[RFC 1/5] eal: add static per-lcore memory allocation facility

Mattias Rönnblom hofors at lysator.liu.se
Mon Feb 19 15:31:34 CET 2024


On 2024-02-19 12:10, Morten Brørup wrote:
>> From: Mattias Rönnblom [mailto:hofors at lysator.liu.se]
>> Sent: Monday, 19 February 2024 08.49
>>
>> On 2024-02-09 14:04, Morten Brørup wrote:
>>>> From: Mattias Rönnblom [mailto:hofors at lysator.liu.se]
>>>> Sent: Friday, 9 February 2024 12.46
>>>>
>>>> On 2024-02-09 09:25, Morten Brørup wrote:
>>>>>> From: Mattias Rönnblom [mailto:mattias.ronnblom at ericsson.com]
>>>>>> Sent: Thursday, 8 February 2024 19.17
>>>>>>
>>>>>> Introduce DPDK per-lcore id variables, or lcore variables for
>> short.
>>>>>>
>>>>>> An lcore variable has one value for every current and future lcore
>>>>>> id-equipped thread.
>>>>>>
>>>>>> The primary <rte_lcore_var.h> use case is for statically
>> allocating
>>>>>> small chunks of often-used data, which is related logically, but
>>>> where
>>>>>> there are performance benefits to reap from having updates being
>>>> local
>>>>>> to an lcore.
>>>>>>
>>>>>> Lcore variables are similar to thread-local storage (TLS, e.g.,
>> C11
>>>>>> _Thread_local), but decoupling the values' life time with that of
>>>> the
>>>>>> threads.
>>>>>>
>>>>>> Lcore variables are also similar in terms of functionality
>> provided
>>>> by
>>>>>> FreeBSD kernel's DPCPU_*() family of macros and the associated
>>>>>> build-time machinery. DPCPU uses linker scripts, which effectively
>>>>>> prevents the reuse of its, otherwise seemingly viable, approach.
>>>>>>
>>>>>> The currently-prevailing way to solve the same problem as lcore
>>>>>> variables is to keep a module's per-lcore data as RTE_MAX_LCORE-
>>>> sized
>>>>>> array of cache-aligned, RTE_CACHE_GUARDed structs. The benefit of
>>>>>> lcore variables over this approach is that data related to the
>> same
>>>>>> lcore now is close (spatially, in memory), rather than data used
>> by
>>>>>> the same module, which in turn avoid excessive use of padding,
>>>>>> polluting caches with unused data.
>>>>>>
>>>>>> Signed-off-by: Mattias Rönnblom <mattias.ronnblom at ericsson.com>
>>>>>> ---
>>>>>
>>>>> This looks very promising. :-)
>>>>>
>>>>> Here's a bunch of comments, questions and suggestions.
>>>>>
>>>>>
>>>>> * Question: Performance.
>>>>> What is the cost of accessing an lcore variable vs a variable in
>> TLS?
>>>>> I suppose the relative cost diminishes if the variable is a larger
>>>> struct, compared to a simple uint64_t.
>>>>>
>>>>
>>>> In case all the relevant data is available in a cache close to the
>>>> core,
>>>> both options carry quite low overhead.
>>>>
>>>> Accessing a lcore variable will always require a TLS lookup, in the
>>>> form
>>>> of retrieving the lcore_id of the current thread. In that sense,
>> there
>>>> will likely be a number of extra instructions required to do the
>> lcore
>>>> variable address lookup (i.e., doing the load from rte_lcore_var
>> table
>>>> based on the lcore_id you just looked up, and adding the variable's
>>>> offset).
>>>>
>>>> A TLS lookup will incur an extra overhead of less than a clock
>> cycle,
>>>> compared to accessing a non-TLS static variable, in case static
>> linking
>>>> is used. For shared objects, TLS is much more expensive (something
>>>> often
>>>> visible in dynamically linked DPDK app flame graphs, in the form of
>> the
>>>> __tls_addr symbol). Then you need to add ~3 cc/access. This on a
>> micro
>>>> benchmark running on a x86_64 Raptor Lake P-core.
>>>>
>>>> (To visialize the difference between shared object and not, one can
>> use
>>>> Compiler Explorer and -fPIC versus -fPIE.)
>>>>
>>>> Things get more complicated if you access the same variable in the
>> same
>>>> section code, since then it can be left on the stack/in a register
>> by
>>>> the compiler, especially if LTO is used. In other words, if you do
>>>> rte_lcore_id() several times in a row, only the first one will cost
>> you
>>>> anything. This happens fairly often in DPDK, with rte_lcore_id().
>>>>
>>>> Finally, if you do something like
>>>>
>>>> diff --git a/lib/eal/common/rte_random.c
>> b/lib/eal/common/rte_random.c
>>>> index af9fffd81b..a65c30d27e 100644
>>>> --- a/lib/eal/common/rte_random.c
>>>> +++ b/lib/eal/common/rte_random.c
>>>> @@ -125,14 +125,7 @@ __rte_rand_lfsr258(struct rte_rand_state
>> *state)
>>>>     static __rte_always_inline
>>>>     struct rte_rand_state *__rte_rand_get_state(void)
>>>>     {
>>>> -       unsigned int idx;
>>>> -
>>>> -       idx = rte_lcore_id();
>>>> -
>>>> -       if (unlikely(idx == LCORE_ID_ANY))
>>>> -               return &unregistered_rand_state;
>>>> -
>>>> -       return RTE_LCORE_VAR_PTR(rand_state);
>>>> +       return &unregistered_rand_state;
>>>>     }
>>>>
>>>>     uint64_t
>>>>
>>>> ...and re-run the rand_perf_autotest, at least I see no difference
>> at
>>>> all (in a statically linked build). Both results in rte_rand() using
>>>> ~11
>>>> cc/call. What that suggests is that TLS overhead is very small, and
>>>> that
>>>> any extra instructions required by lcore variables doesn't add much,
>> if
>>>> anything at all, at least in this particular case.
>>>
>>> Excellent. Thank you for a thorough and detailed answer, Mattias.
>>>
>>>>
>>>>> Some of my suggestions below might also affect performance.
>>>>>
>>>>>
>>>>> * Advantage: Provides direct access to worker thread variables.
>>>>> With the current alternative (thread-local storage), the main
>> thread
>>>> cannot access the TLS variables of the worker threads,
>>>>> unless worker threads publish global access pointers.
>>>>> Lcore variables of any lcore thread can be direcctly accessed by
>> any
>>>> thread, which simplifies code.
>>>>>
>>>>>
>>>>> * Advantage: Roadmap towards hugemem.
>>>>> It would be nice if the lcore variable memory was allocated in
>>>> hugemem, to reduce TLB misses.
>>>>> The current alternative (thread-local storage) is also not using
>>>> hugement, so not a degradation.
>>>>>
>>>>
>>>> I agree, but the thing is it's hard to figure out how much memory is
>>>> required for these kind of variables, given how DPDK is built and
>>>> linked. In an OS kernel, you can just take all the symbols, put them
>> in
>>>> a special section, and size that section. Such a thing can't easily
>> be
>>>> done with DPDK, since shared object builds are supported, plus that
>>>> this
>>>> facility should be available not only to DPDK modules, but also the
>>>> application, so relying on linker scripts isn't really feasible (not
>>>> probably not even feasible for DPDK itself).
>>>>
>>>> In that scenario, you want to size up the per-lcore buffer to be so
>>>> large, you don't have to worry about overruns. That will waste
>> memory.
>>>> If you use huge page memory, paging can't help you to avoid
>>>> pre-allocating actual physical memory.
>>>
>>> Good point.
>>> I had noticed that RTE_MAX_LCORE_VAR was 1 MB (per RTE_MAX_LCORE),
>> but I hadn't considered how paging helps us use less physical memory
>> than that.
>>>
>>>>
>>>> That said, even large (by static per-lcore data standards) buffers
>> are
>>>> potentially small enough not to grow the amount of memory used by a
>>>> DPDK
>>>> process too much. You need to provision for RTE_MAX_LCORE of them
>>>> though.
>>>>
>>>> The value of lcore variables should be small, and thus incur few TLB
>>>> misses, so you may not gain much from huge pages. In my world, it's
>>>> more
>>>> about "fitting often-used per-lcore data into L1 or L2 CPU caches",
>>>> rather than the easier "fitting often-used per-lcore data into a
>>>> working
>>>> set size reasonably expected to be covered by hardware TLB/caches".
>>>
>>> Yes, I suppose that lcore variables are intended to be small, and
>> large per-lcore structures should keep following the current design
>> patterns for allocation and access.
>>>
>>
>> It seems to me that support for per-lcore heaps should be the solution
>> for supporting use cases requiring many, larger and/or dynamic objects
>> on a per-lcore basis.
>>
>> Ideally, you would design both that mechanism and lcore variables
>> together, but then if you couple enough amount of improvements together
>> you will never get anywhere. An instance of where perfect is the enemy
>> of good, perhaps.
> 
> So true. :-)
> 
>>
>>> Perhaps this guideline is worth mentioning in the documentation.
>>>
>>
>> What is missing, more specifically? The size limitation and the static
>> nature of lcore variables is described, and what current design
>> patterns
>> they expected to (partly) replace is also covered.
> 
> Your documentation is fine, and nothing specific is missing here.
> I was thinking out loud that the high level DPDK documentation should describe common design patterns.
> 
>>
>>>>
>>>>> Lcore variables are available very early at startup, so I guess the
>>>> RTE memory allocator is not yet available.
>>>>> Hugemem could be allocated using O/S allocation, so there is a
>>>> possible road towards using hugemem.
>>>>>
>>>>
>>>> With the current design, that true. I'm not sure it's a strict
>>>> requirement though, but it does makes things simpler.
>>>>
>>>>> Either way, using hugement would require one more indirection (the
>>>> pointer to the allocated hugemem).
>>>>> I don't know which has better performance, using hugemem or
>> avoiding
>>>> the additional pointer dereferencing.
>>>>>
>>>>>
>>>>> * Suggestion: Consider adding an entry for unregistered non-EAL
>>>> threads.
>>>>> Please consider making room for one more entry, shared by all
>>>> unregistered non-EAL threads, i.e.
>>>>> making the array size RTE_MAX_LCORE + 1 and indexing by
>>>> (rte_lcore_id() < RTE_MAX_LCORE ? rte_lcore_id() : RTE_MAX_LCORE).
>>>>>
>>>>> It would be convenient for the use cases where a variable shared by
>>>> the unregistered non-EAL threads don't need special treatment.
>>>>>
>>>>
>>>> I thought about this, but it would require a conditional in the
>> lookup
>>>> macro, as you show. More importantly, it would make the whole
>>>> <rte_lcore_var.h> thing less elegant and harder to understand. It's
>> bad
>>>> enough that "per-lcore" is actually "per-lcore id" (or the
>> equivalent
>>>> "per-EAL thread and unregistered EAL-thread"). Adding a "btw it's
>> <what
>>>> I said before> + 1" is not an improvement.
>>>
>>> We could promote "one more entry for unregistered non-EAL threads"
>> design pattern (for relevant use cases only!) by extending EAL with one
>> more TLS variable, maintained like _thread_id, but set to RTE_MAX_LCORE
>> when _tread_id is set to -1:
>>>
>>> +++ eal_common_thread.c:
>>>     RTE_DEFINE_PER_LCORE(int, _thread_id) = -1;
>>> + RTE_DEFINE_PER_LCORE(int, _thread_idx) = RTE_MAX_LCORE;
> 
> Ups... wrong reference! I meant to refer to _lcore_id, not _thread_id. Correction:
> 

OK. I subconsciously ignored this mistake, and read it as "_lcore_id".

> We could promote "one more entry for unregistered non-EAL threads" design pattern (for relevant use cases only!) by extending EAL with one more TLS variable, maintained like _lcore_id, but set to RTE_MAX_LCORE when _lcore_id is set to LCORE_ID_ANY:
> 
> +++ eal_common_thread.c:
>    RTE_DEFINE_PER_LCORE(unsigned int, _lcore_id) = LCORE_ID_ANY;
> + RTE_DEFINE_PER_LCORE(unsigned int, _lcore_idx) = RTE_MAX_LCORE;
> 
>>>
>>> and
>>>
>>> +++ rte_lcore.h:
>>> static inline unsigned
>>> rte_lcore_id(void)
>>> {
>>> 	return RTE_PER_LCORE(_lcore_id);
>>> }
>>> + static inline unsigned
>>> + rte_lcore_idx(void)
>>> + {
>>> + 	return RTE_PER_LCORE(_lcore_idx);
>>> + }
>>>
>>> That would eliminate the (rte_lcore_id() < RTE_MAX_LCORE ?
>> rte_lcore_id() : RTE_MAX_LCORE) conditional, also where currently used.
>>>
>>
>> Wouldn't that effectively give a shared lcore id to all unregistered
>> threads?
> 
> Yes, just like the rte_lcore_id() is LCORE_ID_ANY (i.e. UINT32_MAX) for all unregistered threads; but it will be usable for array indexing, behaving as a shadow variable of RTE_PER_LCORE(_lcore_id) for optimizing away the "rte_lcore_id() < RTE_MAX_LCORE ? rte_lcore_id() : RTE_MAX_LCORE" when indexing.
> 
>>
>> We definitely shouldn't further complicate anything related to the DPDK
>> threading model, in my opinion.
>>
>> If a module needs one or more variable instances that aren't per lcore,
>> use regular static allocation instead. I would favor clarity over
>> convenience here, at least until we know better (see below as well).
>>
>>>>
>>>> But useful? Sure.
>>>>
>>>> I think you may still need other data for dealing with unregistered
>>>> threads, for example a mutex or spin lock to deal with concurrency
>>>> issues that arises with shared data.
>>>
>>> Adding the extra entry is only for the benefit of use cases where
>> special handling is not required. It will make the code for those use
>> cases much cleaner. I think it is useful.
>>>
>>
>> It will make it shorter, but not less clean, I would argue.
>>
>>> Use cases requiring special handling should still do the special
>> handling they do today.
>>>
>>
>> For DPDK modules using lcore variables and which treat unregistered
>> threads as "full citizens", I expect special handling of unregistered
>> threads to be the norm. Take rte_random.h as an example. Current API
>> does not guarantee MT safety for concurrent calls of unregistered
>> threads. It probably should, and it should probably be by means of a
>> mutex (not spinlock).
>>
>> The reason I'm not running off to make a rte_random.c patch is that's
>> it's unclear to me what is the role of unregistered threads in DPDK.
>> I'm
>> reasonably comfortable with a model where there are many threads that
>> basically don't interact with the DPDK APIs (except maybe some very
>> narrow exposure, like the preemption-safe ring variant). One example of
>> such a design would be big slow control plane which uses multi-
>> threading
>> and the Linux process scheduler for work scheduling, hosted in the same
>> process as a DPDK data plane app.
>>
>> What I find more strange is a scenario where there are unregistered
>> threads which interacts with a wide variety of DPDK APIs, does so
>> at-high-rates/with-high-performance-requirements and are expected to be
>> preemption-safe. So they are basically EAL threads without a lcore id.
> 
> Yes, this is happening in the wild.
> E.g. our application has a mode where it uses fewer EAL threads, and processes more in non-EAL threads. So to say, the same work is processed either by an EAL thread or a non-EAL thread, depending on the application's mode.
> The extra array entry would be useful for such use cases.
> 

Is there some particular reason you can't register those non-EAL threads?

>>
>> Support for that latter scenario has also been voiced, in previous
>> discussions, from what I recall.
>>
>> I think it's hard to answer the question of a "unregistered thread
>> spare" for lcore variables without first knowing what the future should
>> look like for unregistered threads in DPDK, in terms of being able to
>> call into DPDK APIs, preemption-safety guarantees, etc.
>>
>> It seems that until you have a clearer picture of how generally to
>> treat
>> unregistered threads, you are best off with just a per-lcore id
>> instance
>> of lcore variables.
> 
> I get your point. It also reduces the risk of bugs caused by incorrect use of the additional entry.
> 
> I am arguing for a different angle: Providing the extra entry will help uncovering relevant use cases.
> 

Maybe have two "spares" in case you find two new uses cases? :)

No, adding spares doesn't work, unless you rework the API and rename it 
to fit the new purpose of not only providing per-lcore id variables, but 
per-something-else.

>>
>>>>
>>>> There may also be cases were you are best off by simply disallowing
>>>> unregistered threads from calling into that API.
>>>>
>>>>> Obviously, this might affect performance.
>>>>> If the performance cost is not negligble, the addtional entry (and
>>>> indexing branch) could be disabled at build time.
>>>>>
>>>>>
>>>>> * Suggestion: Do not fix the alignment at 16 byte.
>>>>> Pass an alignment parameter to rte_lcore_var_alloc() and use
>>>> alignof() when calling it:
>>>>>
>>>>> +#include <stdalign.h>
>>>>> +
>>>>> +#define RTE_LCORE_VAR_ALLOC(name)			\
>>>>> +	name = rte_lcore_var_alloc(sizeof(*(name)), alignof(*(name)))
>>>>> +
>>>>> +#define RTE_LCORE_VAR_ALLOC_SIZE_ALIGN(name, size, alignment)
>> 	\
>>>>> +	name = rte_lcore_var_alloc(size, alignment)
>>>>> +
>>>>> +#define RTE_LCORE_VAR_ALLOC_SIZE(name, size)	\
>>>>> +	name = rte_lcore_var_alloc(size, RTE_LCORE_VAR_ALIGNMENT_DEFAULT)
>>>>> +
>>>>> + +++ /cconfig/rte_config.h
>>>>> +#define RTE_LCORE_VAR_ALIGNMENT_DEFAULT 16
>>>>>
>>>>>
>>>>
>>>> That seems like a very good idea. I'll look into it.
>>>>
>>>>> * Concern: RTE_LCORE_VAR_FOREACH() resembles RTE_LCORE_FOREACH(),
>> but
>>>> behaves differently.
>>>>>
>>>>>> +/**
>>>>>> + * Iterate over each lcore id's value for a lcore variable.
>>>>>> + */
>>>>>> +#define RTE_LCORE_VAR_FOREACH(var, name)				\
>>>>>> +	for (unsigned int lcore_id =					\
>>>>>> +		     (((var) = RTE_LCORE_VAR_LCORE_PTR(0, name)), 0);
>> 	\
>>>>>> +	     lcore_id < RTE_MAX_LCORE;
>> 	\
>>>>>> +	     lcore_id++, (var) = RTE_LCORE_VAR_LCORE_PTR(lcore_id,
>> name))
>>>>>> +
>>>>>
>>>>> The macro name RTE_LCORE_VAR_FOREACH() resembles
>>>> RTE_LCORE_FOREACH(i), which only iterates on running cores.
>>>>> You might want to give it a name that differs more.
>>>>>
>>>>
>>>> True.
>>>>
>>>> Maybe RTE_LCORE_VAR_FOREACH_VALUE() is better? Still room for
>>>> confusion,
>>>> for sure.
>>>>
>>>> Being consistent with <rte_lcore.h> is not so easy, since it's not
>> even
>>>> consistent with itself. For example, rte_lcore_count() returns the
>>>> number of lcores (EAL threads) *plus the number of registered non-
>> EAL
>>>> threads*, and RTE_LCORE_FOREACH() give a different count. :)
>>>
>>> Naming is hard. I don't have a good name, and can only offer
>> inspiration...
>>>
>>> <rte_lcore.h> has RTE_LCORE_FOREACH() and its
>> RTE_LCORE_FOREACH_WORKER() variant with _WORKER appended.
>>>
>>> Perhaps RTE_LCORE_VAR_FOREACH_ALL(), with _ALL appended to indicate a
>> variant.
>>>
>>>>
>>>>> If it wasn't for API breakage, I would suggest renaming
>>>> RTE_LCORE_FOREACH() instead, but that's not realistic. ;-)
>>>>>
>>>>> Small detail: "var" is a pointer, so consider renaming it to "ptr"
>>>> and adding _PTR to the macro name.
>>>>
>>>> The "var" name comes from how <sys/queue.h> names things. I think I
>> had
>>>> it as "ptr" initially. I'll change it back.
>>>
>>> Thanks.
>>>
>>>>
>>>> Thanks a lot Morten.


More information about the dev mailing list