map[8] = {
-		0, 0, 0, PKT_RX_IEEE1588_PTP,
-		0, 0, 0, 0,
-	};
-
-	pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
-				ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
-				ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
-#else
-	pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
-				ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
-#endif
-	return pkt_flags | (((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH);
-}
-
-static inline uint64_t
-rx_desc_status_to_pkt_flags(uint32_t rx_status)
-{
-	uint64_t pkt_flags;
-
-	/* Check if VLAN present */
-	pkt_flags = (rx_status & E1000_RXD_STAT_VP) ?  PKT_RX_VLAN_PKT : 0;
-
-#if defined(RTE_LIBRTE_IEEE1588)
-	if (rx_status & E1000_RXD_STAT_TMST)
-		pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
-#endif
-	return pkt_flags;
-}
-
-static inline uint64_t
-rx_desc_error_to_pkt_flags(uint32_t rx_status)
-{
-	/*
-	 * Bit 30: IPE, IPv4 checksum error
-	 * Bit 29: L4I, L4I integrity error
-	 */
-
-	static uint64_t error_to_pkt_flags_map[4] = {
-		0,  PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
-		PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
-	};
-	return error_to_pkt_flags_map[(rx_status >>
-		E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
-}
-
-uint16_t
-eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
-	       uint16_t nb_pkts)
-{
-	struct igb_rx_queue *rxq;
-	volatile union e1000_adv_rx_desc *rx_ring;
-	volatile union e1000_adv_rx_desc *rxdp;
-	struct igb_rx_entry *sw_ring;
-	struct igb_rx_entry *rxe;
-	struct rte_mbuf *rxm;
-	struct rte_mbuf *nmb;
-	union e1000_adv_rx_desc rxd;
-	uint64_t dma_addr;
-	uint32_t staterr;
-	uint32_t hlen_type_rss;
-	uint16_t pkt_len;
-	uint16_t rx_id;
-	uint16_t nb_rx;
-	uint16_t nb_hold;
-	uint64_t pkt_flags;
-
-	nb_rx = 0;
-	nb_hold = 0;
-	rxq = rx_queue;
-	rx_id = rxq->rx_tail;
-	rx_ring = rxq->rx_ring;
-	sw_ring = rxq->sw_ring;
-	while (nb_rx < nb_pkts) {
-		/*
-		 * The order of operations here is important as the DD status
-		 * bit must not be read after any other descriptor fields.
-		 * rx_ring and rxdp are pointing to volatile data so the order
-		 * of accesses cannot be reordered by the compiler. If they were
-		 * not volatile, they could be reordered which could lead to
-		 * using invalid descriptor fields when read from rxd.
-		 */
-		rxdp = &rx_ring[rx_id];
-		staterr = rxdp->wb.upper.status_error;
-		if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
-			break;
-		rxd = *rxdp;
-
-		/*
-		 * End of packet.
-		 *
-		 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
-		 * likely to be invalid and to be dropped by the various
-		 * validation checks performed by the network stack.
-		 *
-		 * Allocate a new mbuf to replenish the RX ring descriptor.
-		 * If the allocation fails:
-		 *    - arrange for that RX descriptor to be the first one
-		 *      being parsed the next time the receive function is
-		 *      invoked [on the same queue].
-		 *
-		 *    - Stop parsing the RX ring and return immediately.
-		 *
-		 * This policy do not drop the packet received in the RX
-		 * descriptor for which the allocation of a new mbuf failed.
-		 * Thus, it allows that packet to be later retrieved if
-		 * mbuf have been freed in the mean time.
-		 * As a side effect, holding RX descriptors instead of
-		 * systematically giving them back to the NIC may lead to
-		 * RX ring exhaustion situations.
-		 * However, the NIC can gracefully prevent such situations
-		 * to happen by sending specific "back-pressure" flow control
-		 * frames to its peer(s).
-		 */
-		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
-			   "staterr=0x%x pkt_len=%u",
-			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
-			   (unsigned) rx_id, (unsigned) staterr,
-			   (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
-
-		nmb = rte_rxmbuf_alloc(rxq->mb_pool);
-		if (nmb == NULL) {
-			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
-				   "queue_id=%u", (unsigned) rxq->port_id,
-				   (unsigned) rxq->queue_id);
-			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
-			break;
-		}
-
-		nb_hold++;
-		rxe = &sw_ring[rx_id];
-		rx_id++;
-		if (rx_id == rxq->nb_rx_desc)
-			rx_id = 0;
-
-		/* Prefetch next mbuf while processing current one. */
-		rte_igb_prefetch(sw_ring[rx_id].mbuf);
-
-		/*
-		 * When next RX descriptor is on a cache-line boundary,
-		 * prefetch the next 4 RX descriptors and the next 8 pointers
-		 * to mbufs.
-		 */
-		if ((rx_id & 0x3) == 0) {
-			rte_igb_prefetch(&rx_ring[rx_id]);
-			rte_igb_prefetch(&sw_ring[rx_id]);
-		}
-
-		rxm = rxe->mbuf;
-		rxe->mbuf = nmb;
-		dma_addr =
-			rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
-		rxdp->read.hdr_addr = dma_addr;
-		rxdp->read.pkt_addr = dma_addr;
-
-		/*
-		 * Initialize the returned mbuf.
-		 * 1) setup generic mbuf fields:
-		 *    - number of segments,
-		 *    - next segment,
-		 *    - packet length,
-		 *    - RX port identifier.
-		 * 2) integrate hardware offload data, if any:
-		 *    - RSS flag & hash,
-		 *    - IP checksum flag,
-		 *    - VLAN TCI, if any,
-		 *    - error flags.
-		 */
-		pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
-				      rxq->crc_len);
-		rxm->data_off = RTE_PKTMBUF_HEADROOM;
-		rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
-		rxm->nb_segs = 1;
-		rxm->next = NULL;
-		rxm->pkt_len = pkt_len;
-		rxm->data_len = pkt_len;
-		rxm->port = rxq->port_id;
-
-		rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
-		hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
-		/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
-		rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
-
-		pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
-		pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
-		pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
-		rxm->ol_flags = pkt_flags;
-
-		/*
-		 * Store the mbuf address into the next entry of the array
-		 * of returned packets.
-		 */
-		rx_pkts[nb_rx++] = rxm;
-	}
-	rxq->rx_tail = rx_id;
-
-	/*
-	 * If the number of free RX descriptors is greater than the RX free
-	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
-	 * register.
-	 * Update the RDT with the value of the last processed RX descriptor
-	 * minus 1, to guarantee that the RDT register is never equal to the
-	 * RDH register, which creates a "full" ring situtation from the
-	 * hardware point of view...
-	 */
-	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
-	if (nb_hold > rxq->rx_free_thresh) {
-		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
-			   "nb_hold=%u nb_rx=%u",
-			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
-			   (unsigned) rx_id, (unsigned) nb_hold,
-			   (unsigned) nb_rx);
-		rx_id = (uint16_t) ((rx_id == 0) ?
-				     (rxq->nb_rx_desc - 1) : (rx_id - 1));
-		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
-		nb_hold = 0;
-	}
-	rxq->nb_rx_hold = nb_hold;
-	return (nb_rx);
-}
-
-uint16_t
-eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
-			 uint16_t nb_pkts)
-{
-	struct igb_rx_queue *rxq;
-	volatile union e1000_adv_rx_desc *rx_ring;
-	volatile union e1000_adv_rx_desc *rxdp;
-	struct igb_rx_entry *sw_ring;
-	struct igb_rx_entry *rxe;
-	struct rte_mbuf *first_seg;
-	struct rte_mbuf *last_seg;
-	struct rte_mbuf *rxm;
-	struct rte_mbuf *nmb;
-	union e1000_adv_rx_desc rxd;
-	uint64_t dma; /* Physical address of mbuf data buffer */
-	uint32_t staterr;
-	uint32_t hlen_type_rss;
-	uint16_t rx_id;
-	uint16_t nb_rx;
-	uint16_t nb_hold;
-	uint16_t data_len;
-	uint64_t pkt_flags;
-
-	nb_rx = 0;
-	nb_hold = 0;
-	rxq = rx_queue;
-	rx_id = rxq->rx_tail;
-	rx_ring = rxq->rx_ring;
-	sw_ring = rxq->sw_ring;
-
-	/*
-	 * Retrieve RX context of current packet, if any.
-	 */
-	first_seg = rxq->pkt_first_seg;
-	last_seg = rxq->pkt_last_seg;
-
-	while (nb_rx < nb_pkts) {
-	next_desc:
-		/*
-		 * The order of operations here is important as the DD status
-		 * bit must not be read after any other descriptor fields.
-		 * rx_ring and rxdp are pointing to volatile data so the order
-		 * of accesses cannot be reordered by the compiler. If they were
-		 * not volatile, they could be reordered which could lead to
-		 * using invalid descriptor fields when read from rxd.
-		 */
-		rxdp = &rx_ring[rx_id];
-		staterr = rxdp->wb.upper.status_error;
-		if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
-			break;
-		rxd = *rxdp;
-
-		/*
-		 * Descriptor done.
-		 *
-		 * Allocate a new mbuf to replenish the RX ring descriptor.
-		 * If the allocation fails:
-		 *    - arrange for that RX descriptor to be the first one
-		 *      being parsed the next time the receive function is
-		 *      invoked [on the same queue].
-		 *
-		 *    - Stop parsing the RX ring and return immediately.
-		 *
-		 * This policy does not drop the packet received in the RX
-		 * descriptor for which the allocation of a new mbuf failed.
-		 * Thus, it allows that packet to be later retrieved if
-		 * mbuf have been freed in the mean time.
-		 * As a side effect, holding RX descriptors instead of
-		 * systematically giving them back to the NIC may lead to
-		 * RX ring exhaustion situations.
-		 * However, the NIC can gracefully prevent such situations
-		 * to happen by sending specific "back-pressure" flow control
-		 * frames to its peer(s).
-		 */
-		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
-			   "staterr=0x%x data_len=%u",
-			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
-			   (unsigned) rx_id, (unsigned) staterr,
-			   (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
-
-		nmb = rte_rxmbuf_alloc(rxq->mb_pool);
-		if (nmb == NULL) {
-			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
-				   "queue_id=%u", (unsigned) rxq->port_id,
-				   (unsigned) rxq->queue_id);
-			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
-			break;
-		}
-
-		nb_hold++;
-		rxe = &sw_ring[rx_id];
-		rx_id++;
-		if (rx_id == rxq->nb_rx_desc)
-			rx_id = 0;
-
-		/* Prefetch next mbuf while processing current one. */
-		rte_igb_prefetch(sw_ring[rx_id].mbuf);
-
-		/*
-		 * When next RX descriptor is on a cache-line boundary,
-		 * prefetch the next 4 RX descriptors and the next 8 pointers
-		 * to mbufs.
-		 */
-		if ((rx_id & 0x3) == 0) {
-			rte_igb_prefetch(&rx_ring[rx_id]);
-			rte_igb_prefetch(&sw_ring[rx_id]);
-		}
-
-		/*
-		 * Update RX descriptor with the physical address of the new
-		 * data buffer of the new allocated mbuf.
-		 */
-		rxm = rxe->mbuf;
-		rxe->mbuf = nmb;
-		dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
-		rxdp->read.pkt_addr = dma;
-		rxdp->read.hdr_addr = dma;
-
-		/*
-		 * Set data length & data buffer address of mbuf.
-		 */
-		data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
-		rxm->data_len = data_len;
-		rxm->data_off = RTE_PKTMBUF_HEADROOM;
-
-		/*
-		 * If this is the first buffer of the received packet,
-		 * set the pointer to the first mbuf of the packet and
-		 * initialize its context.
-		 * Otherwise, update the total length and the number of segments
-		 * of the current scattered packet, and update the pointer to
-		 * the last mbuf of the current packet.
-		 */
-		if (first_seg == NULL) {
-			first_seg = rxm;
-			first_seg->pkt_len = data_len;
-			first_seg->nb_segs = 1;
-		} else {
-			first_seg->pkt_len += data_len;
-			first_seg->nb_segs++;
-			last_seg->next = rxm;
-		}
-
-		/*
-		 * If this is not the last buffer of the received packet,
-		 * update the pointer to the last mbuf of the current scattered
-		 * packet and continue to parse the RX ring.
-		 */
-		if (! (staterr & E1000_RXD_STAT_EOP)) {
-			last_seg = rxm;
-			goto next_desc;
-		}
-
-		/*
-		 * This is the last buffer of the received packet.
-		 * If the CRC is not stripped by the hardware:
-		 *   - Subtract the CRC	length from the total packet length.
-		 *   - If the last buffer only contains the whole CRC or a part
-		 *     of it, free the mbuf associated to the last buffer.
-		 *     If part of the CRC is also contained in the previous
-		 *     mbuf, subtract the length of that CRC part from the
-		 *     data length of the previous mbuf.
-		 */
-		rxm->next = NULL;
-		if (unlikely(rxq->crc_len > 0)) {
-			first_seg->pkt_len -= ETHER_CRC_LEN;
-			if (data_len <= ETHER_CRC_LEN) {
-				rte_pktmbuf_free_seg(rxm);
-				first_seg->nb_segs--;
-				last_seg->data_len = (uint16_t)
-					(last_seg->data_len -
-					 (ETHER_CRC_LEN - data_len));
-				last_seg->next = NULL;
-			} else
-				rxm->data_len =
-					(uint16_t) (data_len - ETHER_CRC_LEN);
-		}
-
-		/*
-		 * Initialize the first mbuf of the returned packet:
-		 *    - RX port identifier,
-		 *    - hardware offload data, if any:
-		 *      - RSS flag & hash,
-		 *      - IP checksum flag,
-		 *      - VLAN TCI, if any,
-		 *      - error flags.
-		 */
-		first_seg->port = rxq->port_id;
-		first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
-
-		/*
-		 * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
-		 * set in the pkt_flags field.
-		 */
-		first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
-		hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
-		pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
-		pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
-		pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
-		first_seg->ol_flags = pkt_flags;
-
-		/* Prefetch data of first segment, if configured to do so. */
-		rte_packet_prefetch((char *)first_seg->buf_addr +
-			first_seg->data_off);
-
-		/*
-		 * Store the mbuf address into the next entry of the array
-		 * of returned packets.
-		 */
-		rx_pkts[nb_rx++] = first_seg;
-
-		/*
-		 * Setup receipt context for a new packet.
-		 */
-		first_seg = NULL;
-	}
-
-	/*
-	 * Record index of the next RX descriptor to probe.
-	 */
-	rxq->rx_tail = rx_id;
-
-	/*
-	 * Save receive context.
-	 */
-	rxq->pkt_first_seg = first_seg;
-	rxq->pkt_last_seg = last_seg;
-
-	/*
-	 * If the number of free RX descriptors is greater than the RX free
-	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
-	 * register.
-	 * Update the RDT with the value of the last processed RX descriptor
-	 * minus 1, to guarantee that the RDT register is never equal to the
-	 * RDH register, which creates a "full" ring situtation from the
-	 * hardware point of view...
-	 */
-	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
-	if (nb_hold > rxq->rx_free_thresh) {
-		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
-			   "nb_hold=%u nb_rx=%u",
-			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
-			   (unsigned) rx_id, (unsigned) nb_hold,
-			   (unsigned) nb_rx);
-		rx_id = (uint16_t) ((rx_id == 0) ?
-				     (rxq->nb_rx_desc - 1) : (rx_id - 1));
-		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
-		nb_hold = 0;
-	}
-	rxq->nb_rx_hold = nb_hold;
-	return (nb_rx);
-}
-
-/*
- * Rings setup and release.
- *
- * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
- * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
- * This will also optimize cache line size effect.
- * H/W supports up to cache line size 128.
- */
-#define IGB_ALIGN 128
-
-/*
- * Maximum number of Ring Descriptors.
- *
- * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
- * desscriptors should meet the following condition:
- *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
- */
-#define IGB_MIN_RING_DESC 32
-#define IGB_MAX_RING_DESC 4096
-
-static const struct rte_memzone *
-ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
-		      uint16_t queue_id, uint32_t ring_size, int socket_id)
-{
-	char z_name[RTE_MEMZONE_NAMESIZE];
-	const struct rte_memzone *mz;
-
-	snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
-			dev->driver->pci_drv.name, ring_name,
-				dev->data->port_id, queue_id);
-	mz = rte_memzone_lookup(z_name);
-	if (mz)
-		return mz;
-
-#ifdef RTE_LIBRTE_XEN_DOM0
-	return rte_memzone_reserve_bounded(z_name, ring_size,
-			socket_id, 0, IGB_ALIGN, RTE_PGSIZE_2M);
-#else
-	return rte_memzone_reserve_aligned(z_name, ring_size,
-			socket_id, 0, IGB_ALIGN);
-#endif
-}
-
-static void
-igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
-{
-	unsigned i;
-
-	if (txq->sw_ring != NULL) {
-		for (i = 0; i < txq->nb_tx_desc; i++) {
-			if (txq->sw_ring[i].mbuf != NULL) {
-				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
-				txq->sw_ring[i].mbuf = NULL;
-			}
-		}
-	}
-}
-
-static void
-igb_tx_queue_release(struct igb_tx_queue *txq)
-{
-	if (txq != NULL) {
-		igb_tx_queue_release_mbufs(txq);
-		rte_free(txq->sw_ring);
-		rte_free(txq);
-	}
-}
-
-void
-eth_igb_tx_queue_release(void *txq)
-{
-	igb_tx_queue_release(txq);
-}
-
-static void
-igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
-{
-	txq->tx_head = 0;
-	txq->tx_tail = 0;
-	txq->ctx_curr = 0;
-	memset((void*)&txq->ctx_cache, 0,
-		IGB_CTX_NUM * sizeof(struct igb_advctx_info));
-}
-
-static void
-igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
-{
-	static const union e1000_adv_tx_desc zeroed_desc = {{0}};
-	struct igb_tx_entry *txe = txq->sw_ring;
-	uint16_t i, prev;
-	struct e1000_hw *hw;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	/* Zero out HW ring memory */
-	for (i = 0; i < txq->nb_tx_desc; i++) {
-		txq->tx_ring[i] = zeroed_desc;
-	}
-
-	/* Initialize ring entries */
-	prev = (uint16_t)(txq->nb_tx_desc - 1);
-	for (i = 0; i < txq->nb_tx_desc; i++) {
-		volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
-
-		txd->wb.status = E1000_TXD_STAT_DD;
-		txe[i].mbuf = NULL;
-		txe[i].last_id = i;
-		txe[prev].next_id = i;
-		prev = i;
-	}
-
-	txq->txd_type = E1000_ADVTXD_DTYP_DATA;
-	/* 82575 specific, each tx queue will use 2 hw contexts */
-	if (hw->mac.type == e1000_82575)
-		txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
-
-	igb_reset_tx_queue_stat(txq);
-}
-
-int
-eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
-			 uint16_t queue_idx,
-			 uint16_t nb_desc,
-			 unsigned int socket_id,
-			 const struct rte_eth_txconf *tx_conf)
-{
-	const struct rte_memzone *tz;
-	struct igb_tx_queue *txq;
-	struct e1000_hw     *hw;
-	uint32_t size;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/*
-	 * Validate number of transmit descriptors.
-	 * It must not exceed hardware maximum, and must be multiple
-	 * of IGB_ALIGN.
-	 */
-	if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
-	    (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
-		return -EINVAL;
-	}
-
-	/*
-	 * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
-	 * driver.
-	 */
-	if (tx_conf->tx_free_thresh != 0)
-		PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not "
-			     "used for the 1G driver.");
-	if (tx_conf->tx_rs_thresh != 0)
-		PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not "
-			     "used for the 1G driver.");
-	if (tx_conf->tx_thresh.wthresh == 0)
-		PMD_INIT_LOG(WARNING, "To improve 1G driver performance, "
-			     "consider setting the TX WTHRESH value to 4, 8, "
-			     "or 16.");
-
-	/* Free memory prior to re-allocation if needed */
-	if (dev->data->tx_queues[queue_idx] != NULL) {
-		igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
-		dev->data->tx_queues[queue_idx] = NULL;
-	}
-
-	/* First allocate the tx queue data structure */
-	txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
-							RTE_CACHE_LINE_SIZE);
-	if (txq == NULL)
-		return (-ENOMEM);
-
-	/*
-	 * Allocate TX ring hardware descriptors. A memzone large enough to
-	 * handle the maximum ring size is allocated in order to allow for
-	 * resizing in later calls to the queue setup function.
-	 */
-	size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
-	tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
-					size, socket_id);
-	if (tz == NULL) {
-		igb_tx_queue_release(txq);
-		return (-ENOMEM);
-	}
-
-	txq->nb_tx_desc = nb_desc;
-	txq->pthresh = tx_conf->tx_thresh.pthresh;
-	txq->hthresh = tx_conf->tx_thresh.hthresh;
-	txq->wthresh = tx_conf->tx_thresh.wthresh;
-	if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
-		txq->wthresh = 1;
-	txq->queue_id = queue_idx;
-	txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
-		queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
-	txq->port_id = dev->data->port_id;
-
-	txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
-#ifndef RTE_LIBRTE_XEN_DOM0
-	txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
-#else
-	txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
-#endif
-	 txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
-	/* Allocate software ring */
-	txq->sw_ring = rte_zmalloc("txq->sw_ring",
-				   sizeof(struct igb_tx_entry) * nb_desc,
-				   RTE_CACHE_LINE_SIZE);
-	if (txq->sw_ring == NULL) {
-		igb_tx_queue_release(txq);
-		return (-ENOMEM);
-	}
-	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
-		     txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
-
-	igb_reset_tx_queue(txq, dev);
-	dev->tx_pkt_burst = eth_igb_xmit_pkts;
-	dev->data->tx_queues[queue_idx] = txq;
-
-	return (0);
-}
-
-static void
-igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
-{
-	unsigned i;
-
-	if (rxq->sw_ring != NULL) {
-		for (i = 0; i < rxq->nb_rx_desc; i++) {
-			if (rxq->sw_ring[i].mbuf != NULL) {
-				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
-				rxq->sw_ring[i].mbuf = NULL;
-			}
-		}
-	}
-}
-
-static void
-igb_rx_queue_release(struct igb_rx_queue *rxq)
-{
-	if (rxq != NULL) {
-		igb_rx_queue_release_mbufs(rxq);
-		rte_free(rxq->sw_ring);
-		rte_free(rxq);
-	}
-}
-
-void
-eth_igb_rx_queue_release(void *rxq)
-{
-	igb_rx_queue_release(rxq);
-}
-
-static void
-igb_reset_rx_queue(struct igb_rx_queue *rxq)
-{
-	static const union e1000_adv_rx_desc zeroed_desc = {{0}};
-	unsigned i;
-
-	/* Zero out HW ring memory */
-	for (i = 0; i < rxq->nb_rx_desc; i++) {
-		rxq->rx_ring[i] = zeroed_desc;
-	}
-
-	rxq->rx_tail = 0;
-	rxq->pkt_first_seg = NULL;
-	rxq->pkt_last_seg = NULL;
-}
-
-int
-eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
-			 uint16_t queue_idx,
-			 uint16_t nb_desc,
-			 unsigned int socket_id,
-			 const struct rte_eth_rxconf *rx_conf,
-			 struct rte_mempool *mp)
-{
-	const struct rte_memzone *rz;
-	struct igb_rx_queue *rxq;
-	struct e1000_hw     *hw;
-	unsigned int size;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/*
-	 * Validate number of receive descriptors.
-	 * It must not exceed hardware maximum, and must be multiple
-	 * of IGB_ALIGN.
-	 */
-	if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
-	    (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
-		return (-EINVAL);
-	}
-
-	/* Free memory prior to re-allocation if needed */
-	if (dev->data->rx_queues[queue_idx] != NULL) {
-		igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
-		dev->data->rx_queues[queue_idx] = NULL;
-	}
-
-	/* First allocate the RX queue data structure. */
-	rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
-			  RTE_CACHE_LINE_SIZE);
-	if (rxq == NULL)
-		return (-ENOMEM);
-	rxq->mb_pool = mp;
-	rxq->nb_rx_desc = nb_desc;
-	rxq->pthresh = rx_conf->rx_thresh.pthresh;
-	rxq->hthresh = rx_conf->rx_thresh.hthresh;
-	rxq->wthresh = rx_conf->rx_thresh.wthresh;
-	if (rxq->wthresh > 0 && hw->mac.type == e1000_82576)
-		rxq->wthresh = 1;
-	rxq->drop_en = rx_conf->rx_drop_en;
-	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
-	rxq->queue_id = queue_idx;
-	rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
-		queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
-	rxq->port_id = dev->data->port_id;
-	rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
-				  ETHER_CRC_LEN);
-
-	/*
-	 *  Allocate RX ring hardware descriptors. A memzone large enough to
-	 *  handle the maximum ring size is allocated in order to allow for
-	 *  resizing in later calls to the queue setup function.
-	 */
-	size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
-	rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
-	if (rz == NULL) {
-		igb_rx_queue_release(rxq);
-		return (-ENOMEM);
-	}
-	rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
-	rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
-#ifndef RTE_LIBRTE_XEN_DOM0
-	rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
-#else
-	rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
-#endif
-	rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
-
-	/* Allocate software ring. */
-	rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
-				   sizeof(struct igb_rx_entry) * nb_desc,
-				   RTE_CACHE_LINE_SIZE);
-	if (rxq->sw_ring == NULL) {
-		igb_rx_queue_release(rxq);
-		return (-ENOMEM);
-	}
-	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
-		     rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
-
-	dev->data->rx_queues[queue_idx] = rxq;
-	igb_reset_rx_queue(rxq);
-
-	return 0;
-}
-
-uint32_t
-eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
-{
-#define IGB_RXQ_SCAN_INTERVAL 4
-	volatile union e1000_adv_rx_desc *rxdp;
-	struct igb_rx_queue *rxq;
-	uint32_t desc = 0;
-
-	if (rx_queue_id >= dev->data->nb_rx_queues) {
-		PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id);
-		return 0;
-	}
-
-	rxq = dev->data->rx_queues[rx_queue_id];
-	rxdp = &(rxq->rx_ring[rxq->rx_tail]);
-
-	while ((desc < rxq->nb_rx_desc) &&
-		(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
-		desc += IGB_RXQ_SCAN_INTERVAL;
-		rxdp += IGB_RXQ_SCAN_INTERVAL;
-		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
-			rxdp = &(rxq->rx_ring[rxq->rx_tail +
-				desc - rxq->nb_rx_desc]);
-	}
-
-	return 0;
-}
-
-int
-eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
-{
-	volatile union e1000_adv_rx_desc *rxdp;
-	struct igb_rx_queue *rxq = rx_queue;
-	uint32_t desc;
-
-	if (unlikely(offset >= rxq->nb_rx_desc))
-		return 0;
-	desc = rxq->rx_tail + offset;
-	if (desc >= rxq->nb_rx_desc)
-		desc -= rxq->nb_rx_desc;
-
-	rxdp = &rxq->rx_ring[desc];
-	return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
-}
-
-void
-igb_dev_clear_queues(struct rte_eth_dev *dev)
-{
-	uint16_t i;
-	struct igb_tx_queue *txq;
-	struct igb_rx_queue *rxq;
-
-	for (i = 0; i < dev->data->nb_tx_queues; i++) {
-		txq = dev->data->tx_queues[i];
-		if (txq != NULL) {
-			igb_tx_queue_release_mbufs(txq);
-			igb_reset_tx_queue(txq, dev);
-		}
-	}
-
-	for (i = 0; i < dev->data->nb_rx_queues; i++) {
-		rxq = dev->data->rx_queues[i];
-		if (rxq != NULL) {
-			igb_rx_queue_release_mbufs(rxq);
-			igb_reset_rx_queue(rxq);
-		}
-	}
-}
-
-/**
- * Receive Side Scaling (RSS).
- * See section 7.1.1.7 in the following document:
- *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
- *
- * Principles:
- * The source and destination IP addresses of the IP header and the source and
- * destination ports of TCP/UDP headers, if any, of received packets are hashed
- * against a configurable random key to compute a 32-bit RSS hash result.
- * The seven (7) LSBs of the 32-bit hash result are used as an index into a
- * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
- * RSS output index which is used as the RX queue index where to store the
- * received packets.
- * The following output is supplied in the RX write-back descriptor:
- *     - 32-bit result of the Microsoft RSS hash function,
- *     - 4-bit RSS type field.
- */
-
-/*
- * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
- * Used as the default key.
- */
-static uint8_t rss_intel_key[40] = {
-	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
-	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
-	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
-	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
-	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
-};
-
-static void
-igb_rss_disable(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw;
-	uint32_t mrqc;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	mrqc = E1000_READ_REG(hw, E1000_MRQC);
-	mrqc &= ~E1000_MRQC_ENABLE_MASK;
-	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-}
-
-static void
-igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
-{
-	uint8_t  *hash_key;
-	uint32_t rss_key;
-	uint32_t mrqc;
-	uint64_t rss_hf;
-	uint16_t i;
-
-	hash_key = rss_conf->rss_key;
-	if (hash_key != NULL) {
-		/* Fill in RSS hash key */
-		for (i = 0; i < 10; i++) {
-			rss_key  = hash_key[(i * 4)];
-			rss_key |= hash_key[(i * 4) + 1] << 8;
-			rss_key |= hash_key[(i * 4) + 2] << 16;
-			rss_key |= hash_key[(i * 4) + 3] << 24;
-			E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
-		}
-	}
-
-	/* Set configured hashing protocols in MRQC register */
-	rss_hf = rss_conf->rss_hf;
-	mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
-	if (rss_hf & ETH_RSS_IPV4)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
-	if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
-	if (rss_hf & ETH_RSS_IPV6)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
-	if (rss_hf & ETH_RSS_IPV6_EX)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
-	if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
-	if (rss_hf & ETH_RSS_IPV6_TCP_EX)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
-	if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
-	if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
-	if (rss_hf & ETH_RSS_IPV6_UDP_EX)
-		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
-	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-}
-
-int
-eth_igb_rss_hash_update(struct rte_eth_dev *dev,
-			struct rte_eth_rss_conf *rss_conf)
-{
-	struct e1000_hw *hw;
-	uint32_t mrqc;
-	uint64_t rss_hf;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/*
-	 * Before changing anything, first check that the update RSS operation
-	 * does not attempt to disable RSS, if RSS was enabled at
-	 * initialization time, or does not attempt to enable RSS, if RSS was
-	 * disabled at initialization time.
-	 */
-	rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
-	mrqc = E1000_READ_REG(hw, E1000_MRQC);
-	if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
-		if (rss_hf != 0) /* Enable RSS */
-			return -(EINVAL);
-		return 0; /* Nothing to do */
-	}
-	/* RSS enabled */
-	if (rss_hf == 0) /* Disable RSS */
-		return -(EINVAL);
-	igb_hw_rss_hash_set(hw, rss_conf);
-	return 0;
-}
-
-int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
-			      struct rte_eth_rss_conf *rss_conf)
-{
-	struct e1000_hw *hw;
-	uint8_t *hash_key;
-	uint32_t rss_key;
-	uint32_t mrqc;
-	uint64_t rss_hf;
-	uint16_t i;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	hash_key = rss_conf->rss_key;
-	if (hash_key != NULL) {
-		/* Return RSS hash key */
-		for (i = 0; i < 10; i++) {
-			rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
-			hash_key[(i * 4)] = rss_key & 0x000000FF;
-			hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
-			hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
-			hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
-		}
-	}
-
-	/* Get RSS functions configured in MRQC register */
-	mrqc = E1000_READ_REG(hw, E1000_MRQC);
-	if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
-		rss_conf->rss_hf = 0;
-		return 0;
-	}
-	rss_hf = 0;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
-		rss_hf |= ETH_RSS_IPV4;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
-		rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
-		rss_hf |= ETH_RSS_IPV6;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
-		rss_hf |= ETH_RSS_IPV6_EX;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
-		rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
-		rss_hf |= ETH_RSS_IPV6_TCP_EX;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
-		rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
-		rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
-	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
-		rss_hf |= ETH_RSS_IPV6_UDP_EX;
-	rss_conf->rss_hf = rss_hf;
-	return 0;
-}
-
-static void
-igb_rss_configure(struct rte_eth_dev *dev)
-{
-	struct rte_eth_rss_conf rss_conf;
-	struct e1000_hw *hw;
-	uint32_t shift;
-	uint16_t i;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/* Fill in redirection table. */
-	shift = (hw->mac.type == e1000_82575) ? 6 : 0;
-	for (i = 0; i < 128; i++) {
-		union e1000_reta {
-			uint32_t dword;
-			uint8_t  bytes[4];
-		} reta;
-		uint8_t q_idx;
-
-		q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
-				   i % dev->data->nb_rx_queues : 0);
-		reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
-		if ((i & 3) == 3)
-			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
-	}
-
-	/*
-	 * Configure the RSS key and the RSS protocols used to compute
-	 * the RSS hash of input packets.
-	 */
-	rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
-	if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
-		igb_rss_disable(dev);
-		return;
-	}
-	if (rss_conf.rss_key == NULL)
-		rss_conf.rss_key = rss_intel_key; /* Default hash key */
-	igb_hw_rss_hash_set(hw, &rss_conf);
-}
-
-/*
- * Check if the mac type support VMDq or not.
- * Return 1 if it supports, otherwise, return 0.
- */
-static int
-igb_is_vmdq_supported(const struct rte_eth_dev *dev)
-{
-	const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	switch (hw->mac.type) {
-	case e1000_82576:
-	case e1000_82580:
-	case e1000_i350:
-		return 1;
-	case e1000_82540:
-	case e1000_82541:
-	case e1000_82542:
-	case e1000_82543:
-	case e1000_82544:
-	case e1000_82545:
-	case e1000_82546:
-	case e1000_82547:
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_82573:
-	case e1000_82574:
-	case e1000_82583:
-	case e1000_i210:
-	case e1000_i211:
-	default:
-		PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
-		return 0;
-	}
-}
-
-static int
-igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
-{
-	struct rte_eth_vmdq_rx_conf *cfg;
-	struct e1000_hw *hw;
-	uint32_t mrqc, vt_ctl, vmolr, rctl;
-	int i;
-
-	PMD_INIT_FUNC_TRACE();
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
-
-	/* Check if mac type can support VMDq, return value of 0 means NOT support */
-	if (igb_is_vmdq_supported(dev) == 0)
-		return -1;
-
-	igb_rss_disable(dev);
-
-	/* RCTL: eanble VLAN filter */
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	rctl |= E1000_RCTL_VFE;
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
-	/* MRQC: enable vmdq */
-	mrqc = E1000_READ_REG(hw, E1000_MRQC);
-	mrqc |= E1000_MRQC_ENABLE_VMDQ;
-	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-
-	/* VTCTL:  pool selection according to VLAN tag */
-	vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
-	if (cfg->enable_default_pool)
-		vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
-	vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
-	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
-
-	for (i = 0; i < E1000_VMOLR_SIZE; i++) {
-		vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
-		vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
-			E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
-			E1000_VMOLR_MPME);
-
-		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
-			vmolr |= E1000_VMOLR_AUPE;
-		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
-			vmolr |= E1000_VMOLR_ROMPE;
-		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
-			vmolr |= E1000_VMOLR_ROPE;
-		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
-			vmolr |= E1000_VMOLR_BAM;
-		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
-			vmolr |= E1000_VMOLR_MPME;
-
-		E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
-	}
-
-	/*
-	 * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
-	 * Both 82576 and 82580 support it
-	 */
-	if (hw->mac.type != e1000_i350) {
-		for (i = 0; i < E1000_VMOLR_SIZE; i++) {
-			vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
-			vmolr |= E1000_VMOLR_STRVLAN;
-			E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
-		}
-	}
-
-	/* VFTA - enable all vlan filters */
-	for (i = 0; i < IGB_VFTA_SIZE; i++)
-		E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
-
-	/* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
-	if (hw->mac.type != e1000_82580)
-		E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
-
-	/*
-	 * RAH/RAL - allow pools to read specific mac addresses
-	 * In this case, all pools should be able to read from mac addr 0
-	 */
-	E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
-	E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
-
-	/* VLVF: set up filters for vlan tags as configured */
-	for (i = 0; i < cfg->nb_pool_maps; i++) {
-		/* set vlan id in VF register and set the valid bit */
-		E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
-                        (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
-			((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
-			E1000_VLVF_POOLSEL_MASK)));
-	}
-
-	E1000_WRITE_FLUSH(hw);
-
-	return 0;
-}
-
-
-/*********************************************************************
- *
- *  Enable receive unit.
- *
- **********************************************************************/
-
-static int
-igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
-{
-	struct igb_rx_entry *rxe = rxq->sw_ring;
-	uint64_t dma_addr;
-	unsigned i;
-
-	/* Initialize software ring entries. */
-	for (i = 0; i < rxq->nb_rx_desc; i++) {
-		volatile union e1000_adv_rx_desc *rxd;
-		struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
-
-		if (mbuf == NULL) {
-			PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
-				     "queue_id=%hu", rxq->queue_id);
-			return (-ENOMEM);
-		}
-		dma_addr =
-			rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
-		rxd = &rxq->rx_ring[i];
-		rxd->read.hdr_addr = dma_addr;
-		rxd->read.pkt_addr = dma_addr;
-		rxe[i].mbuf = mbuf;
-	}
-
-	return 0;
-}
-
-#define E1000_MRQC_DEF_Q_SHIFT               (3)
-static int
-igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
-{
-	struct e1000_hw *hw =
-		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	uint32_t mrqc;
-
-	if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
-		/*
-		 * SRIOV active scheme
-		 * FIXME if support RSS together with VMDq & SRIOV
-		 */
-		mrqc = E1000_MRQC_ENABLE_VMDQ;
-		/* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
-		mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
-		E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
-	} else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
-		/*
-		 * SRIOV inactive scheme
-		 */
-		switch (dev->data->dev_conf.rxmode.mq_mode) {
-			case ETH_MQ_RX_RSS:
-				igb_rss_configure(dev);
-				break;
-			case ETH_MQ_RX_VMDQ_ONLY:
-				/*Configure general VMDQ only RX parameters*/
-				igb_vmdq_rx_hw_configure(dev);
-				break;
-			case ETH_MQ_RX_NONE:
-				/* if mq_mode is none, disable rss mode.*/
-			default:
-				igb_rss_disable(dev);
-				break;
-		}
-	}
-
-	return 0;
-}
-
-int
-eth_igb_rx_init(struct rte_eth_dev *dev)
-{
-	struct e1000_hw     *hw;
-	struct igb_rx_queue *rxq;
-	uint32_t rctl;
-	uint32_t rxcsum;
-	uint32_t srrctl;
-	uint16_t buf_size;
-	uint16_t rctl_bsize;
-	uint16_t i;
-	int ret;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-	srrctl = 0;
-
-	/*
-	 * Make sure receives are disabled while setting
-	 * up the descriptor ring.
-	 */
-	rctl = E1000_READ_REG(hw, E1000_RCTL);
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
-
-	/*
-	 * Configure support of jumbo frames, if any.
-	 */
-	if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
-		rctl |= E1000_RCTL_LPE;
-
-		/*
-		 * Set maximum packet length by default, and might be updated
-		 * together with enabling/disabling dual VLAN.
-		 */
-		E1000_WRITE_REG(hw, E1000_RLPML,
-			dev->data->dev_conf.rxmode.max_rx_pkt_len +
-						VLAN_TAG_SIZE);
-	} else
-		rctl &= ~E1000_RCTL_LPE;
-
-	/* Configure and enable each RX queue. */
-	rctl_bsize = 0;
-	dev->rx_pkt_burst = eth_igb_recv_pkts;
-	for (i = 0; i < dev->data->nb_rx_queues; i++) {
-		uint64_t bus_addr;
-		uint32_t rxdctl;
-
-		rxq = dev->data->rx_queues[i];
-
-		/* Allocate buffers for descriptor rings and set up queue */
-		ret = igb_alloc_rx_queue_mbufs(rxq);
-		if (ret)
-			return ret;
-
-		/*
-		 * Reset crc_len in case it was changed after queue setup by a
-		 *  call to configure
-		 */
-		rxq->crc_len =
-			(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
-							0 : ETHER_CRC_LEN);
-
-		bus_addr = rxq->rx_ring_phys_addr;
-		E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
-				rxq->nb_rx_desc *
-				sizeof(union e1000_adv_rx_desc));
-		E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
-				(uint32_t)(bus_addr >> 32));
-		E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
-
-		srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
-
-		/*
-		 * Configure RX buffer size.
-		 */
-		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
-			RTE_PKTMBUF_HEADROOM);
-		if (buf_size >= 1024) {
-			/*
-			 * Configure the BSIZEPACKET field of the SRRCTL
-			 * register of the queue.
-			 * Value is in 1 KB resolution, from 1 KB to 127 KB.
-			 * If this field is equal to 0b, then RCTL.BSIZE
-			 * determines the RX packet buffer size.
-			 */
-			srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
-				   E1000_SRRCTL_BSIZEPKT_MASK);
-			buf_size = (uint16_t) ((srrctl &
-						E1000_SRRCTL_BSIZEPKT_MASK) <<
-					       E1000_SRRCTL_BSIZEPKT_SHIFT);
-
-			/* It adds dual VLAN length for supporting dual VLAN */
-			if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
-						2 * VLAN_TAG_SIZE) > buf_size){
-				if (!dev->data->scattered_rx)
-					PMD_INIT_LOG(DEBUG,
-						     "forcing scatter mode");
-				dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
-				dev->data->scattered_rx = 1;
-			}
-		} else {
-			/*
-			 * Use BSIZE field of the device RCTL register.
-			 */
-			if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
-				rctl_bsize = buf_size;
-			if (!dev->data->scattered_rx)
-				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
-			dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
-			dev->data->scattered_rx = 1;
-		}
-
-		/* Set if packets are dropped when no descriptors available */
-		if (rxq->drop_en)
-			srrctl |= E1000_SRRCTL_DROP_EN;
-
-		E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
-
-		/* Enable this RX queue. */
-		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
-		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
-		rxdctl &= 0xFFF00000;
-		rxdctl |= (rxq->pthresh & 0x1F);
-		rxdctl |= ((rxq->hthresh & 0x1F) << 8);
-		rxdctl |= ((rxq->wthresh & 0x1F) << 16);
-		E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
-	}
-
-	if (dev->data->dev_conf.rxmode.enable_scatter) {
-		if (!dev->data->scattered_rx)
-			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
-		dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
-		dev->data->scattered_rx = 1;
-	}
-
-	/*
-	 * Setup BSIZE field of RCTL register, if needed.
-	 * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
-	 * register, since the code above configures the SRRCTL register of
-	 * the RX queue in such a case.
-	 * All configurable sizes are:
-	 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
-	 *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
-	 *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
-	 *  2048: rctl |= E1000_RCTL_SZ_2048;
-	 *  1024: rctl |= E1000_RCTL_SZ_1024;
-	 *   512: rctl |= E1000_RCTL_SZ_512;
-	 *   256: rctl |= E1000_RCTL_SZ_256;
-	 */
-	if (rctl_bsize > 0) {
-		if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
-			rctl |= E1000_RCTL_SZ_512;
-		else /* 256 <= buf_size < 512 - use 256 */
-			rctl |= E1000_RCTL_SZ_256;
-	}
-
-	/*
-	 * Configure RSS if device configured with multiple RX queues.
-	 */
-	igb_dev_mq_rx_configure(dev);
-
-	/* Update the rctl since igb_dev_mq_rx_configure may change its value */
-	rctl |= E1000_READ_REG(hw, E1000_RCTL);
-
-	/*
-	 * Setup the Checksum Register.
-	 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
-	 */
-	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
-	rxcsum |= E1000_RXCSUM_PCSD;
-
-	/* Enable both L3/L4 rx checksum offload */
-	if (dev->data->dev_conf.rxmode.hw_ip_checksum)
-		rxcsum |= (E1000_RXCSUM_IPOFL  | E1000_RXCSUM_TUOFL);
-	else
-		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
-	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
-
-	/* Setup the Receive Control Register. */
-	if (dev->data->dev_conf.rxmode.hw_strip_crc) {
-		rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
-
-		/* set STRCRC bit in all queues */
-		if (hw->mac.type == e1000_i350 ||
-		    hw->mac.type == e1000_i210 ||
-		    hw->mac.type == e1000_i211 ||
-		    hw->mac.type == e1000_i354) {
-			for (i = 0; i < dev->data->nb_rx_queues; i++) {
-				rxq = dev->data->rx_queues[i];
-				uint32_t dvmolr = E1000_READ_REG(hw,
-					E1000_DVMOLR(rxq->reg_idx));
-				dvmolr |= E1000_DVMOLR_STRCRC;
-				E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
-			}
-		}
-	} else {
-		rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
-
-		/* clear STRCRC bit in all queues */
-		if (hw->mac.type == e1000_i350 ||
-		    hw->mac.type == e1000_i210 ||
-		    hw->mac.type == e1000_i211 ||
-		    hw->mac.type == e1000_i354) {
-			for (i = 0; i < dev->data->nb_rx_queues; i++) {
-				rxq = dev->data->rx_queues[i];
-				uint32_t dvmolr = E1000_READ_REG(hw,
-					E1000_DVMOLR(rxq->reg_idx));
-				dvmolr &= ~E1000_DVMOLR_STRCRC;
-				E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
-			}
-		}
-	}
-
-	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
-	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
-		E1000_RCTL_RDMTS_HALF |
-		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
-
-	/* Make sure VLAN Filters are off. */
-	if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
-		rctl &= ~E1000_RCTL_VFE;
-	/* Don't store bad packets. */
-	rctl &= ~E1000_RCTL_SBP;
-
-	/* Enable Receives. */
-	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
-
-	/*
-	 * Setup the HW Rx Head and Tail Descriptor Pointers.
-	 * This needs to be done after enable.
-	 */
-	for (i = 0; i < dev->data->nb_rx_queues; i++) {
-		rxq = dev->data->rx_queues[i];
-		E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
-		E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
-	}
-
-	return 0;
-}
-
-/*********************************************************************
- *
- *  Enable transmit unit.
- *
- **********************************************************************/
-void
-eth_igb_tx_init(struct rte_eth_dev *dev)
-{
-	struct e1000_hw     *hw;
-	struct igb_tx_queue *txq;
-	uint32_t tctl;
-	uint32_t txdctl;
-	uint16_t i;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/* Setup the Base and Length of the Tx Descriptor Rings. */
-	for (i = 0; i < dev->data->nb_tx_queues; i++) {
-		uint64_t bus_addr;
-		txq = dev->data->tx_queues[i];
-		bus_addr = txq->tx_ring_phys_addr;
-
-		E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
-				txq->nb_tx_desc *
-				sizeof(union e1000_adv_tx_desc));
-		E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
-				(uint32_t)(bus_addr >> 32));
-		E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
-
-		/* Setup the HW Tx Head and Tail descriptor pointers. */
-		E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
-		E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
-
-		/* Setup Transmit threshold registers. */
-		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
-		txdctl |= txq->pthresh & 0x1F;
-		txdctl |= ((txq->hthresh & 0x1F) << 8);
-		txdctl |= ((txq->wthresh & 0x1F) << 16);
-		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
-		E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
-	}
-
-	/* Program the Transmit Control Register. */
-	tctl = E1000_READ_REG(hw, E1000_TCTL);
-	tctl &= ~E1000_TCTL_CT;
-	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
-		 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
-
-	e1000_config_collision_dist(hw);
-
-	/* This write will effectively turn on the transmit unit. */
-	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
-}
-
-/*********************************************************************
- *
- *  Enable VF receive unit.
- *
- **********************************************************************/
-int
-eth_igbvf_rx_init(struct rte_eth_dev *dev)
-{
-	struct e1000_hw     *hw;
-	struct igb_rx_queue *rxq;
-	uint32_t srrctl;
-	uint16_t buf_size;
-	uint16_t rctl_bsize;
-	uint16_t i;
-	int ret;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/* setup MTU */
-	e1000_rlpml_set_vf(hw,
-		(uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
-		VLAN_TAG_SIZE));
-
-	/* Configure and enable each RX queue. */
-	rctl_bsize = 0;
-	dev->rx_pkt_burst = eth_igb_recv_pkts;
-	for (i = 0; i < dev->data->nb_rx_queues; i++) {
-		uint64_t bus_addr;
-		uint32_t rxdctl;
-
-		rxq = dev->data->rx_queues[i];
-
-		/* Allocate buffers for descriptor rings and set up queue */
-		ret = igb_alloc_rx_queue_mbufs(rxq);
-		if (ret)
-			return ret;
-
-		bus_addr = rxq->rx_ring_phys_addr;
-		E1000_WRITE_REG(hw, E1000_RDLEN(i),
-				rxq->nb_rx_desc *
-				sizeof(union e1000_adv_rx_desc));
-		E1000_WRITE_REG(hw, E1000_RDBAH(i),
-				(uint32_t)(bus_addr >> 32));
-		E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
-
-		srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
-
-		/*
-		 * Configure RX buffer size.
-		 */
-		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
-			RTE_PKTMBUF_HEADROOM);
-		if (buf_size >= 1024) {
-			/*
-			 * Configure the BSIZEPACKET field of the SRRCTL
-			 * register of the queue.
-			 * Value is in 1 KB resolution, from 1 KB to 127 KB.
-			 * If this field is equal to 0b, then RCTL.BSIZE
-			 * determines the RX packet buffer size.
-			 */
-			srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
-				   E1000_SRRCTL_BSIZEPKT_MASK);
-			buf_size = (uint16_t) ((srrctl &
-						E1000_SRRCTL_BSIZEPKT_MASK) <<
-					       E1000_SRRCTL_BSIZEPKT_SHIFT);
-
-			/* It adds dual VLAN length for supporting dual VLAN */
-			if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
-						2 * VLAN_TAG_SIZE) > buf_size){
-				if (!dev->data->scattered_rx)
-					PMD_INIT_LOG(DEBUG,
-						     "forcing scatter mode");
-				dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
-				dev->data->scattered_rx = 1;
-			}
-		} else {
-			/*
-			 * Use BSIZE field of the device RCTL register.
-			 */
-			if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
-				rctl_bsize = buf_size;
-			if (!dev->data->scattered_rx)
-				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
-			dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
-			dev->data->scattered_rx = 1;
-		}
-
-		/* Set if packets are dropped when no descriptors available */
-		if (rxq->drop_en)
-			srrctl |= E1000_SRRCTL_DROP_EN;
-
-		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
-
-		/* Enable this RX queue. */
-		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
-		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
-		rxdctl &= 0xFFF00000;
-		rxdctl |= (rxq->pthresh & 0x1F);
-		rxdctl |= ((rxq->hthresh & 0x1F) << 8);
-		if (hw->mac.type == e1000_vfadapt) {
-			/*
-			 * Workaround of 82576 VF Erratum
-			 * force set WTHRESH to 1
-			 * to avoid Write-Back not triggered sometimes
-			 */
-			rxdctl |= 0x10000;
-			PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
-		}
-		else
-			rxdctl |= ((rxq->wthresh & 0x1F) << 16);
-		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
-	}
-
-	if (dev->data->dev_conf.rxmode.enable_scatter) {
-		if (!dev->data->scattered_rx)
-			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
-		dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
-		dev->data->scattered_rx = 1;
-	}
-
-	/*
-	 * Setup the HW Rx Head and Tail Descriptor Pointers.
-	 * This needs to be done after enable.
-	 */
-	for (i = 0; i < dev->data->nb_rx_queues; i++) {
-		rxq = dev->data->rx_queues[i];
-		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
-		E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
-	}
-
-	return 0;
-}
-
-/*********************************************************************
- *
- *  Enable VF transmit unit.
- *
- **********************************************************************/
-void
-eth_igbvf_tx_init(struct rte_eth_dev *dev)
-{
-	struct e1000_hw     *hw;
-	struct igb_tx_queue *txq;
-	uint32_t txdctl;
-	uint16_t i;
-
-	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
-	/* Setup the Base and Length of the Tx Descriptor Rings. */
-	for (i = 0; i < dev->data->nb_tx_queues; i++) {
-		uint64_t bus_addr;
-
-		txq = dev->data->tx_queues[i];
-		bus_addr = txq->tx_ring_phys_addr;
-		E1000_WRITE_REG(hw, E1000_TDLEN(i),
-				txq->nb_tx_desc *
-				sizeof(union e1000_adv_tx_desc));
-		E1000_WRITE_REG(hw, E1000_TDBAH(i),
-				(uint32_t)(bus_addr >> 32));
-		E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
-
-		/* Setup the HW Tx Head and Tail descriptor pointers. */
-		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
-		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
-
-		/* Setup Transmit threshold registers. */
-		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
-		txdctl |= txq->pthresh & 0x1F;
-		txdctl |= ((txq->hthresh & 0x1F) << 8);
-		if (hw->mac.type == e1000_82576) {
-			/*
-			 * Workaround of 82576 VF Erratum
-			 * force set WTHRESH to 1
-			 * to avoid Write-Back not triggered sometimes
-			 */
-			txdctl |= 0x10000;
-			PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
-		}
-		else
-			txdctl |= ((txq->wthresh & 0x1F) << 16);
-		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
-		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
-	}
-
-}
-
diff --git a/lib/librte_pmd_e1000/rte_pmd_e1000_version.map b/lib/librte_pmd_e1000/rte_pmd_e1000_version.map
deleted file mode 100644
index ef35398..0000000
--- a/lib/librte_pmd_e1000/rte_pmd_e1000_version.map
+++ /dev/null
@@ -1,4 +0,0 @@
-DPDK_2.0 {
-
-	local: *;
-};
-- 
2.1.0



More information about the dev mailing list