[dpdk-dev] [PATCH v2 4/7] net/mlx5: separate shareable vector functions

Yongseok Koh yskoh at mellanox.com
Mon Oct 9 20:46:57 CEST 2017


Considering more architecture (e.g. ARM and PowerPC) will be added for
vectorized Rx/Tx burst, all the shareable functions which don't use any
vector instrinsics need to be separated from architecture-dependent
functions. All the vector functions for x86 SSE are moved to a new header
file - mlx5_rxtx_vec_sse.h. And shareable common functions are now in
mlx5_rxtx_vec.c.

Signed-off-by: Yongseok Koh <yskoh at mellanox.com>
Acked-by: Nelio Laranjeiro <nelio.laranjeiro at 6wind.com>
---
 drivers/net/mlx5/mlx5_rxtx_vec.c     | 979 +---------------------------------
 drivers/net/mlx5/mlx5_rxtx_vec.h     |  35 ++
 drivers/net/mlx5/mlx5_rxtx_vec_sse.h | 995 +++++++++++++++++++++++++++++++++++
 3 files changed, 1034 insertions(+), 975 deletions(-)
 create mode 100644 drivers/net/mlx5/mlx5_rxtx_vec_sse.h

diff --git a/drivers/net/mlx5/mlx5_rxtx_vec.c b/drivers/net/mlx5/mlx5_rxtx_vec.c
index deab2ad66..edc663815 100644
--- a/drivers/net/mlx5/mlx5_rxtx_vec.c
+++ b/drivers/net/mlx5/mlx5_rxtx_vec.c
@@ -35,7 +35,6 @@
 #include <stdint.h>
 #include <string.h>
 #include <stdlib.h>
-#include <smmintrin.h>
 
 /* Verbs header. */
 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
@@ -60,58 +59,13 @@
 #include "mlx5_defs.h"
 #include "mlx5_prm.h"
 
-#ifndef __INTEL_COMPILER
-#pragma GCC diagnostic ignored "-Wcast-qual"
+#ifdef RTE_ARCH_X86_64
+#include "mlx5_rxtx_vec_sse.h"
+#else
+#error "This should not be compiled if SIMD instructions are not supported."
 #endif
 
 /**
- * Fill in buffer descriptors in a multi-packet send descriptor.
- *
- * @param txq
- *   Pointer to TX queue structure.
- * @param dseg
- *   Pointer to buffer descriptor to be writen.
- * @param pkts
- *   Pointer to array of packets to be sent.
- * @param n
- *   Number of packets to be filled.
- */
-static inline void
-txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
-	      struct rte_mbuf **pkts, unsigned int n)
-{
-	unsigned int pos;
-	uintptr_t addr;
-	const __m128i shuf_mask_dseg =
-		_mm_set_epi8(8,  9, 10, 11, /* addr, bswap64 */
-			    12, 13, 14, 15,
-			     7,  6,  5,  4, /* lkey */
-			     0,  1,  2,  3  /* length, bswap32 */);
-#ifdef MLX5_PMD_SOFT_COUNTERS
-	uint32_t tx_byte = 0;
-#endif
-
-	for (pos = 0; pos < n; ++pos, ++dseg) {
-		__m128i desc;
-		struct rte_mbuf *pkt = pkts[pos];
-
-		addr = rte_pktmbuf_mtod(pkt, uintptr_t);
-		desc = _mm_set_epi32(addr >> 32,
-				     addr,
-				     mlx5_tx_mb2mr(txq, pkt),
-				     DATA_LEN(pkt));
-		desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
-		_mm_store_si128(dseg, desc);
-#ifdef MLX5_PMD_SOFT_COUNTERS
-		tx_byte += DATA_LEN(pkt);
-#endif
-	}
-#ifdef MLX5_PMD_SOFT_COUNTERS
-	txq->stats.obytes += tx_byte;
-#endif
-}
-
-/**
  * Count the number of continuous single segment packets.
  *
  * @param pkts
@@ -189,251 +143,6 @@ txq_calc_offload(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
 }
 
 /**
- * Send multi-segmented packets until it encounters a single segment packet in
- * the pkts list.
- *
- * @param txq
- *   Pointer to TX queue structure.
- * @param pkts
- *   Pointer to array of packets to be sent.
- * @param pkts_n
- *   Number of packets to be sent.
- *
- * @return
- *   Number of packets successfully transmitted (<= pkts_n).
- */
-static uint16_t
-txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
-	      uint16_t pkts_n)
-{
-	uint16_t elts_head = txq->elts_head;
-	const uint16_t elts_n = 1 << txq->elts_n;
-	const uint16_t elts_m = elts_n - 1;
-	const uint16_t wq_n = 1 << txq->wqe_n;
-	const uint16_t wq_mask = wq_n - 1;
-	const unsigned int nb_dword_per_wqebb =
-		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
-	const unsigned int nb_dword_in_hdr =
-		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
-	unsigned int n;
-	volatile struct mlx5_wqe *wqe = NULL;
-
-	assert(elts_n > pkts_n);
-	mlx5_tx_complete(txq);
-	if (unlikely(!pkts_n))
-		return 0;
-	for (n = 0; n < pkts_n; ++n) {
-		struct rte_mbuf *buf = pkts[n];
-		unsigned int segs_n = buf->nb_segs;
-		unsigned int ds = nb_dword_in_hdr;
-		unsigned int len = PKT_LEN(buf);
-		uint16_t wqe_ci = txq->wqe_ci;
-		const __m128i shuf_mask_ctrl =
-			_mm_set_epi8(15, 14, 13, 12,
-				      8,  9, 10, 11, /* bswap32 */
-				      4,  5,  6,  7, /* bswap32 */
-				      0,  1,  2,  3  /* bswap32 */);
-		uint8_t cs_flags = 0;
-		uint16_t max_elts;
-		uint16_t max_wqe;
-		__m128i *t_wqe, *dseg;
-		__m128i ctrl;
-
-		assert(segs_n);
-		max_elts = elts_n - (elts_head - txq->elts_tail);
-		max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
-		/*
-		 * A MPW session consumes 2 WQEs at most to
-		 * include MLX5_MPW_DSEG_MAX pointers.
-		 */
-		if (segs_n == 1 ||
-		    max_elts < segs_n || max_wqe < 2)
-			break;
-		if (segs_n > MLX5_MPW_DSEG_MAX) {
-			txq->stats.oerrors++;
-			break;
-		}
-		wqe = &((volatile struct mlx5_wqe64 *)
-			 txq->wqes)[wqe_ci & wq_mask].hdr;
-		if (buf->ol_flags &
-		     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
-			const uint64_t is_tunneled = buf->ol_flags &
-						      (PKT_TX_TUNNEL_GRE |
-						       PKT_TX_TUNNEL_VXLAN);
-
-			if (is_tunneled && txq->tunnel_en) {
-				cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
-					   MLX5_ETH_WQE_L4_INNER_CSUM;
-				if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
-					cs_flags |= MLX5_ETH_WQE_L3_CSUM;
-			} else {
-				cs_flags = MLX5_ETH_WQE_L3_CSUM |
-					   MLX5_ETH_WQE_L4_CSUM;
-			}
-		}
-		/* Title WQEBB pointer. */
-		t_wqe = (__m128i *)wqe;
-		dseg = (__m128i *)(wqe + 1);
-		do {
-			if (!(ds++ % nb_dword_per_wqebb)) {
-				dseg = (__m128i *)
-					&((volatile struct mlx5_wqe64 *)
-					   txq->wqes)[++wqe_ci & wq_mask];
-			}
-			txq_wr_dseg_v(txq, dseg++, &buf, 1);
-			(*txq->elts)[elts_head++ & elts_m] = buf;
-			buf = buf->next;
-		} while (--segs_n);
-		++wqe_ci;
-		/* Fill CTRL in the header. */
-		ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
-				     MLX5_OPC_MOD_MPW << 24 |
-				     txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
-		ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
-		_mm_store_si128(t_wqe, ctrl);
-		/* Fill ESEG in the header. */
-		_mm_store_si128(t_wqe + 1,
-				_mm_set_epi16(0, 0, 0, 0,
-					      rte_cpu_to_be_16(len), cs_flags,
-					      0, 0));
-		txq->wqe_ci = wqe_ci;
-	}
-	if (!n)
-		return 0;
-	txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
-	txq->elts_head = elts_head;
-	if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
-		wqe->ctrl[2] = rte_cpu_to_be_32(8);
-		wqe->ctrl[3] = txq->elts_head;
-		txq->elts_comp = 0;
-		++txq->cq_pi;
-	}
-#ifdef MLX5_PMD_SOFT_COUNTERS
-	txq->stats.opackets += n;
-#endif
-	mlx5_tx_dbrec(txq, wqe);
-	return n;
-}
-
-/**
- * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
- * it returns to make it processed by txq_scatter_v(). All the packets in
- * the pkts list should be single segment packets having same offload flags.
- * This must be checked by txq_check_multiseg() and txq_calc_offload().
- *
- * @param txq
- *   Pointer to TX queue structure.
- * @param pkts
- *   Pointer to array of packets to be sent.
- * @param pkts_n
- *   Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
- * @param cs_flags
- *   Checksum offload flags to be written in the descriptor.
- *
- * @return
- *   Number of packets successfully transmitted (<= pkts_n).
- */
-static inline uint16_t
-txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
-	    uint8_t cs_flags)
-{
-	struct rte_mbuf **elts;
-	uint16_t elts_head = txq->elts_head;
-	const uint16_t elts_n = 1 << txq->elts_n;
-	const uint16_t elts_m = elts_n - 1;
-	const unsigned int nb_dword_per_wqebb =
-		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
-	const unsigned int nb_dword_in_hdr =
-		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
-	unsigned int n = 0;
-	unsigned int pos;
-	uint16_t max_elts;
-	uint16_t max_wqe;
-	uint32_t comp_req = 0;
-	const uint16_t wq_n = 1 << txq->wqe_n;
-	const uint16_t wq_mask = wq_n - 1;
-	uint16_t wq_idx = txq->wqe_ci & wq_mask;
-	volatile struct mlx5_wqe64 *wq =
-		&((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
-	volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
-	const __m128i shuf_mask_ctrl =
-		_mm_set_epi8(15, 14, 13, 12,
-			      8,  9, 10, 11, /* bswap32 */
-			      4,  5,  6,  7, /* bswap32 */
-			      0,  1,  2,  3  /* bswap32 */);
-	__m128i *t_wqe, *dseg;
-	__m128i ctrl;
-
-	/* Make sure all packets can fit into a single WQE. */
-	assert(elts_n > pkts_n);
-	mlx5_tx_complete(txq);
-	max_elts = (elts_n - (elts_head - txq->elts_tail));
-	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
-	pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
-	assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
-	if (unlikely(!pkts_n))
-		return 0;
-	elts = &(*txq->elts)[elts_head & elts_m];
-	/* Loop for available tailroom first. */
-	n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
-	for (pos = 0; pos < (n & -2); pos += 2)
-		_mm_storeu_si128((__m128i *)&elts[pos],
-				 _mm_loadu_si128((__m128i *)&pkts[pos]));
-	if (n & 1)
-		elts[pos] = pkts[pos];
-	/* Check if it crosses the end of the queue. */
-	if (unlikely(n < pkts_n)) {
-		elts = &(*txq->elts)[0];
-		for (pos = 0; pos < pkts_n - n; ++pos)
-			elts[pos] = pkts[n + pos];
-	}
-	txq->elts_head += pkts_n;
-	/* Save title WQEBB pointer. */
-	t_wqe = (__m128i *)wqe;
-	dseg = (__m128i *)(wqe + 1);
-	/* Calculate the number of entries to the end. */
-	n = RTE_MIN(
-		(wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
-		pkts_n);
-	/* Fill DSEGs. */
-	txq_wr_dseg_v(txq, dseg, pkts, n);
-	/* Check if it crosses the end of the queue. */
-	if (n < pkts_n) {
-		dseg = (__m128i *)txq->wqes;
-		txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
-	}
-	if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
-		txq->elts_comp += pkts_n;
-	} else {
-		/* Request a completion. */
-		txq->elts_comp = 0;
-		++txq->cq_pi;
-		comp_req = 8;
-	}
-	/* Fill CTRL in the header. */
-	ctrl = _mm_set_epi32(txq->elts_head, comp_req,
-			     txq->qp_num_8s | (pkts_n + 2),
-			     MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
-				txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
-	ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
-	_mm_store_si128(t_wqe, ctrl);
-	/* Fill ESEG in the header. */
-	_mm_store_si128(t_wqe + 1,
-			_mm_set_epi8(0, 0, 0, 0,
-				     0, 0, 0, 0,
-				     0, 0, 0, cs_flags,
-				     0, 0, 0, 0));
-#ifdef MLX5_PMD_SOFT_COUNTERS
-	txq->stats.opackets += pkts_n;
-#endif
-	txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
-		       nb_dword_per_wqebb;
-	/* Ring QP doorbell. */
-	mlx5_tx_dbrec(txq, wqe);
-	return pkts_n;
-}
-
-/**
  * DPDK callback for vectorized TX.
  *
  * @param dpdk_txq
@@ -510,358 +219,6 @@ mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
 }
 
 /**
- * Store free buffers to RX SW ring.
- *
- * @param rxq
- *   Pointer to RX queue structure.
- * @param pkts
- *   Pointer to array of packets to be stored.
- * @param pkts_n
- *   Number of packets to be stored.
- */
-static inline void
-rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
-{
-	const uint16_t q_mask = (1 << rxq->elts_n) - 1;
-	struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
-	unsigned int pos;
-	uint16_t p = n & -2;
-
-	for (pos = 0; pos < p; pos += 2) {
-		__m128i mbp;
-
-		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
-		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
-	}
-	if (n & 1)
-		pkts[pos] = elts[pos];
-}
-
-/**
- * Replenish buffers for RX in bulk.
- *
- * @param rxq
- *   Pointer to RX queue structure.
- * @param n
- *   Number of buffers to be replenished.
- */
-static inline void
-rxq_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq, uint16_t n)
-{
-	const uint16_t q_n = 1 << rxq->elts_n;
-	const uint16_t q_mask = q_n - 1;
-	const uint16_t elts_idx = rxq->rq_ci & q_mask;
-	struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
-	volatile struct mlx5_wqe_data_seg *wq = &(*rxq->wqes)[elts_idx];
-	unsigned int i;
-
-	assert(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH);
-	assert(n <= (uint16_t)(q_n - (rxq->rq_ci - rxq->rq_pi)));
-	assert(MLX5_VPMD_RXQ_RPLNSH_THRESH > MLX5_VPMD_DESCS_PER_LOOP);
-	/* Not to cross queue end. */
-	n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, q_n - elts_idx);
-	if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) {
-		rxq->stats.rx_nombuf += n;
-		return;
-	}
-	for (i = 0; i < n; ++i)
-		wq[i].addr = rte_cpu_to_be_64((uintptr_t)elts[i]->buf_addr +
-					      RTE_PKTMBUF_HEADROOM);
-	rxq->rq_ci += n;
-	rte_io_wmb();
-	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
-}
-
-/**
- * Decompress a compressed completion and fill in mbufs in RX SW ring with data
- * extracted from the title completion descriptor.
- *
- * @param rxq
- *   Pointer to RX queue structure.
- * @param cq
- *   Pointer to completion array having a compressed completion at first.
- * @param elts
- *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
- *   the title completion descriptor to be copied to the rest of mbufs.
- */
-static inline void
-rxq_cq_decompress_v(struct mlx5_rxq_data *rxq,
-		    volatile struct mlx5_cqe *cq,
-		    struct rte_mbuf **elts)
-{
-	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
-	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
-	unsigned int pos;
-	unsigned int i;
-	unsigned int inv = 0;
-	/* Mask to shuffle from extracted mini CQE to mbuf. */
-	const __m128i shuf_mask1 =
-		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
-			    -1, -1,         /* skip vlan_tci */
-			     6,  7,         /* data_len, bswap16 */
-			    -1, -1,  6,  7, /* pkt_len, bswap16 */
-			    -1, -1, -1, -1  /* skip packet_type */);
-	const __m128i shuf_mask2 =
-		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
-			    -1, -1,         /* skip vlan_tci */
-			    14, 15,         /* data_len, bswap16 */
-			    -1, -1, 14, 15, /* pkt_len, bswap16 */
-			    -1, -1, -1, -1  /* skip packet_type */);
-	/* Restore the compressed count. Must be 16 bits. */
-	const uint16_t mcqe_n = t_pkt->data_len +
-				(rxq->crc_present * ETHER_CRC_LEN);
-	const __m128i rearm =
-		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
-	const __m128i rxdf =
-		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
-	const __m128i crc_adj =
-		_mm_set_epi16(0, 0, 0,
-			      rxq->crc_present * ETHER_CRC_LEN,
-			      0,
-			      rxq->crc_present * ETHER_CRC_LEN,
-			      0, 0);
-	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
-#ifdef MLX5_PMD_SOFT_COUNTERS
-	const __m128i zero = _mm_setzero_si128();
-	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
-	uint32_t rcvd_byte = 0;
-	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
-	const __m128i len_shuf_mask =
-		_mm_set_epi8(-1, -1, -1, -1,
-			     -1, -1, -1, -1,
-			     14, 15,  6,  7,
-			     10, 11,  2,  3);
-#endif
-
-	/*
-	 * Not to overflow elts array. Decompress next time after mbuf
-	 * replenishment.
-	 */
-	if (unlikely(mcqe_n + MLX5_VPMD_DESCS_PER_LOOP >
-		     (uint16_t)(rxq->rq_ci - rxq->cq_ci)))
-		return;
-	/*
-	 * A. load mCQEs into a 128bit register.
-	 * B. store rearm data to mbuf.
-	 * C. combine data from mCQEs with rx_descriptor_fields1.
-	 * D. store rx_descriptor_fields1.
-	 * E. store flow tag (rte_flow mark).
-	 */
-	for (pos = 0; pos < mcqe_n; ) {
-		__m128i mcqe1, mcqe2;
-		__m128i rxdf1, rxdf2;
-#ifdef MLX5_PMD_SOFT_COUNTERS
-		__m128i byte_cnt, invalid_mask;
-#endif
-
-		if (!(pos & 0x7) && pos + 8 < mcqe_n)
-			rte_prefetch0((void *)(cq + pos + 8));
-		/* A.1 load mCQEs into a 128bit register. */
-		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
-		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
-		/* B.1 store rearm data to mbuf. */
-		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
-		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
-		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
-		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
-		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
-		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
-		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
-		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
-		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
-		/* D.1 store rx_descriptor_fields1. */
-		_mm_storeu_si128((__m128i *)
-				  &elts[pos]->rx_descriptor_fields1,
-				 rxdf1);
-		_mm_storeu_si128((__m128i *)
-				  &elts[pos + 1]->rx_descriptor_fields1,
-				 rxdf2);
-		/* B.1 store rearm data to mbuf. */
-		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
-		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
-		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
-		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
-		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
-		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
-		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
-		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
-		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
-		/* D.1 store rx_descriptor_fields1. */
-		_mm_storeu_si128((__m128i *)
-				  &elts[pos + 2]->rx_descriptor_fields1,
-				 rxdf1);
-		_mm_storeu_si128((__m128i *)
-				  &elts[pos + 3]->rx_descriptor_fields1,
-				 rxdf2);
-#ifdef MLX5_PMD_SOFT_COUNTERS
-		invalid_mask = _mm_set_epi64x(0,
-					      (mcqe_n - pos) *
-					      sizeof(uint16_t) * 8);
-		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
-		mcqe1 = _mm_srli_si128(mcqe1, 4);
-		byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
-		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
-		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
-		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
-		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
-#endif
-		if (rxq->mark) {
-			/* E.1 store flow tag (rte_flow mark). */
-			elts[pos]->hash.fdir.hi = flow_tag;
-			elts[pos + 1]->hash.fdir.hi = flow_tag;
-			elts[pos + 2]->hash.fdir.hi = flow_tag;
-			elts[pos + 3]->hash.fdir.hi = flow_tag;
-		}
-		pos += MLX5_VPMD_DESCS_PER_LOOP;
-		/* Move to next CQE and invalidate consumed CQEs. */
-		if (!(pos & 0x7) && pos < mcqe_n) {
-			mcq = (void *)(cq + pos);
-			for (i = 0; i < 8; ++i)
-				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
-		}
-	}
-	/* Invalidate the rest of CQEs. */
-	for (; inv < mcqe_n; ++inv)
-		cq[inv].op_own = MLX5_CQE_INVALIDATE;
-#ifdef MLX5_PMD_SOFT_COUNTERS
-	rxq->stats.ipackets += mcqe_n;
-	rxq->stats.ibytes += rcvd_byte;
-#endif
-	rxq->cq_ci += mcqe_n;
-}
-
-/**
- * Calculate packet type and offload flag for mbuf and store it.
- *
- * @param rxq
- *   Pointer to RX queue structure.
- * @param cqes[4]
- *   Array of four 16bytes completions extracted from the original completion
- *   descriptor.
- * @param op_err
- *   Opcode vector having responder error status. Each field is 4B.
- * @param pkts
- *   Pointer to array of packets to be filled.
- */
-static inline void
-rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
-			 __m128i op_err, struct rte_mbuf **pkts)
-{
-	__m128i pinfo0, pinfo1;
-	__m128i pinfo, ptype;
-	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH);
-	__m128i cv_flags;
-	const __m128i zero = _mm_setzero_si128();
-	const __m128i ptype_mask =
-		_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
-	const __m128i ptype_ol_mask =
-		_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
-	const __m128i pinfo_mask =
-		_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
-	const __m128i cv_flag_sel =
-		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
-			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
-					PKT_RX_L4_CKSUM_GOOD) >> 1),
-			     0,
-			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
-			     0,
-			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
-			     (uint8_t)(PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED),
-			     0);
-	const __m128i cv_mask =
-		_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
-			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
-			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
-			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
-			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
-			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
-			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
-			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED);
-	const __m128i mbuf_init =
-		_mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
-	__m128i rearm0, rearm1, rearm2, rearm3;
-
-	/* Extract pkt_info field. */
-	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
-	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
-	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
-	/* Extract hdr_type_etc field. */
-	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
-	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
-	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
-	if (rxq->mark) {
-		const __m128i pinfo_ft_mask =
-			_mm_set_epi32(0xffffff00, 0xffffff00,
-				      0xffffff00, 0xffffff00);
-		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
-		const __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
-		__m128i flow_tag, invalid_mask;
-
-		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
-		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
-		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
-		ol_flags = _mm_or_si128(ol_flags,
-					_mm_andnot_si128(invalid_mask,
-							 fdir_flags));
-		/* Mask out invalid entries. */
-		flow_tag = _mm_andnot_si128(invalid_mask, flow_tag);
-		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
-		ol_flags = _mm_or_si128(ol_flags,
-					_mm_andnot_si128(
-						_mm_cmpeq_epi32(flow_tag,
-								pinfo_ft_mask),
-						fdir_id_flags));
-	}
-	/*
-	 * Merge the two fields to generate the following:
-	 * bit[1]     = l3_ok
-	 * bit[2]     = l4_ok
-	 * bit[8]     = cv
-	 * bit[11:10] = l3_hdr_type
-	 * bit[14:12] = l4_hdr_type
-	 * bit[15]    = ip_frag
-	 * bit[16]    = tunneled
-	 * bit[17]    = outer_l3_type
-	 */
-	ptype = _mm_and_si128(ptype, ptype_mask);
-	pinfo = _mm_and_si128(pinfo, pinfo_mask);
-	pinfo = _mm_slli_epi32(pinfo, 16);
-	/* Make pinfo has merged fields for ol_flags calculation. */
-	pinfo = _mm_or_si128(ptype, pinfo);
-	ptype = _mm_srli_epi32(pinfo, 10);
-	ptype = _mm_packs_epi32(ptype, zero);
-	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
-	op_err = _mm_srli_epi16(op_err, 8);
-	ptype = _mm_or_si128(ptype, op_err);
-	pkts[0]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 0)];
-	pkts[1]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 2)];
-	pkts[2]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 4)];
-	pkts[3]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 6)];
-	/* Fill flags for checksum and VLAN. */
-	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
-	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
-	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
-	cv_flags = _mm_slli_epi32(pinfo, 9);
-	cv_flags = _mm_or_si128(pinfo, cv_flags);
-	/* Move back flags to start from byte[0]. */
-	cv_flags = _mm_srli_epi32(cv_flags, 8);
-	/* Mask out garbage bits. */
-	cv_flags = _mm_and_si128(cv_flags, cv_mask);
-	/* Merge to ol_flags. */
-	ol_flags = _mm_or_si128(ol_flags, cv_flags);
-	/* Merge mbuf_init and ol_flags. */
-	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
-	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
-	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
-	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
-	/* Write 8B rearm_data and 8B ol_flags. */
-	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
-	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
-	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
-	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
-}
-
-/**
  * Skip error packets.
  *
  * @param rxq
@@ -907,334 +264,6 @@ rxq_handle_pending_error(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts,
 }
 
 /**
- * Receive burst of packets. An errored completion also consumes a mbuf, but the
- * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
- * before returning to application.
- *
- * @param rxq
- *   Pointer to RX queue structure.
- * @param[out] pkts
- *   Array to store received packets.
- * @param pkts_n
- *   Maximum number of packets in array.
- *
- * @return
- *   Number of packets received including errors (<= pkts_n).
- */
-static inline uint16_t
-rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
-{
-	const uint16_t q_n = 1 << rxq->cqe_n;
-	const uint16_t q_mask = q_n - 1;
-	volatile struct mlx5_cqe *cq;
-	struct rte_mbuf **elts;
-	unsigned int pos;
-	uint64_t n;
-	uint16_t repl_n;
-	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
-	uint16_t nocmp_n = 0;
-	uint16_t rcvd_pkt = 0;
-	unsigned int cq_idx = rxq->cq_ci & q_mask;
-	unsigned int elts_idx;
-	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
-	const __m128i owner_check =
-		_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
-	const __m128i opcode_check =
-		_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
-	const __m128i format_check =
-		_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
-	const __m128i resp_err_check =
-		_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
-#ifdef MLX5_PMD_SOFT_COUNTERS
-	uint32_t rcvd_byte = 0;
-	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
-	const __m128i len_shuf_mask =
-		_mm_set_epi8(-1, -1, -1, -1,
-			     -1, -1, -1, -1,
-			     12, 13,  8,  9,
-			      4,  5,  0,  1);
-#endif
-	/* Mask to shuffle from extracted CQE to mbuf. */
-	const __m128i shuf_mask =
-		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
-			     12, 13, 14, 15, /* rss, bswap32 */
-			     10, 11,         /* vlan_tci, bswap16 */
-			      4,  5,         /* data_len, bswap16 */
-			     -1, -1,         /* zero out 2nd half of pkt_len */
-			      4,  5          /* pkt_len, bswap16 */);
-	/* Mask to blend from the last Qword to the first DQword. */
-	const __m128i blend_mask =
-		_mm_set_epi8(-1, -1, -1, -1,
-			     -1, -1, -1, -1,
-			      0,  0,  0,  0,
-			      0,  0,  0, -1);
-	const __m128i zero = _mm_setzero_si128();
-	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
-	const __m128i crc_adj =
-		_mm_set_epi16(0, 0, 0, 0, 0,
-			      rxq->crc_present * ETHER_CRC_LEN,
-			      0,
-			      rxq->crc_present * ETHER_CRC_LEN);
-	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
-
-	assert(rxq->sges_n == 0);
-	assert(rxq->cqe_n == rxq->elts_n);
-	cq = &(*rxq->cqes)[cq_idx];
-	rte_prefetch0(cq);
-	rte_prefetch0(cq + 1);
-	rte_prefetch0(cq + 2);
-	rte_prefetch0(cq + 3);
-	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
-	/*
-	 * Order of indexes:
-	 *   rq_ci >= cq_ci >= rq_pi
-	 * Definition of indexes:
-	 *   rq_ci - cq_ci := # of buffers owned by HW (posted).
-	 *   cq_ci - rq_pi := # of buffers not returned to app (decompressed).
-	 *   N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
-	 */
-	repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
-	if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH)
-		rxq_replenish_bulk_mbuf(rxq, repl_n);
-	/* See if there're unreturned mbufs from compressed CQE. */
-	rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
-	if (rcvd_pkt > 0) {
-		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
-		rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
-		rxq->rq_pi += rcvd_pkt;
-		pkts += rcvd_pkt;
-	}
-	elts_idx = rxq->rq_pi & q_mask;
-	elts = &(*rxq->elts)[elts_idx];
-	pkts_n = RTE_MIN(pkts_n - rcvd_pkt,
-			 (uint16_t)(rxq->rq_ci - rxq->cq_ci));
-	/* Not to overflow pkts/elts array. */
-	pkts_n = RTE_ALIGN_FLOOR(pkts_n, MLX5_VPMD_DESCS_PER_LOOP);
-	/* Not to cross queue end. */
-	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
-	if (!pkts_n)
-		return rcvd_pkt;
-	/* At this point, there shouldn't be any remained packets. */
-	assert(rxq->rq_pi == rxq->cq_ci);
-	/*
-	 * A. load first Qword (8bytes) in one loop.
-	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
-	 * C. load remained CQE data and extract necessary fields.
-	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
-	 *    following structure:
-	 *        struct {
-	 *          uint8_t  pkt_info;
-	 *          uint8_t  flow_tag[3];
-	 *          uint16_t byte_cnt;
-	 *          uint8_t  rsvd4;
-	 *          uint8_t  op_own;
-	 *          uint16_t hdr_type_etc;
-	 *          uint16_t vlan_info;
-	 *          uint32_t rx_has_res;
-	 *        } c;
-	 * D. fill in mbuf.
-	 * E. get valid CQEs.
-	 * F. find compressed CQE.
-	 */
-	for (pos = 0;
-	     pos < pkts_n;
-	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
-		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
-		__m128i cqe_tmp1, cqe_tmp2;
-		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
-		__m128i op_own, op_own_tmp1, op_own_tmp2;
-		__m128i opcode, owner_mask, invalid_mask;
-		__m128i comp_mask;
-		__m128i mask;
-#ifdef MLX5_PMD_SOFT_COUNTERS
-		__m128i byte_cnt;
-#endif
-		__m128i mbp1, mbp2;
-		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
-		unsigned int p1, p2, p3;
-
-		/* Prefetch next 4 CQEs. */
-		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
-			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
-			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
-			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
-			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
-		}
-		/* A.0 do not cross the end of CQ. */
-		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
-		mask = _mm_sll_epi64(ones, mask);
-		p = _mm_andnot_si128(mask, p);
-		/* A.1 load cqes. */
-		p3 = _mm_extract_epi16(p, 3);
-		cqes[3] = _mm_loadl_epi64((__m128i *)
-					   &cq[pos + p3].sop_drop_qpn);
-		rte_compiler_barrier();
-		p2 = _mm_extract_epi16(p, 2);
-		cqes[2] = _mm_loadl_epi64((__m128i *)
-					   &cq[pos + p2].sop_drop_qpn);
-		rte_compiler_barrier();
-		/* B.1 load mbuf pointers. */
-		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
-		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
-		/* A.1 load a block having op_own. */
-		p1 = _mm_extract_epi16(p, 1);
-		cqes[1] = _mm_loadl_epi64((__m128i *)
-					   &cq[pos + p1].sop_drop_qpn);
-		rte_compiler_barrier();
-		cqes[0] = _mm_loadl_epi64((__m128i *)
-					   &cq[pos].sop_drop_qpn);
-		/* B.2 copy mbuf pointers. */
-		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
-		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
-		rte_compiler_barrier();
-		/* C.1 load remained CQE data and extract necessary fields. */
-		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
-		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
-		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
-		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
-		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
-		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
-		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
-		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
-		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
-		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
-		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
-		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
-		/* C.2 generate final structure for mbuf with swapping bytes. */
-		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
-		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
-		/* C.3 adjust CRC length. */
-		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
-		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
-		/* C.4 adjust flow mark. */
-		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
-		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
-		/* D.1 fill in mbuf - rx_descriptor_fields1. */
-		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
-		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
-		/* E.1 extract op_own field. */
-		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
-		/* C.1 load remained CQE data and extract necessary fields. */
-		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
-		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
-		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
-		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
-		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
-		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
-		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
-		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
-		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
-		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
-		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
-		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
-		/* C.2 generate final structure for mbuf with swapping bytes. */
-		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
-		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
-		/* C.3 adjust CRC length. */
-		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
-		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
-		/* C.4 adjust flow mark. */
-		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
-		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
-		/* E.1 extract op_own byte. */
-		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
-		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
-		/* D.1 fill in mbuf - rx_descriptor_fields1. */
-		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
-		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
-		/* E.2 flip owner bit to mark CQEs from last round. */
-		owner_mask = _mm_and_si128(op_own, owner_check);
-		if (ownership)
-			owner_mask = _mm_xor_si128(owner_mask, owner_check);
-		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
-		owner_mask = _mm_packs_epi32(owner_mask, zero);
-		/* E.3 get mask for invalidated CQEs. */
-		opcode = _mm_and_si128(op_own, opcode_check);
-		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
-		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
-		/* E.4 mask out beyond boundary. */
-		invalid_mask = _mm_or_si128(invalid_mask, mask);
-		/* E.5 merge invalid_mask with invalid owner. */
-		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
-		/* F.1 find compressed CQE format. */
-		comp_mask = _mm_and_si128(op_own, format_check);
-		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
-		comp_mask = _mm_packs_epi32(comp_mask, zero);
-		/* F.2 mask out invalid entries. */
-		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
-		comp_idx = _mm_cvtsi128_si64(comp_mask);
-		/* F.3 get the first compressed CQE. */
-		comp_idx = comp_idx ?
-				__builtin_ctzll(comp_idx) /
-					(sizeof(uint16_t) * 8) :
-				MLX5_VPMD_DESCS_PER_LOOP;
-		/* E.6 mask out entries after the compressed CQE. */
-		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
-		mask = _mm_sll_epi64(ones, mask);
-		invalid_mask = _mm_or_si128(invalid_mask, mask);
-		/* E.7 count non-compressed valid CQEs. */
-		n = _mm_cvtsi128_si64(invalid_mask);
-		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
-			MLX5_VPMD_DESCS_PER_LOOP;
-		nocmp_n += n;
-		/* D.2 get the final invalid mask. */
-		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
-		mask = _mm_sll_epi64(ones, mask);
-		invalid_mask = _mm_or_si128(invalid_mask, mask);
-		/* D.3 check error in opcode. */
-		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
-		opcode = _mm_packs_epi32(opcode, zero);
-		opcode = _mm_andnot_si128(invalid_mask, opcode);
-		/* D.4 mark if any error is set */
-		rxq->pending_err |= !!_mm_cvtsi128_si64(opcode);
-		/* D.5 fill in mbuf - rearm_data and packet_type. */
-		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
-#ifdef MLX5_PMD_SOFT_COUNTERS
-		/* Add up received bytes count. */
-		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
-		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
-		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
-		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
-#endif
-		/*
-		 * Break the loop unless more valid CQE is expected, or if
-		 * there's a compressed CQE.
-		 */
-		if (n != MLX5_VPMD_DESCS_PER_LOOP)
-			break;
-	}
-	/* If no new CQE seen, return without updating cq_db. */
-	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
-		return rcvd_pkt;
-	/* Update the consumer indexes for non-compressed CQEs. */
-	assert(nocmp_n <= pkts_n);
-	rxq->cq_ci += nocmp_n;
-	rxq->rq_pi += nocmp_n;
-	rcvd_pkt += nocmp_n;
-#ifdef MLX5_PMD_SOFT_COUNTERS
-	rxq->stats.ipackets += nocmp_n;
-	rxq->stats.ibytes += rcvd_byte;
-#endif
-	/* Decompress the last CQE if compressed. */
-	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
-		assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
-		rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
-		/* Return more packets if needed. */
-		if (nocmp_n < pkts_n) {
-			uint16_t n = rxq->cq_ci - rxq->rq_pi;
-
-			n = RTE_MIN(n, pkts_n - nocmp_n);
-			rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
-			rxq->rq_pi += n;
-			rcvd_pkt += n;
-		}
-	}
-	rte_compiler_barrier();
-	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
-	return rcvd_pkt;
-}
-
-/**
  * DPDK callback for vectorized RX.
  *
  * @param dpdk_rxq
diff --git a/drivers/net/mlx5/mlx5_rxtx_vec.h b/drivers/net/mlx5/mlx5_rxtx_vec.h
index c41a9b96a..9656fb76e 100644
--- a/drivers/net/mlx5/mlx5_rxtx_vec.h
+++ b/drivers/net/mlx5/mlx5_rxtx_vec.h
@@ -84,4 +84,39 @@ S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, sop_drop_qpn) ==
 S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, op_own) ==
 		  offsetof(struct mlx5_cqe, sop_drop_qpn) + 7);
 
+/**
+ * Replenish buffers for RX in bulk.
+ *
+ * @param rxq
+ *   Pointer to RX queue structure.
+ * @param n
+ *   Number of buffers to be replenished.
+ */
+static inline void
+mlx5_rx_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq, uint16_t n)
+{
+	const uint16_t q_n = 1 << rxq->elts_n;
+	const uint16_t q_mask = q_n - 1;
+	const uint16_t elts_idx = rxq->rq_ci & q_mask;
+	struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
+	volatile struct mlx5_wqe_data_seg *wq = &(*rxq->wqes)[elts_idx];
+	unsigned int i;
+
+	assert(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH);
+	assert(n <= (uint16_t)(q_n - (rxq->rq_ci - rxq->rq_pi)));
+	assert(MLX5_VPMD_RXQ_RPLNSH_THRESH > MLX5_VPMD_DESCS_PER_LOOP);
+	/* Not to cross queue end. */
+	n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, q_n - elts_idx);
+	if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) {
+		rxq->stats.rx_nombuf += n;
+		return;
+	}
+	for (i = 0; i < n; ++i)
+		wq[i].addr = rte_cpu_to_be_64((uintptr_t)elts[i]->buf_addr +
+					      RTE_PKTMBUF_HEADROOM);
+	rxq->rq_ci += n;
+	rte_io_wmb();
+	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
+}
+
 #endif /* RTE_PMD_MLX5_RXTX_VEC_H_ */
diff --git a/drivers/net/mlx5/mlx5_rxtx_vec_sse.h b/drivers/net/mlx5/mlx5_rxtx_vec_sse.h
new file mode 100644
index 000000000..88c5d75fa
--- /dev/null
+++ b/drivers/net/mlx5/mlx5_rxtx_vec_sse.h
@@ -0,0 +1,995 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright 2017 6WIND S.A.
+ *   Copyright 2017 Mellanox.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of 6WIND S.A. nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
+#define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
+
+#include <assert.h>
+#include <stdint.h>
+#include <string.h>
+#include <stdlib.h>
+#include <smmintrin.h>
+
+#include <rte_mbuf.h>
+#include <rte_mempool.h>
+#include <rte_prefetch.h>
+
+#include "mlx5.h"
+#include "mlx5_utils.h"
+#include "mlx5_rxtx.h"
+#include "mlx5_rxtx_vec.h"
+#include "mlx5_autoconf.h"
+#include "mlx5_defs.h"
+#include "mlx5_prm.h"
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+/**
+ * Fill in buffer descriptors in a multi-packet send descriptor.
+ *
+ * @param txq
+ *   Pointer to TX queue structure.
+ * @param dseg
+ *   Pointer to buffer descriptor to be writen.
+ * @param pkts
+ *   Pointer to array of packets to be sent.
+ * @param n
+ *   Number of packets to be filled.
+ */
+static inline void
+txq_wr_dseg_v(struct mlx5_txq_data *txq, __m128i *dseg,
+	      struct rte_mbuf **pkts, unsigned int n)
+{
+	unsigned int pos;
+	uintptr_t addr;
+	const __m128i shuf_mask_dseg =
+		_mm_set_epi8(8,  9, 10, 11, /* addr, bswap64 */
+			    12, 13, 14, 15,
+			     7,  6,  5,  4, /* lkey */
+			     0,  1,  2,  3  /* length, bswap32 */);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+	uint32_t tx_byte = 0;
+#endif
+
+	for (pos = 0; pos < n; ++pos, ++dseg) {
+		__m128i desc;
+		struct rte_mbuf *pkt = pkts[pos];
+
+		addr = rte_pktmbuf_mtod(pkt, uintptr_t);
+		desc = _mm_set_epi32(addr >> 32,
+				     addr,
+				     mlx5_tx_mb2mr(txq, pkt),
+				     DATA_LEN(pkt));
+		desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
+		_mm_store_si128(dseg, desc);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+		tx_byte += DATA_LEN(pkt);
+#endif
+	}
+#ifdef MLX5_PMD_SOFT_COUNTERS
+	txq->stats.obytes += tx_byte;
+#endif
+}
+
+/**
+ * Send multi-segmented packets until it encounters a single segment packet in
+ * the pkts list.
+ *
+ * @param txq
+ *   Pointer to TX queue structure.
+ * @param pkts
+ *   Pointer to array of packets to be sent.
+ * @param pkts_n
+ *   Number of packets to be sent.
+ *
+ * @return
+ *   Number of packets successfully transmitted (<= pkts_n).
+ */
+static uint16_t
+txq_scatter_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
+	      uint16_t pkts_n)
+{
+	uint16_t elts_head = txq->elts_head;
+	const uint16_t elts_n = 1 << txq->elts_n;
+	const uint16_t elts_m = elts_n - 1;
+	const uint16_t wq_n = 1 << txq->wqe_n;
+	const uint16_t wq_mask = wq_n - 1;
+	const unsigned int nb_dword_per_wqebb =
+		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
+	const unsigned int nb_dword_in_hdr =
+		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
+	unsigned int n;
+	volatile struct mlx5_wqe *wqe = NULL;
+
+	assert(elts_n > pkts_n);
+	mlx5_tx_complete(txq);
+	if (unlikely(!pkts_n))
+		return 0;
+	for (n = 0; n < pkts_n; ++n) {
+		struct rte_mbuf *buf = pkts[n];
+		unsigned int segs_n = buf->nb_segs;
+		unsigned int ds = nb_dword_in_hdr;
+		unsigned int len = PKT_LEN(buf);
+		uint16_t wqe_ci = txq->wqe_ci;
+		const __m128i shuf_mask_ctrl =
+			_mm_set_epi8(15, 14, 13, 12,
+				      8,  9, 10, 11, /* bswap32 */
+				      4,  5,  6,  7, /* bswap32 */
+				      0,  1,  2,  3  /* bswap32 */);
+		uint8_t cs_flags = 0;
+		uint16_t max_elts;
+		uint16_t max_wqe;
+		__m128i *t_wqe, *dseg;
+		__m128i ctrl;
+
+		assert(segs_n);
+		max_elts = elts_n - (elts_head - txq->elts_tail);
+		max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
+		/*
+		 * A MPW session consumes 2 WQEs at most to
+		 * include MLX5_MPW_DSEG_MAX pointers.
+		 */
+		if (segs_n == 1 ||
+		    max_elts < segs_n || max_wqe < 2)
+			break;
+		if (segs_n > MLX5_MPW_DSEG_MAX) {
+			txq->stats.oerrors++;
+			break;
+		}
+		wqe = &((volatile struct mlx5_wqe64 *)
+			 txq->wqes)[wqe_ci & wq_mask].hdr;
+		if (buf->ol_flags &
+		     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
+			const uint64_t is_tunneled =
+				buf->ol_flags & (PKT_TX_TUNNEL_GRE |
+						 PKT_TX_TUNNEL_VXLAN);
+
+			if (is_tunneled && txq->tunnel_en) {
+				cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
+					   MLX5_ETH_WQE_L4_INNER_CSUM;
+				if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
+					cs_flags |= MLX5_ETH_WQE_L3_CSUM;
+			} else {
+				cs_flags = MLX5_ETH_WQE_L3_CSUM |
+					   MLX5_ETH_WQE_L4_CSUM;
+			}
+		}
+		/* Title WQEBB pointer. */
+		t_wqe = (__m128i *)wqe;
+		dseg = (__m128i *)(wqe + 1);
+		do {
+			if (!(ds++ % nb_dword_per_wqebb)) {
+				dseg = (__m128i *)
+					&((volatile struct mlx5_wqe64 *)
+					   txq->wqes)[++wqe_ci & wq_mask];
+			}
+			txq_wr_dseg_v(txq, dseg++, &buf, 1);
+			(*txq->elts)[elts_head++ & elts_m] = buf;
+			buf = buf->next;
+		} while (--segs_n);
+		++wqe_ci;
+		/* Fill CTRL in the header. */
+		ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
+				     MLX5_OPC_MOD_MPW << 24 |
+				     txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
+		ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
+		_mm_store_si128(t_wqe, ctrl);
+		/* Fill ESEG in the header. */
+		_mm_store_si128(t_wqe + 1,
+				_mm_set_epi16(0, 0, 0, 0,
+					      rte_cpu_to_be_16(len), cs_flags,
+					      0, 0));
+		txq->wqe_ci = wqe_ci;
+	}
+	if (!n)
+		return 0;
+	txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
+	txq->elts_head = elts_head;
+	if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
+		wqe->ctrl[2] = rte_cpu_to_be_32(8);
+		wqe->ctrl[3] = txq->elts_head;
+		txq->elts_comp = 0;
+		++txq->cq_pi;
+	}
+#ifdef MLX5_PMD_SOFT_COUNTERS
+	txq->stats.opackets += n;
+#endif
+	mlx5_tx_dbrec(txq, wqe);
+	return n;
+}
+
+/**
+ * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
+ * it returns to make it processed by txq_scatter_v(). All the packets in
+ * the pkts list should be single segment packets having same offload flags.
+ * This must be checked by txq_check_multiseg() and txq_calc_offload().
+ *
+ * @param txq
+ *   Pointer to TX queue structure.
+ * @param pkts
+ *   Pointer to array of packets to be sent.
+ * @param pkts_n
+ *   Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
+ * @param cs_flags
+ *   Checksum offload flags to be written in the descriptor.
+ *
+ * @return
+ *   Number of packets successfully transmitted (<= pkts_n).
+ */
+static inline uint16_t
+txq_burst_v(struct mlx5_txq_data *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
+	    uint8_t cs_flags)
+{
+	struct rte_mbuf **elts;
+	uint16_t elts_head = txq->elts_head;
+	const uint16_t elts_n = 1 << txq->elts_n;
+	const uint16_t elts_m = elts_n - 1;
+	const unsigned int nb_dword_per_wqebb =
+		MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
+	const unsigned int nb_dword_in_hdr =
+		sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
+	unsigned int n = 0;
+	unsigned int pos;
+	uint16_t max_elts;
+	uint16_t max_wqe;
+	uint32_t comp_req = 0;
+	const uint16_t wq_n = 1 << txq->wqe_n;
+	const uint16_t wq_mask = wq_n - 1;
+	uint16_t wq_idx = txq->wqe_ci & wq_mask;
+	volatile struct mlx5_wqe64 *wq =
+		&((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
+	volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
+	const __m128i shuf_mask_ctrl =
+		_mm_set_epi8(15, 14, 13, 12,
+			      8,  9, 10, 11, /* bswap32 */
+			      4,  5,  6,  7, /* bswap32 */
+			      0,  1,  2,  3  /* bswap32 */);
+	__m128i *t_wqe, *dseg;
+	__m128i ctrl;
+
+	/* Make sure all packets can fit into a single WQE. */
+	assert(elts_n > pkts_n);
+	mlx5_tx_complete(txq);
+	max_elts = (elts_n - (elts_head - txq->elts_tail));
+	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
+	pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
+	assert(pkts_n <= MLX5_DSEG_MAX - nb_dword_in_hdr);
+	if (unlikely(!pkts_n))
+		return 0;
+	elts = &(*txq->elts)[elts_head & elts_m];
+	/* Loop for available tailroom first. */
+	n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
+	for (pos = 0; pos < (n & -2); pos += 2)
+		_mm_storeu_si128((__m128i *)&elts[pos],
+				 _mm_loadu_si128((__m128i *)&pkts[pos]));
+	if (n & 1)
+		elts[pos] = pkts[pos];
+	/* Check if it crosses the end of the queue. */
+	if (unlikely(n < pkts_n)) {
+		elts = &(*txq->elts)[0];
+		for (pos = 0; pos < pkts_n - n; ++pos)
+			elts[pos] = pkts[n + pos];
+	}
+	txq->elts_head += pkts_n;
+	/* Save title WQEBB pointer. */
+	t_wqe = (__m128i *)wqe;
+	dseg = (__m128i *)(wqe + 1);
+	/* Calculate the number of entries to the end. */
+	n = RTE_MIN(
+		(wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
+		pkts_n);
+	/* Fill DSEGs. */
+	txq_wr_dseg_v(txq, dseg, pkts, n);
+	/* Check if it crosses the end of the queue. */
+	if (n < pkts_n) {
+		dseg = (__m128i *)txq->wqes;
+		txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
+	}
+	if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
+		txq->elts_comp += pkts_n;
+	} else {
+		/* Request a completion. */
+		txq->elts_comp = 0;
+		++txq->cq_pi;
+		comp_req = 8;
+	}
+	/* Fill CTRL in the header. */
+	ctrl = _mm_set_epi32(txq->elts_head, comp_req,
+			     txq->qp_num_8s | (pkts_n + 2),
+			     MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
+				txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
+	ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
+	_mm_store_si128(t_wqe, ctrl);
+	/* Fill ESEG in the header. */
+	_mm_store_si128(t_wqe + 1,
+			_mm_set_epi8(0, 0, 0, 0,
+				     0, 0, 0, 0,
+				     0, 0, 0, cs_flags,
+				     0, 0, 0, 0));
+#ifdef MLX5_PMD_SOFT_COUNTERS
+	txq->stats.opackets += pkts_n;
+#endif
+	txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
+		       nb_dword_per_wqebb;
+	/* Ring QP doorbell. */
+	mlx5_tx_dbrec(txq, wqe);
+	return pkts_n;
+}
+
+/**
+ * Store free buffers to RX SW ring.
+ *
+ * @param rxq
+ *   Pointer to RX queue structure.
+ * @param pkts
+ *   Pointer to array of packets to be stored.
+ * @param pkts_n
+ *   Number of packets to be stored.
+ */
+static inline void
+rxq_copy_mbuf_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t n)
+{
+	const uint16_t q_mask = (1 << rxq->elts_n) - 1;
+	struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
+	unsigned int pos;
+	uint16_t p = n & -2;
+
+	for (pos = 0; pos < p; pos += 2) {
+		__m128i mbp;
+
+		mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
+		_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
+	}
+	if (n & 1)
+		pkts[pos] = elts[pos];
+}
+
+/**
+ * Decompress a compressed completion and fill in mbufs in RX SW ring with data
+ * extracted from the title completion descriptor.
+ *
+ * @param rxq
+ *   Pointer to RX queue structure.
+ * @param cq
+ *   Pointer to completion array having a compressed completion at first.
+ * @param elts
+ *   Pointer to SW ring to be filled. The first mbuf has to be pre-built from
+ *   the title completion descriptor to be copied to the rest of mbufs.
+ */
+static inline void
+rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
+		    struct rte_mbuf **elts)
+{
+	volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
+	struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
+	unsigned int pos;
+	unsigned int i;
+	unsigned int inv = 0;
+	/* Mask to shuffle from extracted mini CQE to mbuf. */
+	const __m128i shuf_mask1 =
+		_mm_set_epi8(0,  1,  2,  3, /* rss, bswap32 */
+			    -1, -1,         /* skip vlan_tci */
+			     6,  7,         /* data_len, bswap16 */
+			    -1, -1,  6,  7, /* pkt_len, bswap16 */
+			    -1, -1, -1, -1  /* skip packet_type */);
+	const __m128i shuf_mask2 =
+		_mm_set_epi8(8,  9, 10, 11, /* rss, bswap32 */
+			    -1, -1,         /* skip vlan_tci */
+			    14, 15,         /* data_len, bswap16 */
+			    -1, -1, 14, 15, /* pkt_len, bswap16 */
+			    -1, -1, -1, -1  /* skip packet_type */);
+	/* Restore the compressed count. Must be 16 bits. */
+	const uint16_t mcqe_n = t_pkt->data_len +
+				(rxq->crc_present * ETHER_CRC_LEN);
+	const __m128i rearm =
+		_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
+	const __m128i rxdf =
+		_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
+	const __m128i crc_adj =
+		_mm_set_epi16(0, 0, 0,
+			      rxq->crc_present * ETHER_CRC_LEN,
+			      0,
+			      rxq->crc_present * ETHER_CRC_LEN,
+			      0, 0);
+	const uint32_t flow_tag = t_pkt->hash.fdir.hi;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+	const __m128i zero = _mm_setzero_si128();
+	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
+	uint32_t rcvd_byte = 0;
+	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
+	const __m128i len_shuf_mask =
+		_mm_set_epi8(-1, -1, -1, -1,
+			     -1, -1, -1, -1,
+			     14, 15,  6,  7,
+			     10, 11,  2,  3);
+#endif
+
+	/*
+	 * Not to overflow elts array. Decompress next time after mbuf
+	 * replenishment.
+	 */
+	if (unlikely(mcqe_n + MLX5_VPMD_DESCS_PER_LOOP >
+		     (uint16_t)(rxq->rq_ci - rxq->cq_ci)))
+		return;
+	/*
+	 * A. load mCQEs into a 128bit register.
+	 * B. store rearm data to mbuf.
+	 * C. combine data from mCQEs with rx_descriptor_fields1.
+	 * D. store rx_descriptor_fields1.
+	 * E. store flow tag (rte_flow mark).
+	 */
+	for (pos = 0; pos < mcqe_n; ) {
+		__m128i mcqe1, mcqe2;
+		__m128i rxdf1, rxdf2;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+		__m128i byte_cnt, invalid_mask;
+#endif
+
+		if (!(pos & 0x7) && pos + 8 < mcqe_n)
+			rte_prefetch0((void *)(cq + pos + 8));
+		/* A.1 load mCQEs into a 128bit register. */
+		mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
+		mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
+		/* B.1 store rearm data to mbuf. */
+		_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
+		_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
+		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
+		rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
+		rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
+		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
+		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
+		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
+		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
+		/* D.1 store rx_descriptor_fields1. */
+		_mm_storeu_si128((__m128i *)
+				  &elts[pos]->rx_descriptor_fields1,
+				 rxdf1);
+		_mm_storeu_si128((__m128i *)
+				  &elts[pos + 1]->rx_descriptor_fields1,
+				 rxdf2);
+		/* B.1 store rearm data to mbuf. */
+		_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
+		_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
+		/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
+		rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
+		rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
+		rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
+		rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
+		rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
+		rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
+		/* D.1 store rx_descriptor_fields1. */
+		_mm_storeu_si128((__m128i *)
+				  &elts[pos + 2]->rx_descriptor_fields1,
+				 rxdf1);
+		_mm_storeu_si128((__m128i *)
+				  &elts[pos + 3]->rx_descriptor_fields1,
+				 rxdf2);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+		invalid_mask = _mm_set_epi64x(0,
+					      (mcqe_n - pos) *
+					      sizeof(uint16_t) * 8);
+		invalid_mask = _mm_sll_epi64(ones, invalid_mask);
+		mcqe1 = _mm_srli_si128(mcqe1, 4);
+		byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
+		byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
+		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
+		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
+		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
+#endif
+		if (rxq->mark) {
+			/* E.1 store flow tag (rte_flow mark). */
+			elts[pos]->hash.fdir.hi = flow_tag;
+			elts[pos + 1]->hash.fdir.hi = flow_tag;
+			elts[pos + 2]->hash.fdir.hi = flow_tag;
+			elts[pos + 3]->hash.fdir.hi = flow_tag;
+		}
+		pos += MLX5_VPMD_DESCS_PER_LOOP;
+		/* Move to next CQE and invalidate consumed CQEs. */
+		if (!(pos & 0x7) && pos < mcqe_n) {
+			mcq = (void *)(cq + pos);
+			for (i = 0; i < 8; ++i)
+				cq[inv++].op_own = MLX5_CQE_INVALIDATE;
+		}
+	}
+	/* Invalidate the rest of CQEs. */
+	for (; inv < mcqe_n; ++inv)
+		cq[inv].op_own = MLX5_CQE_INVALIDATE;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+	rxq->stats.ipackets += mcqe_n;
+	rxq->stats.ibytes += rcvd_byte;
+#endif
+	rxq->cq_ci += mcqe_n;
+}
+
+/**
+ * Calculate packet type and offload flag for mbuf and store it.
+ *
+ * @param rxq
+ *   Pointer to RX queue structure.
+ * @param cqes[4]
+ *   Array of four 16bytes completions extracted from the original completion
+ *   descriptor.
+ * @param op_err
+ *   Opcode vector having responder error status. Each field is 4B.
+ * @param pkts
+ *   Pointer to array of packets to be filled.
+ */
+static inline void
+rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
+			 __m128i op_err, struct rte_mbuf **pkts)
+{
+	__m128i pinfo0, pinfo1;
+	__m128i pinfo, ptype;
+	__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH);
+	__m128i cv_flags;
+	const __m128i zero = _mm_setzero_si128();
+	const __m128i ptype_mask =
+		_mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
+	const __m128i ptype_ol_mask =
+		_mm_set_epi32(0x106, 0x106, 0x106, 0x106);
+	const __m128i pinfo_mask =
+		_mm_set_epi32(0x3, 0x3, 0x3, 0x3);
+	const __m128i cv_flag_sel =
+		_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
+			     (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
+					PKT_RX_L4_CKSUM_GOOD) >> 1),
+			     0,
+			     (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
+			     0,
+			     (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
+			     (uint8_t)(PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED),
+			     0);
+	const __m128i cv_mask =
+		_mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+			      PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+			      PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED);
+	const __m128i mbuf_init =
+		_mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
+	__m128i rearm0, rearm1, rearm2, rearm3;
+
+	/* Extract pkt_info field. */
+	pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
+	pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
+	pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
+	/* Extract hdr_type_etc field. */
+	pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
+	pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
+	ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
+	if (rxq->mark) {
+		const __m128i pinfo_ft_mask =
+			_mm_set_epi32(0xffffff00, 0xffffff00,
+				      0xffffff00, 0xffffff00);
+		const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
+		const __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
+		__m128i flow_tag, invalid_mask;
+
+		flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
+		/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
+		invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
+		ol_flags = _mm_or_si128(ol_flags,
+					_mm_andnot_si128(invalid_mask,
+							 fdir_flags));
+		/* Mask out invalid entries. */
+		flow_tag = _mm_andnot_si128(invalid_mask, flow_tag);
+		/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
+		ol_flags = _mm_or_si128(ol_flags,
+					_mm_andnot_si128(
+						_mm_cmpeq_epi32(flow_tag,
+								pinfo_ft_mask),
+						fdir_id_flags));
+	}
+	/*
+	 * Merge the two fields to generate the following:
+	 * bit[1]     = l3_ok
+	 * bit[2]     = l4_ok
+	 * bit[8]     = cv
+	 * bit[11:10] = l3_hdr_type
+	 * bit[14:12] = l4_hdr_type
+	 * bit[15]    = ip_frag
+	 * bit[16]    = tunneled
+	 * bit[17]    = outer_l3_type
+	 */
+	ptype = _mm_and_si128(ptype, ptype_mask);
+	pinfo = _mm_and_si128(pinfo, pinfo_mask);
+	pinfo = _mm_slli_epi32(pinfo, 16);
+	/* Make pinfo has merged fields for ol_flags calculation. */
+	pinfo = _mm_or_si128(ptype, pinfo);
+	ptype = _mm_srli_epi32(pinfo, 10);
+	ptype = _mm_packs_epi32(ptype, zero);
+	/* Errored packets will have RTE_PTYPE_ALL_MASK. */
+	op_err = _mm_srli_epi16(op_err, 8);
+	ptype = _mm_or_si128(ptype, op_err);
+	pkts[0]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 0)];
+	pkts[1]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 2)];
+	pkts[2]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 4)];
+	pkts[3]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 6)];
+	/* Fill flags for checksum and VLAN. */
+	pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
+	pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
+	/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
+	cv_flags = _mm_slli_epi32(pinfo, 9);
+	cv_flags = _mm_or_si128(pinfo, cv_flags);
+	/* Move back flags to start from byte[0]. */
+	cv_flags = _mm_srli_epi32(cv_flags, 8);
+	/* Mask out garbage bits. */
+	cv_flags = _mm_and_si128(cv_flags, cv_mask);
+	/* Merge to ol_flags. */
+	ol_flags = _mm_or_si128(ol_flags, cv_flags);
+	/* Merge mbuf_init and ol_flags. */
+	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
+	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
+	rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
+	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
+	/* Write 8B rearm_data and 8B ol_flags. */
+	_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
+	_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
+	_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
+	_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
+}
+
+/**
+ * Receive burst of packets. An errored completion also consumes a mbuf, but the
+ * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
+ * before returning to application.
+ *
+ * @param rxq
+ *   Pointer to RX queue structure.
+ * @param[out] pkts
+ *   Array to store received packets.
+ * @param pkts_n
+ *   Maximum number of packets in array.
+ *
+ * @return
+ *   Number of packets received including errors (<= pkts_n).
+ */
+static inline uint16_t
+rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+	const uint16_t q_n = 1 << rxq->cqe_n;
+	const uint16_t q_mask = q_n - 1;
+	volatile struct mlx5_cqe *cq;
+	struct rte_mbuf **elts;
+	unsigned int pos;
+	uint64_t n;
+	uint16_t repl_n;
+	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
+	uint16_t nocmp_n = 0;
+	uint16_t rcvd_pkt = 0;
+	unsigned int cq_idx = rxq->cq_ci & q_mask;
+	unsigned int elts_idx;
+	unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
+	const __m128i owner_check =
+		_mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
+	const __m128i opcode_check =
+		_mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
+	const __m128i format_check =
+		_mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
+	const __m128i resp_err_check =
+		_mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+	uint32_t rcvd_byte = 0;
+	/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
+	const __m128i len_shuf_mask =
+		_mm_set_epi8(-1, -1, -1, -1,
+			     -1, -1, -1, -1,
+			     12, 13,  8,  9,
+			      4,  5,  0,  1);
+#endif
+	/* Mask to shuffle from extracted CQE to mbuf. */
+	const __m128i shuf_mask =
+		_mm_set_epi8(-1,  3,  2,  1, /* fdir.hi */
+			     12, 13, 14, 15, /* rss, bswap32 */
+			     10, 11,         /* vlan_tci, bswap16 */
+			      4,  5,         /* data_len, bswap16 */
+			     -1, -1,         /* zero out 2nd half of pkt_len */
+			      4,  5          /* pkt_len, bswap16 */);
+	/* Mask to blend from the last Qword to the first DQword. */
+	const __m128i blend_mask =
+		_mm_set_epi8(-1, -1, -1, -1,
+			     -1, -1, -1, -1,
+			      0,  0,  0,  0,
+			      0,  0,  0, -1);
+	const __m128i zero = _mm_setzero_si128();
+	const __m128i ones = _mm_cmpeq_epi32(zero, zero);
+	const __m128i crc_adj =
+		_mm_set_epi16(0, 0, 0, 0, 0,
+			      rxq->crc_present * ETHER_CRC_LEN,
+			      0,
+			      rxq->crc_present * ETHER_CRC_LEN);
+	const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
+
+	assert(rxq->sges_n == 0);
+	assert(rxq->cqe_n == rxq->elts_n);
+	cq = &(*rxq->cqes)[cq_idx];
+	rte_prefetch0(cq);
+	rte_prefetch0(cq + 1);
+	rte_prefetch0(cq + 2);
+	rte_prefetch0(cq + 3);
+	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
+	/*
+	 * Order of indexes:
+	 *   rq_ci >= cq_ci >= rq_pi
+	 * Definition of indexes:
+	 *   rq_ci - cq_ci := # of buffers owned by HW (posted).
+	 *   cq_ci - rq_pi := # of buffers not returned to app (decompressed).
+	 *   N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
+	 */
+	repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
+	if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH)
+		mlx5_rx_replenish_bulk_mbuf(rxq, repl_n);
+	/* See if there're unreturned mbufs from compressed CQE. */
+	rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
+	if (rcvd_pkt > 0) {
+		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
+		rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
+		rxq->rq_pi += rcvd_pkt;
+		pkts += rcvd_pkt;
+	}
+	elts_idx = rxq->rq_pi & q_mask;
+	elts = &(*rxq->elts)[elts_idx];
+	pkts_n = RTE_MIN(pkts_n - rcvd_pkt,
+			 (uint16_t)(rxq->rq_ci - rxq->cq_ci));
+	/* Not to overflow pkts/elts array. */
+	pkts_n = RTE_ALIGN_FLOOR(pkts_n, MLX5_VPMD_DESCS_PER_LOOP);
+	/* Not to cross queue end. */
+	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
+	if (!pkts_n)
+		return rcvd_pkt;
+	/* At this point, there shouldn't be any remained packets. */
+	assert(rxq->rq_pi == rxq->cq_ci);
+	/*
+	 * A. load first Qword (8bytes) in one loop.
+	 * B. copy 4 mbuf pointers from elts ring to returing pkts.
+	 * C. load remained CQE data and extract necessary fields.
+	 *    Final 16bytes cqes[] extracted from original 64bytes CQE has the
+	 *    following structure:
+	 *        struct {
+	 *          uint8_t  pkt_info;
+	 *          uint8_t  flow_tag[3];
+	 *          uint16_t byte_cnt;
+	 *          uint8_t  rsvd4;
+	 *          uint8_t  op_own;
+	 *          uint16_t hdr_type_etc;
+	 *          uint16_t vlan_info;
+	 *          uint32_t rx_has_res;
+	 *        } c;
+	 * D. fill in mbuf.
+	 * E. get valid CQEs.
+	 * F. find compressed CQE.
+	 */
+	for (pos = 0;
+	     pos < pkts_n;
+	     pos += MLX5_VPMD_DESCS_PER_LOOP) {
+		__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
+		__m128i cqe_tmp1, cqe_tmp2;
+		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
+		__m128i op_own, op_own_tmp1, op_own_tmp2;
+		__m128i opcode, owner_mask, invalid_mask;
+		__m128i comp_mask;
+		__m128i mask;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+		__m128i byte_cnt;
+#endif
+		__m128i mbp1, mbp2;
+		__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
+		unsigned int p1, p2, p3;
+
+		/* Prefetch next 4 CQEs. */
+		if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
+			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
+			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
+			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
+			rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
+		}
+		/* A.0 do not cross the end of CQ. */
+		mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
+		mask = _mm_sll_epi64(ones, mask);
+		p = _mm_andnot_si128(mask, p);
+		/* A.1 load cqes. */
+		p3 = _mm_extract_epi16(p, 3);
+		cqes[3] = _mm_loadl_epi64((__m128i *)
+					   &cq[pos + p3].sop_drop_qpn);
+		rte_compiler_barrier();
+		p2 = _mm_extract_epi16(p, 2);
+		cqes[2] = _mm_loadl_epi64((__m128i *)
+					   &cq[pos + p2].sop_drop_qpn);
+		rte_compiler_barrier();
+		/* B.1 load mbuf pointers. */
+		mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
+		mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
+		/* A.1 load a block having op_own. */
+		p1 = _mm_extract_epi16(p, 1);
+		cqes[1] = _mm_loadl_epi64((__m128i *)
+					   &cq[pos + p1].sop_drop_qpn);
+		rte_compiler_barrier();
+		cqes[0] = _mm_loadl_epi64((__m128i *)
+					   &cq[pos].sop_drop_qpn);
+		/* B.2 copy mbuf pointers. */
+		_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
+		_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
+		rte_compiler_barrier();
+		/* C.1 load remained CQE data and extract necessary fields. */
+		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
+		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
+		cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
+		cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
+		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
+		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
+		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
+		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
+		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
+		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
+		cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
+		cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
+		/* C.2 generate final structure for mbuf with swapping bytes. */
+		pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
+		pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
+		/* C.3 adjust CRC length. */
+		pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
+		pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
+		/* C.4 adjust flow mark. */
+		pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
+		pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
+		/* D.1 fill in mbuf - rx_descriptor_fields1. */
+		_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
+		_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
+		/* E.1 extract op_own field. */
+		op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
+		/* C.1 load remained CQE data and extract necessary fields. */
+		cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
+		cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
+		cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
+		cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
+		cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
+		cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
+		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
+		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
+		cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
+		cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
+		cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
+		cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
+		/* C.2 generate final structure for mbuf with swapping bytes. */
+		pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
+		pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
+		/* C.3 adjust CRC length. */
+		pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
+		pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
+		/* C.4 adjust flow mark. */
+		pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
+		pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
+		/* E.1 extract op_own byte. */
+		op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
+		op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
+		/* D.1 fill in mbuf - rx_descriptor_fields1. */
+		_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
+		_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
+		/* E.2 flip owner bit to mark CQEs from last round. */
+		owner_mask = _mm_and_si128(op_own, owner_check);
+		if (ownership)
+			owner_mask = _mm_xor_si128(owner_mask, owner_check);
+		owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
+		owner_mask = _mm_packs_epi32(owner_mask, zero);
+		/* E.3 get mask for invalidated CQEs. */
+		opcode = _mm_and_si128(op_own, opcode_check);
+		invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
+		invalid_mask = _mm_packs_epi32(invalid_mask, zero);
+		/* E.4 mask out beyond boundary. */
+		invalid_mask = _mm_or_si128(invalid_mask, mask);
+		/* E.5 merge invalid_mask with invalid owner. */
+		invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
+		/* F.1 find compressed CQE format. */
+		comp_mask = _mm_and_si128(op_own, format_check);
+		comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
+		comp_mask = _mm_packs_epi32(comp_mask, zero);
+		/* F.2 mask out invalid entries. */
+		comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
+		comp_idx = _mm_cvtsi128_si64(comp_mask);
+		/* F.3 get the first compressed CQE. */
+		comp_idx = comp_idx ?
+				__builtin_ctzll(comp_idx) /
+					(sizeof(uint16_t) * 8) :
+				MLX5_VPMD_DESCS_PER_LOOP;
+		/* E.6 mask out entries after the compressed CQE. */
+		mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
+		mask = _mm_sll_epi64(ones, mask);
+		invalid_mask = _mm_or_si128(invalid_mask, mask);
+		/* E.7 count non-compressed valid CQEs. */
+		n = _mm_cvtsi128_si64(invalid_mask);
+		n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
+			MLX5_VPMD_DESCS_PER_LOOP;
+		nocmp_n += n;
+		/* D.2 get the final invalid mask. */
+		mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
+		mask = _mm_sll_epi64(ones, mask);
+		invalid_mask = _mm_or_si128(invalid_mask, mask);
+		/* D.3 check error in opcode. */
+		opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
+		opcode = _mm_packs_epi32(opcode, zero);
+		opcode = _mm_andnot_si128(invalid_mask, opcode);
+		/* D.4 mark if any error is set */
+		rxq->pending_err |= !!_mm_cvtsi128_si64(opcode);
+		/* D.5 fill in mbuf - rearm_data and packet_type. */
+		rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+		/* Add up received bytes count. */
+		byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
+		byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
+		byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
+		rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
+#endif
+		/*
+		 * Break the loop unless more valid CQE is expected, or if
+		 * there's a compressed CQE.
+		 */
+		if (n != MLX5_VPMD_DESCS_PER_LOOP)
+			break;
+	}
+	/* If no new CQE seen, return without updating cq_db. */
+	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
+		return rcvd_pkt;
+	/* Update the consumer indexes for non-compressed CQEs. */
+	assert(nocmp_n <= pkts_n);
+	rxq->cq_ci += nocmp_n;
+	rxq->rq_pi += nocmp_n;
+	rcvd_pkt += nocmp_n;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+	rxq->stats.ipackets += nocmp_n;
+	rxq->stats.ibytes += rcvd_byte;
+#endif
+	/* Decompress the last CQE if compressed. */
+	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
+		assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
+		rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
+		/* Return more packets if needed. */
+		if (nocmp_n < pkts_n) {
+			uint16_t n = rxq->cq_ci - rxq->rq_pi;
+
+			n = RTE_MIN(n, pkts_n - nocmp_n);
+			rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
+			rxq->rq_pi += n;
+			rcvd_pkt += n;
+		}
+	}
+	rte_compiler_barrier();
+	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
+	return rcvd_pkt;
+}
+
+#endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */
-- 
2.11.0



More information about the dev mailing list