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Agenda

= Objectives of Feature arc

= [ntroduction to Feature arc

= How to use Feature arc

= Control plane and Fast path APIs
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Objectives of feature arc

1. Allow out-of-tree nodes hooked to

: . . DPDK In-built
DPDK in-built nodes and provide Node A Nodes
mechanism to steer packets

toward it B

» Provide hook points in sub-graphs
created by in-built DPDK nodes

= Packets should be steered to hooked
nodes in a generic manner

= |ike out-of-tree nodes, other in-built y
nodes can also be hooked
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Objectives of feature arc...

2. Provide mechanism to enable
feature nodes per interface/ethdev

= Enable/disable of feature nodes on any
interface should be allowed at runtime
and not during graph creation

= Packets corresponding to an interface
“tx-1” are steered to a feature node
“Node-1” only when “Node-1"is
enabled on “tx-1".

© 2024 Marvell confidential. All rights reserved.

mbuf towards tx-1

~
N\
NodeA f====-- \l
~ /
-7 - -
mbuf -
towards _- - - -~
tx-0 . - - -~
v - - -~
- e
_ e
NodeB ) -~ (D DPDK In-buit
Nodes

O Out-of-tree

Nodes or other
In-built Nodes



Obijectives of feature arc...

3. There can be more than one
feature nodes enabled on an
interface at runtime

= Should have ordering sequence of
packet traversal across multiple feature
nodes
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Obijectives of feature arc...

4. Faster data and control plane synchronization

= Any feature disable/enable in control plane should not block worker cores

» Feature disable should allow to destroy resources allocated by application during
enabling a feature
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Introduction to Feature arc

1. An abstraction defining nodes
packet path based on interface

2. Feature arc represents an ordered
list of feature nodes with
= A start node where:
- Packets enters feature arc
= An end node where:

- Last feature node to create a default exit
path for packets

= One or more feature nodes
- Added between start and end nodes
- Ordered priority among feature nodes
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How to use Feature arc

= Feature arc and feature nodes registration
= Feature arc initialization

= Feature enable/disable in control plane

= Feature nodes fast path processing
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Feature arc registration

/* Node—X registration */
RTE_NODE_REGISTER (Node-X); Arc hame
/* Node—Y registration */ Arc1- output
RTE_NODE_REGISTER (Node—Y);
In-built
/* Node-Y feature initialization =*/ Node-X
struct rte_graph_feature_register Node-Y—feature = {
.feature_name = "Node-Y-feature",
.arc_name = "Arcl-output",
/* process() function called for node-Y" */
.feature_process_fn = node_y_feat_process_fn(),
.feature_node = &Node-Y,

b

/* Arcl initialization */
struct rte_graph_feature_arc_register arcl = {
arc_name = "Arcl-output",

/* Max number of interfaces supported */
max_indexes = RTE_MAX_ETHPORTS,

/* (struct rte_node_register *) =*x/

.start_node = &Node-X,

/* process() function called for Node—X =*/
.start_node_feature_process_fn = node_x_feature_process_+n(),

/* end feature */ In-built
.end_feature_node = &Node—Y—-feature, Node-Y
b

/* Feature arc registration */
RTE_GRAPH_FEATURE_ARC_REGISTER(arcl);
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Feature registration

RTE_NODE_REGISTER (node-A);

struct rte_graph_feature_register nodeA—feature = {
.feature_name = "Node—-A—feature", Arc name
-arc_name = "Arcl-output”, “Arc1-output” Enabled Features
.feature_process_fn = nodeA_feature_process_fn(), ZA,B,C,Y
.feature_node = &node-A, In-built Interface-1: A. C. Y
}; LR A )
/* Node—-A feature registration */ Interface-2: B, Y
RTE_GRAPH_FEATURE_REGISTER(nodeA—feature); ;
RTE_NODE_REGISTER (node-C); Static next_edges
struct rte_graph_feature_register nodeC—feature = { -
.feature_name = "Node—-C—feature", —
.arc_name = "Arcl-output", Next_edges
.feature_process_fn = nodeC_feature_process_fn(), added/managed
.feature_node = &node-C, by Feature Arc
.runs_after = "Node-A—feature",
.notifier_cb = nodeC_notifier_cb(),
i
- i i i Next Feature Next Feature
RTE_GRAPH_FEATURE_REGISTER(nodeC—feature); In-build First Feature First Feature 0 Foatire A for to Feature A for
Node-Y For Interface-0,1 For Interface-2 interface-0 interface-1

RTE_NODE_REGISTER (node-B);

struct rte_graph_feature_register nodeB—feature = {
.feature_name = "Node—-B—feature",
.arc_name = "Arcl-output",
.feature_process_fn = nodeB_feature_process_fn(),
.feature_node = &node-B,
.runs_after = "Node-A—feature",
.runs_before = "Node-C—feature",

i

/* Node—-B feature registration */
RTE_GRAPH_FEATURE_REGISTER(nodeB—feature);
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Feature arc initialization

= Application should call
rte_graph_feature arc_init() before
graph creation

= |f not called, feature arc registrations has
no effect.

= |f possible, create RCU variable as well
for worker core synchronization

© 2024 Marvell confidential. All rights reserved.

static int worker_loop(void *cfg)

{

}

struct rte_rcu_gsbr *qsbr = app_get_rcu_qsbr();
struct rte_graph *graph = app_get_graph();

rte_rcu_qgsbr_thread_register(qsbr, rte_lcore_id());
rte_rcu_qgqsbr_thread_online(gsbr, rte_lcore_id());

while(1) {
if (rte_get_main_lcore() == rte_lcore_id()) {
/* main core calling
* rte_graph_feature_enable()/rte_graph_feature_disable()
*/
} else {
rte_graph_walk(graph);
rte_rcu_gsbr_quiescent(gsbr, rte_lcore_id());

void main()

{

struct rte_graph_param graph_params;

/* Initialize feature arc */
rte_graph_feature_arc_init();

/* Create rte_graph =/
rte_graph_create(&graph_params);

rte_eal_mp_remote_launch(worker_loop, NULL, CALL_MAIN);
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Feature enable/disable at runtime

struct rte_rcu_qgsbr *qsbr = app_get_rcu_qsbr();
rte_graph_feature_arc_t _arc; Arc name
“Arc1-output”

Enabled Features

In-built :A,BCY
Interface-1: A, C, Y

Interface-2: B, Y

rte_graph_feature_arc_lookup_by_name("Arcl-output", &_arc);

/* Enable first feature on each interface */
rte_graph_feature_enable(_arc, 0 /* if® %/,

"Node-A—feature" /* feature name */, —
100 /* cookie for (if®, Node-A) =/, Static next_edges
rcu_gsbr); -
rte_graph_feature_enable(_arc, 1 /% ifl */, el 4
"Node—A—-Feat:ure" /*.-Feature name */, Next_edges
200 /* cookie for (ifl, Node-A) =*/, added/managed
rcu_qsbr); by Feature Arc
rte_graph_feature_enable(_arc, 2 /* if2 %/,
"Node-B—feature" /* feature name */, L _
300 /* cookie for (if2, Node-B) */, \ Next Feat Next Peature
. ; i ext Feature
rcu_gsbr); @D Fc’;:rir]f:;::aa::'g1 I-{Z :s’ztf::;tg; to Feature A for  to Feature A for
/* Disable feature on each interface */ , interface-0 eertace-T
rte_graph_feature_disable(_arc, @ /* if@ %/,
"Node-A-feature" /% feature name */,
rcu_gsbr);
rte_graph_feature_disable(_arc, 1 /* ifl %/,
"Node-A-feature" /% feature name */,
rcu_gsbr);
rte_graph_feature_disable(_arc, 2 /* if2 %/,
"Node-B-feature" /% feature name */,
reu_gsbr);
12
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Fast path processing in Start node (Node-X)

static int

uintl6_t __nodeX_process(struct rte_graph *graph, struct rte_node *node,
nodeX_init_func(const struct rte_graph *graph, struct rte_node *node)

void **objs, uintlé_t nb_objs,

i struct rte_graph_feature_arc *arc,
rte_graph_feature_arc_t _arc; . )
const int do_arc_processing)
rte_graph_feature_arc_lookup_by_name("Arcl-output”, _arc); { .
node->ctx = _arc; struct rte_graph_feature_arc_mbuf_dynfields *d@ = NULL;
3 rte_edge_t edge;
uintl6_t nodex_process_fn()
{ while (nb_objs) {
/* process() function provided in RTE_NODE_REGISTER() will not be called if mbuf = (struct rte_mbuf *)objs[0];
* application calls rte_graph_feature_arc_init(), instead edge = 0Q; /* Node-Y added as .next_nodes[8] */
* RTE_GRAPH_FEATURE_ARC_REGISTER()->start_node_feature_process_fn() is called
*/ if (do_arc_processing) {
}_ 16 t do = rte_graph_feature_arc_mbuf_dynfields_get(mbuf,
uLntlo_ rte_graph_feature_arc_mbuf_dynfield_offset_get());
node_x_feature_process_fn (struct rte_graph *graph, .
. . /* Check if any feature enabled on mbuf->port */
struct rte_node *node, void **objs, £ hf d £i P
uintl6_t nb_objs) if (rte_graph_feature_data_first_ eature_get(aEc% roact
{ mbuf->port,
struct rte_graph_feature_arc *arc = &do->feature_datal) {
rte_graph_feature_arc_get(node->ctx); /* First feature enabled on mbuf->port, get edge */
rte_graph_feature_data_edge_get(do—>feature_data,
if (unlikely(rte_graph_feature_arc_has_any_feature(arc))) { Sedge);
/* At least one feature is enabled on at least one interface */ /* enqueue mbuf with new edge */
__nodeX_process(graph, node, objs, objs, nb_objs, 1 else

} else { arc, 1/% do arc processing */); goto normal_processing;
else
/* No feature is enabled on any interface */ oto normal brocessing:
__nodeX_process(graph, node, objs, objs, nb_objs, 1 got R -P gi
NULL, @ /* no arc processing */); normat_processing: .
3 /* Perform normal processing */

1 }

} else
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Next Feature node processing (Node-A/B/C)

static int uintl6_t nodeA_feature_process_fn (struct rte_graph *graph,
P struct rte_node *node,
r{lodeA_lnlt_func(const struct rte_graph *graph, struct rte_node *node) void +4objs, wint16_t nb_objs)
{
rte_graph_feature_arc_t _are; struct rte_graph_feature_arc *arc =

rte_graph_feature_arc_get(node->ctx);
struct rte_graph_feature_arc_mbuf_dynfields *d® = NULL;
rte_graph_feature_arc_lookup_by_name("Arcl-output", _arc); struct rte_mbuf *mbuf;

- . rte_edge_t edge;
_> = !
node->ctx = _arc; int32_t app_cookie;

while (nb_objs) {
. mbuf = (struct rte_mbuf *)objs[0];
uint16_t d0 = rte_graph_feature_arc_mbuf_dynfields_get(mbuf,
nodeA_process_func (struct rte_graph *graph, rte_graph_feature_arc_nbuf_dynfield_offset_get());
*
stFuct rtg_nodg node, . x get cookie +/
void **objs, uintl6_t nb_objs) rte_graph_feature_data_app_cookie_get(dé->feature_data, &app_cookie);
{ if (nodeA_lookup(app_cookie) < 8) {
. . . /* For any reason, node-A is not consuming mbuf for its processing.
/* pI‘OCGSSO function prov1ded n RTE-NODE-REGISTERO * In that case, it should send this mbuf to next enabled feature
* will not be called but instead */
* - i
RTE_GRAPH_FEATURE_REGISTER()->feature_process_fn() will be called /s Get next feature 4/
*/ do->feature_data = rte_graph_feature_data_next_feature_get(arc, do->feature_data);
} edge = rte_graph_feature_data_edge_get(arc, d0->feature_data);

/* Enqueue packet to next nodex/
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