
OVS-DPDK
vHost async data path

using DMA-dev

2

Agenda

Ensure that all of

•DPDK DMA-dev library,

•DPDK vHost library (consuming DMA-dev for acceleration) and

•OVS (as an end user of the DPDK DMA-dev & vHost libraries)

are working well together and

that the maintainers & contributors to those libraries are aware of
the design & architecture in OVS consumption.

3

Motivation

▪ Packet copy into guest can be slow for large packets.

• Accelerate this using DMA engine

▪ Don’t stall the CPU while DMA engine is active

• i.e asynchronous acceleration.

• Call DPDK API’s to start transfer

• Check back later for completion.

RX + Switch
Packets

Kick off DMA
RX + Switch

More Packets

Check for
DMA

completions

Asynchronous
work achieved

4

Performance

This data is based on the POC’s implemented and tested on new Intel hardware that supports
DSA , CPU@1.8Ghz ,

1

0.85

0.74
0.77

1

0.79 0.78
0.83

1

1.85

1.63

1.75

1

1.51 1.50

1.60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CPU work defer V3 patch V4 patch (V3 patch +
lockless ring in OVS for

async)

CPU work defer V3 patch V4 patch (V3 patch +
lockless ring in OVS for

async)

burst traffic profile scatter traffic profile

R
el

at
iv

e
p

er
fo

rm
an

ce
 g

ai
n

Comparison of relative performance of options.

114B 2098B

https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
mailto:CPU@1.8Ghz

5

How do we enable asynchronous acceleration ?

6

Option1 : Defer work

netdev
process_async

netdev
rxq_recv

miniflow_extract
return

-EINPROGRESS

process_rxq_port

Process each
RXQ in poll

list netdev
send

return 0

All RXQs
processed

pmd_thread_main
loop

work defernetdevdpif-netdev

EMC/SMC/DPCLS flush_output

defer work item

async work?

no

yes
Asynchronous

work completed

7

Option2 : Tx completions from Rx context.

netdev
rxq_recv

miniflow_extract

process_rxq_port

Process each
RXQ in poll

list

All RXQs
processed

pmd_thread_main
loop

EMC/SMC/DPCLS flush_output

Vhost RX

Phy RX

...

Vhost TX
completion
(DMA poll)

netdev_send

... ...

Vhost TX

Phy TX

...

Vhost TX
enqueue

(DMA submitl)

... ...

netdevdpif-netdev Added block
Netdev

interface
wrappers

8

Option2 : Tx completions from Rx context.

▪ Problems – more tx contention among threads

• between poll and enqueue

▪ Mitigations – with lockless ring.

• rte_ring - MP/SC in between to avoid the contention in pipeline.

• Thread enqueues to rte_ring , NOT vhost/DMA.

• Polling thread dequeues from rte_ring , enqueues to vhost/DMA, polls packets.

9

Option3 : Tx completions from Rx context + lockless ring

netdev
rxq_recv

miniflow_extract

process_rxq_port

Process each
RXQ in poll

list

All RXQs
processed

pmd_thread_main
loop

EMC/SMC/DPCLS flush_output

Vhost RX

Phy RX

...

Lockless ring
dequeue

netdev_send

... ...

Vhost TX

Phy TX

...

Lockless ring
enqueue

... ...

Vhost TX
enqueue

(DMA submit)

Vhost TX
Completion
(DMA poll)

netdevdpif-netdev Added block
Netdev

interface
wrappers

10

Concerns on option 2 and 3

▪ Dependent on vHost Rx to perform vHost Tx operations.

• Need a vHost Rxq on every data plane thread for Txq completions to work.

• Since DMA assignment is per data plane thread

• PMD auto load balancing can potentially be incompatible in cases where it can
cause few rxq’s to be not polled on the same data plane thread.

• TODO: find solution for this case -> PMD thread must handle completions regularly.

• No such constraints for deferral of work(option1)

• Per thread work ring ensures deferred work (Txq completions) is completed on the same thread

11

Complexity

▪ Work Defer:

• Complexity is added to dpif-netdev as well as netdev-dpdk, with async-free logic in both.

▪ V4 patch (V3 patch + lockless ring):

• Complexity is added just to netdev-dpdk, with async-free logic in OVS under the RX API
wrapper AND with lockless ring complexity added in netdev-dpdk.

▪ V3 patch:

• Complexity is added just to netdev-dpdk, with async-free logic in OVS under RX API wrapper.

3 implementations: from most to least complexity in OVS codebase:

In all above implementations, OVS is responsible for configuration of DMA devices.
All dataplane DMA-dev usage is abstracted inside DPDK VHost library.

http://patchwork.ozlabs.org/project/openvswitch/list/?series=261267&state=*
http://patchwork.ozlabs.org/project/openvswitch/list/?series=291382
http://patchwork.ozlabs.org/project/openvswitch/patch/20220104125242.1064162-2-sunil.pai.g@intel.com/

12

▪ Keeping OVS merge timelines in mind:

• POC by 2.18(Aug 2022) and upstream by 2.19 (Feb 2023)

• Need DPDK vHost API’s to be finalized – non-experimental by 22.11 (Nov 2022)

▪ Open Questions:

• Defer work has best performance, and elegant solution to DMA-completions

• at cost of complexity at OVS pmd-thread level (handles corner cases e.g. no vhost-rxq)

• Does the defer-work DMA-completion handling merit the OVS complexity?

• V3+Lockless Ring has middle-performance

• But needs a vhost-rxq on every PMD-thread…

• or other solution to always handling DMA completions?

Next steps

DPDK and OVS Communities need to align to a Solution

13

Follow the discussion here on ML:

▪ http://patchwork.ozlabs.org/project/openvswitch/cover/
20220104125242.1064162-1-sunil.pai.g@intel.com/

▪ Latest patch on ML V4:
http://patchwork.ozlabs.org/project/openvswitch/list/?series=291382

http://patchwork.ozlabs.org/project/openvswitch/cover/20220104125242.1064162-1-sunil.pai.g@intel.com/
http://patchwork.ozlabs.org/project/openvswitch/list/?series=291382

14

15

Test Topology

BR Phy

BR TEP

vhost vhost vhost

VM 0
testpmd
csumfwd

virtio

VM 1
testpmd
csumfwd

virtio

VM 31
testpmd
csumfwd

virtio

E810-C

Ixia

BR TEPBR TEP

