IW' MARVELL ‘ E

Graph feature arc proposal
DPDK 25.03

Nitin Saxena
Senior Principal Engineer
3 Jan 2025

Agenda

= Objectives of Feature arc

= [ntroduction to Feature arc

= How to use Feature arc

= Control plane and Fast path APIs

© 2024 Marvell confidential. All rights reserved.

Objectives of feature arc

1. Allow out-of-tree nodes hooked to

: . . DPDK In-built
DPDK in-built nodes and provide Node A Nodes
mechanism to steer packets

toward it B

» Provide hook points in sub-graphs
created by in-built DPDK nodes

= Packets should be steered to hooked
nodes in a generic manner

= |ike out-of-tree nodes, other in-built y
nodes can also be hooked

© 2024 Marvell confidential. All rights reserved.

Objectives of feature arc...

2. Provide mechanism to enable
feature nodes per interface/ethdev

= Enable/disable of feature nodes on any
interface should be allowed at runtime
and not during graph creation

= Packets corresponding to an interface
“tx-1” are steered to a feature node
“Node-1” only when “Node-1"is
enabled on “tx-1".

© 2024 Marvell confidential. All rights reserved.

mbuf towards tx-1

~
N\
NodeA f====-- \l
~ /
-7 - -
mbuf -
towards _- - - -~
tx-0 . - - -~
v - - -~
- e
_ e
NodeB) -~ (D DPDK In-buit
Nodes

O Out-of-tree

Nodes or other
In-built Nodes

Obijectives of feature arc...

3. There can be more than one
feature nodes enabled on an
interface at runtime

= Should have ordering sequence of
packet traversal across multiple feature
nodes

© 2024 Marvell confidential. All rights reserved.

towards
tx-0

mbut towards tx-1

— — — — ——

. .
~

~ ,- Node-1 has

orderlng prlorlly\
- e before Node-2 l
-

-~ -
” - l
e l

-~
Py
s - - - -
, - -~ -

O Out-of-tree

Nodes or other
In-built Nodes

5

Obijectives of feature arc...

4. Faster data and control plane synchronization

= Any feature disable/enable in control plane should not block worker cores

» Feature disable should allow to destroy resources allocated by application during
enabling a feature

© 2024 Marvell confidential. All rights reserved.

Introduction to Feature arc

1. An abstraction defining nodes
packet path based on interface

2. Feature arc represents an ordered
list of feature nodes with
= A start node where:
- Packets enters feature arc
= An end node where:

- Last feature node to create a default exit
path for packets

= One or more feature nodes
- Added between start and end nodes
- Ordered priority among feature nodes

© 2024 Marvell confidential. All rights reserved.

Y Start Node

Packet path gets activated for an
interface(s) on which Feature
Node-1is enabled

Edges
added/
managed by
feature arc
APIs. No
hard coded
next_nodes|]
required in
Node-A and
Node-1

~

Feature
4 Node
Node-1
_ EndNode
In-buitt

How to use Feature arc

= Feature arc and feature nodes registration
= Feature arc initialization

= Feature enable/disable in control plane

= Feature nodes fast path processing

© 2024 Marvell confidential. All rights reserved.

Feature arc registration

/* Node—X registration */
RTE_NODE_REGISTER (Node-X); Arc hame
/* Node—Y registration */ Arc1- output
RTE_NODE_REGISTER (Node—Y);
In-built
/* Node-Y feature initialization =*/ Node-X
struct rte_graph_feature_register Node-Y—feature = {
.feature_name = "Node-Y-feature",
.arc_name = "Arcl-output",
/* process() function called for node-Y" */
.feature_process_fn = node_y_feat_process_fn(),
.feature_node = &Node-Y,

b

/* Arcl initialization */
struct rte_graph_feature_arc_register arcl = {
arc_name = "Arcl-output",

/* Max number of interfaces supported */
max_indexes = RTE_MAX_ETHPORTS,

/* (struct rte_node_register *) =*x/

.start_node = &Node-X,

/* process() function called for Node—X =*/
.start_node_feature_process_fn = node_x_feature_process_+n(),

/* end feature */ In-built
.end_feature_node = &Node—Y—-feature, Node-Y
b

/* Feature arc registration */
RTE_GRAPH_FEATURE_ARC_REGISTER(arcl);

© 2024 Marvell confidential. All rights reserved.

Feature registration

RTE_NODE_REGISTER (node-A);

struct rte_graph_feature_register nodeA—feature = {
.feature_name = "Node—-A—feature", Arc name
-arc_name = "Arcl-output”, “Arc1-output” Enabled Features
.feature_process_fn = nodeA_feature_process_fn(), ZA,B,C,Y
.feature_node = &node-A, In-built Interface-1: A. C. Y
}; LR A)
/* Node—-A feature registration */ Interface-2: B, Y
RTE_GRAPH_FEATURE_REGISTER(nodeA—feature); ;
RTE_NODE_REGISTER (node-C); Static next_edges
struct rte_graph_feature_register nodeC—feature = { -
.feature_name = "Node—-C—feature", —
.arc_name = "Arcl-output", Next_edges
.feature_process_fn = nodeC_feature_process_fn(), added/managed
.feature_node = &node-C, by Feature Arc
.runs_after = "Node-A—feature",
.notifier_cb = nodeC_notifier_cb(),
i
- i i i Next Feature Next Feature
RTE_GRAPH_FEATURE_REGISTER(nodeC—feature); In-build First Feature First Feature 0 Foatire A for to Feature A for
Node-Y For Interface-0,1 For Interface-2 interface-0 interface-1

RTE_NODE_REGISTER (node-B);

struct rte_graph_feature_register nodeB—feature = {
.feature_name = "Node—-B—feature",
.arc_name = "Arcl-output",
.feature_process_fn = nodeB_feature_process_fn(),
.feature_node = &node-B,
.runs_after = "Node-A—feature",
.runs_before = "Node-C—feature",

i

/* Node—-B feature registration */
RTE_GRAPH_FEATURE_REGISTER(nodeB—feature);

© 2024 Marvell confidential. All rights reserved. 10

Feature arc initialization

= Application should call
rte_graph_feature arc_init() before
graph creation

= |f not called, feature arc registrations has
no effect.

= |f possible, create RCU variable as well
for worker core synchronization

© 2024 Marvell confidential. All rights reserved.

static int worker_loop(void *cfg)

{

}

struct rte_rcu_gsbr *qsbr = app_get_rcu_qsbr();
struct rte_graph *graph = app_get_graph();

rte_rcu_qgsbr_thread_register(qsbr, rte_lcore_id());
rte_rcu_qgqsbr_thread_online(gsbr, rte_lcore_id());

while(1) {
if (rte_get_main_lcore() == rte_lcore_id()) {
/* main core calling
* rte_graph_feature_enable()/rte_graph_feature_disable()
*/
} else {
rte_graph_walk(graph);
rte_rcu_gsbr_quiescent(gsbr, rte_lcore_id());

void main()

{

struct rte_graph_param graph_params;

/* Initialize feature arc */
rte_graph_feature_arc_init();

/* Create rte_graph =/
rte_graph_create(&graph_params);

rte_eal_mp_remote_launch(worker_loop, NULL, CALL_MAIN);

11

Feature enable/disable at runtime

struct rte_rcu_qgsbr *qsbr = app_get_rcu_qsbr();
rte_graph_feature_arc_t _arc; Arc name
“Arc1-output”

Enabled Features

In-built :A,BCY
Interface-1: A, C, Y

Interface-2: B, Y

rte_graph_feature_arc_lookup_by_name("Arcl-output", &_arc);

/* Enable first feature on each interface */
rte_graph_feature_enable(_arc, 0 /* if® %/,

"Node-A—feature" /* feature name */, —
100 /* cookie for (if®, Node-A) =/, Static next_edges
rcu_gsbr); -
rte_graph_feature_enable(_arc, 1 /% ifl */, el 4
"Node—A—-Feat:ure" /*.-Feature name */, Next_edges
200 /* cookie for (ifl, Node-A) =*/, added/managed
rcu_qsbr); by Feature Arc
rte_graph_feature_enable(_arc, 2 /* if2 %/,
"Node-B—feature" /* feature name */, L _
300 /* cookie for (if2, Node-B) */, \ Next Feat Next Peature
. ; i ext Feature
rcu_gsbr); @D Fc’;:rir]f:;::aa::'g1 I-{Z :s’ztf::;tg; to Feature A for to Feature A for
/* Disable feature on each interface */ , interface-0 eertace-T
rte_graph_feature_disable(_arc, @ /* if@ %/,
"Node-A-feature" /% feature name */,
rcu_gsbr);
rte_graph_feature_disable(_arc, 1 /* ifl %/,
"Node-A-feature" /% feature name */,
rcu_gsbr);
rte_graph_feature_disable(_arc, 2 /* if2 %/,
"Node-B-feature" /% feature name */,
reu_gsbr);
12

© 2024 Marvell confidential. All rights reserved.

Fast path processing in Start node (Node-X)

static int

uintl6_t __nodeX_process(struct rte_graph *graph, struct rte_node *node,
nodeX_init_func(const struct rte_graph *graph, struct rte_node *node)

void **objs, uintlé_t nb_objs,

i struct rte_graph_feature_arc *arc,
rte_graph_feature_arc_t _arc; .)
const int do_arc_processing)
rte_graph_feature_arc_lookup_by_name("Arcl-output”, _arc); { .
node->ctx = _arc; struct rte_graph_feature_arc_mbuf_dynfields *d@ = NULL;
3 rte_edge_t edge;
uintl6_t nodex_process_fn()
{ while (nb_objs) {
/* process() function provided in RTE_NODE_REGISTER() will not be called if mbuf = (struct rte_mbuf *)objs[0];
* application calls rte_graph_feature_arc_init(), instead edge = 0Q; /* Node-Y added as .next_nodes[8] */
* RTE_GRAPH_FEATURE_ARC_REGISTER()->start_node_feature_process_fn() is called
*/ if (do_arc_processing) {
}_ 16 t do = rte_graph_feature_arc_mbuf_dynfields_get(mbuf,
uLntlo_ rte_graph_feature_arc_mbuf_dynfield_offset_get());
node_x_feature_process_fn (struct rte_graph *graph, .
. . /* Check if any feature enabled on mbuf->port */
struct rte_node *node, void **objs, £ hf d £i P
uintl6_t nb_objs) if (rte_graph_feature_data_first_ eature_get(aEc% roact
{ mbuf->port,
struct rte_graph_feature_arc *arc = &do->feature_datal) {
rte_graph_feature_arc_get(node->ctx); /* First feature enabled on mbuf->port, get edge */
rte_graph_feature_data_edge_get(do—>feature_data,
if (unlikely(rte_graph_feature_arc_has_any_feature(arc))) { Sedge);
/* At least one feature is enabled on at least one interface */ /* enqueue mbuf with new edge */
__nodeX_process(graph, node, objs, objs, nb_objs, 1 else

} else { arc, 1/% do arc processing */); goto normal_processing;
else
/* No feature is enabled on any interface */ oto normal brocessing:
__nodeX_process(graph, node, objs, objs, nb_objs, 1 got R -P gi
NULL, @ /* no arc processing */); normat_processing: .
3 /* Perform normal processing */

1 }

} else

© 2024 Marvell confidential. All rights reserved. 13

Next Feature node processing (Node-A/B/C)

static int uintl6_t nodeA_feature_process_fn (struct rte_graph *graph,
P struct rte_node *node,
r{lodeA_lnlt_func(const struct rte_graph *graph, struct rte_node *node) void +4objs, wint16_t nb_objs)
{
rte_graph_feature_arc_t _are; struct rte_graph_feature_arc *arc =

rte_graph_feature_arc_get(node->ctx);
struct rte_graph_feature_arc_mbuf_dynfields *d® = NULL;
rte_graph_feature_arc_lookup_by_name("Arcl-output", _arc); struct rte_mbuf *mbuf;

- . rte_edge_t edge;
_> = !
node->ctx = _arc; int32_t app_cookie;

while (nb_objs) {
. mbuf = (struct rte_mbuf *)objs[0];
uint16_t d0 = rte_graph_feature_arc_mbuf_dynfields_get(mbuf,
nodeA_process_func (struct rte_graph *graph, rte_graph_feature_arc_nbuf_dynfield_offset_get());
*
stFuct rtg_nodg node, . x get cookie +/
void **objs, uintl6_t nb_objs) rte_graph_feature_data_app_cookie_get(dé->feature_data, &app_cookie);
{ if (nodeA_lookup(app_cookie) < 8) {
. . . /* For any reason, node-A is not consuming mbuf for its processing.
/* pI‘OCGSSO function prov1ded n RTE-NODE-REGISTERO * In that case, it should send this mbuf to next enabled feature
* will not be called but instead */
* - i
RTE_GRAPH_FEATURE_REGISTER()->feature_process_fn() will be called /s Get next feature 4/
*/ do->feature_data = rte_graph_feature_data_next_feature_get(arc, do->feature_data);
} edge = rte_graph_feature_data_edge_get(arc, d0->feature_data);

/* Enqueue packet to next nodex/

© 2024 Marvell confidential. All rights reserved. 14

IW' MARVELL

Essential technology, done right™

IW' MARVELL

	Default Section
	Slide 1: Graph feature arc proposal
	Slide 2: Agenda
	Slide 3: Objectives of feature arc
	Slide 4: Objectives of feature arc…
	Slide 5: Objectives of feature arc…
	Slide 6: Objectives of feature arc…
	Slide 7: Introduction to Feature arc
	Slide 8: How to use Feature arc
	Slide 9: Feature arc registration
	Slide 10: Feature registration
	Slide 11: Feature arc initialization
	Slide 12: Feature enable/disable at runtime
	Slide 13: Fast path processing in Start node (Node-X)
	Slide 14: Next Feature node processing (Node-A/B/C)
	Slide 15
	Slide 16

