[dpdk-dev] [PATCH] net/iavf: enable AVX2 for iavf

Leyi Rong leyi.rong at intel.com
Wed Sep 4 09:21:14 CEST 2019


This patch enables AVX data path for iavf PMD.

Signed-off-by: Leyi Rong <leyi.rong at intel.com>
---
 drivers/net/iavf/Makefile               |  21 +
 drivers/net/iavf/iavf_rxtx.c            |  62 +-
 drivers/net/iavf/iavf_rxtx.h            |  10 +
 drivers/net/iavf/iavf_rxtx_vec_avx2.c   | 867 ++++++++++++++++++++++++
 drivers/net/iavf/iavf_rxtx_vec_common.h |  72 ++
 drivers/net/iavf/iavf_rxtx_vec_sse.c    |  12 +
 drivers/net/iavf/meson.build            |  17 +
 7 files changed, 1041 insertions(+), 20 deletions(-)
 create mode 100644 drivers/net/iavf/iavf_rxtx_vec_avx2.c

diff --git a/drivers/net/iavf/Makefile b/drivers/net/iavf/Makefile
index cd74e14ab..cf0ed99f0 100644
--- a/drivers/net/iavf/Makefile
+++ b/drivers/net/iavf/Makefile
@@ -48,4 +48,25 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y)
 SRCS-$(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR) += iavf_rxtx_vec_sse.c
 endif
 
+ifeq ($(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR), y)
+	ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2)
+		CC_AVX2_SUPPORT=1
+	else
+		CC_AVX2_SUPPORT=\
+		$(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \
+		grep -q AVX2 && echo 1)
+		ifeq ($(CC_AVX2_SUPPORT), 1)
+			ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y)
+				CFLAGS_iavf_rxtx_vec_avx2.o += -march=core-avx2
+			else
+				CFLAGS_iavf_rxtx_vec_avx2.o += -mavx2
+			endif
+		endif
+	endif
+endif
+
+ifeq ($(CC_AVX2_SUPPORT), 1)
+	SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx_vec_avx2.c
+endif
+
 include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c
index 22d7bb612..2eb496d5f 100644
--- a/drivers/net/iavf/iavf_rxtx.c
+++ b/drivers/net/iavf/iavf_rxtx.c
@@ -1743,23 +1743,36 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
 	struct iavf_rx_queue *rxq;
 	int i;
+	bool use_avx2 = false;
 
-	if (adapter->rx_vec_allowed) {
-		if (dev->data->scattered_rx) {
-			PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback"
-				    " (port=%d).", dev->data->port_id);
-			dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec;
-		} else {
-			PMD_DRV_LOG(DEBUG, "Using Vector Rx callback"
-				    " (port=%d).", dev->data->port_id);
-			dev->rx_pkt_burst = iavf_recv_pkts_vec;
-		}
+	if (!iavf_rx_vec_dev_check(dev)) {
 		for (i = 0; i < dev->data->nb_rx_queues; i++) {
 			rxq = dev->data->rx_queues[i];
-			if (!rxq)
-				continue;
-			iavf_rxq_vec_setup(rxq);
+			(void)iavf_rxq_vec_setup(rxq);
 		}
+
+		if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+		    rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
+			use_avx2 = true;
+
+		if (dev->data->scattered_rx) {
+			PMD_DRV_LOG(DEBUG,
+				    "Using %sVector Scattered Rx (port %d).",
+				    use_avx2 ? "avx2 " : "",
+				    dev->data->port_id);
+			dev->rx_pkt_burst = use_avx2 ?
+					    iavf_recv_scattered_pkts_vec_avx2 :
+					    iavf_recv_scattered_pkts_vec;
+		} else {
+			PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
+				    use_avx2 ? "avx2 " : "",
+				    dev->data->port_id);
+			dev->rx_pkt_burst = use_avx2 ?
+					    iavf_recv_pkts_vec_avx2 :
+					    iavf_recv_pkts_vec;
+		}
+
+		return;
 	} else if (dev->data->scattered_rx) {
 		PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
 			    dev->data->port_id);
@@ -1779,22 +1792,31 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
 void
 iavf_set_tx_function(struct rte_eth_dev *dev)
 {
-	struct iavf_adapter *adapter =
-		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
 	struct iavf_tx_queue *txq;
 	int i;
+	bool use_avx2 = false;
 
-	if (adapter->tx_vec_allowed) {
-		PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).",
-			    dev->data->port_id);
-		dev->tx_pkt_burst = iavf_xmit_pkts_vec;
-		dev->tx_pkt_prepare = NULL;
+	if (!iavf_tx_vec_dev_check(dev)) {
 		for (i = 0; i < dev->data->nb_tx_queues; i++) {
 			txq = dev->data->tx_queues[i];
 			if (!txq)
 				continue;
 			iavf_txq_vec_setup(txq);
 		}
+
+		if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+		    rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
+			use_avx2 = true;
+
+		PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
+			    use_avx2 ? "avx2 " : "",
+			    dev->data->port_id);
+		dev->tx_pkt_burst = use_avx2 ?
+				    iavf_xmit_pkts_vec_avx2 :
+				    iavf_xmit_pkts_vec;
+		dev->tx_pkt_prepare = NULL;
+
+		return;
 	} else {
 		PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
 			    dev->data->port_id);
diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h
index c86720bda..7dde392bf 100644
--- a/drivers/net/iavf/iavf_rxtx.h
+++ b/drivers/net/iavf/iavf_rxtx.h
@@ -19,6 +19,7 @@
 /* used for Vector PMD */
 #define IAVF_VPMD_RX_MAX_BURST    32
 #define IAVF_VPMD_TX_MAX_BURST    32
+#define IAVF_RXQ_REARM_THRESH     32
 #define IAVF_VPMD_DESCS_PER_LOOP  4
 #define IAVF_VPMD_TX_MAX_FREE_BUF 64
 
@@ -200,6 +201,15 @@ uint16_t iavf_recv_scattered_pkts_vec(void *rx_queue,
 				     uint16_t nb_pkts);
 uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
 				  uint16_t nb_pkts);
+uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+				 uint16_t nb_pkts);
+uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue,
+					   struct rte_mbuf **rx_pkts,
+					   uint16_t nb_pkts);
+uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+				 uint16_t nb_pkts);
+int iavf_rx_vec_dev_check(struct rte_eth_dev *dev);
+int iavf_tx_vec_dev_check(struct rte_eth_dev *dev);
 int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq);
 int iavf_txq_vec_setup(struct iavf_tx_queue *txq);
 
diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
new file mode 100644
index 000000000..f0c00be56
--- /dev/null
+++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
@@ -0,0 +1,867 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2019 Intel Corporation
+ */
+
+#include "base/iavf_prototype.h"
+#include "iavf_rxtx_vec_common.h"
+
+#include <x86intrin.h>
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+static inline void
+iavf_rxq_rearm(struct iavf_rx_queue *rxq)
+{
+	int i;
+	uint16_t rx_id;
+	volatile union iavf_rx_desc *rxdp;
+	struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
+
+	rxdp = rxq->rx_ring + rxq->rxrearm_start;
+
+	/* Pull 'n' more MBUFs into the software ring */
+	if (rte_mempool_get_bulk(rxq->mp,
+				 (void *)rxp,
+				 IAVF_RXQ_REARM_THRESH) < 0) {
+		if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
+		    rxq->nb_rx_desc) {
+			__m128i dma_addr0;
+
+			dma_addr0 = _mm_setzero_si128();
+			for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
+				rxp[i] = &rxq->fake_mbuf;
+				_mm_store_si128((__m128i *)&rxdp[i].read,
+						dma_addr0);
+			}
+		}
+		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
+			IAVF_RXQ_REARM_THRESH;
+		return;
+	}
+
+#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+	struct rte_mbuf *mb0, *mb1;
+	__m128i dma_addr0, dma_addr1;
+	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
+			RTE_PKTMBUF_HEADROOM);
+	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
+	for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
+		__m128i vaddr0, vaddr1;
+
+		mb0 = rxp[0];
+		mb1 = rxp[1];
+
+		/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
+		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
+				offsetof(struct rte_mbuf, buf_addr) + 8);
+		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+
+		/* convert pa to dma_addr hdr/data */
+		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
+		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
+
+		/* add headroom to pa values */
+		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
+		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
+
+		/* flush desc with pa dma_addr */
+		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
+		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
+	}
+#else
+	struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
+	__m256i dma_addr0_1, dma_addr2_3;
+	__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
+	/* Initialize the mbufs in vector, process 4 mbufs in one loop */
+	for (i = 0; i < IAVF_RXQ_REARM_THRESH;
+			i += 4, rxp += 4, rxdp += 4) {
+		__m128i vaddr0, vaddr1, vaddr2, vaddr3;
+		__m256i vaddr0_1, vaddr2_3;
+
+		mb0 = rxp[0];
+		mb1 = rxp[1];
+		mb2 = rxp[2];
+		mb3 = rxp[3];
+
+		/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
+		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
+				offsetof(struct rte_mbuf, buf_addr) + 8);
+		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+		vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
+		vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
+
+		/**
+		 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
+		 * into the high lanes. Similarly for 2 & 3
+		 */
+		vaddr0_1 =
+			_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
+						vaddr1, 1);
+		vaddr2_3 =
+			_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
+						vaddr3, 1);
+
+		/* convert pa to dma_addr hdr/data */
+		dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
+		dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
+
+		/* add headroom to pa values */
+		dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
+		dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
+
+		/* flush desc with pa dma_addr */
+		_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
+		_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
+	}
+
+#endif
+
+	rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
+	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+		rxq->rxrearm_start = 0;
+
+	rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
+
+	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+	/* Update the tail pointer on the NIC */
+	IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+}
+
+#define PKTLEN_SHIFT     10
+
+static inline uint16_t
+_iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
+			     struct rte_mbuf **rx_pkts,
+			     uint16_t nb_pkts, uint8_t *split_packet)
+{
+#define IAVF_DESCS_PER_LOOP_AVX 8
+
+	/* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
+	static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
+		/* [0] reserved */
+		[1] = RTE_PTYPE_L2_ETHER,
+		/* [2] - [21] reserved */
+		[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+			RTE_PTYPE_L4_FRAG,
+		[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+			RTE_PTYPE_L4_NONFRAG,
+		[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+			RTE_PTYPE_L4_UDP,
+		/* [25] reserved */
+		[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+			RTE_PTYPE_L4_TCP,
+		[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+			RTE_PTYPE_L4_SCTP,
+		[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+			RTE_PTYPE_L4_ICMP,
+		/* All others reserved */
+	};
+	const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+			0, rxq->mbuf_initializer);
+	/* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
+	struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
+	volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
+	const int avx_aligned = ((rxq->rx_tail & 1) == 0);
+
+	rte_prefetch0(rxdp);
+
+	/* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
+	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
+
+	/* See if we need to rearm the RX queue - gives the prefetch a bit
+	 * of time to act
+	 */
+	if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
+		iavf_rxq_rearm(rxq);
+
+	/* Before we start moving massive data around, check to see if
+	 * there is actually a packet available
+	 */
+	if (!(rxdp->wb.qword1.status_error_len &
+			rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
+		return 0;
+
+	/* constants used in processing loop */
+	const __m256i crc_adjust =
+		_mm256_set_epi16
+			(/* first descriptor */
+			 0, 0, 0,       /* ignore non-length fields */
+			 -rxq->crc_len, /* sub crc on data_len */
+			 0,             /* ignore high-16bits of pkt_len */
+			 -rxq->crc_len, /* sub crc on pkt_len */
+			 0, 0,          /* ignore pkt_type field */
+			 /* second descriptor */
+			 0, 0, 0,       /* ignore non-length fields */
+			 -rxq->crc_len, /* sub crc on data_len */
+			 0,             /* ignore high-16bits of pkt_len */
+			 -rxq->crc_len, /* sub crc on pkt_len */
+			 0, 0           /* ignore pkt_type field */
+			);
+
+	/* 8 packets DD mask, LSB in each 32-bit value */
+	const __m256i dd_check = _mm256_set1_epi32(1);
+
+	/* 8 packets EOP mask, second-LSB in each 32-bit value */
+	const __m256i eop_check = _mm256_slli_epi32(dd_check,
+			IAVF_RX_DESC_STATUS_EOF_SHIFT);
+
+	/* mask to shuffle from desc. to mbuf (2 descriptors)*/
+	const __m256i shuf_msk =
+		_mm256_set_epi8
+			(/* first descriptor */
+			 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
+			 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
+			 15, 14,      /* octet 15~14, 16 bits data_len */
+			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
+			 15, 14,      /* octet 15~14, low 16 bits pkt_len */
+			 0xFF, 0xFF,  /* pkt_type set as unknown */
+			 0xFF, 0xFF,  /*pkt_type set as unknown */
+			 /* second descriptor */
+			 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
+			 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
+			 15, 14,      /* octet 15~14, 16 bits data_len */
+			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
+			 15, 14,      /* octet 15~14, low 16 bits pkt_len */
+			 0xFF, 0xFF,  /* pkt_type set as unknown */
+			 0xFF, 0xFF   /*pkt_type set as unknown */
+			);
+	/**
+	 * compile-time check the above crc and shuffle layout is correct.
+	 * NOTE: the first field (lowest address) is given last in set_epi
+	 * calls above.
+	 */
+	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+	/* Status/Error flag masks */
+	/**
+	 * mask everything except RSS, flow director and VLAN flags
+	 * bit2 is for VLAN tag, bit11 for flow director indication
+	 * bit13:12 for RSS indication. Bits 3-5 of error
+	 * field (bits 22-24) are for IP/L4 checksum errors
+	 */
+	const __m256i flags_mask =
+		 _mm256_set1_epi32((1 << 2) | (1 << 11) |
+				   (3 << 12) | (7 << 22));
+	/**
+	 * data to be shuffled by result of flag mask. If VLAN bit is set,
+	 * (bit 2), then position 4 in this array will be used in the
+	 * destination
+	 */
+	const __m256i vlan_flags_shuf =
+		_mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
+				 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
+	/**
+	 * data to be shuffled by result of flag mask, shifted down 11.
+	 * If RSS/FDIR bits are set, shuffle moves appropriate flags in
+	 * place.
+	 */
+	const __m256i rss_flags_shuf =
+		_mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+				PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
+				0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
+				0, 0, 0, 0, 0, 0, 0, 0,
+				PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
+				0, 0, 0, 0, PKT_RX_FDIR, 0);
+
+	/**
+	 * data to be shuffled by the result of the flags mask shifted by 22
+	 * bits.  This gives use the l3_l4 flags.
+	 */
+	const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+			/* shift right 1 bit to make sure it not exceed 255 */
+			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+			 PKT_RX_IP_CKSUM_BAD) >> 1,
+			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+			 PKT_RX_L4_CKSUM_BAD) >> 1,
+			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+			PKT_RX_IP_CKSUM_BAD >> 1,
+			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
+			/* second 128-bits */
+			0, 0, 0, 0, 0, 0, 0, 0,
+			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+			 PKT_RX_IP_CKSUM_BAD) >> 1,
+			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+			 PKT_RX_L4_CKSUM_BAD) >> 1,
+			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+			PKT_RX_IP_CKSUM_BAD >> 1,
+			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
+
+	const __m256i cksum_mask =
+		 _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
+				   PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
+				   PKT_RX_EIP_CKSUM_BAD);
+
+	RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
+
+	uint16_t i, received;
+
+	for (i = 0, received = 0; i < nb_pkts;
+	     i += IAVF_DESCS_PER_LOOP_AVX,
+	     rxdp += IAVF_DESCS_PER_LOOP_AVX) {
+		/* step 1, copy over 8 mbuf pointers to rx_pkts array */
+		_mm256_storeu_si256((void *)&rx_pkts[i],
+				    _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+		_mm256_storeu_si256
+			((void *)&rx_pkts[i + 4],
+			 _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+		__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+		/* for AVX we need alignment otherwise loads are not atomic */
+		if (avx_aligned) {
+			/* load in descriptors, 2 at a time, in reverse order */
+			raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
+			rte_compiler_barrier();
+			raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
+			rte_compiler_barrier();
+			raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
+			rte_compiler_barrier();
+			raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
+		} else
+#endif
+		{
+			const __m128i raw_desc7 =
+				_mm_load_si128((void *)(rxdp + 7));
+			rte_compiler_barrier();
+			const __m128i raw_desc6 =
+				_mm_load_si128((void *)(rxdp + 6));
+			rte_compiler_barrier();
+			const __m128i raw_desc5 =
+				_mm_load_si128((void *)(rxdp + 5));
+			rte_compiler_barrier();
+			const __m128i raw_desc4 =
+				_mm_load_si128((void *)(rxdp + 4));
+			rte_compiler_barrier();
+			const __m128i raw_desc3 =
+				_mm_load_si128((void *)(rxdp + 3));
+			rte_compiler_barrier();
+			const __m128i raw_desc2 =
+				_mm_load_si128((void *)(rxdp + 2));
+			rte_compiler_barrier();
+			const __m128i raw_desc1 =
+				_mm_load_si128((void *)(rxdp + 1));
+			rte_compiler_barrier();
+			const __m128i raw_desc0 =
+				_mm_load_si128((void *)(rxdp + 0));
+
+			raw_desc6_7 =
+				_mm256_inserti128_si256
+					(_mm256_castsi128_si256(raw_desc6),
+					 raw_desc7, 1);
+			raw_desc4_5 =
+				_mm256_inserti128_si256
+					(_mm256_castsi128_si256(raw_desc4),
+					 raw_desc5, 1);
+			raw_desc2_3 =
+				_mm256_inserti128_si256
+					(_mm256_castsi128_si256(raw_desc2),
+					 raw_desc3, 1);
+			raw_desc0_1 =
+				_mm256_inserti128_si256
+					(_mm256_castsi128_si256(raw_desc0),
+					 raw_desc1, 1);
+		}
+
+		if (split_packet) {
+			int j;
+
+			for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
+				rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+		}
+
+		/**
+		 * convert descriptors 4-7 into mbufs, adjusting length and
+		 * re-arranging fields. Then write into the mbuf
+		 */
+		const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
+							 PKTLEN_SHIFT);
+		const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
+							 PKTLEN_SHIFT);
+		const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
+							   len6_7, 0x80);
+		const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
+							   len4_5, 0x80);
+		__m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
+		__m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
+
+		mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
+		mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
+		/**
+		 * to get packet types, shift 64-bit values down 30 bits
+		 * and so ptype is in lower 8-bits in each
+		 */
+		const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
+		const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
+		const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
+		const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
+		const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
+		const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
+
+		mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
+		mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
+		mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
+		mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
+		/* merge the status bits into one register */
+		const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
+				desc4_5);
+
+		/**
+		 * convert descriptors 0-3 into mbufs, adjusting length and
+		 * re-arranging fields. Then write into the mbuf
+		 */
+		const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
+							 PKTLEN_SHIFT);
+		const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
+							 PKTLEN_SHIFT);
+		const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
+							   len2_3, 0x80);
+		const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
+							   len0_1, 0x80);
+		__m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
+		__m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
+
+		mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
+		mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
+		/* get the packet types */
+		const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
+		const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
+		const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
+		const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
+		const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
+		const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
+
+		mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
+		mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
+		mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
+		mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
+		/* merge the status bits into one register */
+		const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
+								desc0_1);
+
+		/**
+		 * take the two sets of status bits and merge to one
+		 * After merge, the packets status flags are in the
+		 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+		 */
+		__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
+							  status0_3);
+
+		/* now do flag manipulation */
+
+		/* get only flag/error bits we want */
+		const __m256i flag_bits =
+			_mm256_and_si256(status0_7, flags_mask);
+		/* set vlan and rss flags */
+		const __m256i vlan_flags =
+			_mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
+		const __m256i rss_flags =
+			_mm256_shuffle_epi8(rss_flags_shuf,
+					    _mm256_srli_epi32(flag_bits, 11));
+		/**
+		 * l3_l4_error flags, shuffle, then shift to correct adjustment
+		 * of flags in flags_shuf, and finally mask out extra bits
+		 */
+		__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+				_mm256_srli_epi32(flag_bits, 22));
+		l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+		l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+
+		/* merge flags */
+		const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+				_mm256_or_si256(rss_flags, vlan_flags));
+		/**
+		 * At this point, we have the 8 sets of flags in the low 16-bits
+		 * of each 32-bit value in vlan0.
+		 * We want to extract these, and merge them with the mbuf init
+		 * data so we can do a single write to the mbuf to set the flags
+		 * and all the other initialization fields. Extracting the
+		 * appropriate flags means that we have to do a shift and blend
+		 * for each mbuf before we do the write. However, we can also
+		 * add in the previously computed rx_descriptor fields to
+		 * make a single 256-bit write per mbuf
+		 */
+		/* check the structure matches expectations */
+		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+				 offsetof(struct rte_mbuf, rearm_data) + 8);
+		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+				 RTE_ALIGN(offsetof(struct rte_mbuf,
+						    rearm_data),
+					   16));
+		/* build up data and do writes */
+		__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+			rearm6, rearm7;
+		rearm6 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_slli_si256(mbuf_flags, 8),
+					    0x04);
+		rearm4 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_slli_si256(mbuf_flags, 4),
+					    0x04);
+		rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+		rearm0 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_srli_si256(mbuf_flags, 4),
+					    0x04);
+		/* permute to add in the rx_descriptor e.g. rss fields */
+		rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+		rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+		rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+		rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+		/* write to mbuf */
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+				    rearm6);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+				    rearm4);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+				    rearm2);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+				    rearm0);
+
+		/* repeat for the odd mbufs */
+		const __m256i odd_flags =
+			_mm256_castsi128_si256
+				(_mm256_extracti128_si256(mbuf_flags, 1));
+		rearm7 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_slli_si256(odd_flags, 8),
+					    0x04);
+		rearm5 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_slli_si256(odd_flags, 4),
+					    0x04);
+		rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+		rearm1 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_srli_si256(odd_flags, 4),
+					    0x04);
+		/* since odd mbufs are already in hi 128-bits use blend */
+		rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+		rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+		rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+		rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+		/* again write to mbufs */
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+				    rearm7);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+				    rearm5);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+				    rearm3);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+				    rearm1);
+
+		/* extract and record EOP bit */
+		if (split_packet) {
+			const __m128i eop_mask =
+				_mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
+			const __m256i eop_bits256 = _mm256_and_si256(status0_7,
+								     eop_check);
+			/* pack status bits into a single 128-bit register */
+			const __m128i eop_bits =
+				_mm_packus_epi32
+					(_mm256_castsi256_si128(eop_bits256),
+					 _mm256_extractf128_si256(eop_bits256,
+								  1));
+			/**
+			 * flip bits, and mask out the EOP bit, which is now
+			 * a split-packet bit i.e. !EOP, rather than EOP one.
+			 */
+			__m128i split_bits = _mm_andnot_si128(eop_bits,
+					eop_mask);
+			/**
+			 * eop bits are out of order, so we need to shuffle them
+			 * back into order again. In doing so, only use low 8
+			 * bits, which acts like another pack instruction
+			 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+			 * [Since we use epi8, the 16-bit positions are
+			 * multiplied by 2 in the eop_shuffle value.]
+			 */
+			__m128i eop_shuffle =
+				_mm_set_epi8(/* zero hi 64b */
+					     0xFF, 0xFF, 0xFF, 0xFF,
+					     0xFF, 0xFF, 0xFF, 0xFF,
+					     /* move values to lo 64b */
+					     8, 0, 10, 2,
+					     12, 4, 14, 6);
+			split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+			*(uint64_t *)split_packet =
+				_mm_cvtsi128_si64(split_bits);
+			split_packet += IAVF_DESCS_PER_LOOP_AVX;
+		}
+
+		/* perform dd_check */
+		status0_7 = _mm256_and_si256(status0_7, dd_check);
+		status0_7 = _mm256_packs_epi32(status0_7,
+					       _mm256_setzero_si256());
+
+		uint64_t burst = __builtin_popcountll
+					(_mm_cvtsi128_si64
+						(_mm256_extracti128_si256
+							(status0_7, 1)));
+		burst += __builtin_popcountll
+				(_mm_cvtsi128_si64
+					(_mm256_castsi256_si128(status0_7)));
+		received += burst;
+		if (burst != IAVF_DESCS_PER_LOOP_AVX)
+			break;
+	}
+
+	/* update tail pointers */
+	rxq->rx_tail += received;
+	rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+	if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+		rxq->rx_tail--;
+		received--;
+	}
+	rxq->rxrearm_nb += received;
+	return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+			uint16_t nb_pkts)
+{
+	return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
+}
+
+/**
+ * vPMD receive routine that reassembles single burst of 32 scattered packets
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+static uint16_t
+iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+				   uint16_t nb_pkts)
+{
+	struct iavf_rx_queue *rxq = rx_queue;
+	uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
+
+	/* get some new buffers */
+	uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
+						       split_flags);
+	if (nb_bufs == 0)
+		return 0;
+
+	/* happy day case, full burst + no packets to be joined */
+	const uint64_t *split_fl64 = (uint64_t *)split_flags;
+
+	if (!rxq->pkt_first_seg &&
+	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
+	    split_fl64[2] == 0 && split_fl64[3] == 0)
+		return nb_bufs;
+
+	/* reassemble any packets that need reassembly*/
+	unsigned int i = 0;
+
+	if (!rxq->pkt_first_seg) {
+		/* find the first split flag, and only reassemble then*/
+		while (i < nb_bufs && !split_flags[i])
+			i++;
+		if (i == nb_bufs)
+			return nb_bufs;
+		rxq->pkt_first_seg = rx_pkts[i];
+	}
+	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
+					     &split_flags[i]);
+}
+
+/**
+ * vPMD receive routine that reassembles scattered packets.
+ * Main receive routine that can handle arbitrary burst sizes
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+				  uint16_t nb_pkts)
+{
+	uint16_t retval = 0;
+
+	while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
+		uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
+				rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
+		retval += burst;
+		nb_pkts -= burst;
+		if (burst < IAVF_VPMD_RX_MAX_BURST)
+			return retval;
+	}
+	return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
+				rx_pkts + retval, nb_pkts);
+}
+
+static inline void
+iavf_vtx1(volatile struct iavf_tx_desc *txdp,
+	  struct rte_mbuf *pkt, uint64_t flags)
+{
+	uint64_t high_qw =
+		(IAVF_TX_DESC_DTYPE_DATA |
+		 ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
+		 ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
+
+	__m128i descriptor = _mm_set_epi64x(high_qw,
+				pkt->buf_physaddr + pkt->data_off);
+	_mm_store_si128((__m128i *)txdp, descriptor);
+}
+
+static inline void
+iavf_vtx(volatile struct iavf_tx_desc *txdp,
+	 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
+{
+	const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
+			((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT));
+
+	/* if unaligned on 32-bit boundary, do one to align */
+	if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
+		iavf_vtx1(txdp, *pkt, flags);
+		nb_pkts--, txdp++, pkt++;
+	}
+
+	/* do two at a time while possible, in bursts */
+	for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
+		uint64_t hi_qw3 =
+			hi_qw_tmpl |
+			((uint64_t)pkt[3]->data_len <<
+			 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+		uint64_t hi_qw2 =
+			hi_qw_tmpl |
+			((uint64_t)pkt[2]->data_len <<
+			 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+		uint64_t hi_qw1 =
+			hi_qw_tmpl |
+			((uint64_t)pkt[1]->data_len <<
+			 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+		uint64_t hi_qw0 =
+			hi_qw_tmpl |
+			((uint64_t)pkt[0]->data_len <<
+			 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+
+		__m256i desc2_3 =
+			_mm256_set_epi64x
+				(hi_qw3,
+				 pkt[3]->buf_physaddr + pkt[3]->data_off,
+				 hi_qw2,
+				 pkt[2]->buf_physaddr + pkt[2]->data_off);
+		__m256i desc0_1 =
+			_mm256_set_epi64x
+				(hi_qw1,
+				 pkt[1]->buf_physaddr + pkt[1]->data_off,
+				 hi_qw0,
+				 pkt[0]->buf_physaddr + pkt[0]->data_off);
+		_mm256_store_si256((void *)(txdp + 2), desc2_3);
+		_mm256_store_si256((void *)txdp, desc0_1);
+	}
+
+	/* do any last ones */
+	while (nb_pkts) {
+		iavf_vtx1(txdp, *pkt, flags);
+		txdp++, pkt++, nb_pkts--;
+	}
+}
+
+static inline uint16_t
+iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+			       uint16_t nb_pkts)
+{
+	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
+	volatile struct iavf_tx_desc *txdp;
+	struct iavf_tx_entry *txep;
+	uint16_t n, nb_commit, tx_id;
+	uint64_t flags = IAVF_TX_DESC_CMD_EOP;
+	uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP;
+
+	/* cross rx_thresh boundary is not allowed */
+	nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
+
+	if (txq->nb_free < txq->free_thresh)
+		iavf_tx_free_bufs(txq);
+
+	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
+	if (unlikely(nb_pkts == 0))
+		return 0;
+
+	tx_id = txq->tx_tail;
+	txdp = &txq->tx_ring[tx_id];
+	txep = &txq->sw_ring[tx_id];
+
+	txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
+
+	n = (uint16_t)(txq->nb_tx_desc - tx_id);
+	if (nb_commit >= n) {
+		tx_backlog_entry(txep, tx_pkts, n);
+
+		iavf_vtx(txdp, tx_pkts, n - 1, flags);
+		tx_pkts += (n - 1);
+		txdp += (n - 1);
+
+		iavf_vtx1(txdp, *tx_pkts++, rs);
+
+		nb_commit = (uint16_t)(nb_commit - n);
+
+		tx_id = 0;
+		txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
+
+		/* avoid reach the end of ring */
+		txdp = &txq->tx_ring[tx_id];
+		txep = &txq->sw_ring[tx_id];
+	}
+
+	tx_backlog_entry(txep, tx_pkts, nb_commit);
+
+	iavf_vtx(txdp, tx_pkts, nb_commit, flags);
+
+	tx_id = (uint16_t)(tx_id + nb_commit);
+	if (tx_id > txq->next_rs) {
+		txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
+			rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
+					 IAVF_TXD_QW1_CMD_SHIFT);
+		txq->next_rs =
+			(uint16_t)(txq->next_rs + txq->rs_thresh);
+	}
+
+	txq->tx_tail = tx_id;
+
+	IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+	return nb_pkts;
+}
+
+uint16_t
+iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+			uint16_t nb_pkts)
+{
+	uint16_t nb_tx = 0;
+	struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
+
+	while (nb_pkts) {
+		uint16_t ret, num;
+
+		num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
+		ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
+						     num);
+		nb_tx += ret;
+		nb_pkts -= ret;
+		if (ret < num)
+			break;
+	}
+
+	return nb_tx;
+}
diff --git a/drivers/net/iavf/iavf_rxtx_vec_common.h b/drivers/net/iavf/iavf_rxtx_vec_common.h
index db509d71f..fff0555d2 100644
--- a/drivers/net/iavf/iavf_rxtx_vec_common.h
+++ b/drivers/net/iavf/iavf_rxtx_vec_common.h
@@ -207,4 +207,76 @@ iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq)
 	rxq->mbuf_initializer = *(uint64_t *)p;
 	return 0;
 }
+
+static inline int
+iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
+{
+	if (!rxq)
+		return -1;
+
+	if (!rte_is_power_of_2(rxq->nb_rx_desc))
+		return -1;
+
+	if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST)
+		return -1;
+
+	if (rxq->nb_rx_desc % rxq->rx_free_thresh)
+		return -1;
+
+	return 0;
+}
+
+#define IAVF_NO_VECTOR_FLAGS (				 \
+		DEV_TX_OFFLOAD_MULTI_SEGS |		 \
+		DEV_TX_OFFLOAD_VLAN_INSERT |		 \
+		DEV_TX_OFFLOAD_SCTP_CKSUM |		 \
+		DEV_TX_OFFLOAD_UDP_CKSUM |		 \
+		DEV_TX_OFFLOAD_TCP_CKSUM)
+
+static inline int
+iavf_tx_vec_queue_default(struct iavf_tx_queue *txq)
+{
+	if (!txq)
+		return -1;
+
+	if (txq->offloads & IAVF_NO_VECTOR_FLAGS)
+		return -1;
+
+	if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST ||
+	    txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF)
+		return -1;
+
+	return 0;
+}
+
+static inline int
+iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
+{
+	int i;
+	struct iavf_rx_queue *rxq;
+
+	for (i = 0; i < dev->data->nb_rx_queues; i++) {
+		rxq = dev->data->rx_queues[i];
+		if (iavf_rx_vec_queue_default(rxq))
+			return -1;
+	}
+
+	return 0;
+}
+
+static inline int
+iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev)
+{
+	int i;
+	struct iavf_tx_queue *txq;
+
+	for (i = 0; i < dev->data->nb_tx_queues; i++) {
+		txq = dev->data->tx_queues[i];
+		if (iavf_tx_vec_queue_default(txq))
+			return -1;
+	}
+
+	return 0;
+}
+
 #endif
diff --git a/drivers/net/iavf/iavf_rxtx_vec_sse.c b/drivers/net/iavf/iavf_rxtx_vec_sse.c
index cc71f23a5..15c52a4c2 100644
--- a/drivers/net/iavf/iavf_rxtx_vec_sse.c
+++ b/drivers/net/iavf/iavf_rxtx_vec_sse.c
@@ -655,3 +655,15 @@ iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
 	rxq->ops = &sse_vec_rxq_ops;
 	return iavf_rxq_vec_setup_default(rxq);
 }
+
+int __attribute__((cold))
+iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
+{
+	return iavf_rx_vec_dev_check_default(dev);
+}
+
+int __attribute__((cold))
+iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
+{
+	return iavf_tx_vec_dev_check_default(dev);
+}
diff --git a/drivers/net/iavf/meson.build b/drivers/net/iavf/meson.build
index e5a2f5553..9c5278e17 100644
--- a/drivers/net/iavf/meson.build
+++ b/drivers/net/iavf/meson.build
@@ -17,4 +17,21 @@ sources = files(
 if arch_subdir == 'x86'
 	dpdk_conf.set('RTE_LIBRTE_IAVF_INC_VECTOR', 1)
 	sources += files('iavf_rxtx_vec_sse.c')
+
+	# compile AVX2 version if either:
+	# a. we have AVX supported in minimum instruction set baseline
+	# b. it's not minimum instruction set, but supported by compiler
+	if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2')
+		cflags += ['-DCC_AVX2_SUPPORT']
+		sources += files('iavf_rxtx_vec_avx2.c')
+	elif cc.has_argument('-mavx2')
+		cflags += ['-DCC_AVX2_SUPPORT']
+		i40e_avx2_lib = static_library('iavf_avx2_lib',
+				'iavf_rxtx_vec_avx2.c',
+				dependencies: [static_rte_ethdev,
+					static_rte_kvargs, static_rte_hash],
+				include_directories: includes,
+				c_args: [cflags, '-mavx2'])
+		objs += iavf_avx2_lib.extract_objects('iavf_rxtx_vec_avx2.c')
+	endif
 endif
-- 
2.17.1



More information about the dev mailing list