[dpdk-dev] [PATCH v3 04/11] baseband/acc100: add queue configuration

Xu, Rosen rosen.xu at intel.com
Thu Sep 3 04:30:54 CEST 2020


Hi,

> -----Original Message-----
> From: Chautru, Nicolas <nicolas.chautru at intel.com>
> Sent: Sunday, August 30, 2020 1:48
> To: Xu, Rosen <rosen.xu at intel.com>; dev at dpdk.org; akhil.goyal at nxp.com
> Cc: Richardson, Bruce <bruce.richardson at intel.com>
> Subject: RE: [dpdk-dev] [PATCH v3 04/11] baseband/acc100: add queue
> configuration
> 
> Hi,
> 
> > From: Xu, Rosen <rosen.xu at intel.com>
> >
> > Hi,
> >
> > > -----Original Message-----
> > > From: dev <dev-bounces at dpdk.org> On Behalf Of Nicolas Chautru
> > > Sent: Wednesday, August 19, 2020 8:25
> > > To: dev at dpdk.org; akhil.goyal at nxp.com
> > > Cc: Richardson, Bruce <bruce.richardson at intel.com>; Chautru, Nicolas
> > > <nicolas.chautru at intel.com>
> > > Subject: [dpdk-dev] [PATCH v3 04/11] baseband/acc100: add queue
> > > configuration
> > >
> > > Adding function to create and configure queues for the device. Still
> > > no capability.
> > >
> > > Signed-off-by: Nicolas Chautru <nicolas.chautru at intel.com>
> > > ---
> > >  drivers/baseband/acc100/rte_acc100_pmd.c | 420
> > > ++++++++++++++++++++++++++++++-
> > > drivers/baseband/acc100/rte_acc100_pmd.h |  45 ++++
> > >  2 files changed, 464 insertions(+), 1 deletion(-)
> > >
> > > diff --git a/drivers/baseband/acc100/rte_acc100_pmd.c
> > > b/drivers/baseband/acc100/rte_acc100_pmd.c
> > > index 7807a30..7a21c57 100644
> > > --- a/drivers/baseband/acc100/rte_acc100_pmd.c
> > > +++ b/drivers/baseband/acc100/rte_acc100_pmd.c
> > > @@ -26,6 +26,22 @@
> > >  RTE_LOG_REGISTER(acc100_logtype, pmd.bb.acc100, NOTICE);  #endif
> > >
> > > +/* Write to MMIO register address */ static inline void
> > > +mmio_write(void *addr, uint32_t value) {
> > > +	*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value); }
> > > +
> > > +/* Write a register of a ACC100 device */ static inline void
> > > +acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t
> > > +payload) {
> > > +	void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
> > > +	mmio_write(reg_addr, payload);
> > > +	usleep(1000);
> > > +}
> > > +
> > >  /* Read a register of a ACC100 device */  static inline uint32_t
> > > acc100_reg_read(struct acc100_device *d, uint32_t offset) @@ -36,6
> > > +52,22 @@
> > >  	return rte_le_to_cpu_32(ret);
> > >  }
> > >
> > > +/* Basic Implementation of Log2 for exact 2^N */ static inline
> > > +uint32_t log2_basic(uint32_t value) {
> > > +	return (value == 0) ? 0 : __builtin_ctz(value); }
> > > +
> > > +/* Calculate memory alignment offset assuming alignment is 2^N */
> > > +static inline uint32_t calc_mem_alignment_offset(void
> > > +*unaligned_virt_mem, uint32_t alignment) {
> > > +	rte_iova_t unaligned_phy_mem =
> > > rte_malloc_virt2iova(unaligned_virt_mem);
> > > +	return (uint32_t)(alignment -
> > > +			(unaligned_phy_mem & (alignment-1))); }
> > > +
> > >  /* Calculate the offset of the enqueue register */  static inline
> > > uint32_t queue_offset(bool pf_device, uint8_t vf_id, uint8_t
> > > qgrp_id, uint16_t aq_id) @@ -204,10 +236,393 @@
> > >  			acc100_conf->q_dl_5g.aq_depth_log2);
> > >  }
> > >
> > > +static void
> > > +free_base_addresses(void **base_addrs, int size) {
> > > +	int i;
> > > +	for (i = 0; i < size; i++)
> > > +		rte_free(base_addrs[i]);
> > > +}
> > > +
> > > +static inline uint32_t
> > > +get_desc_len(void)
> > > +{
> > > +	return sizeof(union acc100_dma_desc); }
> > > +
> > > +/* Allocate the 2 * 64MB block for the sw rings */ static int
> > > +alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct
> > > +acc100_device
> > > *d,
> > > +		int socket)
> > > +{
> > > +	uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
> > > +	d->sw_rings_base = rte_zmalloc_socket(dev->device->driver-
> > > >name,
> > > +			2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
> > > +	if (d->sw_rings_base == NULL) {
> > > +		rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
> > > +				dev->device->driver->name,
> > > +				dev->data->dev_id);
> > > +		return -ENOMEM;
> > > +	}
> > > +	memset(d->sw_rings_base, 0, ACC100_SIZE_64MBYTE);
> > > +	uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
> > > +			d->sw_rings_base, ACC100_SIZE_64MBYTE);
> > > +	d->sw_rings = RTE_PTR_ADD(d->sw_rings_base,
> > > next_64mb_align_offset);
> > > +	d->sw_rings_phys = rte_malloc_virt2iova(d->sw_rings_base) +
> > > +			next_64mb_align_offset;
> > > +	d->sw_ring_size = MAX_QUEUE_DEPTH * get_desc_len();
> > > +	d->sw_ring_max_depth = d->sw_ring_size / get_desc_len();
> > > +
> > > +	return 0;
> > > +}
> >
> > Why not a common alloc memory function but special function for
> > different memory size?
> 
> This is a bit convoluted but due to the fact the first attempt method which is
> optimal (minimum) may not always find aligned memory.

What's convoluted? Can you explain?
For packet processing, in most scenarios, aren't we aligned memory when we alloc memory?
> 
> >
> > > +/* Attempt to allocate minimised memory space for sw rings */
> > > +static void alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct
> > > acc100_device
> > > +*d,
> > > +		uint16_t num_queues, int socket)
> > > +{
> > > +	rte_iova_t sw_rings_base_phy, next_64mb_align_addr_phy;
> > > +	uint32_t next_64mb_align_offset;
> > > +	rte_iova_t sw_ring_phys_end_addr;
> > > +	void *base_addrs[SW_RING_MEM_ALLOC_ATTEMPTS];
> > > +	void *sw_rings_base;
> > > +	int i = 0;
> > > +	uint32_t q_sw_ring_size = MAX_QUEUE_DEPTH * get_desc_len();
> > > +	uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
> > > +
> > > +	/* Find an aligned block of memory to store sw rings */
> > > +	while (i < SW_RING_MEM_ALLOC_ATTEMPTS) {
> > > +		/*
> > > +		 * sw_ring allocated memory is guaranteed to be aligned to
> > > +		 * q_sw_ring_size at the condition that the requested size is
> > > +		 * less than the page size
> > > +		 */
> > > +		sw_rings_base = rte_zmalloc_socket(
> > > +				dev->device->driver->name,
> > > +				dev_sw_ring_size, q_sw_ring_size, socket);
> > > +
> > > +		if (sw_rings_base == NULL) {
> > > +			rte_bbdev_log(ERR,
> > > +					"Failed to allocate memory
> > > for %s:%u",
> > > +					dev->device->driver->name,
> > > +					dev->data->dev_id);
> > > +			break;
> > > +		}
> > > +
> > > +		sw_rings_base_phy = rte_malloc_virt2iova(sw_rings_base);
> > > +		next_64mb_align_offset = calc_mem_alignment_offset(
> > > +				sw_rings_base, ACC100_SIZE_64MBYTE);
> > > +		next_64mb_align_addr_phy = sw_rings_base_phy +
> > > +				next_64mb_align_offset;
> > > +		sw_ring_phys_end_addr = sw_rings_base_phy +
> > > dev_sw_ring_size;
> > > +
> > > +		/* Check if the end of the sw ring memory block is before the
> > > +		 * start of next 64MB aligned mem address
> > > +		 */
> > > +		if (sw_ring_phys_end_addr < next_64mb_align_addr_phy) {
> > > +			d->sw_rings_phys = sw_rings_base_phy;
> > > +			d->sw_rings = sw_rings_base;
> > > +			d->sw_rings_base = sw_rings_base;
> > > +			d->sw_ring_size = q_sw_ring_size;
> > > +			d->sw_ring_max_depth = MAX_QUEUE_DEPTH;
> > > +			break;
> > > +		}
> > > +		/* Store the address of the unaligned mem block */
> > > +		base_addrs[i] = sw_rings_base;
> > > +		i++;
> > > +	}
> > > +
> > > +	/* Free all unaligned blocks of mem allocated in the loop */
> > > +	free_base_addresses(base_addrs, i); }
> >
> > It's strange to firstly alloc memory and then free memory but on
> > operations on this memory.
> 
> I may miss your point. We are freeing the exact same mem we did get from
> rte_zmalloc.
> Not that the base_addrs array refers to multiple attempts of mallocs, not
> multiple operations in a ring.

You alloc memory sw_rings_base, after some translate, assign this memory to cc100_device *d,
and before the function return, this memory has been freed.

> >
> > > +
> > > +/* Allocate 64MB memory used for all software rings */ static int
> > > +acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues,
> int
> > > +socket_id) {
> > > +	uint32_t phys_low, phys_high, payload;
> > > +	struct acc100_device *d = dev->data->dev_private;
> > > +	const struct acc100_registry_addr *reg_addr;
> > > +
> > > +	if (d->pf_device && !d->acc100_conf.pf_mode_en) {
> > > +		rte_bbdev_log(NOTICE,
> > > +				"%s has PF mode disabled. This PF can't be
> > > used.",
> > > +				dev->data->name);
> > > +		return -ENODEV;
> > > +	}
> > > +
> > > +	alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
> > > +
> > > +	/* If minimal memory space approach failed, then allocate
> > > +	 * the 2 * 64MB block for the sw rings
> > > +	 */
> > > +	if (d->sw_rings == NULL)
> > > +		alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
> > > +
> > > +	/* Configure ACC100 with the base address for DMA descriptor rings
> > > +	 * Same descriptor rings used for UL and DL DMA Engines
> > > +	 * Note : Assuming only VF0 bundle is used for PF mode
> > > +	 */
> > > +	phys_high = (uint32_t)(d->sw_rings_phys >> 32);
> > > +	phys_low  = (uint32_t)(d->sw_rings_phys &
> > > ~(ACC100_SIZE_64MBYTE-1));
> > > +
> > > +	/* Choose correct registry addresses for the device type */
> > > +	if (d->pf_device)
> > > +		reg_addr = &pf_reg_addr;
> > > +	else
> > > +		reg_addr = &vf_reg_addr;
> > > +
> > > +	/* Read the populated cfg from ACC100 registers */
> > > +	fetch_acc100_config(dev);
> > > +
> > > +	/* Mark as configured properly */
> > > +	d->configured = true;
> > > +
> > > +	/* Release AXI from PF */
> > > +	if (d->pf_device)
> > > +		acc100_reg_write(d, HWPfDmaAxiControl, 1);
> > > +
> > > +	acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
> > > +	acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
> > > +	acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
> > > +	acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
> > > +	acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
> > > +	acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
> > > +	acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
> > > +	acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
> > > +
> > > +	/*
> > > +	 * Configure Ring Size to the max queue ring size
> > > +	 * (used for wrapping purpose)
> > > +	 */
> > > +	payload = log2_basic(d->sw_ring_size / 64);
> > > +	acc100_reg_write(d, reg_addr->ring_size, payload);
> > > +
> > > +	/* Configure tail pointer for use when SDONE enabled */
> > > +	d->tail_ptrs = rte_zmalloc_socket(
> > > +			dev->device->driver->name,
> > > +			ACC100_NUM_QGRPS * ACC100_NUM_AQS *
> > > sizeof(uint32_t),
> > > +			RTE_CACHE_LINE_SIZE, socket_id);
> > > +	if (d->tail_ptrs == NULL) {
> > > +		rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
> > > +				dev->device->driver->name,
> > > +				dev->data->dev_id);
> > > +		rte_free(d->sw_rings);
> > > +		return -ENOMEM;
> > > +	}
> > > +	d->tail_ptr_phys = rte_malloc_virt2iova(d->tail_ptrs);
> > > +
> > > +	phys_high = (uint32_t)(d->tail_ptr_phys >> 32);
> > > +	phys_low  = (uint32_t)(d->tail_ptr_phys);
> > > +	acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
> > > +	acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
> > > +	acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
> > > +	acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
> > > +	acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
> > > +	acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
> > > +	acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
> > > +	acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
> > > +
> > > +	d->harq_layout = rte_zmalloc_socket("HARQ Layout",
> > > +			ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
> > > +			RTE_CACHE_LINE_SIZE, dev->data->socket_id);
> > > +
> > > +	rte_bbdev_log_debug(
> > > +			"ACC100 (%s) configured  sw_rings = %p,
> > > sw_rings_phys = %#"
> > > +			PRIx64, dev->data->name, d->sw_rings, d-
> > > >sw_rings_phys);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > >  /* Free 64MB memory used for software rings */  static int -
> > > acc100_dev_close(struct rte_bbdev *dev  __rte_unused)
> > > +acc100_dev_close(struct rte_bbdev *dev)
> > >  {
> > > +	struct acc100_device *d = dev->data->dev_private;
> > > +	if (d->sw_rings_base != NULL) {
> > > +		rte_free(d->tail_ptrs);
> > > +		rte_free(d->sw_rings_base);
> > > +		d->sw_rings_base = NULL;
> > > +	}
> > > +	usleep(1000);
> > > +	return 0;
> > > +}
> > > +
> > > +
> > > +/**
> > > + * Report a ACC100 queue index which is free
> > > + * Return 0 to 16k for a valid queue_idx or -1 when no queue is
> > > +available
> > > + * Note : Only supporting VF0 Bundle for PF mode  */ static int
> > > +acc100_find_free_queue_idx(struct rte_bbdev *dev,
> > > +		const struct rte_bbdev_queue_conf *conf) {
> > > +	struct acc100_device *d = dev->data->dev_private;
> > > +	int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
> > > +	int acc = op_2_acc[conf->op_type];
> > > +	struct rte_q_topology_t *qtop = NULL;
> > > +	qtopFromAcc(&qtop, acc, &(d->acc100_conf));
> > > +	if (qtop == NULL)
> > > +		return -1;
> > > +	/* Identify matching QGroup Index which are sorted in priority
> > > +order
> > > */
> > > +	uint16_t group_idx = qtop->first_qgroup_index;
> > > +	group_idx += conf->priority;
> > > +	if (group_idx >= ACC100_NUM_QGRPS ||
> > > +			conf->priority >= qtop->num_qgroups) {
> > > +		rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
> > > +				dev->data->name, conf->priority);
> > > +		return -1;
> > > +	}
> > > +	/* Find a free AQ_idx  */
> > > +	uint16_t aq_idx;
> > > +	for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
> > > +		if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1)
> > > == 0) {
> > > +			/* Mark the Queue as assigned */
> > > +			d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
> > > +			/* Report the AQ Index */
> > > +			return (group_idx << GRP_ID_SHIFT) + aq_idx;
> > > +		}
> > > +	}
> > > +	rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
> > > +			dev->data->name, conf->priority);
> > > +	return -1;
> > > +}
> > > +
> > > +/* Setup ACC100 queue */
> > > +static int
> > > +acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
> > > +		const struct rte_bbdev_queue_conf *conf) {
> > > +	struct acc100_device *d = dev->data->dev_private;
> > > +	struct acc100_queue *q;
> > > +	int16_t q_idx;
> > > +
> > > +	/* Allocate the queue data structure. */
> > > +	q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
> > > +			RTE_CACHE_LINE_SIZE, conf->socket);
> > > +	if (q == NULL) {
> > > +		rte_bbdev_log(ERR, "Failed to allocate queue memory");
> > > +		return -ENOMEM;
> > > +	}
> > > +
> > > +	q->d = d;
> > > +	q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size *
> > > queue_id));
> > > +	q->ring_addr_phys = d->sw_rings_phys + (d->sw_ring_size *
> > > queue_id);
> > > +
> > > +	/* Prepare the Ring with default descriptor format */
> > > +	union acc100_dma_desc *desc = NULL;
> > > +	unsigned int desc_idx, b_idx;
> > > +	int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
> > > +		ACC100_FCW_LE_BLEN : (conf->op_type ==
> > > RTE_BBDEV_OP_TURBO_DEC ?
> > > +		ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
> > > +
> > > +	for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
> > > +		desc = q->ring_addr + desc_idx;
> > > +		desc->req.word0 = ACC100_DMA_DESC_TYPE;
> > > +		desc->req.word1 = 0; /**< Timestamp */
> > > +		desc->req.word2 = 0;
> > > +		desc->req.word3 = 0;
> > > +		uint64_t fcw_offset = (desc_idx << 8) +
> > > ACC100_DESC_FCW_OFFSET;
> > > +		desc->req.data_ptrs[0].address = q->ring_addr_phys +
> > > fcw_offset;
> > > +		desc->req.data_ptrs[0].blen = fcw_len;
> > > +		desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
> > > +		desc->req.data_ptrs[0].last = 0;
> > > +		desc->req.data_ptrs[0].dma_ext = 0;
> > > +		for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS
> > > - 1;
> > > +				b_idx++) {
> > > +			desc->req.data_ptrs[b_idx].blkid =
> > > ACC100_DMA_BLKID_IN;
> > > +			desc->req.data_ptrs[b_idx].last = 1;
> > > +			desc->req.data_ptrs[b_idx].dma_ext = 0;
> > > +			b_idx++;
> > > +			desc->req.data_ptrs[b_idx].blkid =
> > > +					ACC100_DMA_BLKID_OUT_ENC;
> > > +			desc->req.data_ptrs[b_idx].last = 1;
> > > +			desc->req.data_ptrs[b_idx].dma_ext = 0;
> > > +		}
> > > +		/* Preset some fields of LDPC FCW */
> > > +		desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
> > > +		desc->req.fcw_ld.gain_i = 1;
> > > +		desc->req.fcw_ld.gain_h = 1;
> > > +	}
> > > +
> > > +	q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
> > > +			RTE_CACHE_LINE_SIZE,
> > > +			RTE_CACHE_LINE_SIZE, conf->socket);
> > > +	if (q->lb_in == NULL) {
> > > +		rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
> > > +		return -ENOMEM;
> > > +	}
> > > +	q->lb_in_addr_phys = rte_malloc_virt2iova(q->lb_in);
> > > +	q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
> > > +			RTE_CACHE_LINE_SIZE,
> > > +			RTE_CACHE_LINE_SIZE, conf->socket);
> > > +	if (q->lb_out == NULL) {
> > > +		rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
> > > +		return -ENOMEM;
> > > +	}
> > > +	q->lb_out_addr_phys = rte_malloc_virt2iova(q->lb_out);
> > > +
> > > +	/*
> > > +	 * Software queue ring wraps synchronously with the HW when it
> > > reaches
> > > +	 * the boundary of the maximum allocated queue size, no matter
> > > what the
> > > +	 * sw queue size is. This wrapping is guarded by setting the
> > > wrap_mask
> > > +	 * to represent the maximum queue size as allocated at the time
> > > when
> > > +	 * the device has been setup (in configure()).
> > > +	 *
> > > +	 * The queue depth is set to the queue size value (conf-
> > > >queue_size).
> > > +	 * This limits the occupancy of the queue at any point of time, so that
> > > +	 * the queue does not get swamped with enqueue requests.
> > > +	 */
> > > +	q->sw_ring_depth = conf->queue_size;
> > > +	q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
> > > +
> > > +	q->op_type = conf->op_type;
> > > +
> > > +	q_idx = acc100_find_free_queue_idx(dev, conf);
> > > +	if (q_idx == -1) {
> > > +		rte_free(q);
> > > +		return -1;
> > > +	}
> > > +
> > > +	q->qgrp_id = (q_idx >> GRP_ID_SHIFT) & 0xF;
> > > +	q->vf_id = (q_idx >> VF_ID_SHIFT)  & 0x3F;
> > > +	q->aq_id = q_idx & 0xF;
> > > +	q->aq_depth = (conf->op_type ==  RTE_BBDEV_OP_TURBO_DEC) ?
> > > +			(1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
> > > +			(1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
> > > +
> > > +	q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
> > > +			queue_offset(d->pf_device,
> > > +					q->vf_id, q->qgrp_id, q->aq_id));
> > > +
> > > +	rte_bbdev_log_debug(
> > > +			"Setup dev%u q%u: qgrp_id=%u, vf_id=%u,
> > > aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p",
> > > +			dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
> > > +			q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
> > > +
> > > +	dev->data->queues[queue_id].queue_private = q;
> > > +	return 0;
> > > +}
> > > +
> > > +/* Release ACC100 queue */
> > > +static int
> > > +acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id) {
> > > +	struct acc100_device *d = dev->data->dev_private;
> > > +	struct acc100_queue *q = dev->data->queues[q_id].queue_private;
> > > +
> > > +	if (q != NULL) {
> > > +		/* Mark the Queue as un-assigned */
> > > +		d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
> > > +				(1 << q->aq_id));
> > > +		rte_free(q->lb_in);
> > > +		rte_free(q->lb_out);
> > > +		rte_free(q);
> > > +		dev->data->queues[q_id].queue_private = NULL;
> > > +	}
> > > +
> > >  	return 0;
> > >  }
> > >
> > > @@ -258,8 +673,11 @@
> > >  }
> > >
> > >  static const struct rte_bbdev_ops acc100_bbdev_ops = {
> > > +	.setup_queues = acc100_setup_queues,
> > >  	.close = acc100_dev_close,
> > >  	.info_get = acc100_dev_info_get,
> > > +	.queue_setup = acc100_queue_setup,
> > > +	.queue_release = acc100_queue_release,
> > >  };
> > >
> > >  /* ACC100 PCI PF address map */
> > > diff --git a/drivers/baseband/acc100/rte_acc100_pmd.h
> > > b/drivers/baseband/acc100/rte_acc100_pmd.h
> > > index 662e2c8..0e2b79c 100644
> > > --- a/drivers/baseband/acc100/rte_acc100_pmd.h
> > > +++ b/drivers/baseband/acc100/rte_acc100_pmd.h
> > > @@ -518,11 +518,56 @@ struct acc100_registry_addr {
> > >  	.ddr_range = HWVfDmaDdrBaseRangeRoVf,  };
> > >
> > > +/* Structure associated with each queue. */ struct
> > > +__rte_cache_aligned acc100_queue {
> > > +	union acc100_dma_desc *ring_addr;  /* Virtual address of sw ring */
> > > +	rte_iova_t ring_addr_phys;  /* Physical address of software ring */
> > > +	uint32_t sw_ring_head;  /* software ring head */
> > > +	uint32_t sw_ring_tail;  /* software ring tail */
> > > +	/* software ring size (descriptors, not bytes) */
> > > +	uint32_t sw_ring_depth;
> > > +	/* mask used to wrap enqueued descriptors on the sw ring */
> > > +	uint32_t sw_ring_wrap_mask;
> > > +	/* MMIO register used to enqueue descriptors */
> > > +	void *mmio_reg_enqueue;
> > > +	uint8_t vf_id;  /* VF ID (max = 63) */
> > > +	uint8_t qgrp_id;  /* Queue Group ID */
> > > +	uint16_t aq_id;  /* Atomic Queue ID */
> > > +	uint16_t aq_depth;  /* Depth of atomic queue */
> > > +	uint32_t aq_enqueued;  /* Count how many "batches" have been
> > > enqueued */
> > > +	uint32_t aq_dequeued;  /* Count how many "batches" have been
> > > dequeued */
> > > +	uint32_t irq_enable;  /* Enable ops dequeue interrupts if set to 1 */
> > > +	struct rte_mempool *fcw_mempool;  /* FCW mempool */
> > > +	enum rte_bbdev_op_type op_type;  /* Type of this Queue: TE or TD
> > > */
> > > +	/* Internal Buffers for loopback input */
> > > +	uint8_t *lb_in;
> > > +	uint8_t *lb_out;
> > > +	rte_iova_t lb_in_addr_phys;
> > > +	rte_iova_t lb_out_addr_phys;
> > > +	struct acc100_device *d;
> > > +};
> > > +
> > >  /* Private data structure for each ACC100 device */  struct acc100_device
> {
> > >  	void *mmio_base;  /**< Base address of MMIO registers (BAR0) */
> > > +	void *sw_rings_base;  /* Base addr of un-aligned memory for sw
> > > rings */
> > > +	void *sw_rings;  /* 64MBs of 64MB aligned memory for sw rings */
> > > +	rte_iova_t sw_rings_phys;  /* Physical address of sw_rings */
> > > +	/* Virtual address of the info memory routed to the this function
> > > under
> > > +	 * operation, whether it is PF or VF.
> > > +	 */
> > > +	union acc100_harq_layout_data *harq_layout;
> > > +	uint32_t sw_ring_size;
> > >  	uint32_t ddr_size; /* Size in kB */
> > > +	uint32_t *tail_ptrs; /* Base address of response tail pointer buffer */
> > > +	rte_iova_t tail_ptr_phys; /* Physical address of tail pointers */
> > > +	/* Max number of entries available for each queue in device,
> > > depending
> > > +	 * on how many queues are enabled with configure()
> > > +	 */
> > > +	uint32_t sw_ring_max_depth;
> > >  	struct acc100_conf acc100_conf; /* ACC100 Initial configuration */
> > > +	/* Bitmap capturing which Queues have already been assigned */
> > > +	uint16_t q_assigned_bit_map[ACC100_NUM_QGRPS];
> > >  	bool pf_device; /**< True if this is a PF ACC100 device */
> > >  	bool configured; /**< True if this ACC100 device is configured */
> > > };
> > > --
> > > 1.8.3.1



More information about the dev mailing list