[PATCH v4 23/25] net/intel: support wider x86 vectors for Rx rearm
Bruce Richardson
bruce.richardson at intel.com
Wed Jun 4 16:59:09 CEST 2025
On Fri, May 30, 2025 at 02:57:19PM +0100, Anatoly Burakov wrote:
> Currently, for 32-byte descriptor format, only SSE instruction set is
> supported. Add implementation for AVX2 and AVX512 instruction sets. Since
> we are using Rx descriptor definitions from common code, we can just use
> the generic descriptor definition, as we only ever write the first 16 bytes
> of it, and the layout is always the same for that part.
>
> Signed-off-by: Anatoly Burakov <anatoly.burakov at intel.com>
> ---
>
Like the idea. Feedback inline below.
/Bruce
> Notes:
> v3 -> v4:
> - Use the common descriptor format instead of constant propagation
> - Syntax and whitespace cleanups
>
> drivers/net/intel/common/rx_vec_x86.h | 339 ++++++++++++++------------
> 1 file changed, 183 insertions(+), 156 deletions(-)
>
> diff --git a/drivers/net/intel/common/rx_vec_x86.h b/drivers/net/intel/common/rx_vec_x86.h
> index 7c57016df7..43f7c59449 100644
> --- a/drivers/net/intel/common/rx_vec_x86.h
> +++ b/drivers/net/intel/common/rx_vec_x86.h
> @@ -43,206 +43,244 @@ _ci_rxq_rearm_get_bufs(struct ci_rx_queue *rxq)
> return 0;
> }
>
> -/*
> - * SSE code path can handle both 16-byte and 32-byte descriptors with one code
> - * path, as we only ever write 16 bytes at a time.
> - */
> -static __rte_always_inline void
> -_ci_rxq_rearm_sse(struct ci_rx_queue *rxq)
> +static __rte_always_inline __m128i
> +_ci_rxq_rearm_desc_sse(const __m128i vaddr)
> {
> const __m128i hdroom = _mm_set1_epi64x(RTE_PKTMBUF_HEADROOM);
> const __m128i zero = _mm_setzero_si128();
> +
> + /* add headroom to address values */
> + __m128i reg = _mm_add_epi64(vaddr, hdroom);
> +
> +#if RTE_IOVA_IN_MBUF
> + /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
> + offsetof(struct rte_mbuf, buf_addr) + 8);
> + /* move IOVA to Packet Buffer Address, erase Header Buffer Address */
> + reg = _mm_unpackhi_epi64(reg, zero);
> +#else
> + /* erase Header Buffer Address */
> + reg = _mm_unpacklo_epi64(reg, zero);
> +#endif
> + return reg;
> +}
> +
> +static __rte_always_inline void
> +_ci_rxq_rearm_sse(struct ci_rx_queue *rxq)
> +{
> const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH;
> struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start];
> + /* SSE writes 16-bytes regardless of descriptor size */
> + const uint8_t desc_per_reg = 1;
> + const uint8_t desc_per_iter = desc_per_reg * 2;
> volatile union ci_rx_desc *rxdp;
> int i;
>
> rxdp = &rxq->rx_ring[rxq->rxrearm_start];
>
> /* Initialize the mbufs in vector, process 2 mbufs in one loop */
> - for (i = 0; i < rearm_thresh; i += 2, rxp += 2, rxdp += 2) {
> + for (i = 0; i < rearm_thresh;
> + i += desc_per_iter,
> + rxp += desc_per_iter,
> + rxdp += desc_per_iter) {
> struct rte_mbuf *mb0 = rxp[0].mbuf;
> struct rte_mbuf *mb1 = rxp[1].mbuf;
>
> -#if RTE_IOVA_IN_MBUF
> - /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
> - RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
> - offsetof(struct rte_mbuf, buf_addr) + 8);
> -#endif
> - __m128i addr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
> - __m128i addr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
> + const __m128i vaddr0 = _mm_loadu_si128((const __m128i *)&mb0->buf_addr);
> + const __m128i vaddr1 = _mm_loadu_si128((const __m128i *)&mb1->buf_addr);
>
> - /* add headroom to address values */
> - addr0 = _mm_add_epi64(addr0, hdroom);
> - addr1 = _mm_add_epi64(addr1, hdroom);
> + const __m128i reg0 = _ci_rxq_rearm_desc_sse(vaddr0);
> + const __m128i reg1 = _ci_rxq_rearm_desc_sse(vaddr1);
>
> -#if RTE_IOVA_IN_MBUF
> - /* move IOVA to Packet Buffer Address, erase Header Buffer Address */
> - addr0 = _mm_unpackhi_epi64(addr0, zero);
> - addr0 = _mm_unpackhi_epi64(addr1, zero);
> -#else
> - /* erase Header Buffer Address */
> - addr0 = _mm_unpacklo_epi64(addr0, zero);
> - addr1 = _mm_unpacklo_epi64(addr1, zero);
> -#endif
> -
> - /* flush desc with pa dma_addr */
> - _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[0]), addr0);
> - _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[1]), addr1);
> + /* flush descriptors */
> + _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[0]), reg0);
> + _mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[1]), reg1);
> }
> }
>
> -#ifdef RTE_NET_INTEL_USE_16BYTE_DESC
> #ifdef __AVX2__
> -/* AVX2 version for 16-byte descriptors, handles 4 buffers at a time */
> -static __rte_always_inline void
> -_ci_rxq_rearm_avx2(struct ci_rx_queue *rxq)
> +static __rte_always_inline __m256i
> +_ci_rxq_rearm_desc_avx2(const __m128i vaddr0, const __m128i vaddr1)
> {
> - struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start];
> - const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH;
> - const __m256i hdroom = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
> + const __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
> const __m256i zero = _mm256_setzero_si256();
> +
> + /* merge by casting 0 to 256-bit and inserting 1 into the high lanes */
> + __m256i reg = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), vaddr1, 1);
> +
> + /* add headroom to address values */
> + reg = _mm256_add_epi64(reg, hdr_room);
> +
> +#if RTE_IOVA_IN_MBUF
> + /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
> + offsetof(struct rte_mbuf, buf_addr) + 8);
> + /* extract IOVA addr into Packet Buffer Address, erase Header Buffer Address */
> + reg = _mm256_unpackhi_epi64(reg, zero);
> +#else
> + /* erase Header Buffer Address */
> + reg = _mm256_unpacklo_epi64(reg, zero);
> +#endif
> + return reg;
> +}
> +
> +static __rte_always_inline void
> +_ci_rxq_rearm_avx2(struct ci_rx_queue *rxq)
> +{
> + struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start];
> + const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH;
> + /* how many descriptors can fit into a register */
> + const uint8_t desc_per_reg = sizeof(__m256i) / sizeof(union ci_rx_desc);
> + /* how many descriptors can fit into one loop iteration */
> + const uint8_t desc_per_iter = desc_per_reg * 2;
> volatile union ci_rx_desc *rxdp;
> int i;
>
> - RTE_BUILD_BUG_ON(sizeof(union ci_rx_desc) != 16);
> -
> rxdp = &rxq->rx_ring[rxq->rxrearm_start];
>
> - /* Initialize the mbufs in vector, process 4 mbufs in one loop */
> - for (i = 0; i < rearm_thresh; i += 4, rxp += 4, rxdp += 4) {
> - struct rte_mbuf *mb0 = rxp[0].mbuf;
> - struct rte_mbuf *mb1 = rxp[1].mbuf;
> - struct rte_mbuf *mb2 = rxp[2].mbuf;
> - struct rte_mbuf *mb3 = rxp[3].mbuf;
> + /* Initialize the mbufs in vector, process 2 or 4 mbufs in one loop */
> + for (i = 0; i < rearm_thresh;
> + i += desc_per_iter,
> + rxp += desc_per_iter,
> + rxdp += desc_per_iter) {
> + __m256i reg0, reg1;
>
> -#if RTE_IOVA_IN_MBUF
> - /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
> - RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
> - offsetof(struct rte_mbuf, buf_addr) + 8);
> -#endif
> - const __m128i vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
> - const __m128i vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
> - const __m128i vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
> - const __m128i vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
> + if (desc_per_iter == 2) {
> + /* 16 byte descriptor, 16 byte zero, times two */
> + const __m128i zero = _mm_setzero_si128();
> + const struct rte_mbuf *mb0 = rxp[0].mbuf;
> + const struct rte_mbuf *mb1 = rxp[1].mbuf;
>
> - /**
> - * merge 0 & 1, by casting 0 to 256-bit and inserting 1
> - * into the high lanes. Similarly for 2 & 3
> - */
> - const __m256i vaddr0_256 = _mm256_castsi128_si256(vaddr0);
> - const __m256i vaddr2_256 = _mm256_castsi128_si256(vaddr2);
> + const __m128i vaddr0 = _mm_loadu_si128((const __m128i *)&mb0->buf_addr);
> + const __m128i vaddr1 = _mm_loadu_si128((const __m128i *)&mb1->buf_addr);
Minor nit, but do we need to use unaligned loads here? The mbuf is marked
as cache-aligned, and buf_addr is the first field in it.
>
> - __m256i addr0_1 = _mm256_inserti128_si256(vaddr0_256, vaddr1, 1);
> - __m256i addr2_3 = _mm256_inserti128_si256(vaddr2_256, vaddr3, 1);
> + reg0 = _ci_rxq_rearm_desc_avx2(vaddr0, zero);
> + reg1 = _ci_rxq_rearm_desc_avx2(vaddr1, zero);
The compiler may optimize this away, but rather than calling this function
with a zero register, we can save the call to insert the zero into the high
register half by just using the SSE/AVX-128 function, and casting the
result (which should be a no-op).
> + } else {
> + /* 16 byte descriptor times four */
> + const struct rte_mbuf *mb0 = rxp[0].mbuf;
> + const struct rte_mbuf *mb1 = rxp[1].mbuf;
> + const struct rte_mbuf *mb2 = rxp[2].mbuf;
> + const struct rte_mbuf *mb3 = rxp[3].mbuf;
>
> - /* add headroom to address values */
> - addr0_1 = _mm256_add_epi64(addr0_1, hdroom);
> - addr0_1 = _mm256_add_epi64(addr0_1, hdroom);
> + const __m128i vaddr0 = _mm_loadu_si128((const __m128i *)&mb0->buf_addr);
> + const __m128i vaddr1 = _mm_loadu_si128((const __m128i *)&mb1->buf_addr);
> + const __m128i vaddr2 = _mm_loadu_si128((const __m128i *)&mb2->buf_addr);
> + const __m128i vaddr3 = _mm_loadu_si128((const __m128i *)&mb3->buf_addr);
>
> -#if RTE_IOVA_IN_MBUF
> - /* extract IOVA addr into Packet Buffer Address, erase Header Buffer Address */
> - addr0_1 = _mm256_unpackhi_epi64(addr0_1, zero);
> - addr2_3 = _mm256_unpackhi_epi64(addr2_3, zero);
> -#else
> - /* erase Header Buffer Address */
> - addr0_1 = _mm256_unpacklo_epi64(addr0_1, zero);
> - addr2_3 = _mm256_unpacklo_epi64(addr2_3, zero);
> -#endif
> + reg0 = _ci_rxq_rearm_desc_avx2(vaddr0, vaddr1);
> + reg1 = _ci_rxq_rearm_desc_avx2(vaddr2, vaddr3);
> + }
>
> - /* flush desc with pa dma_addr */
> - _mm256_store_si256(RTE_CAST_PTR(__m256i *, &rxdp[0]), addr0_1);
> - _mm256_store_si256(RTE_CAST_PTR(__m256i *, &rxdp[2]), addr2_3);
> + /* flush descriptors */
> + _mm256_store_si256(RTE_CAST_PTR(__m256i *, &rxdp[0]), reg0);
> + _mm256_store_si256(RTE_CAST_PTR(__m256i *, &rxdp[2]), reg1);
This should be rxdp[desc_per_reg], not rxdp[2].
> }
> }
> #endif /* __AVX2__ */
>
> #ifdef __AVX512VL__
> -/* AVX512 version for 16-byte descriptors, handles 8 buffers at a time */
> -static __rte_always_inline void
> -_ci_rxq_rearm_avx512(struct ci_rx_queue *rxq)
> +static __rte_always_inline __m512i
> +_ci_rxq_rearm_desc_avx512(const __m128i vaddr0, const __m128i vaddr1,
> + const __m128i vaddr2, const __m128i vaddr3)
> {
> - struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start];
> - const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH;
> - const __m512i hdroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
> const __m512i zero = _mm512_setzero_si512();
> + const __m512i hdroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
> +
> + /**
> + * merge 0 & 1, by casting 0 to 256-bit and inserting 1 into the high
> + * lanes. Similarly for 2 & 3.
> + */
> + const __m256i vaddr0_1 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), vaddr1, 1);
> + const __m256i vaddr2_3 = _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), vaddr3, 1);
> + /*
> + * merge 0+1 & 2+3, by casting 0+1 to 512-bit and inserting 2+3 into the
> + * high lanes.
> + */
> + __m512i reg = _mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1), vaddr2_3, 1);
> +
> + /* add headroom to address values */
> + reg = _mm512_add_epi64(reg, hdroom);
> +
> +#if RTE_IOVA_IN_MBUF
> + /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
> + offsetof(struct rte_mbuf, buf_addr) + 8);
> + /* extract IOVA addr into Packet Buffer Address, erase Header Buffer Address */
> + reg = _mm512_unpackhi_epi64(reg, zero);
> +#else
> + /* erase Header Buffer Address */
> + reg = _mm512_unpacklo_epi64(reg, zero);
> +#endif
> + return reg;
> +}
> +
> +static __rte_always_inline void
> +_ci_rxq_rearm_avx512(struct ci_rx_queue *rxq)
> +{
> + struct ci_rx_entry *rxp = &rxq->sw_ring[rxq->rxrearm_start];
> + const uint16_t rearm_thresh = CI_VPMD_RX_REARM_THRESH;
> + /* how many descriptors can fit into a register */
> + const uint8_t desc_per_reg = sizeof(__m512i) / sizeof(union ci_rx_desc);
> + /* how many descriptors can fit into one loop iteration */
> + const uint8_t desc_per_iter = desc_per_reg * 2;
> volatile union ci_rx_desc *rxdp;
> int i;
>
> - RTE_BUILD_BUG_ON(sizeof(union ci_rx_desc) != 16);
> -
> rxdp = &rxq->rx_ring[rxq->rxrearm_start];
>
> - /* Initialize the mbufs in vector, process 8 mbufs in one loop */
> - for (i = 0; i < rearm_thresh; i += 8, rxp += 8, rxdp += 8) {
> - struct rte_mbuf *mb0 = rxp[0].mbuf;
> - struct rte_mbuf *mb1 = rxp[1].mbuf;
> - struct rte_mbuf *mb2 = rxp[2].mbuf;
> - struct rte_mbuf *mb3 = rxp[3].mbuf;
> - struct rte_mbuf *mb4 = rxp[4].mbuf;
> - struct rte_mbuf *mb5 = rxp[5].mbuf;
> - struct rte_mbuf *mb6 = rxp[6].mbuf;
> - struct rte_mbuf *mb7 = rxp[7].mbuf;
> + /* Initialize the mbufs in vector, process 4 or 8 mbufs in one loop */
> + for (i = 0; i < rearm_thresh;
> + i += desc_per_iter,
> + rxp += desc_per_iter,
> + rxdp += desc_per_iter) {
> + __m512i reg0, reg1;
>
> -#if RTE_IOVA_IN_MBUF
> - /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
> - RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
> - offsetof(struct rte_mbuf, buf_addr) + 8);
> -#endif
> - const __m128i vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
> - const __m128i vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
> - const __m128i vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
> - const __m128i vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
> - const __m128i vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
> - const __m128i vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
> - const __m128i vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
> - const __m128i vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);
> + if (desc_per_iter == 4) {
> + /* 16-byte descriptor, 16 byte zero, times four */
> + const __m128i zero = _mm_setzero_si128();
> + const struct rte_mbuf *mb0 = rxp[0].mbuf;
> + const struct rte_mbuf *mb1 = rxp[1].mbuf;
> + const struct rte_mbuf *mb2 = rxp[2].mbuf;
> + const struct rte_mbuf *mb3 = rxp[3].mbuf;
>
> - /**
> - * merge 0 & 1, by casting 0 to 256-bit and inserting 1
> - * into the high lanes. Similarly for 2 & 3, and so on.
> - */
> - const __m256i addr0_256 = _mm256_castsi128_si256(vaddr0);
> - const __m256i addr2_256 = _mm256_castsi128_si256(vaddr2);
> - const __m256i addr4_256 = _mm256_castsi128_si256(vaddr4);
> - const __m256i addr6_256 = _mm256_castsi128_si256(vaddr6);
> + const __m128i vaddr0 = _mm_loadu_si128((const __m128i *)&mb0->buf_addr);
> + const __m128i vaddr1 = _mm_loadu_si128((const __m128i *)&mb1->buf_addr);
> + const __m128i vaddr2 = _mm_loadu_si128((const __m128i *)&mb2->buf_addr);
> + const __m128i vaddr3 = _mm_loadu_si128((const __m128i *)&mb3->buf_addr);
>
> - const __m256i addr0_1 = _mm256_inserti128_si256(addr0_256, vaddr1, 1);
> - const __m256i addr2_3 = _mm256_inserti128_si256(addr2_256, vaddr3, 1);
> - const __m256i addr4_5 = _mm256_inserti128_si256(addr4_256, vaddr5, 1);
> - const __m256i addr6_7 = _mm256_inserti128_si256(addr6_256, vaddr7, 1);
> + reg0 = _ci_rxq_rearm_desc_avx512(vaddr0, zero, vaddr1, zero);
> + reg1 = _ci_rxq_rearm_desc_avx512(vaddr2, zero, vaddr3, zero);
I can't help but thinking we can probably do a little better than this
merging in zeros using AVX-512 mask registers, e.g. using
_mm256_maskz_broadcastq_epi64() intrinsic, but it will be ok for now! :-)
> + } else {
> + /* 16-byte descriptor times eight */
> + const struct rte_mbuf *mb0 = rxp[0].mbuf;
> + const struct rte_mbuf *mb1 = rxp[1].mbuf;
> + const struct rte_mbuf *mb2 = rxp[2].mbuf;
> + const struct rte_mbuf *mb3 = rxp[3].mbuf;
> + const struct rte_mbuf *mb4 = rxp[4].mbuf;
> + const struct rte_mbuf *mb5 = rxp[5].mbuf;
> + const struct rte_mbuf *mb6 = rxp[6].mbuf;
> + const struct rte_mbuf *mb7 = rxp[7].mbuf;
>
> - /**
> - * merge 0_1 & 2_3, by casting 0_1 to 512-bit and inserting 2_3
> - * into the high lanes. Similarly for 4_5 & 6_7, and so on.
> - */
> - const __m512i addr0_1_512 = _mm512_castsi256_si512(addr0_1);
> - const __m512i addr4_5_512 = _mm512_castsi256_si512(addr4_5);
> + const __m128i vaddr0 = _mm_loadu_si128((const __m128i *)&mb0->buf_addr);
> + const __m128i vaddr1 = _mm_loadu_si128((const __m128i *)&mb1->buf_addr);
> + const __m128i vaddr2 = _mm_loadu_si128((const __m128i *)&mb2->buf_addr);
> + const __m128i vaddr3 = _mm_loadu_si128((const __m128i *)&mb3->buf_addr);
> + const __m128i vaddr4 = _mm_loadu_si128((const __m128i *)&mb4->buf_addr);
> + const __m128i vaddr5 = _mm_loadu_si128((const __m128i *)&mb5->buf_addr);
> + const __m128i vaddr6 = _mm_loadu_si128((const __m128i *)&mb6->buf_addr);
> + const __m128i vaddr7 = _mm_loadu_si128((const __m128i *)&mb7->buf_addr);
>
> - __m512i addr0_3 = _mm512_inserti64x4(addr0_1_512, addr2_3, 1);
> - __m512i addr4_7 = _mm512_inserti64x4(addr4_5_512, addr6_7, 1);
> -
> - /* add headroom to address values */
> - addr0_3 = _mm512_add_epi64(addr0_3, hdroom);
> - addr4_7 = _mm512_add_epi64(addr4_7, hdroom);
> -
> -#if RTE_IOVA_IN_MBUF
> - /* extract IOVA addr into Packet Buffer Address, erase Header Buffer Address */
> - addr0_3 = _mm512_unpackhi_epi64(addr0_3, zero);
> - addr4_7 = _mm512_unpackhi_epi64(addr4_7, zero);
> -#else
> - /* erase Header Buffer Address */
> - addr0_3 = _mm512_unpacklo_epi64(addr0_3, zero);
> - addr4_7 = _mm512_unpacklo_epi64(addr4_7, zero);
> -#endif
> + reg0 = _ci_rxq_rearm_desc_avx512(vaddr0, vaddr1, vaddr2, vaddr3);
> + reg1 = _ci_rxq_rearm_desc_avx512(vaddr4, vaddr5, vaddr6, vaddr7);
To shorten the code (and this applies elsewhere too), we can remove the
vaddr* temporary variables and just do the loads implicitly in the function
calls, e.g.
reg0 = _ci_rxq_rearm_desc_avx512((const __m128i *)&mb0->buf_addr,
(const __m128i *)&mb1->buf_addr,
(const __m128i *)&mb2->buf_addr,
(const __m128i *)&mb3->buf_addr);
> + }
>
> /* flush desc with pa dma_addr */
> - _mm512_store_si512(RTE_CAST_PTR(__m512i *, &rxdp[0]), addr0_3);
> - _mm512_store_si512(RTE_CAST_PTR(__m512i *, &rxdp[4]), addr4_7);
> + _mm512_store_si512(RTE_CAST_PTR(__m512i *, &rxdp[0]), reg0);
> + _mm512_store_si512(RTE_CAST_PTR(__m512i *, &rxdp[4]), reg1);
Again, the "4" needs to be adjusted based on desc size.
> }
> }
> #endif /* __AVX512VL__ */
> -#endif /* RTE_NET_INTEL_USE_16BYTE_DESC */
>
> static __rte_always_inline void
> ci_rxq_rearm(struct ci_rx_queue *rxq, const enum ci_rx_vec_level vec_level)
> @@ -254,7 +292,6 @@ ci_rxq_rearm(struct ci_rx_queue *rxq, const enum ci_rx_vec_level vec_level)
> if (_ci_rxq_rearm_get_bufs(rxq) < 0)
> return;
>
<snip>
More information about the dev
mailing list