[dpdk-dev] [PATCH v3 12/14] drivers/baseband: add PMD for FPGA 5GNR FEC

Dave Burley dave.burley at accelercomm.com
Fri Mar 13 12:03:35 CET 2020


Acked-by: Dave Burley <dave.burley at accelercomm.com>

On 04/03/2020 18:55, Nicolas Chautru wrote:
> From: Nic Chautru <nicolas.chautru at intel.com>
>
> Supports for FEC 5G PMD Driver on FPGA card PAC N3000
>
> Signed-off-by: Nic Chautru <nicolas.chautru at intel.com>
> ---
>   config/common_base                                 |    5 +
>   doc/guides/bbdevs/fpga_5gnr_fec.rst                |  297 +++
>   doc/guides/bbdevs/index.rst                        |    1 +
>   doc/guides/rel_notes/release_20_05.rst             |    6 +
>   drivers/baseband/Makefile                          |    2 +
>   drivers/baseband/fpga_5gnr_fec/Makefile            |   29 +
>   drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.c     | 2552 ++++++++++++++++++++
>   drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h     |   74 +
>   drivers/baseband/fpga_5gnr_fec/meson.build         |    6 +
>   .../rte_pmd_bbdev_fpga_5gnr_fec_version.map        |   10 +
>   drivers/baseband/meson.build                       |    2 +-
>   mk/rte.app.mk                                      |    1 +
>   12 files changed, 2984 insertions(+), 1 deletion(-)
>   create mode 100644 doc/guides/bbdevs/fpga_5gnr_fec.rst
>   create mode 100644 drivers/baseband/fpga_5gnr_fec/Makefile
>   create mode 100644 drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.c
>   create mode 100644 drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h
>   create mode 100644 drivers/baseband/fpga_5gnr_fec/meson.build
>   create mode 100644 drivers/baseband/fpga_5gnr_fec/rte_pmd_bbdev_fpga_5gnr_fec_version.map
>
> diff --git a/config/common_base b/config/common_base
> index 7ca2f28..7280ee2 100644
> --- a/config/common_base
> +++ b/config/common_base
> @@ -578,6 +578,11 @@ CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW=y
>   CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC=y
>   
>   #
> +# Compile PMD for Intel FPGA 5GNR FEC bbdev device
> +#
> +CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC=y
> +
> +#
>   # Compile generic crypto device library
>   #
>   CONFIG_RTE_LIBRTE_CRYPTODEV=y
> diff --git a/doc/guides/bbdevs/fpga_5gnr_fec.rst b/doc/guides/bbdevs/fpga_5gnr_fec.rst
> new file mode 100644
> index 0000000..5641b1a
> --- /dev/null
> +++ b/doc/guides/bbdevs/fpga_5gnr_fec.rst
> @@ -0,0 +1,297 @@
> +..  SPDX-License-Identifier: BSD-3-Clause
> +    Copyright(c) 2019 Intel Corporation
> +
> +Intel(R) FPGA 5GNR FEC Poll Mode Driver
> +======================================
> +
> +The BBDEV FPGA 5GNR FEC poll mode driver (PMD) supports an FPGA implementation of a VRAN
> +LDPC Encode / Decode 5GNR wireless acceleration function, using Intel's PCI-e and FPGA
> +based Vista Creek device.
> +
> +Features
> +--------
> +
> +FPGA 5GNR FEC PMD supports the following features:
> +
> +- LDPC Encode in the DL
> +- LDPC Decode in the UL
> +- 8 VFs per PF (physical device)
> +- Maximum of 32 UL queues per VF
> +- Maximum of 32 DL queues per VF
> +- PCIe Gen-3 x8 Interface
> +- MSI-X
> +- SR-IOV
> +
> +FPGA 5GNR FEC PMD supports the following BBDEV capabilities:
> +
> +* For the LDPC encode operation:
> +   - ``RTE_BBDEV_LDPC_CRC_24B_ATTACH`` :  set to attach CRC24B to CB(s)
> +   - ``RTE_BBDEV_LDPC_RATE_MATCH`` :  if set then do not do Rate Match bypass
> +
> +* For the LDPC decode operation:
> +   - ``RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK`` :  check CRC24B from CB(s)
> +   - ``RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE`` :  disable early termination
> +   - ``RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP`` :  drops CRC24B bits appended while decoding
> +   - ``RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE`` :  provides an input for HARQ combining
> +   - ``RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE`` :  provides an input for HARQ combining
> +   - ``RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE`` :  HARQ memory input is internal
> +   - ``RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE`` :  HARQ memory output is internal
> +   - ``RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK`` :  loopback data to/from HARQ memory
> +   - ``RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS`` :  HARQ memory includes the fillers bits
> +
> +
> +Limitations
> +-----------
> +
> +FPGA 5GNR FEC does not support the following:
> +
> +- Scatter-Gather function
> +
> +
> +Installation
> +--------------
> +
> +Section 3 of the DPDK manual provides instuctions on installing and compiling DPDK. The
> +default set of bbdev compile flags may be found in config/common_base, where for example
> +the flag to build the FPGA 5GNR FEC device, ``CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC``,
> +is already set. It is assumed DPDK has been compiled using for instance:
> +
> +.. code-block:: console
> +
> +  make install T=x86_64-native-linuxapp-gcc
> +
> +
> +DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual.
> +The bbdev test application has been tested with a configuration 40 x 1GB hugepages. The
> +hugepage configuration of a server may be examined using:
> +
> +.. code-block:: console
> +
> +   grep Huge* /proc/meminfo
> +
> +
> +Initialization
> +--------------
> +
> +When the device first powers up, its PCI Physical Functions (PF) can be listed through this command:
> +
> +.. code-block:: console
> +
> +  sudo lspci -vd8086:0d8f
> +
> +The physical and virtual functions are compatible with Linux UIO drivers:
> +``vfio`` and ``igb_uio``. However, in order to work the FPGA 5GNR FEC device firstly needs
> +to be bound to one of these linux drivers through DPDK.
> +
> +
> +Bind PF UIO driver(s)
> +~~~~~~~~~~~~~~~~~~~~~
> +
> +Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use
> +``lspci`` to confirm the PF device is under use by ``igb_uio`` DPDK UIO driver.
> +
> +The igb_uio driver may be bound to the PF PCI device using one of three methods:
> +
> +
> +1. PCI functions (physical or virtual, depending on the use case) can be bound to
> +the UIO driver by repeating this command for every function.
> +
> +.. code-block:: console
> +
> +  cd <dpdk-top-level-directory>
> +  insmod ./build/kmod/igb_uio.ko
> +  echo "8086 0d8f" > /sys/bus/pci/drivers/igb_uio/new_id
> +  lspci -vd8086:0d8f
> +
> +
> +2. Another way to bind PF with DPDK UIO driver is by using the ``dpdk-devbind.py`` tool
> +
> +.. code-block:: console
> +
> +  cd <dpdk-top-level-directory>
> +  ./usertools/dpdk-devbind.py -b igb_uio 0000:06:00.0
> +
> +where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd8086:0d8f
> +
> +
> +3. A third way to bind is to use ``dpdk-setup.sh`` tool
> +
> +.. code-block:: console
> +
> +  cd <dpdk-top-level-directory>
> +  ./usertools/dpdk-setup.sh
> +
> +  select 'Bind Ethernet/Crypto/Baseband device to IGB UIO module'
> +  or
> +  select 'Bind Ethernet/Crypto/Baseband device to VFIO module' depending on driver required
> +  enter PCI device ID
> +  select 'Display current Ethernet/Crypto/Baseband device settings' to confirm binding
> +
> +
> +In the same way the FPGA 5GNR FEC PF can be bound with vfio, but vfio driver does not
> +support SR-IOV configuration right out of the box, so it will need to be patched.
> +
> +
> +Enable Virtual Functions
> +~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +Now, it should be visible in the printouts that PCI PF is under igb_uio control
> +"``Kernel driver in use: igb_uio``"
> +
> +To show the number of available VFs on the device, read ``sriov_totalvfs`` file..
> +
> +.. code-block:: console
> +
> +  cat /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_totalvfs
> +
> +  where 0000\:<b>\:<d>.<f> is the PCI device ID
> +
> +
> +To enable VFs via igb_uio, echo the number of virtual functions intended to
> +enable to ``max_vfs`` file..
> +
> +.. code-block:: console
> +
> +  echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/max_vfs
> +
> +
> +Afterwards, all VFs must be bound to appropriate UIO drivers as required, same
> +way it was done with the physical function previously.
> +
> +Enabling SR-IOV via vfio driver is pretty much the same, except that the file
> +name is different:
> +
> +.. code-block:: console
> +
> +  echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_numvfs
> +
> +
> +Configure the VFs through PF
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +The PCI virtual functions must be configured before working or getting assigned
> +to VMs/Containers. The configuration involves allocating the number of hardware
> +queues, priorities, load balance, bandwidth and other settings necessary for the
> +device to perform FEC functions.
> +
> +This configuration needs to be executed at least once after reboot or PCI FLR and can
> +be achieved by using the function ``fpga_5gnr_fec_configure()``, which sets up the
> +parameters defined in ``fpga_5gnr_fec_conf`` structure:
> +
> +.. code-block:: c
> +
> +  struct fpga_5gnr_fec_conf {
> +      bool pf_mode_en;
> +      uint8_t vf_ul_queues_number[FPGA_5GNR_FEC_NUM_VFS];
> +      uint8_t vf_dl_queues_number[FPGA_5GNR_FEC_NUM_VFS];
> +      uint8_t ul_bandwidth;
> +      uint8_t dl_bandwidth;
> +      uint8_t ul_load_balance;
> +      uint8_t dl_load_balance;
> +      uint16_t flr_time_out;
> +  };
> +
> +- ``pf_mode_en``: identifies whether only PF is to be used, or the VFs. PF and
> +  VFs are mutually exclusive and cannot run simultaneously.
> +  Set to 1 for PF mode enabled.
> +  If PF mode is enabled all queues available in the device are assigned
> +  exclusively to PF and 0 queues given to VFs.
> +
> +- ``vf_*l_queues_number``: defines the hardware queue mapping for every VF.
> +
> +- ``*l_bandwidth``: in case of congestion on PCIe interface. The device
> +  allocates different bandwidth to UL and DL. The weight is configured by this
> +  setting. The unit of weight is 3 code blocks. For example, if the code block
> +  cbps (code block per second) ratio between UL and DL is 12:1, then the
> +  configuration value should be set to 36:3. The schedule algorithm is based
> +  on code block regardless the length of each block.
> +
> +- ``*l_load_balance``: hardware queues are load-balanced in a round-robin
> +  fashion. Queues get filled first-in first-out until they reach a pre-defined
> +  watermark level, if exceeded, they won't get assigned new code blocks..
> +  This watermark is defined by this setting.
> +
> +  If all hardware queues exceeds the watermark, no code blocks will be
> +  streamed in from UL/DL code block FIFO.
> +
> +- ``flr_time_out``: specifies how many 16.384us to be FLR time out. The
> +  time_out = flr_time_out x 16.384us. For instance, if you want to set 10ms for
> +  the FLR time out then set this setting to 0x262=610.
> +
> +
> +An example configuration code calling the function ``fpga_5gnr_fec_configure()`` is shown
> +below:
> +
> +.. code-block:: c
> +
> +  struct fpga_5gnr_fec_conf conf;
> +  unsigned int i;
> +
> +  memset(&conf, 0, sizeof(struct fpga_5gnr_fec_conf));
> +  conf.pf_mode_en = 1;
> +
> +  for (i = 0; i < FPGA_5GNR_FEC_NUM_VFS; ++i) {
> +      conf.vf_ul_queues_number[i] = 4;
> +      conf.vf_dl_queues_number[i] = 4;
> +  }
> +  conf.ul_bandwidth = 12;
> +  conf.dl_bandwidth = 5;
> +  conf.dl_load_balance = 64;
> +  conf.ul_load_balance = 64;
> +
> +  /* setup FPGA PF */
> +  ret = fpga_5gnr_fec_configure(info->dev_name, &conf);
> +  TEST_ASSERT_SUCCESS(ret,
> +      "Failed to configure 4G FPGA PF for bbdev %s",
> +      info->dev_name);
> +
> +
> +Test Application
> +----------------
> +
> +BBDEV provides a test application, ``test-bbdev.py`` and range of test data for testing
> +the functionality of FPGA 5GNR FEC encode and decode, depending on the device's
> +capabilities. The test application is located under app->test-bbdev folder and has the
> +following options:
> +
> +.. code-block:: console
> +
> +  "-p", "--testapp-path": specifies path to the bbdev test app.
> +  "-e", "--eal-params"	: EAL arguments which are passed to the test app.
> +  "-t", "--timeout"	: Timeout in seconds (default=300).
> +  "-c", "--test-cases"	: Defines test cases to run. Run all if not specified.
> +  "-v", "--test-vector"	: Test vector path (default=dpdk_path+/app/test-bbdev/test_vectors/bbdev_null.data).
> +  "-n", "--num-ops"	: Number of operations to process on device (default=32).
> +  "-b", "--burst-size"	: Operations enqueue/dequeue burst size (default=32).
> +  "-l", "--num-lcores"	: Number of lcores to run (default=16).
> +  "-i", "--init-device" : Initialise PF device with default values.
> +
> +
> +To execute the test application tool using simple decode or encode data,
> +type one of the following:
> +
> +.. code-block:: console
> +
> +  ./test-bbdev.py -c validation -n 64 -b 1 -v ./ldpc_dec_default.data
> +  ./test-bbdev.py -c validation -n 64 -b 1 -v ./ldpc_enc_default.data
> +
> +
> +The test application ``test-bbdev.py``, supports the ability to configure the PF device with
> +a default set of values, if the "-i" or "- -init-device" option is included. The default values
> +are defined in test_bbdev_perf.c as:
> +
> +- VF_UL_QUEUE_VALUE 4
> +- VF_DL_QUEUE_VALUE 4
> +- UL_BANDWIDTH 3
> +- DL_BANDWIDTH 3
> +- UL_LOAD_BALANCE 128
> +- DL_LOAD_BALANCE 128
> +- FLR_TIMEOUT 610
> +
> +
> +Test Vectors
> +~~~~~~~~~~~~
> +
> +In addition to the simple LDPC decoder and LDPC encoder tests, bbdev also provides
> +a range of additional tests under the test_vectors folder, which may be useful. The results
> +of these tests will depend on the FPGA 5GNR FEC capabilities.
> diff --git a/doc/guides/bbdevs/index.rst b/doc/guides/bbdevs/index.rst
> index 005b95e..1a79343 100644
> --- a/doc/guides/bbdevs/index.rst
> +++ b/doc/guides/bbdevs/index.rst
> @@ -11,3 +11,4 @@ Baseband Device Drivers
>       null
>       turbo_sw
>       fpga_lte_fec
> +    fpga_5gnr_fec
> diff --git a/doc/guides/rel_notes/release_20_05.rst b/doc/guides/rel_notes/release_20_05.rst
> index d6c3dfb..083bb0d 100644
> --- a/doc/guides/rel_notes/release_20_05.rst
> +++ b/doc/guides/rel_notes/release_20_05.rst
> @@ -56,6 +56,12 @@ New Features
>        Also, make sure to start the actual text at the margin.
>        =========================================================
>   
> +* **Added a FPGA_5GNR_FEC bbdev PMD.**
> +
> +  Added a new ``fpga_5gnr_fec`` bbdev driver for the Intel\ |reg| FPGA PAC
> +  (Programmable  Acceleration Card) N3000.  See the
> +  :doc:`../bbdevs/fpga_5gnr_fec` BBDEV guide for more details on this new driver.
> +
>   * **Updated the TURBO_SW bbdev PMD.**
>   
>     Updated the ``turbo_sw`` bbdev driver with changes including:
> diff --git a/drivers/baseband/Makefile b/drivers/baseband/Makefile
> index 91048be..762773c 100644
> --- a/drivers/baseband/Makefile
> +++ b/drivers/baseband/Makefile
> @@ -12,5 +12,7 @@ DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += turbo_sw
>   DEPDIRS-turbo_sw = $(core-libs)
>   DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC) += fpga_lte_fec
>   DEPDIRS-fpga_lte_fec = $(core-libs)
> +DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC) += fpga_5gnr_fec
> +DEPDIRS-fpga_5gnr_fec = $(core-libs)
>   
>   include $(RTE_SDK)/mk/rte.subdir.mk
> diff --git a/drivers/baseband/fpga_5gnr_fec/Makefile b/drivers/baseband/fpga_5gnr_fec/Makefile
> new file mode 100644
> index 0000000..de80d67
> --- /dev/null
> +++ b/drivers/baseband/fpga_5gnr_fec/Makefile
> @@ -0,0 +1,29 @@
> +# SPDX-License-Identifier: BSD-3-Clause
> +# Copyright(c) 2019 Intel Corporation
> +
> +include $(RTE_SDK)/mk/rte.vars.mk
> +
> +# library name
> +LIB = librte_pmd_bbdev_fpga_5gnr_fec.a
> +
> +# build flags
> +CFLAGS += -DALLOW_EXPERIMENTAL_API
> +CFLAGS += -O3
> +CFLAGS += $(WERROR_FLAGS)
> +LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring
> +LDLIBS += -lrte_bbdev
> +LDLIBS += -lrte_pci -lrte_bus_pci
> +
> +# versioning export map
> +EXPORT_MAP := rte_pmd_bbdev_fpga_5gnr_fec_version.map
> +
> +# library version
> +LIBABIVER := 1
> +
> +# library source files
> +SRCS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC) += fpga_5gnr_fec.c
> +
> +# export include files
> +SYMLINK-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC)-include += fpga_5gnr_fec.h
> +
> +include $(RTE_SDK)/mk/rte.lib.mk
> diff --git a/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.c b/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.c
> new file mode 100644
> index 0000000..5935e24
> --- /dev/null
> +++ b/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.c
> @@ -0,0 +1,2552 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2020 Intel Corporation
> + */
> +
> +#include <unistd.h>
> +
> +#include <rte_common.h>
> +#include <rte_log.h>
> +#include <rte_dev.h>
> +#include <rte_malloc.h>
> +#include <rte_mempool.h>
> +#include <rte_errno.h>
> +#include <rte_pci.h>
> +#include <rte_bus_pci.h>
> +#include <rte_byteorder.h>
> +#ifdef RTE_BBDEV_OFFLOAD_COST
> +#include <rte_cycles.h>
> +#endif
> +
> +#include <rte_bbdev.h>
> +#include <rte_bbdev_pmd.h>
> +
> +#include "fpga_5gnr_fec.h"
> +
> +/* 5GNR SW PMD logging ID */
> +static int fpga_5gnr_fec_logtype;
> +
> +/* Helper macro for logging */
> +#define rte_bbdev_log(level, fmt, ...) \
> +	rte_log(RTE_LOG_ ## level, fpga_5gnr_fec_logtype, fmt "\n", \
> +		##__VA_ARGS__)
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +#define rte_bbdev_log_debug(fmt, ...) \
> +		rte_bbdev_log(DEBUG, "fpga_5gnr_fec: " fmt, \
> +		##__VA_ARGS__)
> +#else
> +#define rte_bbdev_log_debug(fmt, ...)
> +#endif
> +
> +/* FPGA 5GNR FEC driver names */
> +#define FPGA_5GNR_FEC_PF_DRIVER_NAME intel_fpga_5gnr_fec_pf
> +#define FPGA_5GNR_FEC_VF_DRIVER_NAME intel_fpga_5gnr_fec_vf
> +
> +/* FPGA 5GNR FEC PCI vendor & device IDs */
> +#define FPGA_5GNR_FEC_VENDOR_ID (0x8086)
> +#define FPGA_5GNR_FEC_PF_DEVICE_ID (0x0D8F)
> +#define FPGA_5GNR_FEC_VF_DEVICE_ID (0x0D90)
> +
> +/* Align DMA descriptors to 256 bytes - cache-aligned */
> +#define FPGA_RING_DESC_ENTRY_LENGTH (8)
> +/* Ring size is in 256 bits (32 bytes) units */
> +#define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
> +/* Maximum size of queue */
> +#define FPGA_RING_MAX_SIZE (1024)
> +#define FPGA_FLR_TIMEOUT_UNIT (16.384)
> +
> +#define FPGA_NUM_UL_QUEUES (32)
> +#define FPGA_NUM_DL_QUEUES (32)
> +#define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
> +#define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
> +
> +#define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
> +
> +#define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
> +#define FPGA_HARQ_RDY_TIMEOUT (10)
> +#define FPGA_TIMEOUT_CHECK_INTERVAL (5)
> +#define FPGA_DDR_OVERFLOW (0x10)
> +
> +#define FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES 8
> +#define FPGA_5GNR_FEC_DDR_RD_DATA_LEN_IN_BYTES 8
> +
> +
> +/* FPGA 5GNR FEC Register mapping on BAR0 */
> +enum {
> +	FPGA_5GNR_FEC_VERSION_ID = 0x00000000, /* len: 4B */
> +	FPGA_5GNR_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
> +	FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
> +	FPGA_5GNR_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
> +	FPGA_5GNR_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
> +	FPGA_5GNR_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
> +	FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
> +	FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
> +	FPGA_5GNR_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
> +	FPGA_5GNR_FEC_RING_CTRL_REGS = 0x00000200, /* len: 2048B */
> +	FPGA_5GNR_FEC_DDR4_WR_ADDR_REGS = 0x00000A00, /* len: 4B */
> +	FPGA_5GNR_FEC_DDR4_WR_DATA_REGS = 0x00000A08, /* len: 8B */
> +	FPGA_5GNR_FEC_DDR4_WR_DONE_REGS = 0x00000A10, /* len: 1B */
> +	FPGA_5GNR_FEC_DDR4_RD_ADDR_REGS = 0x00000A18, /* len: 4B */
> +	FPGA_5GNR_FEC_DDR4_RD_DONE_REGS = 0x00000A20, /* len: 1B */
> +	FPGA_5GNR_FEC_DDR4_RD_RDY_REGS = 0x00000A28, /* len: 1B */
> +	FPGA_5GNR_FEC_DDR4_RD_DATA_REGS = 0x00000A30, /* len: 8B */
> +	FPGA_5GNR_FEC_DDR4_ADDR_RDY_REGS = 0x00000A38, /* len: 1B */
> +	FPGA_5GNR_FEC_HARQ_BUF_SIZE_RDY_REGS = 0x00000A40, /* len: 1B */
> +	FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS = 0x00000A48  /* len: 4B */
> +};
> +
> +/* FPGA 5GNR FEC Ring Control Registers */
> +enum {
> +	FPGA_5GNR_FEC_RING_HEAD_ADDR = 0x00000008,
> +	FPGA_5GNR_FEC_RING_SIZE = 0x00000010,
> +	FPGA_5GNR_FEC_RING_MISC = 0x00000014,
> +	FPGA_5GNR_FEC_RING_ENABLE = 0x00000015,
> +	FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
> +	FPGA_5GNR_FEC_RING_SHADOW_TAIL = 0x00000018,
> +	FPGA_5GNR_FEC_RING_HEAD_POINT = 0x0000001C
> +};
> +
> +/* FPGA 5GNR FEC DESCRIPTOR ERROR */
> +enum {
> +	DESC_ERR_NO_ERR = 0x0,
> +	DESC_ERR_K_P_OUT_OF_RANGE = 0x1,
> +	DESC_ERR_Z_C_NOT_LEGAL = 0x2,
> +	DESC_ERR_DESC_OFFSET_ERR = 0x3,
> +	DESC_ERR_DESC_READ_FAIL = 0x8,
> +	DESC_ERR_DESC_READ_TIMEOUT = 0x9,
> +	DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
> +	DESC_ERR_CB_READ_FAIL = 0xC,
> +	DESC_ERR_CB_READ_TIMEOUT = 0xD,
> +	DESC_ERR_CB_READ_TLP_POISONED = 0xE,
> +	DESC_ERR_HBSTORE_ERR = 0xF
> +};
> +
> +
> +/* FPGA 5GNR FEC DMA Encoding Request Descriptor */
> +struct __attribute__((__packed__)) fpga_dma_enc_desc {
> +	uint32_t done:1,
> +		rsrvd0:7,
> +		error:4,
> +		rsrvd1:4,
> +		num_null:10,
> +		rsrvd2:6;
> +	uint32_t ncb:15,
> +		rsrvd3:1,
> +		k0:16;
> +	uint32_t irq_en:1,
> +		crc_en:1,
> +		rsrvd4:1,
> +		qm_idx:3,
> +		bg_idx:1,
> +		zc:9,
> +		desc_idx:10,
> +		rsrvd5:6;
> +	uint16_t rm_e;
> +	uint16_t k_;
> +	uint32_t out_addr_lw;
> +	uint32_t out_addr_hi;
> +	uint32_t in_addr_lw;
> +	uint32_t in_addr_hi;
> +
> +	union {
> +		struct {
> +			/* Virtual addresses used to retrieve SW context info */
> +			void *op_addr;
> +			/* Stores information about total number of Code Blocks
> +			 * in currently processed Transport Block
> +			 */
> +			uint64_t cbs_in_op;
> +		};
> +
> +		uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
> +					(FPGA_RING_DESC_ENTRY_LENGTH - 1)];
> +	};
> +};
> +
> +
> +/* FPGA 5GNR DPC FEC DMA Decoding Request Descriptor */
> +struct __attribute__((__packed__)) fpga_dma_dec_desc {
> +	uint32_t done:1,
> +		iter:5,
> +		et_pass:1,
> +		crcb_pass:1,
> +		error:4,
> +		qm_idx:3,
> +		max_iter:5,
> +		bg_idx:1,
> +		rsrvd0:1,
> +		harqin_en:1,
> +		zc:9;
> +	uint32_t hbstroe_offset:22,
> +		num_null:10;
> +	uint32_t irq_en:1,
> +		ncb:15,
> +		desc_idx:10,
> +		drop_crc24b:1,
> +		crc24b_ind:1,
> +		rv:2,
> +		et_dis:1,
> +		rsrvd2:1;
> +	uint32_t harq_input_length:16,
> +		rm_e:16;/*the inbound data byte length*/
> +	uint32_t out_addr_lw;
> +	uint32_t out_addr_hi;
> +	uint32_t in_addr_lw;
> +	uint32_t in_addr_hi;
> +
> +	union {
> +		struct {
> +			/* Virtual addresses used to retrieve SW context info */
> +			void *op_addr;
> +			/* Stores information about total number of Code Blocks
> +			 * in currently processed Transport Block
> +			 */
> +			uint8_t cbs_in_op;
> +		};
> +
> +		uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
> +	};
> +};
> +
> +/* FPGA 5GNR DMA Descriptor */
> +union fpga_dma_desc {
> +	struct fpga_dma_enc_desc enc_req;
> +	struct fpga_dma_dec_desc dec_req;
> +};
> +
> +/* FPGA 5GNR FEC Ring Control Register */
> +struct __attribute__((__packed__)) fpga_ring_ctrl_reg {
> +	uint64_t ring_base_addr;
> +	uint64_t ring_head_addr;
> +	uint16_t ring_size:11;
> +	uint16_t rsrvd0;
> +	union { /* Miscellaneous register */
> +		uint8_t misc;
> +		uint8_t max_ul_dec:5,
> +			max_ul_dec_en:1,
> +			rsrvd1:2;
> +	};
> +	uint8_t enable;
> +	uint8_t flush_queue_en;
> +	uint8_t rsrvd2;
> +	uint16_t shadow_tail;
> +	uint16_t rsrvd3;
> +	uint16_t head_point;
> +	uint16_t rsrvd4;
> +
> +};
> +
> +/* Private data structure for each FPGA FEC device */
> +struct fpga_5gnr_fec_device {
> +	/** Base address of MMIO registers (BAR0) */
> +	void *mmio_base;
> +	/** Base address of memory for sw rings */
> +	void *sw_rings;
> +	/** Physical address of sw_rings */
> +	rte_iova_t sw_rings_phys;
> +	/** Number of bytes available for each queue in device. */
> +	uint32_t sw_ring_size;
> +	/** Max number of entries available for each queue in device */
> +	uint32_t sw_ring_max_depth;
> +	/** Base address of response tail pointer buffer */
> +	uint32_t *tail_ptrs;
> +	/** Physical address of tail pointers */
> +	rte_iova_t tail_ptr_phys;
> +	/** Queues flush completion flag */
> +	uint64_t *flush_queue_status;
> +	/* Bitmap capturing which Queues are bound to the PF/VF */
> +	uint64_t q_bound_bit_map;
> +	/* Bitmap capturing which Queues have already been assigned */
> +	uint64_t q_assigned_bit_map;
> +	/** True if this is a PF FPGA FEC device */
> +	bool pf_device;
> +};
> +
> +/* Structure associated with each queue. */
> +struct __rte_cache_aligned fpga_queue {
> +	struct fpga_ring_ctrl_reg ring_ctrl_reg;  /* Ring Control Register */
> +	union fpga_dma_desc *ring_addr;  /* Virtual address of software ring */
> +	uint64_t *ring_head_addr;  /* Virtual address of completion_head */
> +	uint64_t shadow_completion_head; /* Shadow completion head value */
> +	uint16_t head_free_desc;  /* Ring head */
> +	uint16_t tail;  /* Ring tail */
> +	/* Mask used to wrap enqueued descriptors on the sw ring */
> +	uint32_t sw_ring_wrap_mask;
> +	uint32_t irq_enable;  /* Enable ops dequeue interrupts if set to 1 */
> +	uint8_t q_idx;  /* Queue index */
> +	struct fpga_5gnr_fec_device *d;
> +	/* MMIO register of shadow_tail used to enqueue descriptors */
> +	void *shadow_tail_addr;
> +};
> +
> +/* Write to 16 bit MMIO register address */
> +static inline void
> +mmio_write_16(void *addr, uint16_t value)
> +{
> +	*((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
> +}
> +
> +/* Write to 32 bit MMIO register address */
> +static inline void
> +mmio_write_32(void *addr, uint32_t value)
> +{
> +	*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
> +}
> +
> +/* Write to 64 bit MMIO register address */
> +static inline void
> +mmio_write_64(void *addr, uint64_t value)
> +{
> +	*((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
> +}
> +
> +/* Write a 8 bit register of a FPGA 5GNR FEC device */
> +static inline void
> +fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
> +{
> +	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
> +	*((volatile uint8_t *)(reg_addr)) = payload;
> +}
> +
> +/* Write a 16 bit register of a FPGA 5GNR FEC device */
> +static inline void
> +fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
> +{
> +	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
> +	mmio_write_16(reg_addr, payload);
> +}
> +
> +/* Write a 32 bit register of a FPGA 5GNR FEC device */
> +static inline void
> +fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
> +{
> +	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
> +	mmio_write_32(reg_addr, payload);
> +}
> +
> +/* Write a 64 bit register of a FPGA 5GNR FEC device */
> +static inline void
> +fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
> +{
> +	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
> +	mmio_write_64(reg_addr, payload);
> +}
> +
> +/* Write a ring control register of a FPGA 5GNR FEC device */
> +static inline void
> +fpga_ring_reg_write(void *mmio_base, uint32_t offset,
> +		struct fpga_ring_ctrl_reg payload)
> +{
> +	fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
> +	fpga_reg_write_64(mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_ADDR,
> +			payload.ring_head_addr);
> +	fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_SIZE,
> +			payload.ring_size);
> +	fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_POINT,
> +			payload.head_point);
> +	fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN,
> +			payload.flush_queue_en);
> +	fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL,
> +			payload.shadow_tail);
> +	fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_MISC,
> +			payload.misc);
> +	fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
> +			payload.enable);
> +}
> +
> +/* Read a register of FPGA 5GNR FEC device */
> +static uint32_t
> +fpga_reg_read_32(void *mmio_base, uint32_t offset)
> +{
> +	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
> +	uint32_t ret = *((volatile uint32_t *)(reg_addr));
> +	return rte_le_to_cpu_32(ret);
> +}
> +
> +/* Read a register of FPGA 5GNR FEC device */
> +static uint8_t
> +fpga_reg_read_8(void *mmio_base, uint32_t offset)
> +{
> +	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
> +	return *((volatile uint8_t *)(reg_addr));
> +}
> +
> +/* Read a register of FPGA 5GNR FEC device */
> +static uint64_t
> +fpga_reg_read_64(void *mmio_base, uint32_t offset)
> +{
> +	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
> +	uint64_t ret = *((volatile uint64_t *)(reg_addr));
> +	return rte_le_to_cpu_64(ret);
> +}
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +
> +/* Read a register of FPGA 5GNR FEC device */
> +static uint16_t
> +fpga_reg_read_16(void *mmio_base, uint32_t offset)
> +{
> +	void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
> +	uint16_t ret = *((volatile uint16_t *)(reg_addr));
> +	return rte_le_to_cpu_16(ret);
> +}
> +
> +/* Read Ring Control Register of FPGA 5GNR FEC device */
> +static inline void
> +print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
> +{
> +	rte_bbdev_log_debug(
> +		"FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
> +		PRIx32, mmio_base, offset);
> +	rte_bbdev_log_debug(
> +		"RING_BASE_ADDR = 0x%016"PRIx64,
> +		fpga_reg_read_64(mmio_base, offset));
> +	rte_bbdev_log_debug(
> +		"RING_HEAD_ADDR = 0x%016"PRIx64,
> +		fpga_reg_read_64(mmio_base, offset +
> +				FPGA_5GNR_FEC_RING_HEAD_ADDR));
> +	rte_bbdev_log_debug(
> +		"RING_SIZE = 0x%04"PRIx16,
> +		fpga_reg_read_16(mmio_base, offset +
> +				FPGA_5GNR_FEC_RING_SIZE));
> +	rte_bbdev_log_debug(
> +		"RING_MISC = 0x%02"PRIx8,
> +		fpga_reg_read_8(mmio_base, offset +
> +				FPGA_5GNR_FEC_RING_MISC));
> +	rte_bbdev_log_debug(
> +		"RING_ENABLE = 0x%02"PRIx8,
> +		fpga_reg_read_8(mmio_base, offset +
> +				FPGA_5GNR_FEC_RING_ENABLE));
> +	rte_bbdev_log_debug(
> +		"RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
> +		fpga_reg_read_8(mmio_base, offset +
> +				FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN));
> +	rte_bbdev_log_debug(
> +		"RING_SHADOW_TAIL = 0x%04"PRIx16,
> +		fpga_reg_read_16(mmio_base, offset +
> +				FPGA_5GNR_FEC_RING_SHADOW_TAIL));
> +	rte_bbdev_log_debug(
> +		"RING_HEAD_POINT = 0x%04"PRIx16,
> +		fpga_reg_read_16(mmio_base, offset +
> +				FPGA_5GNR_FEC_RING_HEAD_POINT));
> +}
> +
> +/* Read Static Register of FPGA 5GNR FEC device */
> +static inline void
> +print_static_reg_debug_info(void *mmio_base)
> +{
> +	uint16_t config = fpga_reg_read_16(mmio_base,
> +			FPGA_5GNR_FEC_CONFIGURATION);
> +	uint8_t qmap_done = fpga_reg_read_8(mmio_base,
> +			FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE);
> +	uint16_t lb_factor = fpga_reg_read_16(mmio_base,
> +			FPGA_5GNR_FEC_LOAD_BALANCE_FACTOR);
> +	uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
> +			FPGA_5GNR_FEC_RING_DESC_LEN);
> +	uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
> +			FPGA_5GNR_FEC_FLR_TIME_OUT);
> +
> +	rte_bbdev_log_debug("UL.DL Weights = %u.%u",
> +			((uint8_t)config), ((uint8_t)(config >> 8)));
> +	rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
> +			((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
> +	rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
> +			(qmap_done > 0) ? "READY" : "NOT-READY");
> +	rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
> +			ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
> +	rte_bbdev_log_debug("FLR Timeout = %f usec",
> +			(float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
> +}
> +
> +/* Print decode DMA Descriptor of FPGA 5GNR Decoder device */
> +static void
> +print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
> +{
> +	rte_bbdev_log_debug("DMA response desc %p\n"
> +		"\t-- done(%"PRIu32") | iter(%"PRIu32") | et_pass(%"PRIu32")"
> +		" | crcb_pass (%"PRIu32") | error(%"PRIu32")\n"
> +		"\t-- qm_idx(%"PRIu32") | max_iter(%"PRIu32") | "
> +		"bg_idx (%"PRIu32") | harqin_en(%"PRIu32") | zc(%"PRIu32")\n"
> +		"\t-- hbstroe_offset(%"PRIu32") | num_null (%"PRIu32") "
> +		"| irq_en(%"PRIu32")\n"
> +		"\t-- ncb(%"PRIu32") | desc_idx (%"PRIu32") | "
> +		"drop_crc24b(%"PRIu32") | RV (%"PRIu32")\n"
> +		"\t-- crc24b_ind(%"PRIu32") | et_dis (%"PRIu32")\n"
> +		"\t-- harq_input_length(%"PRIu32") | rm_e(%"PRIu32")\n"
> +		"\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32")"
> +		"| out_add (0x%08"PRIx32"%08"PRIx32")",
> +		desc,
> +		(uint32_t)desc->dec_req.done,
> +		(uint32_t)desc->dec_req.iter,
> +		(uint32_t)desc->dec_req.et_pass,
> +		(uint32_t)desc->dec_req.crcb_pass,
> +		(uint32_t)desc->dec_req.error,
> +		(uint32_t)desc->dec_req.qm_idx,
> +		(uint32_t)desc->dec_req.max_iter,
> +		(uint32_t)desc->dec_req.bg_idx,
> +		(uint32_t)desc->dec_req.harqin_en,
> +		(uint32_t)desc->dec_req.zc,
> +		(uint32_t)desc->dec_req.hbstroe_offset,
> +		(uint32_t)desc->dec_req.num_null,
> +		(uint32_t)desc->dec_req.irq_en,
> +		(uint32_t)desc->dec_req.ncb,
> +		(uint32_t)desc->dec_req.desc_idx,
> +		(uint32_t)desc->dec_req.drop_crc24b,
> +		(uint32_t)desc->dec_req.rv,
> +		(uint32_t)desc->dec_req.crc24b_ind,
> +		(uint32_t)desc->dec_req.et_dis,
> +		(uint32_t)desc->dec_req.harq_input_length,
> +		(uint32_t)desc->dec_req.rm_e,
> +		(uint32_t)desc->dec_req.cbs_in_op,
> +		(uint32_t)desc->dec_req.in_addr_hi,
> +		(uint32_t)desc->dec_req.in_addr_lw,
> +		(uint32_t)desc->dec_req.out_addr_hi,
> +		(uint32_t)desc->dec_req.out_addr_lw);
> +	uint32_t *word = (uint32_t *) desc;
> +	rte_bbdev_log_debug("%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n"
> +			"%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n",
> +			word[0], word[1], word[2], word[3],
> +			word[4], word[5], word[6], word[7]);
> +}
> +
> +/* Print decode DMA Descriptor of FPGA 5GNR encoder device */
> +static void
> +print_dma_enc_desc_debug_info(union fpga_dma_desc *desc)
> +{
> +	rte_bbdev_log_debug("DMA response desc %p\n"
> +			"%"PRIu32" %"PRIu32"\n"
> +			"K' %"PRIu32" E %"PRIu32" desc %"PRIu32" Z %"PRIu32"\n"
> +			"BG %"PRIu32" Qm %"PRIu32" CRC %"PRIu32" IRQ %"PRIu32"\n"
> +			"k0 %"PRIu32" Ncb %"PRIu32" F %"PRIu32"\n",
> +			desc,
> +			(uint32_t)desc->enc_req.done,
> +			(uint32_t)desc->enc_req.error,
> +
> +			(uint32_t)desc->enc_req.k_,
> +			(uint32_t)desc->enc_req.rm_e,
> +			(uint32_t)desc->enc_req.desc_idx,
> +			(uint32_t)desc->enc_req.zc,
> +
> +			(uint32_t)desc->enc_req.bg_idx,
> +			(uint32_t)desc->enc_req.qm_idx,
> +			(uint32_t)desc->enc_req.crc_en,
> +			(uint32_t)desc->enc_req.irq_en,
> +
> +			(uint32_t)desc->enc_req.k0,
> +			(uint32_t)desc->enc_req.ncb,
> +			(uint32_t)desc->enc_req.num_null);
> +	uint32_t *word = (uint32_t *) desc;
> +	rte_bbdev_log_debug("%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n"
> +			"%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n%08"PRIx32"\n",
> +			word[0], word[1], word[2], word[3],
> +			word[4], word[5], word[6], word[7]);
> +}
> +
> +#endif
> +
> +static int
> +fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
> +{
> +	/* Number of queues bound to a PF/VF */
> +	uint32_t hw_q_num = 0;
> +	uint32_t ring_size, payload, address, q_id, offset;
> +	rte_iova_t phys_addr;
> +	struct fpga_ring_ctrl_reg ring_reg;
> +	struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
> +
> +	address = FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE;
> +	if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
> +		rte_bbdev_log(ERR,
> +				"Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
> +				dev->data->name);
> +		return -EPERM;
> +	}
> +
> +	/* Clear queue registers structure */
> +	memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
> +
> +	/* Scan queue map.
> +	 * If a queue is valid and mapped to a calling PF/VF the read value is
> +	 * replaced with a queue ID and if it's not then
> +	 * FPGA_INVALID_HW_QUEUE_ID is returned.
> +	 */
> +	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
> +		uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
> +				FPGA_5GNR_FEC_QUEUE_MAP + (q_id << 2));
> +
> +		rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
> +				dev->device->name, q_id, hw_q_id);
> +
> +		if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
> +			fpga_dev->q_bound_bit_map |= (1ULL << q_id);
> +			/* Clear queue register of found queue */
> +			offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
> +				(sizeof(struct fpga_ring_ctrl_reg) * q_id);
> +			fpga_ring_reg_write(fpga_dev->mmio_base,
> +					offset, ring_reg);
> +			++hw_q_num;
> +		}
> +	}
> +	if (hw_q_num == 0) {
> +		rte_bbdev_log(ERR,
> +			"No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
> +		return -ENODEV;
> +	}
> +
> +	if (num_queues > hw_q_num) {
> +		rte_bbdev_log(ERR,
> +			"Not enough queues for device %s! Requested: %u, available: %u",
> +			dev->device->name, num_queues, hw_q_num);
> +		return -EINVAL;
> +	}
> +
> +	ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
> +
> +	/* Enforce 32 byte alignment */
> +	RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
> +
> +	/* Allocate memory for SW descriptor rings */
> +	fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
> +			num_queues * ring_size, RTE_CACHE_LINE_SIZE,
> +			socket_id);
> +	if (fpga_dev->sw_rings == NULL) {
> +		rte_bbdev_log(ERR,
> +				"Failed to allocate memory for %s:%u sw_rings",
> +				dev->device->driver->name, dev->data->dev_id);
> +		return -ENOMEM;
> +	}
> +
> +	fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
> +	fpga_dev->sw_ring_size = ring_size;
> +	fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
> +
> +	/* Allocate memory for ring flush status */
> +	fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
> +			sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
> +	if (fpga_dev->flush_queue_status == NULL) {
> +		rte_bbdev_log(ERR,
> +				"Failed to allocate memory for %s:%u flush_queue_status",
> +				dev->device->driver->name, dev->data->dev_id);
> +		return -ENOMEM;
> +	}
> +
> +	/* Set the flush status address registers */
> +	phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
> +
> +	address = FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_LW;
> +	payload = (uint32_t)(phys_addr);
> +	fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
> +
> +	address = FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_HI;
> +	payload = (uint32_t)(phys_addr >> 32);
> +	fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
> +
> +	return 0;
> +}
> +
> +static int
> +fpga_dev_close(struct rte_bbdev *dev)
> +{
> +	struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
> +
> +	rte_free(fpga_dev->sw_rings);
> +	rte_free(fpga_dev->flush_queue_status);
> +
> +	return 0;
> +}
> +
> +static void
> +fpga_dev_info_get(struct rte_bbdev *dev,
> +		struct rte_bbdev_driver_info *dev_info)
> +{
> +	struct fpga_5gnr_fec_device *d = dev->data->dev_private;
> +	uint32_t q_id = 0;
> +
> +	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
> +		{
> +			.type   = RTE_BBDEV_OP_LDPC_ENC,
> +			.cap.ldpc_enc = {
> +				.capability_flags =
> +						RTE_BBDEV_LDPC_RATE_MATCH |
> +						RTE_BBDEV_LDPC_ENC_INTERRUPTS |
> +						RTE_BBDEV_LDPC_CRC_24B_ATTACH,
> +				.num_buffers_src =
> +						RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
> +				.num_buffers_dst =
> +						RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
> +			}
> +		},
> +		{
> +		.type   = RTE_BBDEV_OP_LDPC_DEC,
> +		.cap.ldpc_dec = {
> +			.capability_flags =
> +				RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
> +				RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
> +				RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
> +				RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
> +				RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
> +				RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
> +				RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
> +				RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK |
> +				RTE_BBDEV_LDPC_DEC_INTERRUPTS |
> +				RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS,
> +			.llr_size = 6,
> +			.llr_decimals = 2,
> +			.num_buffers_src =
> +					RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
> +			.num_buffers_hard_out =
> +					RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
> +			.num_buffers_soft_out = 0,
> +		}
> +		},
> +		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
> +	};
> +
> +	/* Check the HARQ DDR size available */
> +	uint8_t timeout_counter = 0;
> +	uint32_t harq_buf_ready = fpga_reg_read_32(d->mmio_base,
> +			FPGA_5GNR_FEC_HARQ_BUF_SIZE_RDY_REGS);
> +	while (harq_buf_ready != 1) {
> +		usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
> +		timeout_counter++;
> +		harq_buf_ready = fpga_reg_read_32(d->mmio_base,
> +				FPGA_5GNR_FEC_HARQ_BUF_SIZE_RDY_REGS);
> +		if (timeout_counter > FPGA_HARQ_RDY_TIMEOUT) {
> +			rte_bbdev_log(ERR, "HARQ Buffer not ready %d",
> +					harq_buf_ready);
> +			harq_buf_ready = 1;
> +		}
> +	}
> +	uint32_t harq_buf_size = fpga_reg_read_32(d->mmio_base,
> +			FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
> +
> +	static struct rte_bbdev_queue_conf default_queue_conf;
> +	default_queue_conf.socket = dev->data->socket_id;
> +	default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
> +
> +	dev_info->driver_name = dev->device->driver->name;
> +	dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
> +	dev_info->hardware_accelerated = true;
> +	dev_info->min_alignment = 64;
> +	dev_info->harq_buffer_size = (harq_buf_size >> 10) + 1;
> +	dev_info->default_queue_conf = default_queue_conf;
> +	dev_info->capabilities = bbdev_capabilities;
> +	dev_info->cpu_flag_reqs = NULL;
> +
> +	/* Calculates number of queues assigned to device */
> +	dev_info->max_num_queues = 0;
> +	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
> +		uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
> +				FPGA_5GNR_FEC_QUEUE_MAP + (q_id << 2));
> +		if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
> +			dev_info->max_num_queues++;
> +	}
> +}
> +
> +/**
> + * Find index of queue bound to current PF/VF which is unassigned. Return -1
> + * when there is no available queue
> + */
> +static int
> +fpga_find_free_queue_idx(struct rte_bbdev *dev,
> +		const struct rte_bbdev_queue_conf *conf)
> +{
> +	struct fpga_5gnr_fec_device *d = dev->data->dev_private;
> +	uint64_t q_idx;
> +	uint8_t i = 0;
> +	uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
> +
> +	if (conf->op_type == RTE_BBDEV_OP_LDPC_ENC) {
> +		i = FPGA_NUM_DL_QUEUES;
> +		range = FPGA_TOTAL_NUM_QUEUES;
> +	}
> +
> +	for (; i < range; ++i) {
> +		q_idx = 1ULL << i;
> +		/* Check if index of queue is bound to current PF/VF */
> +		if (d->q_bound_bit_map & q_idx)
> +			/* Check if found queue was not already assigned */
> +			if (!(d->q_assigned_bit_map & q_idx)) {
> +				d->q_assigned_bit_map |= q_idx;
> +				return i;
> +			}
> +	}
> +
> +	rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
> +
> +	return -1;
> +}
> +
> +static int
> +fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
> +		const struct rte_bbdev_queue_conf *conf)
> +{
> +	uint32_t address, ring_offset;
> +	struct fpga_5gnr_fec_device *d = dev->data->dev_private;
> +	struct fpga_queue *q;
> +	int8_t q_idx;
> +
> +	/* Check if there is a free queue to assign */
> +	q_idx = fpga_find_free_queue_idx(dev, conf);
> +	if (q_idx == -1)
> +		return -1;
> +
> +	/* Allocate the queue data structure. */
> +	q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
> +			RTE_CACHE_LINE_SIZE, conf->socket);
> +	if (q == NULL) {
> +		/* Mark queue as un-assigned */
> +		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
> +		rte_bbdev_log(ERR, "Failed to allocate queue memory");
> +		return -ENOMEM;
> +	}
> +
> +	q->d = d;
> +	q->q_idx = q_idx;
> +
> +	/* Set ring_base_addr */
> +	q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
> +	q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
> +			(d->sw_ring_size * queue_id);
> +
> +	/* Allocate memory for Completion Head variable*/
> +	q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
> +			sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
> +	if (q->ring_head_addr == NULL) {
> +		/* Mark queue as un-assigned */
> +		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
> +		rte_free(q);
> +		rte_bbdev_log(ERR,
> +				"Failed to allocate memory for %s:%u completion_head",
> +				dev->device->driver->name, dev->data->dev_id);
> +		return -ENOMEM;
> +	}
> +	/* Set ring_head_addr */
> +	q->ring_ctrl_reg.ring_head_addr =
> +			rte_malloc_virt2iova(q->ring_head_addr);
> +
> +	/* Clear shadow_completion_head */
> +	q->shadow_completion_head = 0;
> +
> +	/* Set ring_size */
> +	if (conf->queue_size > FPGA_RING_MAX_SIZE) {
> +		/* Mark queue as un-assigned */
> +		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
> +		rte_free(q->ring_head_addr);
> +		rte_free(q);
> +		rte_bbdev_log(ERR,
> +				"Size of queue is too big %d (MAX: %d ) for %s:%u",
> +				conf->queue_size, FPGA_RING_MAX_SIZE,
> +				dev->device->driver->name, dev->data->dev_id);
> +		return -EINVAL;
> +	}
> +	q->ring_ctrl_reg.ring_size = conf->queue_size;
> +
> +	/* Set Miscellaneous FPGA register*/
> +	/* Max iteration number for TTI mitigation - todo */
> +	q->ring_ctrl_reg.max_ul_dec = 0;
> +	/* Enable max iteration number for TTI - todo */
> +	q->ring_ctrl_reg.max_ul_dec_en = 0;
> +
> +	/* Enable the ring */
> +	q->ring_ctrl_reg.enable = 1;
> +
> +	/* Set FPGA head_point and tail registers */
> +	q->ring_ctrl_reg.head_point = q->tail = 0;
> +
> +	/* Set FPGA shadow_tail register */
> +	q->ring_ctrl_reg.shadow_tail = q->tail;
> +
> +	/* Calculates the ring offset for found queue */
> +	ring_offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
> +			(sizeof(struct fpga_ring_ctrl_reg) * q_idx);
> +
> +	/* Set FPGA Ring Control Registers */
> +	fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
> +
> +	/* Store MMIO register of shadow_tail */
> +	address = ring_offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL;
> +	q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
> +
> +	q->head_free_desc = q->tail;
> +
> +	/* Set wrap mask */
> +	q->sw_ring_wrap_mask = conf->queue_size - 1;
> +
> +	rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
> +			dev->data->dev_id, queue_id, q->q_idx);
> +
> +	dev->data->queues[queue_id].queue_private = q;
> +
> +	rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
> +			queue_id, q_idx);
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	/* Read FPGA Ring Control Registers after configuration*/
> +	print_ring_reg_debug_info(d->mmio_base, ring_offset);
> +#endif
> +	return 0;
> +}
> +
> +static int
> +fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
> +{
> +	struct fpga_5gnr_fec_device *d = dev->data->dev_private;
> +	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
> +	struct fpga_ring_ctrl_reg ring_reg;
> +	uint32_t offset;
> +
> +	rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
> +
> +	if (q != NULL) {
> +		memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
> +		offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
> +			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
> +		/* Disable queue */
> +		fpga_reg_write_8(d->mmio_base,
> +				offset + FPGA_5GNR_FEC_RING_ENABLE, 0x00);
> +		/* Clear queue registers */
> +		fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
> +
> +		/* Mark the Queue as un-assigned */
> +		d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
> +		rte_free(q->ring_head_addr);
> +		rte_free(q);
> +		dev->data->queues[queue_id].queue_private = NULL;
> +	}
> +
> +	return 0;
> +}
> +
> +/* Function starts a device queue. */
> +static int
> +fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
> +{
> +	struct fpga_5gnr_fec_device *d = dev->data->dev_private;
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	if (d == NULL) {
> +		rte_bbdev_log(ERR, "Invalid device pointer");
> +		return -1;
> +	}
> +#endif
> +	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
> +	uint32_t offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
> +			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
> +	uint8_t enable = 0x01;
> +	uint16_t zero = 0x0000;
> +
> +	/* Clear queue head and tail variables */
> +	q->tail = q->head_free_desc = 0;
> +
> +	/* Clear FPGA head_point and tail registers */
> +	fpga_reg_write_16(d->mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_POINT,
> +			zero);
> +	fpga_reg_write_16(d->mmio_base, offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL,
> +			zero);
> +
> +	/* Enable queue */
> +	fpga_reg_write_8(d->mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
> +			enable);
> +
> +	rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
> +	return 0;
> +}
> +
> +/* Function stops a device queue. */
> +static int
> +fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
> +{
> +	struct fpga_5gnr_fec_device *d = dev->data->dev_private;
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	if (d == NULL) {
> +		rte_bbdev_log(ERR, "Invalid device pointer");
> +		return -1;
> +	}
> +#endif
> +	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
> +	uint32_t offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
> +			(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
> +	uint8_t payload = 0x01;
> +	uint8_t counter = 0;
> +	uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
> +			FPGA_TIMEOUT_CHECK_INTERVAL;
> +
> +	/* Set flush_queue_en bit to trigger queue flushing */
> +	fpga_reg_write_8(d->mmio_base,
> +			offset + FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN, payload);
> +
> +	/** Check if queue flush is completed.
> +	 * FPGA will update the completion flag after queue flushing is
> +	 * completed. If completion flag is not updated within 1ms it is
> +	 * considered as a failure.
> +	 */
> +	while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx)
> +			& payload)) {
> +		if (counter > timeout) {
> +			rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
> +					queue_id);
> +			return -1;
> +		}
> +		usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
> +		counter++;
> +	}
> +
> +	/* Disable queue */
> +	payload = 0x00;
> +	fpga_reg_write_8(d->mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
> +			payload);
> +
> +	rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
> +	return 0;
> +}
> +
> +static inline uint16_t
> +get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
> +{
> +	uint16_t queue_id;
> +
> +	for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
> +		struct fpga_queue *q = data->queues[queue_id].queue_private;
> +		if (q != NULL && q->q_idx == q_idx)
> +			return queue_id;
> +	}
> +
> +	return -1;
> +}
> +
> +/* Interrupt handler triggered by FPGA dev for handling specific interrupt */
> +static void
> +fpga_dev_interrupt_handler(void *cb_arg)
> +{
> +	struct rte_bbdev *dev = cb_arg;
> +	struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
> +	struct fpga_queue *q;
> +	uint64_t ring_head;
> +	uint64_t q_idx;
> +	uint16_t queue_id;
> +	uint8_t i;
> +
> +	/* Scan queue assigned to this device */
> +	for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
> +		q_idx = 1ULL << i;
> +		if (fpga_dev->q_bound_bit_map & q_idx) {
> +			queue_id = get_queue_id(dev->data, i);
> +			if (queue_id == (uint16_t) -1)
> +				continue;
> +
> +			/* Check if completion head was changed */
> +			q = dev->data->queues[queue_id].queue_private;
> +			ring_head = *q->ring_head_addr;
> +			if (q->shadow_completion_head != ring_head &&
> +				q->irq_enable == 1) {
> +				q->shadow_completion_head = ring_head;
> +				rte_bbdev_pmd_callback_process(
> +						dev,
> +						RTE_BBDEV_EVENT_DEQUEUE,
> +						&queue_id);
> +			}
> +		}
> +	}
> +}
> +
> +static int
> +fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
> +{
> +	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
> +
> +	if (!rte_intr_cap_multiple(dev->intr_handle))
> +		return -ENOTSUP;
> +
> +	q->irq_enable = 1;
> +
> +	return 0;
> +}
> +
> +static int
> +fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
> +{
> +	struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
> +	q->irq_enable = 0;
> +
> +	return 0;
> +}
> +
> +static int
> +fpga_intr_enable(struct rte_bbdev *dev)
> +{
> +	int ret;
> +	uint8_t i;
> +
> +	if (!rte_intr_cap_multiple(dev->intr_handle)) {
> +		rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
> +				dev->data->name);
> +		return -ENOTSUP;
> +	}
> +
> +	/* Create event file descriptors for each of 64 queue. Event fds will be
> +	 * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
> +	 * the IRQ number is a direct translation to the queue number.
> +	 *
> +	 * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
> +	 * mapped the first IRQ to already created interrupt event file
> +	 * descriptor (intr_handle->fd).
> +	 */
> +	if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
> +		rte_bbdev_log(ERR, "Failed to create fds for %u queues",
> +				dev->data->num_queues);
> +		return -1;
> +	}
> +
> +	/* TODO Each event file descriptor is overwritten by interrupt event
> +	 * file descriptor. That descriptor is added to epoll observed list.
> +	 * It ensures that callback function assigned to that descriptor will
> +	 * invoked when any FPGA queue issues interrupt.
> +	 */
> +	for (i = 0; i < FPGA_NUM_INTR_VEC; ++i)
> +		dev->intr_handle->efds[i] = dev->intr_handle->fd;
> +
> +	if (!dev->intr_handle->intr_vec) {
> +		dev->intr_handle->intr_vec = rte_zmalloc("intr_vec",
> +				dev->data->num_queues * sizeof(int), 0);
> +		if (!dev->intr_handle->intr_vec) {
> +			rte_bbdev_log(ERR, "Failed to allocate %u vectors",
> +					dev->data->num_queues);
> +			return -ENOMEM;
> +		}
> +	}
> +
> +	ret = rte_intr_enable(dev->intr_handle);
> +	if (ret < 0) {
> +		rte_bbdev_log(ERR,
> +				"Couldn't enable interrupts for device: %s",
> +				dev->data->name);
> +		return ret;
> +	}
> +
> +	ret = rte_intr_callback_register(dev->intr_handle,
> +			fpga_dev_interrupt_handler, dev);
> +	if (ret < 0) {
> +		rte_bbdev_log(ERR,
> +				"Couldn't register interrupt callback for device: %s",
> +				dev->data->name);
> +		return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +static const struct rte_bbdev_ops fpga_ops = {
> +	.setup_queues = fpga_setup_queues,
> +	.intr_enable = fpga_intr_enable,
> +	.close = fpga_dev_close,
> +	.info_get = fpga_dev_info_get,
> +	.queue_setup = fpga_queue_setup,
> +	.queue_stop = fpga_queue_stop,
> +	.queue_start = fpga_queue_start,
> +	.queue_release = fpga_queue_release,
> +	.queue_intr_enable = fpga_queue_intr_enable,
> +	.queue_intr_disable = fpga_queue_intr_disable
> +};
> +
> +static inline void
> +fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
> +		struct rte_bbdev_stats *queue_stats)
> +{
> +#ifdef RTE_BBDEV_OFFLOAD_COST
> +	uint64_t start_time = 0;
> +	queue_stats->acc_offload_cycles = 0;
> +#else
> +	RTE_SET_USED(queue_stats);
> +#endif
> +
> +	/* Update tail and shadow_tail register */
> +	q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
> +
> +	rte_wmb();
> +
> +#ifdef RTE_BBDEV_OFFLOAD_COST
> +	/* Start time measurement for enqueue function offload. */
> +	start_time = rte_rdtsc_precise();
> +#endif
> +	mmio_write_16(q->shadow_tail_addr, q->tail);
> +
> +#ifdef RTE_BBDEV_OFFLOAD_COST
> +	rte_wmb();
> +	queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
> +#endif
> +}
> +
> +/* Read flag value 0/1/ from bitmap */
> +static inline bool
> +check_bit(uint32_t bitmap, uint32_t bitmask)
> +{
> +	return bitmap & bitmask;
> +}
> +
> +/* Print an error if a descriptor error has occurred.
> + *  Return 0 on success, 1 on failure
> + */
> +static inline int
> +check_desc_error(uint32_t error_code) {
> +	switch (error_code) {
> +	case DESC_ERR_NO_ERR:
> +		return 0;
> +	case DESC_ERR_K_P_OUT_OF_RANGE:
> +		rte_bbdev_log(ERR, "Encode block size K' is out of range");
> +		break;
> +	case DESC_ERR_Z_C_NOT_LEGAL:
> +		rte_bbdev_log(ERR, "Zc is illegal");
> +		break;
> +	case DESC_ERR_DESC_OFFSET_ERR:
> +		rte_bbdev_log(ERR,
> +				"Queue offset does not meet the expectation in the FPGA"
> +				);
> +		break;
> +	case DESC_ERR_DESC_READ_FAIL:
> +		rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
> +		break;
> +	case DESC_ERR_DESC_READ_TIMEOUT:
> +		rte_bbdev_log(ERR, "Descriptor read time-out");
> +		break;
> +	case DESC_ERR_DESC_READ_TLP_POISONED:
> +		rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
> +		break;
> +	case DESC_ERR_CB_READ_FAIL:
> +		rte_bbdev_log(ERR, "Unsuccessful completion for code block");
> +		break;
> +	case DESC_ERR_CB_READ_TIMEOUT:
> +		rte_bbdev_log(ERR, "Code block read time-out");
> +		break;
> +	case DESC_ERR_CB_READ_TLP_POISONED:
> +		rte_bbdev_log(ERR, "Code block read TLP poisoned");
> +		break;
> +	case DESC_ERR_HBSTORE_ERR:
> +		rte_bbdev_log(ERR, "Hbstroe exceeds HARQ buffer size.");
> +		break;
> +	default:
> +		rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
> +				error_code);
> +		break;
> +	}
> +	return 1;
> +}
> +
> +/* Compute value of k0.
> + * Based on 3GPP 38.212 Table 5.4.2.1-2
> + * Starting position of different redundancy versions, k0
> + */
> +static inline uint16_t
> +get_k0(uint16_t n_cb, uint16_t z_c, uint8_t basegraph, uint8_t rv_index)
> +{
> +	if (rv_index == 0)
> +		return 0;
> +	uint16_t n = (basegraph == 1 ? 66 : 50) * z_c;
> +	if (n_cb == n) {
> +		if (rv_index == 1)
> +			return (basegraph == 1 ? 17 : 13) * z_c;
> +		else if (rv_index == 2)
> +			return (basegraph == 1 ? 33 : 25) * z_c;
> +		else
> +			return (basegraph == 1 ? 56 : 43) * z_c;
> +	} else {
> +		/* LBRM case - includes a division by N */
> +		if (rv_index == 1)
> +			return (((basegraph == 1 ? 17 : 13) * n_cb)
> +					/ n) * z_c;
> +		else if (rv_index == 2)
> +			return (((basegraph == 1 ? 33 : 25) * n_cb)
> +					/ n) * z_c;
> +		else
> +			return (((basegraph == 1 ? 56 : 43) * n_cb)
> +					/ n) * z_c;
> +	}
> +}
> +
> +
> +/**
> + * Set DMA descriptor for encode operation (1 Code Block)
> + *
> + * @param op
> + *   Pointer to a single encode operation.
> + * @param desc
> + *   Pointer to DMA descriptor.
> + * @param input
> + *   Pointer to pointer to input data which will be decoded.
> + * @param e
> + *   E value (length of output in bits).
> + * @param ncb
> + *   Ncb value (size of the soft buffer).
> + * @param out_length
> + *   Length of output buffer
> + * @param in_offset
> + *   Input offset in rte_mbuf structure. It is used for calculating the point
> + *   where data is starting.
> + * @param out_offset
> + *   Output offset in rte_mbuf structure. It is used for calculating the point
> + *   where hard output data will be stored.
> + * @param cbs_in_op
> + *   Number of CBs contained in one operation.
> + */
> +static inline int
> +fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
> +		struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
> +		struct rte_mbuf *output, uint16_t k_,  uint16_t e,
> +		uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
> +		uint8_t cbs_in_op)
> +{
> +	/* reset */
> +	desc->done = 0;
> +	desc->error = 0;
> +	desc->k_ = k_;
> +	desc->rm_e = e;
> +	desc->desc_idx = desc_offset;
> +	desc->zc = op->ldpc_enc.z_c;
> +	desc->bg_idx = op->ldpc_enc.basegraph - 1;
> +	desc->qm_idx = op->ldpc_enc.q_m / 2;
> +	desc->crc_en = check_bit(op->ldpc_enc.op_flags,
> +			RTE_BBDEV_LDPC_CRC_24B_ATTACH);
> +	desc->irq_en = 0;
> +	desc->k0 = get_k0(op->ldpc_enc.n_cb, op->ldpc_enc.z_c,
> +			op->ldpc_enc.basegraph, op->ldpc_enc.rv_index);
> +	desc->ncb = op->ldpc_enc.n_cb;
> +	desc->num_null = op->ldpc_enc.n_filler;
> +	/* Set inbound data buffer address */
> +	desc->in_addr_hi = (uint32_t)(
> +			rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
> +	desc->in_addr_lw = (uint32_t)(
> +			rte_pktmbuf_mtophys_offset(input, in_offset));
> +
> +	desc->out_addr_hi = (uint32_t)(
> +			rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
> +	desc->out_addr_lw = (uint32_t)(
> +			rte_pktmbuf_mtophys_offset(output, out_offset));
> +	/* Save software context needed for dequeue */
> +	desc->op_addr = op;
> +	/* Set total number of CBs in an op */
> +	desc->cbs_in_op = cbs_in_op;
> +	return 0;
> +}
> +
> +/**
> + * Set DMA descriptor for decode operation (1 Code Block)
> + *
> + * @param op
> + *   Pointer to a single encode operation.
> + * @param desc
> + *   Pointer to DMA descriptor.
> + * @param input
> + *   Pointer to pointer to input data which will be decoded.
> + * @param in_offset
> + *   Input offset in rte_mbuf structure. It is used for calculating the point
> + *   where data is starting.
> + * @param out_offset
> + *   Output offset in rte_mbuf structure. It is used for calculating the point
> + *   where hard output data will be stored.
> + * @param cbs_in_op
> + *   Number of CBs contained in one operation.
> + */
> +static inline int
> +fpga_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
> +		struct fpga_dma_dec_desc *desc,
> +		struct rte_mbuf *input,	struct rte_mbuf *output,
> +		uint16_t harq_in_length,
> +		uint32_t in_offset, uint32_t out_offset,
> +		uint32_t harq_offset,
> +		uint16_t desc_offset,
> +		uint8_t cbs_in_op)
> +{
> +	/* reset */
> +	desc->done = 0;
> +	desc->error = 0;
> +	/* Set inbound data buffer address */
> +	desc->in_addr_hi = (uint32_t)(
> +			rte_pktmbuf_mtophys_offset(input, in_offset) >> 32);
> +	desc->in_addr_lw = (uint32_t)(
> +			rte_pktmbuf_mtophys_offset(input, in_offset));
> +	desc->rm_e = op->ldpc_dec.cb_params.e;
> +	desc->harq_input_length = harq_in_length;
> +	desc->et_dis = !check_bit(op->ldpc_dec.op_flags,
> +			RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
> +	desc->rv = op->ldpc_dec.rv_index;
> +	desc->crc24b_ind = check_bit(op->ldpc_dec.op_flags,
> +			RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
> +	desc->drop_crc24b = check_bit(op->ldpc_dec.op_flags,
> +			RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP);
> +	desc->desc_idx = desc_offset;
> +	desc->ncb = op->ldpc_dec.n_cb;
> +	desc->num_null = op->ldpc_dec.n_filler;
> +	desc->hbstroe_offset = harq_offset >> 10;
> +	desc->zc = op->ldpc_dec.z_c;
> +	desc->harqin_en = check_bit(op->ldpc_dec.op_flags,
> +			RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
> +	desc->bg_idx = op->ldpc_dec.basegraph - 1;
> +	desc->max_iter = op->ldpc_dec.iter_max;
> +	desc->qm_idx = op->ldpc_dec.q_m / 2;
> +	desc->out_addr_hi = (uint32_t)(
> +			rte_pktmbuf_mtophys_offset(output, out_offset) >> 32);
> +	desc->out_addr_lw = (uint32_t)(
> +			rte_pktmbuf_mtophys_offset(output, out_offset));
> +	/* Save software context needed for dequeue */
> +	desc->op_addr = op;
> +	/* Set total number of CBs in an op */
> +	desc->cbs_in_op = cbs_in_op;
> +
> +	return 0;
> +}
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +/* Validates LDPC encoder parameters */
> +static int
> +validate_enc_op(struct rte_bbdev_enc_op *op __rte_unused)
> +{
> +	struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc;
> +	struct rte_bbdev_op_enc_ldpc_cb_params *cb = NULL;
> +	struct rte_bbdev_op_enc_ldpc_tb_params *tb = NULL;
> +
> +
> +	if (ldpc_enc->input.length >
> +			RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) {
> +		rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
> +				ldpc_enc->input.length,
> +				RTE_BBDEV_LDPC_MAX_CB_SIZE);
> +		return -1;
> +	}
> +
> +	if (op->mempool == NULL) {
> +		rte_bbdev_log(ERR, "Invalid mempool pointer");
> +		return -1;
> +	}
> +	if (ldpc_enc->input.data == NULL) {
> +		rte_bbdev_log(ERR, "Invalid input pointer");
> +		return -1;
> +	}
> +	if (ldpc_enc->output.data == NULL) {
> +		rte_bbdev_log(ERR, "Invalid output pointer");
> +		return -1;
> +	}
> +	if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) {
> +		rte_bbdev_log(ERR,
> +				"basegraph (%u) is out of range 1 <= value <= 2",
> +				ldpc_enc->basegraph);
> +		return -1;
> +	}
> +	if (ldpc_enc->code_block_mode > 1) {
> +		rte_bbdev_log(ERR,
> +				"code_block_mode (%u) is out of range 0:Tb 1:CB",
> +				ldpc_enc->code_block_mode);
> +		return -1;
> +	}
> +
> +	if (ldpc_enc->code_block_mode == 0) {
> +		tb = &ldpc_enc->tb_params;
> +		if (tb->c == 0) {
> +			rte_bbdev_log(ERR,
> +					"c (%u) is out of range 1 <= value <= %u",
> +					tb->c, RTE_BBDEV_LDPC_MAX_CODE_BLOCKS);
> +			return -1;
> +		}
> +		if (tb->cab > tb->c) {
> +			rte_bbdev_log(ERR,
> +					"cab (%u) is greater than c (%u)",
> +					tb->cab, tb->c);
> +			return -1;
> +		}
> +		if ((tb->ea < RTE_BBDEV_LDPC_MIN_CB_SIZE)
> +				&& tb->r < tb->cab) {
> +			rte_bbdev_log(ERR,
> +					"ea (%u) is less than %u or it is not even",
> +					tb->ea, RTE_BBDEV_LDPC_MIN_CB_SIZE);
> +			return -1;
> +		}
> +		if ((tb->eb < RTE_BBDEV_LDPC_MIN_CB_SIZE)
> +				&& tb->c > tb->cab) {
> +			rte_bbdev_log(ERR,
> +					"eb (%u) is less than %u",
> +					tb->eb, RTE_BBDEV_LDPC_MIN_CB_SIZE);
> +			return -1;
> +		}
> +		if (tb->r > (tb->c - 1)) {
> +			rte_bbdev_log(ERR,
> +					"r (%u) is greater than c - 1 (%u)",
> +					tb->r, tb->c - 1);
> +			return -1;
> +		}
> +	} else {
> +		cb = &ldpc_enc->cb_params;
> +		if (cb->e < RTE_BBDEV_LDPC_MIN_CB_SIZE) {
> +			rte_bbdev_log(ERR,
> +					"e (%u) is less than %u or it is not even",
> +					cb->e, RTE_BBDEV_LDPC_MIN_CB_SIZE);
> +			return -1;
> +		}
> +	}
> +	return 0;
> +}
> +#endif
> +
> +static inline char *
> +mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
> +{
> +	if (unlikely(len > rte_pktmbuf_tailroom(m)))
> +		return NULL;
> +
> +	char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
> +	m->data_len = (uint16_t)(m->data_len + len);
> +	m_head->pkt_len  = (m_head->pkt_len + len);
> +	return tail;
> +}
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +/* Validates LDPC decoder parameters */
> +static int
> +validate_dec_op(struct rte_bbdev_dec_op *op __rte_unused)
> +{
> +	struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec;
> +	struct rte_bbdev_op_dec_ldpc_cb_params *cb = NULL;
> +	struct rte_bbdev_op_dec_ldpc_tb_params *tb = NULL;
> +
> +	if (op->mempool == NULL) {
> +		rte_bbdev_log(ERR, "Invalid mempool pointer");
> +		return -1;
> +	}
> +	if (ldpc_dec->rv_index > 3) {
> +		rte_bbdev_log(ERR,
> +				"rv_index (%u) is out of range 0 <= value <= 3",
> +				ldpc_dec->rv_index);
> +		return -1;
> +	}
> +
> +	if (ldpc_dec->iter_max == 0) {
> +		rte_bbdev_log(ERR,
> +				"iter_max (%u) is equal to 0",
> +				ldpc_dec->iter_max);
> +		return -1;
> +	}
> +
> +	if (ldpc_dec->code_block_mode > 1) {
> +		rte_bbdev_log(ERR,
> +				"code_block_mode (%u) is out of range 0 <= value <= 1",
> +				ldpc_dec->code_block_mode);
> +		return -1;
> +	}
> +
> +	if (ldpc_dec->code_block_mode == 0) {
> +		tb = &ldpc_dec->tb_params;
> +		if (tb->c < 1) {
> +			rte_bbdev_log(ERR,
> +					"c (%u) is out of range 1 <= value <= %u",
> +					tb->c, RTE_BBDEV_LDPC_MAX_CODE_BLOCKS);
> +			return -1;
> +		}
> +		if (tb->cab > tb->c) {
> +			rte_bbdev_log(ERR,
> +					"cab (%u) is greater than c (%u)",
> +					tb->cab, tb->c);
> +			return -1;
> +		}
> +	} else {
> +		cb = &ldpc_dec->cb_params;
> +		if (cb->e < RTE_BBDEV_LDPC_MIN_CB_SIZE) {
> +			rte_bbdev_log(ERR,
> +					"e (%u) is out of range %u <= value <= %u",
> +					cb->e, RTE_BBDEV_LDPC_MIN_CB_SIZE,
> +					RTE_BBDEV_LDPC_MAX_CB_SIZE);
> +			return -1;
> +		}
> +	}
> +
> +	return 0;
> +}
> +#endif
> +
> +static inline int
> +fpga_harq_write_loopback(struct fpga_5gnr_fec_device *fpga_dev,
> +		struct rte_mbuf *harq_input, uint16_t harq_in_length,
> +		uint32_t harq_in_offset, uint32_t harq_out_offset)
> +{
> +	uint32_t out_offset = harq_out_offset;
> +	uint32_t in_offset = harq_in_offset;
> +	uint32_t left_length = harq_in_length;
> +	uint32_t reg_32, increment = 0;
> +	uint64_t *input = NULL;
> +	uint32_t last_transaction = left_length
> +			% FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
> +	uint64_t last_word;
> +
> +	if (last_transaction > 0)
> +		left_length -= last_transaction;
> +
> +	/*
> +	 * Get HARQ buffer size for each VF/PF: When 0x00, there is no
> +	 * available DDR space for the corresponding VF/PF.
> +	 */
> +	reg_32 = fpga_reg_read_32(fpga_dev->mmio_base,
> +			FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
> +	if (reg_32 < harq_in_length) {
> +		left_length = reg_32;
> +		rte_bbdev_log(ERR, "HARQ in length > HARQ buffer size\n");
> +	}
> +
> +	input = (uint64_t *)rte_pktmbuf_mtod_offset(harq_input,
> +			uint8_t *, in_offset);
> +
> +	while (left_length > 0) {
> +		if (fpga_reg_read_8(fpga_dev->mmio_base,
> +				FPGA_5GNR_FEC_DDR4_ADDR_RDY_REGS) ==  1) {
> +			fpga_reg_write_32(fpga_dev->mmio_base,
> +					FPGA_5GNR_FEC_DDR4_WR_ADDR_REGS,
> +					out_offset);
> +			fpga_reg_write_64(fpga_dev->mmio_base,
> +					FPGA_5GNR_FEC_DDR4_WR_DATA_REGS,
> +					input[increment]);
> +			left_length -= FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
> +			out_offset += FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
> +			increment++;
> +			fpga_reg_write_8(fpga_dev->mmio_base,
> +					FPGA_5GNR_FEC_DDR4_WR_DONE_REGS, 1);
> +		}
> +	}
> +	while (last_transaction > 0) {
> +		if (fpga_reg_read_8(fpga_dev->mmio_base,
> +				FPGA_5GNR_FEC_DDR4_ADDR_RDY_REGS) ==  1) {
> +			fpga_reg_write_32(fpga_dev->mmio_base,
> +					FPGA_5GNR_FEC_DDR4_WR_ADDR_REGS,
> +					out_offset);
> +			last_word = input[increment];
> +			last_word &= (uint64_t)(1 << (last_transaction * 4))
> +					- 1;
> +			fpga_reg_write_64(fpga_dev->mmio_base,
> +					FPGA_5GNR_FEC_DDR4_WR_DATA_REGS,
> +					last_word);
> +			fpga_reg_write_8(fpga_dev->mmio_base,
> +					FPGA_5GNR_FEC_DDR4_WR_DONE_REGS, 1);
> +			last_transaction = 0;
> +		}
> +	}
> +	return 1;
> +}
> +
> +static inline int
> +fpga_harq_read_loopback(struct fpga_5gnr_fec_device *fpga_dev,
> +		struct rte_mbuf *harq_output, uint16_t harq_in_length,
> +		uint32_t harq_in_offset, uint32_t harq_out_offset)
> +{
> +	uint32_t left_length, in_offset = harq_in_offset;
> +	uint64_t reg;
> +	uint32_t increment = 0;
> +	uint64_t *input = NULL;
> +	uint32_t last_transaction = harq_in_length
> +			% FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
> +
> +	if (last_transaction > 0)
> +		harq_in_length += (8 - last_transaction);
> +
> +	reg = fpga_reg_read_32(fpga_dev->mmio_base,
> +			FPGA_5GNR_FEC_HARQ_BUF_SIZE_REGS);
> +	if (reg < harq_in_length) {
> +		harq_in_length = reg;
> +		rte_bbdev_log(ERR, "HARQ in length > HARQ buffer size\n");
> +	}
> +
> +	if (!mbuf_append(harq_output, harq_output, harq_in_length)) {
> +		rte_bbdev_log(ERR, "HARQ output buffer warning %d %d\n",
> +				harq_output->buf_len -
> +				rte_pktmbuf_headroom(harq_output),
> +				harq_in_length);
> +		harq_in_length = harq_output->buf_len -
> +				rte_pktmbuf_headroom(harq_output);
> +		if (!mbuf_append(harq_output, harq_output, harq_in_length)) {
> +			rte_bbdev_log(ERR, "HARQ output buffer issue %d %d\n",
> +					harq_output->buf_len, harq_in_length);
> +			return -1;
> +		}
> +	}
> +	left_length = harq_in_length;
> +
> +	input = (uint64_t *)rte_pktmbuf_mtod_offset(harq_output,
> +			uint8_t *, harq_out_offset);
> +
> +	while (left_length > 0) {
> +		fpga_reg_write_32(fpga_dev->mmio_base,
> +			FPGA_5GNR_FEC_DDR4_RD_ADDR_REGS, in_offset);
> +		fpga_reg_write_8(fpga_dev->mmio_base,
> +				FPGA_5GNR_FEC_DDR4_RD_DONE_REGS, 1);
> +		reg = fpga_reg_read_8(fpga_dev->mmio_base,
> +			FPGA_5GNR_FEC_DDR4_RD_RDY_REGS);
> +		while (reg != 1) {
> +			reg = fpga_reg_read_8(fpga_dev->mmio_base,
> +				FPGA_5GNR_FEC_DDR4_RD_RDY_REGS);
> +			if (reg == FPGA_DDR_OVERFLOW) {
> +				rte_bbdev_log(ERR,
> +						"Read address is overflow!\n");
> +				return -1;
> +			}
> +		}
> +		input[increment] = fpga_reg_read_64(fpga_dev->mmio_base,
> +			FPGA_5GNR_FEC_DDR4_RD_DATA_REGS);
> +		left_length -= FPGA_5GNR_FEC_DDR_RD_DATA_LEN_IN_BYTES;
> +		in_offset += FPGA_5GNR_FEC_DDR_WR_DATA_LEN_IN_BYTES;
> +		increment++;
> +		fpga_reg_write_8(fpga_dev->mmio_base,
> +				FPGA_5GNR_FEC_DDR4_RD_DONE_REGS, 0);
> +	}
> +	return 1;
> +}
> +
> +static inline int
> +enqueue_ldpc_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
> +		uint16_t desc_offset)
> +{
> +	union fpga_dma_desc *desc;
> +	int ret;
> +	uint8_t c, crc24_bits = 0;
> +	struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
> +	uint16_t in_offset = enc->input.offset;
> +	uint16_t out_offset = enc->output.offset;
> +	struct rte_mbuf *m_in = enc->input.data;
> +	struct rte_mbuf *m_out = enc->output.data;
> +	struct rte_mbuf *m_out_head = enc->output.data;
> +	uint32_t in_length, out_length, e;
> +	uint16_t total_left = enc->input.length;
> +	uint16_t ring_offset;
> +	uint16_t K, k_;
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	/* Validate op structure */
> +	/* FIXME */
> +	if (validate_enc_op(op) == -1) {
> +		rte_bbdev_log(ERR, "LDPC encoder validation failed");
> +		return -EINVAL;
> +	}
> +#endif
> +
> +	/* Clear op status */
> +	op->status = 0;
> +
> +	if (m_in == NULL || m_out == NULL) {
> +		rte_bbdev_log(ERR, "Invalid mbuf pointer");
> +		op->status = 1 << RTE_BBDEV_DATA_ERROR;
> +		return -EINVAL;
> +	}
> +
> +	if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH)
> +		crc24_bits = 24;
> +
> +	if (enc->code_block_mode == 0) {
> +		/* For Transport Block mode */
> +		/* FIXME */
> +		c = enc->tb_params.c;
> +		e = enc->tb_params.ea;
> +	} else { /* For Code Block mode */
> +		c = 1;
> +		e = enc->cb_params.e;
> +	}
> +
> +	/* Update total_left */
> +	K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
> +	k_ = K - enc->n_filler;
> +	in_length = (k_ - crc24_bits) >> 3;
> +	out_length = (e + 7) >> 3;
> +
> +	total_left = rte_pktmbuf_data_len(m_in) - in_offset;
> +
> +	/* Update offsets */
> +	if (total_left != in_length) {
> +		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
> +		rte_bbdev_log(ERR,
> +				"Mismatch between mbuf length and included CBs sizes %d",
> +				total_left);
> +	}
> +
> +	mbuf_append(m_out_head, m_out, out_length);
> +
> +	/* Offset into the ring */
> +	ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
> +	/* Setup DMA Descriptor */
> +	desc = q->ring_addr + ring_offset;
> +
> +	ret = fpga_dma_desc_te_fill(op, &desc->enc_req, m_in, m_out,
> +			k_, e, in_offset, out_offset, ring_offset, c);
> +	if (unlikely(ret < 0))
> +		return ret;
> +
> +	/* Update lengths */
> +	total_left -= in_length;
> +	op->ldpc_enc.output.length += out_length;
> +
> +	if (total_left > 0) {
> +		rte_bbdev_log(ERR,
> +			"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
> +				total_left, in_length);
> +		return -1;
> +	}
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	print_dma_enc_desc_debug_info(desc);
> +#endif
> +	return 1;
> +}
> +
> +static inline int
> +enqueue_ldpc_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
> +		uint16_t desc_offset)
> +{
> +	union fpga_dma_desc *desc;
> +	int ret;
> +	uint16_t ring_offset;
> +	uint8_t c;
> +	uint16_t e, in_length, out_length, k0, l, seg_total_left, sys_cols;
> +	uint16_t K, parity_offset, harq_in_length = 0, harq_out_length = 0;
> +	uint16_t crc24_overlap = 0;
> +	struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
> +	struct rte_mbuf *m_in = dec->input.data;
> +	struct rte_mbuf *m_out = dec->hard_output.data;
> +	struct rte_mbuf *m_out_head = dec->hard_output.data;
> +	uint16_t in_offset = dec->input.offset;
> +	uint16_t out_offset = dec->hard_output.offset;
> +	uint32_t harq_offset = 0;
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +		/* Validate op structure */
> +		if (validate_dec_op(op) == -1) {
> +			rte_bbdev_log(ERR, "LDPC decoder validation failed");
> +			return -EINVAL;
> +		}
> +#endif
> +
> +	/* Clear op status */
> +	op->status = 0;
> +
> +	/* Setup DMA Descriptor */
> +	ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
> +	desc = q->ring_addr + ring_offset;
> +
> +	if (check_bit(dec->op_flags,
> +			RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
> +		struct rte_mbuf *harq_in = dec->harq_combined_input.data;
> +		struct rte_mbuf *harq_out = dec->harq_combined_output.data;
> +		harq_in_length = dec->harq_combined_input.length;
> +		uint32_t harq_in_offset = dec->harq_combined_input.offset;
> +		uint32_t harq_out_offset = dec->harq_combined_output.offset;
> +
> +		if (check_bit(dec->op_flags,
> +				RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
> +				)) {
> +			ret = fpga_harq_write_loopback(q->d, harq_in,
> +					harq_in_length, harq_in_offset,
> +					harq_out_offset);
> +		} else if (check_bit(dec->op_flags,
> +				RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE
> +				)) {
> +			ret = fpga_harq_read_loopback(q->d, harq_out,
> +				harq_in_length, harq_in_offset,
> +				harq_out_offset);
> +			dec->harq_combined_output.length = harq_in_length;
> +		} else {
> +			rte_bbdev_log(ERR, "OP flag Err!");
> +			ret = -1;
> +		}
> +		/* Set descriptor for dequeue */
> +		desc->dec_req.done = 1;
> +		desc->dec_req.error = 0;
> +		desc->dec_req.op_addr = op;
> +		desc->dec_req.cbs_in_op = 1;
> +		/* Mark this dummy descriptor to be dropped by HW */
> +		desc->dec_req.desc_idx = (ring_offset + 1)
> +				& q->sw_ring_wrap_mask;
> +		return ret; /* Error or number of CB */
> +	}
> +
> +	if (m_in == NULL || m_out == NULL) {
> +		rte_bbdev_log(ERR, "Invalid mbuf pointer");
> +		op->status = 1 << RTE_BBDEV_DATA_ERROR;
> +		return -1;
> +	}
> +
> +	c = 1;
> +	e = dec->cb_params.e;
> +
> +	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
> +		crc24_overlap = 24;
> +
> +	sys_cols = (dec->basegraph == 1) ? 22 : 10;
> +	K = sys_cols * dec->z_c;
> +	parity_offset = K - 2 * dec->z_c;
> +
> +	out_length = ((K - crc24_overlap - dec->n_filler) >> 3);
> +	in_length = e;
> +	seg_total_left = dec->input.length;
> +
> +	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
> +		harq_in_length = RTE_MIN(dec->harq_combined_input.length,
> +				(uint32_t)dec->n_cb);
> +	}
> +
> +	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
> +		k0 = get_k0(dec->n_cb, dec->z_c,
> +				dec->basegraph, dec->rv_index);
> +		if (k0 > parity_offset)
> +			l = k0 + e;
> +		else
> +			l = k0 + e + dec->n_filler;
> +		harq_out_length = RTE_MIN(RTE_MAX(harq_in_length, l),
> +				dec->n_cb - dec->n_filler);
> +		dec->harq_combined_output.length = harq_out_length;
> +	}
> +
> +	mbuf_append(m_out_head, m_out, out_length);
> +	if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE))
> +		harq_offset = dec->harq_combined_input.offset;
> +	else if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE))
> +		harq_offset = dec->harq_combined_output.offset;
> +
> +	if ((harq_offset & 0x3FF) > 0) {
> +		rte_bbdev_log(ERR, "Invalid HARQ offset %d", harq_offset);
> +		op->status = 1 << RTE_BBDEV_DATA_ERROR;
> +		return -1;
> +	}
> +
> +	ret = fpga_dma_desc_ld_fill(op, &desc->dec_req, m_in, m_out,
> +		harq_in_length, in_offset, out_offset, harq_offset,
> +		ring_offset, c);
> +	if (unlikely(ret < 0))
> +		return ret;
> +	/* Update lengths */
> +	seg_total_left -= in_length;
> +	op->ldpc_dec.hard_output.length += out_length;
> +	if (seg_total_left > 0) {
> +		rte_bbdev_log(ERR,
> +				"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
> +				seg_total_left, in_length);
> +		return -1;
> +	}
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	print_dma_dec_desc_debug_info(desc);
> +#endif
> +
> +	return 1;
> +}
> +
> +static uint16_t
> +fpga_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
> +		struct rte_bbdev_enc_op **ops, uint16_t num)
> +{
> +	uint16_t i, total_enqueued_cbs = 0;
> +	int32_t avail;
> +	int enqueued_cbs;
> +	struct fpga_queue *q = q_data->queue_private;
> +	union fpga_dma_desc *desc;
> +
> +	/* Check if queue is not full */
> +	if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
> +			q->head_free_desc))
> +		return 0;
> +
> +	/* Calculates available space */
> +	avail = (q->head_free_desc > q->tail) ?
> +		q->head_free_desc - q->tail - 1 :
> +		q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
> +
> +	for (i = 0; i < num; ++i) {
> +
> +		/* Check if there is available space for further
> +		 * processing
> +		 */
> +		if (unlikely(avail - 1 < 0))
> +			break;
> +		avail -= 1;
> +		enqueued_cbs = enqueue_ldpc_enc_one_op_cb(q, ops[i],
> +				total_enqueued_cbs);
> +
> +		if (enqueued_cbs < 0)
> +			break;
> +
> +		total_enqueued_cbs += enqueued_cbs;
> +
> +		rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
> +				total_enqueued_cbs, num,
> +				q->head_free_desc, q->tail);
> +	}
> +
> +	/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
> +	 * only when all previous CBs were already processed.
> +	 */
> +	desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
> +			& q->sw_ring_wrap_mask);
> +	desc->enc_req.irq_en = q->irq_enable;
> +
> +	fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
> +
> +	/* Update stats */
> +	q_data->queue_stats.enqueued_count += i;
> +	q_data->queue_stats.enqueue_err_count += num - i;
> +
> +	return i;
> +}
> +
> +static uint16_t
> +fpga_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
> +		struct rte_bbdev_dec_op **ops, uint16_t num)
> +{
> +	uint16_t i, total_enqueued_cbs = 0;
> +	int32_t avail;
> +	int enqueued_cbs;
> +	struct fpga_queue *q = q_data->queue_private;
> +	union fpga_dma_desc *desc;
> +
> +	/* Check if queue is not full */
> +	if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
> +			q->head_free_desc))
> +		return 0;
> +
> +	/* Calculates available space */
> +	avail = (q->head_free_desc > q->tail) ?
> +		q->head_free_desc - q->tail - 1 :
> +		q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
> +
> +	for (i = 0; i < num; ++i) {
> +
> +		/* Check if there is available space for further
> +		 * processing
> +		 */
> +		if (unlikely(avail - 1 < 0))
> +			break;
> +		avail -= 1;
> +		enqueued_cbs = enqueue_ldpc_dec_one_op_cb(q, ops[i],
> +				total_enqueued_cbs);
> +
> +		if (enqueued_cbs < 0)
> +			break;
> +
> +		total_enqueued_cbs += enqueued_cbs;
> +
> +		rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
> +				total_enqueued_cbs, num,
> +				q->head_free_desc, q->tail);
> +	}
> +
> +	/* Update stats */
> +	q_data->queue_stats.enqueued_count += i;
> +	q_data->queue_stats.enqueue_err_count += num - i;
> +
> +	/* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
> +	 * only when all previous CBs were already processed.
> +	 */
> +	desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
> +			& q->sw_ring_wrap_mask);
> +	desc->enc_req.irq_en = q->irq_enable;
> +	fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
> +	return i;
> +}
> +
> +
> +static inline int
> +dequeue_ldpc_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
> +		uint16_t desc_offset)
> +{
> +	union fpga_dma_desc *desc;
> +	int desc_error = 0;
> +
> +	/* Set current desc */
> +	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
> +			& q->sw_ring_wrap_mask);
> +
> +	/*check if done */
> +	if (desc->enc_req.done == 0)
> +		return -1;
> +
> +	/* make sure the response is read atomically */
> +	rte_smp_rmb();
> +
> +	rte_bbdev_log_debug("DMA response desc %p", desc);
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	print_dma_enc_desc_debug_info(desc);
> +#endif
> +
> +	*op = desc->enc_req.op_addr;
> +	/* Check the descriptor error field, return 1 on error */
> +	desc_error = check_desc_error(desc->enc_req.error);
> +	(*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
> +
> +	return 1;
> +}
> +
> +
> +static inline int
> +dequeue_ldpc_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
> +		uint16_t desc_offset)
> +{
> +	union fpga_dma_desc *desc;
> +	int desc_error = 0;
> +	/* Set descriptor */
> +	desc = q->ring_addr + ((q->head_free_desc + desc_offset)
> +			& q->sw_ring_wrap_mask);
> +
> +	/* Verify done bit is set */
> +	if (desc->dec_req.done == 0)
> +		return -1;
> +
> +	/* make sure the response is read atomically */
> +	rte_smp_rmb();
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	print_dma_dec_desc_debug_info(desc);
> +#endif
> +
> +	*op = desc->dec_req.op_addr;
> +
> +	if (check_bit((*op)->ldpc_dec.op_flags,
> +			RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
> +		(*op)->status = 0;
> +		return 1;
> +	}
> +
> +	/* FPGA reports iterations based on round-up minus 1 */
> +	(*op)->ldpc_dec.iter_count = desc->dec_req.iter + 1;
> +	/* CRC Check criteria */
> +	if (desc->dec_req.crc24b_ind && !(desc->dec_req.crcb_pass))
> +		(*op)->status = 1 << RTE_BBDEV_CRC_ERROR;
> +	/* et_pass = 0 when decoder fails */
> +	(*op)->status |= !(desc->dec_req.et_pass) << RTE_BBDEV_SYNDROME_ERROR;
> +	/* Check the descriptor error field, return 1 on error */
> +	desc_error = check_desc_error(desc->dec_req.error);
> +	(*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
> +	return 1;
> +}
> +
> +static uint16_t
> +fpga_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
> +		struct rte_bbdev_enc_op **ops, uint16_t num)
> +{
> +	struct fpga_queue *q = q_data->queue_private;
> +	uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
> +	uint16_t i;
> +	uint16_t dequeued_cbs = 0;
> +	int ret;
> +
> +	for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
> +		ret = dequeue_ldpc_enc_one_op_cb(q, &ops[i], dequeued_cbs);
> +
> +		if (ret < 0)
> +			break;
> +
> +		dequeued_cbs += ret;
> +
> +		rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
> +				dequeued_cbs, num, q->head_free_desc, q->tail);
> +	}
> +
> +	/* Update head */
> +	q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
> +			q->sw_ring_wrap_mask;
> +
> +	/* Update stats */
> +	q_data->queue_stats.dequeued_count += i;
> +
> +	return i;
> +}
> +
> +static uint16_t
> +fpga_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
> +		struct rte_bbdev_dec_op **ops, uint16_t num)
> +{
> +	struct fpga_queue *q = q_data->queue_private;
> +	uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
> +	uint16_t i;
> +	uint16_t dequeued_cbs = 0;
> +	int ret;
> +
> +	for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
> +		ret = dequeue_ldpc_dec_one_op_cb(q, &ops[i], dequeued_cbs);
> +
> +		if (ret < 0)
> +			break;
> +
> +		dequeued_cbs += ret;
> +
> +		rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
> +				dequeued_cbs, num, q->head_free_desc, q->tail);
> +	}
> +
> +	/* Update head */
> +	q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
> +			q->sw_ring_wrap_mask;
> +
> +	/* Update stats */
> +	q_data->queue_stats.dequeued_count += i;
> +
> +	return i;
> +}
> +
> +
> +/* Initialization Function */
> +static void
> +fpga_5gnr_fec_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
> +{
> +	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
> +
> +	dev->dev_ops = &fpga_ops;
> +	dev->enqueue_ldpc_enc_ops = fpga_enqueue_ldpc_enc;
> +	dev->enqueue_ldpc_dec_ops = fpga_enqueue_ldpc_dec;
> +	dev->dequeue_ldpc_enc_ops = fpga_dequeue_ldpc_enc;
> +	dev->dequeue_ldpc_dec_ops = fpga_dequeue_ldpc_dec;
> +
> +	((struct fpga_5gnr_fec_device *) dev->data->dev_private)->pf_device =
> +			!strcmp(drv->driver.name,
> +					RTE_STR(FPGA_5GNR_FEC_PF_DRIVER_NAME));
> +	((struct fpga_5gnr_fec_device *) dev->data->dev_private)->mmio_base =
> +			pci_dev->mem_resource[0].addr;
> +
> +	rte_bbdev_log_debug(
> +			"Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
> +			dev->device->driver->name, dev->data->name,
> +			(void *)pci_dev->mem_resource[0].addr,
> +			pci_dev->mem_resource[0].phys_addr);
> +}
> +
> +static int
> +fpga_5gnr_fec_probe(struct rte_pci_driver *pci_drv,
> +	struct rte_pci_device *pci_dev)
> +{
> +	struct rte_bbdev *bbdev = NULL;
> +	char dev_name[RTE_BBDEV_NAME_MAX_LEN];
> +
> +	if (pci_dev == NULL) {
> +		rte_bbdev_log(ERR, "NULL PCI device");
> +		return -EINVAL;
> +	}
> +
> +	rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
> +
> +	/* Allocate memory to be used privately by drivers */
> +	bbdev = rte_bbdev_allocate(pci_dev->device.name);
> +	if (bbdev == NULL)
> +		return -ENODEV;
> +
> +	/* allocate device private memory */
> +	bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
> +			sizeof(struct fpga_5gnr_fec_device),
> +			RTE_CACHE_LINE_SIZE,
> +			pci_dev->device.numa_node);
> +
> +	if (bbdev->data->dev_private == NULL) {
> +		rte_bbdev_log(CRIT,
> +				"Allocate of %zu bytes for device \"%s\" failed",
> +				sizeof(struct fpga_5gnr_fec_device), dev_name);
> +				rte_bbdev_release(bbdev);
> +			return -ENOMEM;
> +	}
> +
> +	/* Fill HW specific part of device structure */
> +	bbdev->device = &pci_dev->device;
> +	bbdev->intr_handle = &pci_dev->intr_handle;
> +	bbdev->data->socket_id = pci_dev->device.numa_node;
> +
> +	/* Invoke FEC FPGA device initialization function */
> +	fpga_5gnr_fec_init(bbdev, pci_drv);
> +
> +	rte_bbdev_log_debug("bbdev id = %u [%s]",
> +			bbdev->data->dev_id, dev_name);
> +
> +	struct fpga_5gnr_fec_device *d = bbdev->data->dev_private;
> +	uint32_t version_id = fpga_reg_read_32(d->mmio_base,
> +			FPGA_5GNR_FEC_VERSION_ID);
> +	rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
> +		((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	if (!strcmp(bbdev->device->driver->name,
> +			RTE_STR(FPGA_5GNR_FEC_PF_DRIVER_NAME)))
> +		print_static_reg_debug_info(d->mmio_base);
> +#endif
> +	return 0;
> +}
> +
> +static int
> +fpga_5gnr_fec_remove(struct rte_pci_device *pci_dev)
> +{
> +	struct rte_bbdev *bbdev;
> +	int ret;
> +	uint8_t dev_id;
> +
> +	if (pci_dev == NULL)
> +		return -EINVAL;
> +
> +	/* Find device */
> +	bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
> +	if (bbdev == NULL) {
> +		rte_bbdev_log(CRIT,
> +				"Couldn't find HW dev \"%s\" to uninitialise it",
> +				pci_dev->device.name);
> +		return -ENODEV;
> +	}
> +	dev_id = bbdev->data->dev_id;
> +
> +	/* free device private memory before close */
> +	rte_free(bbdev->data->dev_private);
> +
> +	/* Close device */
> +	ret = rte_bbdev_close(dev_id);
> +	if (ret < 0)
> +		rte_bbdev_log(ERR,
> +				"Device %i failed to close during uninit: %i",
> +				dev_id, ret);
> +
> +	/* release bbdev from library */
> +	ret = rte_bbdev_release(bbdev);
> +	if (ret)
> +		rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
> +				ret);
> +
> +	rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
> +
> +	return 0;
> +}
> +
> +static inline void
> +set_default_fpga_conf(struct fpga_5gnr_fec_conf *def_conf)
> +{
> +	/* clear default configuration before initialization */
> +	memset(def_conf, 0, sizeof(struct fpga_5gnr_fec_conf));
> +	/* Set pf mode to true */
> +	def_conf->pf_mode_en = true;
> +
> +	/* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
> +	def_conf->ul_bandwidth = 3;
> +	def_conf->dl_bandwidth = 3;
> +
> +	/* Set Load Balance Factor to 64 */
> +	def_conf->dl_load_balance = 64;
> +	def_conf->ul_load_balance = 64;
> +}
> +
> +/* Initial configuration of FPGA 5GNR FEC device */
> +int
> +fpga_5gnr_fec_configure(const char *dev_name,
> +		const struct fpga_5gnr_fec_conf *conf)
> +{
> +	uint32_t payload_32, address;
> +	uint16_t payload_16;
> +	uint8_t payload_8;
> +	uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
> +	struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
> +	struct fpga_5gnr_fec_conf def_conf;
> +
> +	if (bbdev == NULL) {
> +		rte_bbdev_log(ERR,
> +				"Invalid dev_name (%s), or device is not yet initialised",
> +				dev_name);
> +		return -ENODEV;
> +	}
> +
> +	struct fpga_5gnr_fec_device *d = bbdev->data->dev_private;
> +
> +	if (conf == NULL) {
> +		rte_bbdev_log(ERR,
> +				"FPGA Configuration was not provided. Default configuration will be loaded.");
> +		set_default_fpga_conf(&def_conf);
> +		conf = &def_conf;
> +	}
> +
> +	/*
> +	 * Configure UL:DL ratio.
> +	 * [7:0]: UL weight
> +	 * [15:8]: DL weight
> +	 */
> +	payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
> +	address = FPGA_5GNR_FEC_CONFIGURATION;
> +	fpga_reg_write_16(d->mmio_base, address, payload_16);
> +
> +	/* Clear all queues registers */
> +	payload_32 = FPGA_INVALID_HW_QUEUE_ID;
> +	for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
> +		address = (q_id << 2) + FPGA_5GNR_FEC_QUEUE_MAP;
> +		fpga_reg_write_32(d->mmio_base, address, payload_32);
> +	}
> +
> +	/*
> +	 * If PF mode is enabled allocate all queues for PF only.
> +	 *
> +	 * For VF mode each VF can have different number of UL and DL queues.
> +	 * Total number of queues to configure cannot exceed FPGA
> +	 * capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
> +	 * Queues mapping is done according to configuration:
> +	 *
> +	 * UL queues:
> +	 * |                Q_ID              | VF_ID |
> +	 * |                 0                |   0   |
> +	 * |                ...               |   0   |
> +	 * | conf->vf_dl_queues_number[0] - 1 |   0   |
> +	 * | conf->vf_dl_queues_number[0]     |   1   |
> +	 * |                ...               |   1   |
> +	 * | conf->vf_dl_queues_number[1] - 1 |   1   |
> +	 * |                ...               |  ...  |
> +	 * | conf->vf_dl_queues_number[7] - 1 |   7   |
> +	 *
> +	 * DL queues:
> +	 * |                Q_ID              | VF_ID |
> +	 * |                 32               |   0   |
> +	 * |                ...               |   0   |
> +	 * | conf->vf_ul_queues_number[0] - 1 |   0   |
> +	 * | conf->vf_ul_queues_number[0]     |   1   |
> +	 * |                ...               |   1   |
> +	 * | conf->vf_ul_queues_number[1] - 1 |   1   |
> +	 * |                ...               |  ...  |
> +	 * | conf->vf_ul_queues_number[7] - 1 |   7   |
> +	 *
> +	 * Example of configuration:
> +	 * conf->vf_ul_queues_number[0] = 4;  -> 4 UL queues for VF0
> +	 * conf->vf_dl_queues_number[0] = 4;  -> 4 DL queues for VF0
> +	 * conf->vf_ul_queues_number[1] = 2;  -> 2 UL queues for VF1
> +	 * conf->vf_dl_queues_number[1] = 2;  -> 2 DL queues for VF1
> +	 *
> +	 * UL:
> +	 * | Q_ID | VF_ID |
> +	 * |   0  |   0   |
> +	 * |   1  |   0   |
> +	 * |   2  |   0   |
> +	 * |   3  |   0   |
> +	 * |   4  |   1   |
> +	 * |   5  |   1   |
> +	 *
> +	 * DL:
> +	 * | Q_ID | VF_ID |
> +	 * |  32  |   0   |
> +	 * |  33  |   0   |
> +	 * |  34  |   0   |
> +	 * |  35  |   0   |
> +	 * |  36  |   1   |
> +	 * |  37  |   1   |
> +	 */
> +	if (conf->pf_mode_en) {
> +		payload_32 = 0x1;
> +		for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
> +			address = (q_id << 2) + FPGA_5GNR_FEC_QUEUE_MAP;
> +			fpga_reg_write_32(d->mmio_base, address, payload_32);
> +		}
> +	} else {
> +		/* Calculate total number of UL and DL queues to configure */
> +		total_ul_q_id = total_dl_q_id = 0;
> +		for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
> +			total_ul_q_id += conf->vf_ul_queues_number[vf_id];
> +			total_dl_q_id += conf->vf_dl_queues_number[vf_id];
> +		}
> +		total_q_id = total_dl_q_id + total_ul_q_id;
> +		/*
> +		 * Check if total number of queues to configure does not exceed
> +		 * FPGA capabilities (64 queues - 32 UL and 32 DL queues)
> +		 */
> +		if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
> +			(total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
> +			(total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
> +			rte_bbdev_log(ERR,
> +					"FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
> +					total_ul_q_id, total_dl_q_id,
> +					FPGA_TOTAL_NUM_QUEUES);
> +			return -EINVAL;
> +		}
> +		total_ul_q_id = 0;
> +		for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
> +			for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
> +					++q_id, ++total_ul_q_id) {
> +				address = (total_ul_q_id << 2) +
> +						FPGA_5GNR_FEC_QUEUE_MAP;
> +				payload_32 = ((0x80 + vf_id) << 16) | 0x1;
> +				fpga_reg_write_32(d->mmio_base, address,
> +						payload_32);
> +			}
> +		}
> +		total_dl_q_id = 0;
> +		for (vf_id = 0; vf_id < FPGA_5GNR_FEC_NUM_VFS; ++vf_id) {
> +			for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
> +					++q_id, ++total_dl_q_id) {
> +				address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
> +						<< 2) + FPGA_5GNR_FEC_QUEUE_MAP;
> +				payload_32 = ((0x80 + vf_id) << 16) | 0x1;
> +				fpga_reg_write_32(d->mmio_base, address,
> +						payload_32);
> +			}
> +		}
> +	}
> +
> +	/* Setting Load Balance Factor */
> +	payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
> +	address = FPGA_5GNR_FEC_LOAD_BALANCE_FACTOR;
> +	fpga_reg_write_16(d->mmio_base, address, payload_16);
> +
> +	/* Setting length of ring descriptor entry */
> +	payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
> +	address = FPGA_5GNR_FEC_RING_DESC_LEN;
> +	fpga_reg_write_16(d->mmio_base, address, payload_16);
> +
> +	/* Setting FLR timeout value */
> +	payload_16 = conf->flr_time_out;
> +	address = FPGA_5GNR_FEC_FLR_TIME_OUT;
> +	fpga_reg_write_16(d->mmio_base, address, payload_16);
> +
> +	/* Queue PF/VF mapping table is ready */
> +	payload_8 = 0x1;
> +	address = FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE;
> +	fpga_reg_write_8(d->mmio_base, address, payload_8);
> +
> +	rte_bbdev_log_debug("PF FPGA 5GNR FEC configuration complete for %s",
> +			dev_name);
> +
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +	print_static_reg_debug_info(d->mmio_base);
> +#endif
> +	return 0;
> +}
> +
> +/* FPGA 5GNR FEC PCI PF address map */
> +static struct rte_pci_id pci_id_fpga_5gnr_fec_pf_map[] = {
> +	{
> +		RTE_PCI_DEVICE(FPGA_5GNR_FEC_VENDOR_ID,
> +				FPGA_5GNR_FEC_PF_DEVICE_ID)
> +	},
> +	{.device_id = 0},
> +};
> +
> +static struct rte_pci_driver fpga_5gnr_fec_pci_pf_driver = {
> +	.probe = fpga_5gnr_fec_probe,
> +	.remove = fpga_5gnr_fec_remove,
> +	.id_table = pci_id_fpga_5gnr_fec_pf_map,
> +	.drv_flags = RTE_PCI_DRV_NEED_MAPPING
> +};
> +
> +/* FPGA 5GNR FEC PCI VF address map */
> +static struct rte_pci_id pci_id_fpga_5gnr_fec_vf_map[] = {
> +	{
> +		RTE_PCI_DEVICE(FPGA_5GNR_FEC_VENDOR_ID,
> +				FPGA_5GNR_FEC_VF_DEVICE_ID)
> +	},
> +	{.device_id = 0},
> +};
> +
> +static struct rte_pci_driver fpga_5gnr_fec_pci_vf_driver = {
> +	.probe = fpga_5gnr_fec_probe,
> +	.remove = fpga_5gnr_fec_remove,
> +	.id_table = pci_id_fpga_5gnr_fec_vf_map,
> +	.drv_flags = RTE_PCI_DRV_NEED_MAPPING
> +};
> +
> +
> +RTE_PMD_REGISTER_PCI(FPGA_5GNR_FEC_PF_DRIVER_NAME, fpga_5gnr_fec_pci_pf_driver);
> +RTE_PMD_REGISTER_PCI_TABLE(FPGA_5GNR_FEC_PF_DRIVER_NAME,
> +		pci_id_fpga_5gnr_fec_pf_map);
> +RTE_PMD_REGISTER_PCI(FPGA_5GNR_FEC_VF_DRIVER_NAME, fpga_5gnr_fec_pci_vf_driver);
> +RTE_PMD_REGISTER_PCI_TABLE(FPGA_5GNR_FEC_VF_DRIVER_NAME,
> +		pci_id_fpga_5gnr_fec_vf_map);
> +
> +RTE_INIT(fpga_5gnr_fec_init_log)
> +{
> +	fpga_5gnr_fec_logtype = rte_log_register("pmd.bb.fpga_5gnr_fec");
> +	if (fpga_5gnr_fec_logtype >= 0)
> +#ifdef RTE_LIBRTE_BBDEV_DEBUG
> +		rte_log_set_level(fpga_5gnr_fec_logtype, RTE_LOG_DEBUG);
> +#else
> +		rte_log_set_level(fpga_5gnr_fec_logtype, RTE_LOG_NOTICE);
> +#endif
> +}
> diff --git a/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h b/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h
> new file mode 100644
> index 0000000..7eebc7d
> --- /dev/null
> +++ b/drivers/baseband/fpga_5gnr_fec/fpga_5gnr_fec.h
> @@ -0,0 +1,74 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2020 Intel Corporation
> + */
> +
> +#ifndef _FPGA_5GNR_FEC_H_
> +#define _FPGA_5GNR_FEC_H_
> +
> +#include <stdint.h>
> +#include <stdbool.h>
> +
> +/**
> + * @file fpga_5gnr_fec.h
> + *
> + * Interface for Intel(R) FGPA 5GNR FEC device configuration at the host level,
> + * directly accessible by the application.
> + * Configuration related to 5GNR functionality is done through
> + * librte_bbdev library.
> + *
> + * @warning
> + * @b EXPERIMENTAL: this API may change without prior notice
> + */
> +
> +#ifdef __cplusplus
> +extern "C" {
> +#endif
> +
> +/**< Number of Virtual Functions FGPA 4G FEC supports */
> +#define FPGA_5GNR_FEC_NUM_VFS 8
> +
> +/**
> + * Structure to pass FPGA 4G FEC configuration.
> + */
> +struct fpga_5gnr_fec_conf {
> +	/**< 1 if PF is used for dataplane, 0 for VFs */
> +	bool pf_mode_en;
> +	/**< Number of UL queues per VF */
> +	uint8_t vf_ul_queues_number[FPGA_5GNR_FEC_NUM_VFS];
> +	/**< Number of DL queues per VF */
> +	uint8_t vf_dl_queues_number[FPGA_5GNR_FEC_NUM_VFS];
> +	/**< UL bandwidth. Needed for schedule algorithm */
> +	uint8_t ul_bandwidth;
> +	/**< DL bandwidth. Needed for schedule algorithm */
> +	uint8_t dl_bandwidth;
> +	/**< UL Load Balance */
> +	uint8_t ul_load_balance;
> +	/**< DL Load Balance */
> +	uint8_t dl_load_balance;
> +	/**< FLR timeout value */
> +	uint16_t flr_time_out;
> +};
> +
> +/**
> + * Configure Intel(R) FPGA 5GNR FEC device
> + *
> + * @param dev_name
> + *   The name of the device. This is the short form of PCI BDF, e.g. 00:01.0.
> + *   It can also be retrieved for a bbdev device from the dev_name field in the
> + *   rte_bbdev_info structure returned by rte_bbdev_info_get().
> + * @param conf
> + *   Configuration to apply to FPGA 4G FEC.
> + *
> + * @return
> + *   Zero on success, negative value on failure.
> + */
> +__rte_experimental
> +int
> +fpga_5gnr_fec_configure(const char *dev_name,
> +		const struct fpga_5gnr_fec_conf *conf);
> +
> +#ifdef __cplusplus
> +}
> +#endif
> +
> +#endif /* _FPGA_5GNR_FEC_H_ */
> diff --git a/drivers/baseband/fpga_5gnr_fec/meson.build b/drivers/baseband/fpga_5gnr_fec/meson.build
> new file mode 100644
> index 0000000..86121d8
> --- /dev/null
> +++ b/drivers/baseband/fpga_5gnr_fec/meson.build
> @@ -0,0 +1,6 @@
> +# SPDX-License-Identifier: BSD-3-Clause
> +# Copyright(c) 2020 Intel Corporation
> +
> +deps += ['bbdev', 'bus_vdev', 'ring', 'pci', 'bus_pci']
> +allow_experimental_apis = true
> +sources = files('fpga_5gnr_fec.c')
> diff --git a/drivers/baseband/fpga_5gnr_fec/rte_pmd_bbdev_fpga_5gnr_fec_version.map b/drivers/baseband/fpga_5gnr_fec/rte_pmd_bbdev_fpga_5gnr_fec_version.map
> new file mode 100644
> index 0000000..b0fb971
> --- /dev/null
> +++ b/drivers/baseband/fpga_5gnr_fec/rte_pmd_bbdev_fpga_5gnr_fec_version.map
> @@ -0,0 +1,10 @@
> +DPDK_20.0 {
> +	local: *;
> +};
> +
> +EXPERIMENTAL {
> +	global:
> +
> +	fpga_5gnr_fec_configure;
> +
> +};
> diff --git a/drivers/baseband/meson.build b/drivers/baseband/meson.build
> index be7677f..4d909f9 100644
> --- a/drivers/baseband/meson.build
> +++ b/drivers/baseband/meson.build
> @@ -1,7 +1,7 @@
>   # SPDX-License-Identifier: BSD-3-Clause
>   # Copyright(c) 2018 Luca Boccassi <bluca at debian.org>
>   
> -drivers = ['null', 'turbo_sw', 'fpga_lte_fec']
> +drivers = ['null', 'turbo_sw', 'fpga_lte_fec', 'fpga_5gnr_fec']
>   
>   config_flag_fmt = 'RTE_LIBRTE_PMD_BBDEV_ at 0@'
>   driver_name_fmt = 'rte_pmd_bbdev_ at 0@'
> diff --git a/mk/rte.app.mk b/mk/rte.app.mk
> index d295ca0..da12b9e 100644
> --- a/mk/rte.app.mk
> +++ b/mk/rte.app.mk
> @@ -246,6 +246,7 @@ _LDLIBS-$(CONFIG_RTE_LIBRTE_NETVSC_PMD)     += -lrte_pmd_netvsc
>   ifeq ($(CONFIG_RTE_LIBRTE_BBDEV),y)
>   _LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL)     += -lrte_pmd_bbdev_null
>   _LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC) += -lrte_pmd_bbdev_fpga_lte_fec
> +_LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC) += -lrte_pmd_bbdev_fpga_5gnr_fec
>   
>   # TURBO SOFTWARE PMD is dependent on the FLEXRAN library
>   _LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += -lrte_pmd_bbdev_turbo_sw


More information about the dev mailing list